
Self-Adaptive Heterogeneous Random Forest

Mohamed Bader-El-Den
School of Computing, University of Portsmouth

Buckingham Building, PO1 3HE, UK
Email: Mohamed.Bader@port.ac.uk

Abstract—Random Forest RF is an ensemble learning ap-
proach that utilises a number of classifiers to contribute though
voting to predicting the class label of any unlabelled instances.
Parameters such as the size of the forest N and the number
of features used at each split M , has significant impact on the
performance of the RF especially on instances with very large
number of attributes. In a previous work Genetic Algorithms
has been used to dynamically optimize the size of RF. This
study extends this genetic algorithm approach to further enhance
the accuracy of Random Forests by building the forest out of
heterogeneous decision trees, heterogeneous here means trees with
different M values. The approach is termed as Heterogeneous
Genetic Algorithm based Random Forests (HGARF). As Random
Forests generates a typical large number of decision trees with
randomisation over the feature space when splitting at each node
for all the trees, this has motivated the development of a genetic
algorithm based optimisation. Typically, HGARF accepts as an
input a forest −→RF of N trees, the initial population is randomly
generated from −→RF as a number of smaller random forests −→rfi
where each one has a number ni ≤ N of trees. This population
of forests is then evolved through a number of generations using
genetic algorithms. Our extensive experimental study has proved
that Random Forests performance could be boosted using the
genetic algorithm approach.

I. INTRODUCTION

Random Forest (RF) is an ensemble classification method
aims to boost the performance of classification techniques. It
is based on the process of building a number of classifiers, and
then collectively use them all to identify unlabelled instances.
Two widely used ensemble approaches could be identified,
namely, boosting and bagging. Boosting is an incremental pro-
cess of building a sequence of classifiers, where each classifier
works on the incorrectly classified instances of the previous
one in the sequence. AdaBoost [7] is the representative of
this class of techniques. However, AdaBoost is pruned to
overfitting. The other class of ensemble approaches is the
Bootstrap Aggregating (Bagging) [4]. Bagging involves build-
ing each classifier in the ensemble using a randomly drawn
sample of the data, having each classifier giving an equal
vote when labelling unlabelled instances. Bagging is known
to be more robust than boosting against model overfitting.
The main representative of bagging is Random Forests [5]. In
random forests, a number of trees are generated, having each
tree built using a randomly drawn instances from the data set.
Randomisation is also applied when selecting the best node to
split on for all the trees. Typically this is an input parameter
which is equal to

√
F , where F is the number of features in

the data set. More details about random forests are presented
in Section II.

This paper proposes a novel approach to optimising random
forests boosting their performance. The approach is termed

Heterogeneous Genetic Algorithm based Random Forests
(HGARF). The HGARF approach starts by generating a large
heterogeneous random forest of N decision trees, forming a
vector −→RF . In classical RF, all trees are built using the same
M value which is the the number of features used at each
split M which is the number of features used at each split M ,
normally M is set to square root of the number of features
F . However, there is no defined way to select the value of
M . In this paper, heterogeneous RF means that the forest
contains trees built with different M values, ranging from 2 to
F − 1. Drawing randomly from −→RF a number of vectors each
denoted as −→rfi, where the number of trees in −→rfi denoted as
ni ≤ N , i = 1..S, and S in the number of random forests. In
genetic algorithms terminology S is the size of the population.
This initial population is then evolved through a number of
generations, with the fitness function for each individual being
its classification accuracy.

The following chapters are organised as follows. Section
II a background about RA and genetic algorithm GA. The
proposed approach HGARF is detailed in Section III. Extensive
experimental study validating HGARF is presented in Section
IV. A discussion of related work is given in Section VI. Finally,
the paper is concluded with a short summary and pointer to
future developments in Section VII.

II. BACKGROUND

A. Random Forests

In classification which is considered as a supervised learn-
ing approach, the target is to identify the value of an attribute,
known as the class attribute, based on the values of the
other attributes in the same instance or record of data. This
identification is based on learning from historical data. The
attributes other than the class are known as predictors. Thus, if
the value of the class label is y, and the values of the predictors
form the vector ~x, then y = f(~x). Any classification technique
attempts to find f̂(~x) that approximates the function f(~x).

