
Task-oriented modelling of learner
behaviour in exploratory learning for

mathematical generalisation

Mihaela COCEA a,1, and George D. MAGOULAS a

a London Knowledge Lab, Birkbeck College,
23-29 Emerald Street, WC1N 3QS, London, UK

Abstract. By their nature, Exploratory Learning Environments allow a high degree
of freedom which leads to a diversity of learner trajectories and make the modelling
of all possible behaviours difficult. To address this, we propose an approach for
knowledge representation and identification of task-dependent strategies that learn-
ers follow during exploration. The knowledge representation combines heteroge-
neous sources of informations which are used for strategy identification by means
of appropriate similarity metrics. Scenarios capturing educational aspects are pre-
sented and the outputs of the similarity metrics are discussed with examples from
the domain of mathematical generalisation.
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Introduction

The freedom given to the learners in Exploratory Learning Environments (ELEs) [4] al-
lows the learners to follow different paths when solving a task. For this reason ELEs are
particularly suitable for domains that allow multiple solutions and where exploration is
beneficial for understanding the domain’s characteristics. Simulation-based exploratory
learning environments allow learners to manipulate the parameters of different models
and some may also allow the learners to construct their own models. The system em-
ployed in our research, eXpresser 2 [9], falls in the latter category and is developed for
teaching mathematical generalisation in classrooms.

As in exploratory environments there are rarely unique approaches (and even solu-
tions) to a task, it would be valuable from pedagogical perspective to know the strate-
gies learners adopt when solving a task. This information would allow replacement of
‘one-for-all’ feedback with personalised guidance. Thus, instead of guiding the learner
to a predefined solution that may have nothing in common with the learner’s thinking,
feedback would be formulated in terms of the learner’s approach.
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This paper is an extended version of the work presented in [3]. We describe the
knowledge representation used to delineate the possible strategies that learners could use
when solving a task, and the identification mechanism used to distinguish which strategy
is followed by the learner. Partial and complete solutions are represented as sequences
of cases linked by temporal and dependency relations. These are mapped to the learner’s
behaviour in the system using the identification mechanism which is based on similarity
metrics for each type of information used in the cases.

The paper is structured as follows. Section 1 briefly presents the problem of math-
ematical generalisation and the software tool employed. Section 2 presents the strate-
gies representation and identification mechanisms. Several pedagogically-driven scenar-
ios are illustrated in Section 3 as a means of validating the inference mechanism and
Section 4 concludes the paper.

1. Exploratory Behaviour in Mathematical Generalisation

Mathematical generalisation is at the core of mathematical thinking. Usually some gen-
eralisation tasks are given in the context of algebra, as “algebra is, in one sense, the lan-
guage of generalisation of quantity. It provides experience of, and a language for, ex-
pressing generality, manipulating generality, and reasoning about generality” [7]. How-
ever, algebra is perceived as separate from what it represents [5] and students do not
associate it with generalisation.

To address this issue, eXpresser [9,8] aims to link the visual with the algebraic-
like representation of rules. It enables constructions of patterns, creating dependences

Figure 1. eXpresser screenshots. The screenshot on the left includes a toolbar, an area for pattern construction
and an area for defining rules; the toolbar (at the top) allows the following actions: cut, copy, paste, delete,
zoom in, zoom out, show grid, grid size (changeable from here or using the zoom tools), group and ungroup;
the main area has two patterns - one composed of 5 red (darker colour) tiles and one composed of 6 green
(lighter colour) tiles; the rule area (at the bottom) supports definition of rules based on the colours used in
the patterns. The screenshot on the top right shows the property list of the green pattern. The bottom right
screenshot gives an example of a rule for the number of green tiles.



between them, naming properties of patterns and creating algebraic-like rules with either
names or numbers. Some screenshots are displayed in Figure 1, illustrating the system,
the properties list of a pattern that is dependent on another one and an example of a rule.
In the screenshot on the left, in the main area of the screen two patterns are displayed: a
red (darker colour) pattern, having five tiles and a green (lighter colour) one, having six
tiles. In the property list for the green pattern displayed in the top right corner, it can be
seen that this pattern depends on the red one by the fact that the number of iterations of
green tiles is set to ‘the number of tiles of the red pattern plus one’. The second property
in the list establishes the units for moving left on the horizontal axis - in the current case
it is set to 2, which makes green tiles appear with gaps in between them; these are filled
by red tiles, which also have moving left property set to 2. The following property sets
the units for moving down on the vertical axis - in the current case is set to 0. The last
property establishes the number needed to colour all the tiles in the pattern; in the current
case it’s the same as the number of iterations in the pattern. However, if a pattern is a
group of several tiles, this would not be the case anymore; for example, if a pattern is a
group of three tiles and is repeated/iterated five times, the number required to colour it
would be three times five. The bottom right screenshot displays a simple example of a
rule for the number of green tiles, which is the number of red tiles plus 1.