Instead of using single classifier, ensemble learning uses a
set of classifiers to identify unlabelled instances . Boosting
and bagging are the two known successful approaches to
ensemble learning. Random forests belongs to the bagging
approach. Bagging (Bootstrap Aggregating) has been proposed
by Breiman in [4]. It is based on generating a number
replicas from the training data by uniformly sampling the
instances with replacement. This sampling approach is known
as Bootstrap. It allows duplicate instances to appear in the
same replica, and also allows some instances to be left out.
Statistically for a large replica that has the number of instances
equal to the size of the data set, 63.2% of the instances do

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Symbol Definition

N : Number of trees in the random forest
F : Total number of features in the data set
M : Number of features to split on at each node
−−→
FM : The vector of M features to split on
Ti : The ith tree in the random forest
B(
−−→
FM) : Best feature to split on

−→
RF : The vector of all trees in the random forest

TABLE I. RANDOM FORESTS ALGORITHM NOTATION

appear at least once in the replica. Having a number of replicas,
each denoted as r out of the training data, a classifier c(r) is
built using the sampled instances in r. The classification is
done via voting among a vector of classifiers

−−→
c(r) that have

been built using the corresponding vector of replicas −→r .

Bagging has been applied successfully to an ensemble
technique, termed Random Forests. In addition to the Bootstrap
sampling, randomisation over the feature space is also used.
The technique is based on building a number of decision tree
classifiers, having each tree built from one replica out of the
training data. However, when splitting the nodes of the decision
tree, only a subset of all the features is used. Assuming that
the number of features in the data set is F , the standard setting
for the random features to be used at each split is M =

√
F .

The Random Forests algorithm is depicted in Algorithm 1.
Notation used in the algorithm is listed in Table I. It has been
also established empirically that setting the number of trees
N in the forest to 100 will yield the best results. However,
increasing N beyond 100 mostly will not have much effect on
the accuracy neither positively nor negatively.

Algorithm 1 Random Forests Algorithm
{User Settings}
input N , M
{Process}
Create an empty vector −→RF
for i = 1→ NoTrees do

Create an empty tree Ti

repeat
Sample M out of all features F
Create a vector of the M features −→FM

Find Best Split Feature B(
−→
FM)

Create A New Node using B(
−→
FM) in Ti

until No More Instances To Split On
Add Ti to the −→RF

end for
{Output}
A vector of trees −→RF

B. Genetic Algorithm

GA is a well established evolutionary approach. Basic
details about GA could be found in [10] In an ordinary
GA, the chromosome represents an encoded solution. For
some problems, the direct encoding of a solution in a GA’s
chromosome results in complex and large chromosomes that
may need complex repairs after the application of the GA’s

operators. In contrast, [13], [18] introduced what could be
called as indirect encoding or Indirect GAs (IGAs), where
each gene in the chromosome represents a heuristic – could
be seen as rule of thumb, an educated guess or small rules –
instead of representing part of solution. In an indirect GA, the
chromosome may be much more compact and robust, since
it represents the heuristics that will be used in order to get a
solution. A chromosome that represents heuristics instead of a
is know as a Heuristic Chromosome (HC).

The most common form of HC, whether, is one where
the HC consists of a number of genes and each of these
genes represents the ID of a heuristic. In order to build a
solution, the heuristics in an HC are called one after the other
or in parallel based on the problem and what exactly the
chromosome represents. One of the main differences between
different HC approaches lies in structure of the HC and what
exactly each gene represents.

The approach adopted in this paper is similar the IGA
approach, a single random tree could be considered as a
heuristic. Each gene in the chromosome represent a pointer
to a random tree classifier, and the chromosome as a whole
represent an ensemble classifier (forest). In order to get a
solution (classification) of a given instance, the genes in the
chromosome are used to evaluate the instance as detailed in
section III.

III. HGARF

HGARF is based on GARF which was first introduced in
[3]. HGARF aims to investigate the development of a more
diverse forest by generating the trees using different M values.
In classical RF, all trees are built using the same M value
which is the the number of features used at each split M which
is the number of features used at each split M , normally M is
set to square root of the number of features F . However, there
is no defined way to select the value of M . In this paper,
heterogeneous RF means that the forest contains trees built
with different M values, ranging from 2 to F − 1. This range
is chosen as M equals 1 means that the tree is built completely
randomly, such a tree could mislead the forest. On the other
hand, M = F means that the it is a full tree with no random
component which is against the concept of RF and excluded
to avoid the risk of over-fitting.

However, how can a RF generated with variable M value?
and what is the best M distribution?. To overcome this
problem, GA is used to evolve the forest instead of directly
generating it.HGARF uses variable size chromosome. Each
chromosome (individual) in the population represents a forest.
Each of the the genes in the chromosome represents a ran-
dom tree. Traditional genetic operators are employed by the
proposed HGARF For the crossover, a standard single point
crossover operators is adopted, two modes of operation for the
crossover operator have been developed and tested. In the first
mode all the repeated genes that could occur because of the
crossover in the new individuals are removed, this to make
sure that the each evolved forest has no repeated trees. The
second mode does not make this extra check and allows the
repetition of the trees in the offspring. For the mutation, a
standard uniform mutation operator is employed, the operator
replaces a randomly chosen tree/gene with another randomly

selected tree from the input trees forest that does not already
exist in the forest/individual.

Each dataset is divided into three sets, training, validation
(for GA training) and testing. The training set is used for
building the random tress (input random forest) with M
ranging from 2 to F − 1. The accuracy of the trees during
the training is very high, reaching in most cases above 99%
accuracy. By the accuracy here we mean the ability of correctly
classifying a given instance. This because these instances have
been seen before during the building stage and in random trees
does not use burning. As a result, is not possible to use these
instances (training set) for training the HGARF as well, and
another indebtedness set of instances (Optimization set) is need
for training the GA. In this paper we may refer to the validation
set as GA-training set.

A. Fitness

Before HGRAF starts the evolution process, each tree in the
input forest is used to classify each of the instances in the GA-
training set, all the classification results for all the trees on all
the instances are stored in a buffer. This is done to speed up the
evolution process and especially the fitness evaluation. So in
the fitness evaluation of each individual, instead of evaluating
the performance of all the trees in the individual against all
the instances in the GA-training set, the classification results
are collected directly from the buffer.

A given instance is considered as correctly classified, if the
number of trees in the individual that has correctly classified
it is grater than the number of trees that has given incorrect
classification. In contrast, a given instance is considered as
incorrectly classified, if the number of trees in the individual
that has correctly classified it is less than or equal to the
number of trees that has given incorrect classification. We call
it a tie, if the number of trees that has correctly classified the
instance is equal to the number of the instances that has been
incorrectly classified,

The fitness of the individual is based on the number
instances he has correctly classified.

f(v) =

K∑
i

c(v, i) +
s(v, i)

K
(1)

where K is the number of instances in the validation set.
c(v, i) return 1 if individual v has correctly classified instance
number i 0 otherwise. s(v, i) return 1 if it is a tie 0 otherwise. If
it is a tie we consider it as an incorrect classification. However,
this could mean that the performance of the individual could
be improved by small change in the trees combination, and
may benefit more from the genetic operators. Therefore, we
slightly increase the fitness of the individual by 1/K for each
tie.

B. HGARF Algorithm

This section provides details about the HGARF algorithm.
Using the same notation in Table I with the addition of NG
representing the number of generations in genetic algorithm
and S denoting the size of the population (number of individual
random forests), the algorithm is depicted in Algorithm 2.

Algorithm 2 HGARF Algorithm
{User Settings}
input N , S, NG
{Process}
for i = 2→ F − 1 do−→

RF = −→RF + Call Random Forest(N/(F − 2), i) {This
will generate initial RF with equally distributed M value
}

end for
for i = 1→ S do

x = Randomise(1→ N)
Add tree Tx to −→rfi

end for
for j = 1→ NG do

Apply GA
b← index of best −→rfi

end for
{Output}
A vector of trees −→rfb

IV. EXPERIMENTAL STUDY

A series of experiments has been conducted to evaluate
the performance of HGARF against the GARF and the state of
the art classification techniques. For the experiments, Waikato
Environment for Knowledge Analysis (WEKA) [20] is used.
The performance of HGARF is compared against the state
of the art classification techniques; C4.5 decision tree [14],
Support Vector Machines (SVM) [19] and AdaBoost [7]. We
have used also WEKA to build the random forest, we denote
this as RFweka.

The experiments are conducted on 15 real standard data
sets from UCI repository [1]. Description of the used data sets
is given in Table III. A variety of data sets with diversity in
the number of instances, number of classes and number of
attributes is used.