The construction in Figure 1 and the rule in the bottom-right corner constitutes one
possible solution to the following generalisation problem: how many green tiles are re-
quired for any given number of red tiles in order to produce the construction? Although
the rule is unique, there are several ways to build the construction. For example, another
way of constructing it would be to define a pattern as a group of a green and a red tile
and repeat it five times (i.e. equal to the number of red tiles) along the horizontal axis and
than add an extra green tile. Therefore, there are several strategies that one could follow
when building a particular construction and the components of these strategies are pat-
terns with certain attributes or properties (i.e. the ones defined in the property list) and
linked with certain relations, such as the dependency relation illustrated in Figure 1 (i.e.
the number of green tiles depends on the number of red ones). In the following section, a
formalisation for knowledge representation is presented that covers both the components
of a strategy and the strategy as a whole.

2. Strategies Representation and Identification

In our approach, strategies in building a construction are represented as a series of
cases [6] with certain relations between them. A case is defined as Ci = {Fi, RAi, RCi},
where Ci represents the case and Fi is a set of attributes, corresponding to the property
list of a pattern. RAi is a set of relations between attributes and RCi is a set of relations
between Ci and other cases, respectively.

The set of attributes is defined as Fi = {αi1 , αi2 , . . . , αiN
} and it includes two types

of attributes: (a) numeric and (b) variables. Variables refer to different string values (i.e.
type) that an attribute can take; some numeric attributes are binary, indicating whether a
case is a group of patterns, or if it can be considered in formulating a particular strategy or
not. The later is represented as a “part-of-strategy” function: PartOfSu : Ci → {0, 1},
PartOfSu = 1 if Ci ∈ Su and PartOfSu = 0 if Ci /∈ Su, where Su represents a
strategy and is defined further on. The set of attributes of a generic case for eXpresser



Table 1. The set of attributes (Fi) of a case.

Category Name Attribute Possible Values
Patterns Colour αi1 Red/Green/Blue/Yellow
properties Width type αi2 Number (n)/Icon variable (iv)/numeric

expression (n_exp)/icon variable(s) expression (iv_exp)
Height type αi3 n /iv /n_exp /iv_exp

...
...

...
Colour type αiv n /iv /n_exp /iv_exp
Width value αiv+1 numeric value
Height value αiv+2 numeric value

...
...

...
Colour value αiw n /iv /n_exp /iv_exp

Group flag isGroup αiw+1 0/1

Part of PartOfS1 αiw+2 0/1
Strategy PartOfS2 αiw+3 0/1

...
...

...
PartOfSr αiN

0/1

is presented in Table 1. The first v attributes (αij , j = 1, v) are variables, the ones from
v + 1 to w are numeric (αij

, j = v + 1, w) and the rest are binary (αij
, j = w + 1, N ).

The set of relations between attributes of the current case and attributes of other
cases is represented as RAi = {RAi1 , RAi2 , . . . , RAiM

}, where at least one of the
attributes in each relation RAim

,∀m = 1,M , is from the set of attributes (Fi) of the
current case. Two types of binary relations are used: (a) a dependency relation (Dis

) is
defined as (αik

, αjl
) ∈ Dis ⇔ αik

= DEP (αjl
), where DEP : αik

→ αjl
is defined

for attributes αik
and αjl

that are variables of cases i and j (where i = j or i 6= j),
and means that αik

depends on αjl
(if i = j, k 6= l is a condition as to avoid circular

dependencies) (e.g. the width type of a case is built upon the height type of the same case;
the width type of a case is built upon the width type of another case); (b) a value relation
(Vis

) is defined as (αik
, αjl

) ∈ Vis
⇔ αik

= f (αjl
), where αik

and αjl
are numeric

attributes and f is a function that could take different forms depending on context (e.g.
the height of a shape is two times its width; the width of a shape is three times the height
of another shape, etc.). A case is considered specific when it does not have dependency
relations and is considered general when it has at least one dependency relation.

The set of relations between cases is represented as RCi = {RCi1 , RCi2 , . . . , RCiP
},

where one of the cases in each relation RCij ,∀j = 1, P is the current case (Ci). Two
time-relations are used: (a) Prev relation indicates the previous case with respect to the
current case: (Ci, Cj) ∈ Prev if t (Cj) < t (Ci) and (b) Next relation indicates the
next case with respect to the current case: (Ci, Ck) ∈ Next if t (Ci) < t (Ck). Each
case includes at most one of each of these two relations (p ≤ 2).

A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC)}, u = 1, r , where
Nu(C) is a set of cases, Nu(RA) is a set of relation between attributes of cases and
Nu(RC) is a set of relations between cases.