The data sets is divided into three equal parts; one third for
training, one third for optimisation (validation), and one third
for testing, as shown in Figure 1. In HGARF, the validation
part is used to evolve initial random forests. To conduct fair
experiments, the training and validation parts of the data sets
are combined and used as the training for the other methods.
The same testing set is used to calculate the performance of
all the classifiers.

The main results of the the experiments are shown in
Table III. Due to limited size, experiments with different
HGARF settings. The table shows our HGARF technique is
very competitive with the other methods.

To assess the robustness of HGARF with varying the
experimental settings of genetic algorithm, we have conducted
as set of experiments with different settings. These settings are
available in Table IV. The corresponding results are presented
in Table V. It can be noted that HGARF has proved to be robust
with the various setting of parameters, achieving consistently
good accuracy over all the data sets used in our experimental
study. Also, Table IV shows the performance of HGARF using
the same experimental settings.

Demonstrating the evolved RF confidence over the initial

Fig. 1. Experimental Setup

DS Name (No. Ins.) HGARF GARF RFweka AdaBoost C 4.5 SVM

diabetes (256) 79.83 78.52 75.39 80.08 76.56 79.30
glass (71) 77.10 71.83 76.06 33.80 59.16 47.89
ionosphere (116) 97.24 96.55 92.24 91.38 93.10 91.38
iris (50) 95.08 96.00 94.00 96.00 96.00 90.00
labor (18) 96.11 94.44 77.78 83.33 77.78 83.33
soybean (227) 87.55 85.46 87.23 32.60 83.70 N/A
vote (145) 99.30 96.55 98.62 99.31 97.24 7.24
credit-g (333) 74.14 73.87 72.67 68.47 69.67 71.47
ecoli (113) 70.51 71.68 69.03 24.78 68.14 61.06
letter (6667) 86.64 84.01 N/A N/A N/A N/A
liver-disorders (116) 71.30 69.83 68.97 59.49 61.21 57.76
sonar (69) 87.97 88.41 81.16 76.81 76.81 84.06
vehicle (282) 75.31 73.76 74.82 38.65 65.96 66.31
vowel (330) 79.78 74.55 80.00 15.76 65.15 51.52
waveform-500 (1667) 85.98 85.18 85.00 73.00 74.15 86.08

TABLE III. PERFORMANCE OF HGARF AGAINST GARF AND THE STATE-OF-THE-ART TECHNIQUES

Name Ins Class. Train. Valid. Test.

diabetes 768 2 256 256 256
glass 214 7 71 72 71
ionosphere 351 2 118 117 116
iris 150 3 50 50 50
labor 57 2 20 19 18
soybean 683 19 228 228 227
vote 435 2 145 145 145
credit-g 1000 2 333 334 333
ecoli 336 8 110 113 113
letter 20000 17 6666 6667 6667
liver-disorders 345 7 113 116 116
sonar 208 61 69 70 69
vehicle 846 19 282 282 282
vowel 990 14 330 330 330
waveform-500 5000 41 1665 1668 1667

TABLE II. DATA SETS USED

random forest (RFin), we have conducted a series of experi-
ments reporting the percentage of trees voted in the random
forest, contributing to the correct classification. In Figures 2
and 3, the x-axis represents the instances in the testing data,

Experiment PSize NG CR MR ChLength Var.

Experiment 1 100 50 0.9 0.1 100 YES
Experiment 2 100 50 0.9 0.1 200 NO
Experiment 3 500 50 0.9 0.1 100 YES
Experiment 4 400 50 0.9 0.1 400 YES

TABLE IV. THE PARAMETERS USED IN THE EXPERIMENTS. PSIZE:
POPULATION SIZE, NG: NUMBER OF GENERATIONS, CR: CROSSOVER

RATE, MR: MUTATION RATE, CHLENGTH: CHROMOSOME LENGTH, VAR:
YES IS THE SIZE OF THE CHROMOSOME IS VARIABLE AND NO IF THE SIZE

OF THE CHROMOSOME IS FIXED.

and the y-axis represents the percentage of trees voted to the
correct class. It can be easily seen that for the Glass and
Sonar data sets, The evolved RF has had in most cases higher
confidence in finding the correct class labels.