To illustrate how the knowledge representation and the identification mechanism
operates, a task called “footpath”, typical in the UK curriculum, is used, which requires



Figure 2. Strategies for footpath task: (a) forward C; (b) backward C; (c) HParallel (horizontally parallel); (d)
VParallel (vertically parallel); (e) H&VParallel (horizontally and vertically parallel); (f) Squares; (g) ISeries
(works only for even numbers for the red, darker-coloured, tiles) and (h) SquareSeries (works only for odd
numbers for red, darker-coloured, tiles).

to find the number of tiles that surround a pattern like the red one displayed in Figure 1.
There are severals strategies for constructing the surrounding for that pattern; among
them some are more desirable (displayed in Figure 2) than others, in the sense that they
facilitate generalisation.

Table 2. Su definition for each step of the ‘Forward C’ strategy.

Su Nu (C) Nu (RA) Nu (RC)

Step 1 C1 - -

Step 2 C1, C2, C3, - Prev(Ci+1) = Ci for i = 1, 5

C4, C5, C6 Next(Ci) = Ci+1 for i = 1, 5

Step 3 C1, C2 - Next(C1) = C2

Prev(C2) = C1

Step 4 C1, C2 α23 = α13 Next(C1) = C2

α23 = DEP (α13 ) Prev(C2) = C1

Step 5 C1, C2, C3 α23 = α13 Next(Ci) = Ci+1 for i = 1, 2

α23 = DEP (α13 ) Prev(Ci+1) = Ci for i = 1, 2

Step 6 C1, C2, C3 α23 = α13 Next(Ci) = Ci+1 for i = 1, 2

α23 = DEP (α13 ) Prev(Ci+1) = Ci for i = 1, 2

Besides multiple possible constructions, there are several ways of reaching the same
construction. A possible trajectory for the ‘forward C’ strategy is illustrated in Figure 3.

Figure 3. Possible steps for ‘forward C’ strategy.



The learner may start with the footpath (the red tiles) and then build a group of five blue
tiles around the leftmost red tile having the form of a ‘C’; this group is iterated five times
(the number of red tiles). Finally, a vertical pattern of three tiles is added at the right of
the footpath. The details for most steps of this particular strategy are displayed in Table 2.

The first step includes only one case: the red tiles pattern. After some intermediate
steps, not illustrated here, the second step includes 6 cases, i.e. the red pattern and five
single blue tiles, which are in a given order as expressed by the set of Prev and Next
relations. In the third step, the 5 blue tiles are grouped in one pattern which now becomes
C2; consequently, at this point there are 2 successive cases. In the forth step, the second
case, i.e the group of 5 blue tiles, is repeated 5 times (the number of red tiles), so now
there is also a value and a dependency relation. In the fifth step a new blue tile is added,
becoming C3 and in the sixth step this tile is iterated 3 times; in the last two steps, the
relations between attributes and between cases are the same as in step 4.

Strategy identification is based on scoring elements of the strategy followed by
the learner according to the similarity of their attributes and their relations to strate-
gies previously adopted and stored. Thus, to identify components of a strategy, four
similarity measures are defined: (a) Numeric attributes - Euclidean distance: DIR =√∑w

j=v+1×(αIj − αRj )2 (I stands for the pattern the learner is constructing and R

stands for patterns compared or recalled from the ones stored); (b) Variables: VIR =∑v
j=1 g(αIj

, αRj
)/v, where g is defined as: g(αIj

, αRj
) = 1 if αIj

= αRj
and

g(αIj
, αRj

) = 0 if αIj
6= αRj

. (c) Relations between attributes - Jaccard’s coefficient:
AIR = |RAI∩RAR|

|RAI∪RAR| . AIR is the number of relations between attributes that patterns I

and R have in common divided by the total number of relations between attributes of the
two cases; (d) Relations between cases - Jaccard’s coefficient: BIR = |RCI∩RCR|

|RCI∪RCR| (same
as relations between attributes).

To identify the closest strategy to the one followed by a learner during construction,
cumulative similarity measures are used for each of the four similarity types: (a) Numeric
attributes - as this metric has a reversed meaning compared to the other ones, i.e. a smaller
number means a greater similarity, the following function is used to bring it to the same
meaning as the other three similarity measures, i.e. a greater number means greater sim-
ilarity: F1 = z/

∑z
i=1 DIiRi if

∑z
i=1 DIiRi 6= 0 and F1 = z if

∑z
i=1 DIiRi = 0, where

z represents the minimum number of cases among the two compared strategies; (b) Vari-
ables: F2 = (

∑z
i=1 VIiRi

)/z; (c) Relations between attributes: F3 = (
∑z

i=1 AIiRi
)/z;

(d) Relations between cases: F4 = (
∑z

i=1 BIiRi)/z. The similarity between the current
strategy and a stored strategy is defined as the sum of these four measures after they are
normalised as explained below.