V. DISCUSSION

Given the empirically validated robustness of random
forests against noise, it is suitable to address the problem of
changing data, known as concept drift. HGARF can address

EXP1 pop 100 size var 100 EXP2 pop 100 inv200f
Name GARF HGARF Size Std. GARF HGARF Size Std.

diabetes 78.52 79.83 85 3.14 77.73 78.31 200 3.34
glass 71.83 77.1 82 3.8 73.24 74.56 200 4.26
ionosphere 96.55 97.24 82 4.45 94.83 95.42 200 2.89
iris 96 95.08 98 6.25 96 97.51 200 4.73
labor 94.44 96.11 98 4.22 94.44 97.95 200 3.16
soybean 85.46 87.55 92 4.21 84.14 82.2 200 4.09
vote 96.55 99.3 90 1.2 96.55 98.41 200 4.33
credit-g 73.87 74.14 97 2.06 73.57 78.03 200 3.78
ecoli 71.68 70.51 94 4.28 70.8 72.86 200 2.94
letter 84.01 86.64 95 4.96 83.77 87.67 200 2.63
liver-disorders 69.83 71.3 88 3.7 68.97 70.95 200 2.99
sonar 88.41 87.97 92 5.24 88.41 86.53 200 3.78
vehicle 73.76 75.31 86 3.37 73.76 74.75 200 2.76
vowel 74.55 79.78 100 5.8 74.24 77.57 200 3.35
waveform-500 85.18 85.98 94 5.02 84.82 81.75 200 3.69

EXP3 pop 500 EXP4 pop 500 inv 400
Name GARF HGARF Size Std. GARF HGARF Size Std.

diabetes 78.52 77.96 89 3.27 78.13 80.43 159 3.94
glass 70.42 71.03 91 3.05 70.42 74.3 187 3.48
ionosphere 96.55 97.82 174 4.55 95.69 96.27 237 4.35
iris 96 98.33 184 3.05 96 95.27 173 3.47
labor 94.44 92.78 93 2.81 94.44 95.64 159 2.79
soybean 88.55 88.86 74 3.12 85.9 88.79 172 4.42
vote 96.55 98.53 83 4.04 97.24 93.35 176 4.69
credit-g 74.77 75.97 76 2.91 73.87 75.48 162 3.4
ecoli 69.03 70.82 193 3.59 70.8 71.93 261 2.12
letter 84.36 85.61 70 3.58 83.97 84.25 170 3.74
liver-disorders 69.83 68.38 94 3.12 69.83 70.33 187 3.75
sonar 88.41 88.92 90 4.57 88.41 91.94 129 3.67
vehicle 73.76 74.83 66 3 73.76 75.45 173 3.78
vowel 75.15 75.62 179 3.19 74.55 71.08 261 2.91
waveform-500 85.42 82.57 80 4.36 85.24 88.44 157 3.97

TABLE V. PERFORMANCE OF HGARF WITH VARYING EXPERIMENTAL SETTINGS. THE COLUMNS GARF AND HGARF SHOW THE BEST RESULTS FOR
GARF AND HGARF RESPECTIVELY. THE FOLLOWING COLUMNS SHOW THE SIZE OF THE FOREST AND THE STANDARD DEVIATION FOR HGARF . RESULT

FOR GARF,

this issue, because of the natural evolution of genetic algo-
rithm. However, an important issue is required to be addressed.
Sudden and strong concept drift require new trees to be added
to the forest, on one hand. On the other hand, gradual and
weak concept drift can easily utilise genetic algorithm to use
existing trees in the random forest. Extensions to HGARF to
address this issue would also have a great potentil in the data
stream mining area [9], [8].

Moreover, GARF HGARF adopted the accuracy of the
individual random forests as the fitness function. Exploring
the use of ensemble diversity [11] as another fitness function
may lead to further boosting the performance of HGARF.
The argument is that both the accuracy of the ensemble and
its diversity when used together could lead to the optimal
ensemble classification. Further investigations is this area are
planned.

VI. RELATED WORK

Genetic algorithm has been applied in machine learning
and data mining extensively. The main application is the use
of genetic algorithm in the feature selection problem. An early
survey on this topic could be found in [12]. However, the

relevant work to the research reported in this paper is detailed
in the following.

Robnik-Sikonja [15] has proposed possible extensions to
random forests that have proved to boost the accuracy of the
original techniques presented in Section II. The motivation
behind these extensions is to decrease the correlation among
the trees in the random forest. As the original technique
proposed by [5] uses Gini index for finding the best split
among the randomised vector of attributes −→FM . In an attempt to
decrease the dependency among attributes, Robnik-Sikonja has
used ReliefF [16] as a measure of the quality of the attributes.
This extension has not proved to have a good peformance
on real data sets. A combination of measures for the quality
of attributes has been used to decide the split, having each
fifth tree in the forest uses a different measure. This method
has proved to boost the performance of the random forest,
but not significantly. The other approach proposed by Robnik-
Sikonja was the use of weighted voting among the trees using
similarity of the instances with regards to their performance on
the individual trees. This method has proven to always boost
the performance, or at least being as good as the performance
of the original the random forests technique over a number of
real data sets.

Fig. 2. The evolved RF versus the input RF in Voting Confidence: The Glass2 Data Se

Sylvester and Chawla [17] have proposed the EVEN
(EVolutionary ENsembles). They have also attempted to use
weighted voting among a set of homogeneous or heteroge-
neous classifiers. The EVEN system uses each of the clas-
sifier’s performance over a validation set of data to weight
the tree. Experimental validation has proved that EVEN can
outperform the unweighted ensemble.

In a more recent work, Abdulsalam and Skillicorn [2] have
used Hoeffding trees [6] to build a window of random forests
to tackle the concept drift problem when mining streaming
data.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a novel algorithm for evolving
heterogeneous Random Forests, the forest is optimized using
Genetic Algorithm. The algorithm is based on a previously
introduced algorithm GARF that used GA for optimizing the
size of the forest only. The approach is based on generating a
large random forest using different number of attributes split
for each tree M , that is later is decomposed into a number of
smaller random forests. The smaller forests are composed of
trees drawn randomly with replacement from the initial large
random forest. Genetic algorithm is an optimisation technique
is then applied to evolve this initial population of individual
random forests with the fitness function being the classification
of the forest.

REFERENCES

[1] D. N. A. Asuncion. UCI machine learning repository, 2007.
[2] H. Abdulsalam, D. B. Skillicorn, and P. Martin. Classification using

streaming random forests. IEEE Trans. Knowl. Data Eng., 23(1):22–
36, 2011.

[3] M. B. Bader-El-Den and M. M. Gaber. Garf: Towards self-optimised
random forests. In ICONIP (2), volume 7664 of Lecture Notes in
Computer Science, pages 506–515. Springer, 2012.

[4] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[6] P. Domingos and G. Hulten. Mining high-speed data streams. In KDD,

pages 71–80, 2000.
[7] Y. Freund and R. E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting, 1995.
[8] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy. Mining data

streams: a review. SIGMOD Record, 34(2):18–26, 2005.
[9] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy. A survey of

classification methods in data streams. In C. C. Aggarwal, editor, Data
Streams - Models and Algorithms, volume 31 of Advances in Database
Systems, pages 39–59. Springer, 2007.

[10] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms with CD-
ROM. Wiley-Interscience, 2004.

[11] L. I. Kuncheva. Using diversity measures for generating error-correcting
output codes in classifier ensembles. Pattern Recognition Letters,
26(1):83–90, 2005.

[12] M. Martin-Bautista and M.-A. Vila. A survey of genetic feature
selection in mining issues. In Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, volume 2, pages 3 vol.
(xxxvii+2348), 1999.

Fig. 3. The evolved RF versus the input RF in Voting Confidence: The Sonar Data Set

Fig. 4. The evolved RF versus the input RF in Voting Confidence: The Soybean Data Set

[13] I. Norenkov. Scheduling and allocation for simulation and synthesis
of cad system hardware. In In Proceedings EWITD 94, East-West
International Conference, ICSTI, pages 20–24, Moscow, 1994.

[14] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[15] M. Robnik-Sikonja. Improving random forests. In ECML, pages 359–
370, 2004.

[16] M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical
analysis of relieff and rrelieff. Mach. Learn., 53:23–69, October 2003.

[17] J. Sylvester and N. Chawla. Evolutionary ensemble creation and
thinning. In Neural Networks, 2006. IJCNN’06. International Joint
Conference on, pages 5148–5155. IEEE, 2006.

[18] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon. Evolution
of constraint satisfaction strategies in examination timetabling. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 1, pages 635–642,
Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[19] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1995.

[20] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. The Morgan Kaufmann Series in Data Manage-
ment Systems. Morgan Kaufmann Publishers, San Francisco, CA, 2nd
edition, 2005.