As the four similarity metrics have different ranges, normalisation is applied to
have a common measurement scale, like [0, 1]. This is done using linear scaling to unit
range [1] by applying the following function: x = x−l

u−l , where x is the value to be nor-
malised, l is the lower bound and u is the upper bound for that particular value: (a)
Numeric attributes: the range of F1 is [0, z]; therefore the normalisation function is:
F1 = F1/z; (b) Variables - the range of F2 is [0, 1], so no normalisation is needed;
(c) Relations between attributes: the range of F3 is [0, 0.5]; therefore the normalisation
function is: F3 = 2F3; (d) Relations between cases - same as the previous: F4 = 2F4.

Summarising, we propose a mechanism that identifies what strategy the learner is
following by comparing what the learner is doing with each of the stored strategies.



The strategy that comes up as most similar is the one followed by the learner (totally or
partly). The following section gives some scenarios that illustrate this process.

3. Examples of Strategies’ Identification

To illustrate how strategy identification is performed using the similarity measures pre-
sented in Section 2, scenarios are used. The scenarios presented here cover some of the
most complex situations encountered in the trials with pupils. They have been designed
based on pedagogical principles and they deal with partial constructions (frequently ob-
served in classroom), as well as with complete ones using a particular strategy or a com-
bination of strategies. A summary of the scenarios, including their pedagogical rational
is presented in Table 3.

Scenario 1. Detecting partial constructions. The pedagogical rational is to guide learn-
ers when they are stuck based on their partial construction. For most strategies the com-
parison with the complete sequences that specify particular strategies, if available, is suf-
ficient to return the most similar strategy. For example, when the partial strategy dis-
played in Figure 4a is compared with all the strategies from Figure 2, the maximum sim-
ilarity corresponds to the ‘HParallel’ strategy with a value of 2.83; the second best cal-
culated similarity (1.99) corresponds to the ‘H&VParallel’ strategy. Some strategies re-
quire intermediate steps that are not reflected in the final construction; one such strategy
is ‘forward C’, as illustrated in Figure 3 and Table 2. To recognize a partial intermediate
construction like the one illustrated in Figure 4b, intermediate steps need to be stored in
a knowledge base. Consequently, when comparing the strategy displayed in Figure 4b
with the partial and complete strategies in the knowledge base, the maximum similarity
will correspond to the intermediate Step 3 from Table 2 (except that the number of red
tiles is 3 instead of 5); the similarity value after normalisation is 3.

Scenario 2. Detecting whether the learners are working with the specific or the general.
The pedagogical rational is to identify what approach suits the learner best: specific-to-
general or general-to-specific. Some learners start from the general, while others (the
majority) start from a specific situation. Identifying the one they are working with is
necessary to be able to guide them further. Thus, if they are working with the specific
the transition to the general is not always straightforward and requires a ‘mental jump’
from the learners. This may be the key point where personalised feedback is required.
Sometimes this ‘jump’ is made, but the learners are not sure about it and are reluctant
to proceed without feedback. The construction at such a point will probably have one
element that is general whilst the other ones would be still specific; for example in the
‘HParallel’ strategy, the middle row of red tiles is general and the top and bottom ones
are specific. This is reflected in the similarity measures by the fact that there is a bigger
similarity with the specific strategy (3.88) rather than with the general one (3.78).

Figure 4. Constructions for: (a) Scenario 1: detecting partial construction; (b) Scenario 1: detecting interme-
diate partial construction; (c) Scenario 3: combination of strategies; (d) Scenario 3: lack of symmetry.



Table 3. Scenarios summary.

Scenario Pedagogical rational Construction Top matching strategies

Detecting partial Guiding before end Figure 4a HParallel: 2.83
constructions of construction H&VParallel: 1.99

Figure 4b Partial forward C: 3

Working with the Identify best approach Figure 2c HParallel specific: 3.88
specific/general HParallel general: 3.78

Mixed strategies Guide the learner towards Figure 4c H&VParallel: 2.12
one strategy Forward C: 1.98
Symmetry as a generalisation Figure 4d HParallel: 2.22
principle H&VParallel: 1.96

Scenario 3. Mixed strategies. The pedagogical rational is twofold: (a) to guide the
learner towards a strategy that is reflected in their construction and (b) to point out that
symmetry is desirable. The image in Figure 4c combines two strategies: ‘H&VParallel’
and ‘forward C’. The similarity metrics adequately identify them as the best available
matches: 2.12 and 1.98, respectively. If the learner has difficulties in generalising from
their construction, they could be guided to the best matching strategy or could be given
a choice between the two. Some learners are able to generalise even if their construction
is not symmetrical, while other are not. For the former, the usefulness of symmetry can
be shown to them by displaying the algebraic-like form of the most similar symmetrical
situations as in Table 4; for the later, they should be guided to a symmetrical solution.

Table 4. Algebraic-like rules for symmetric and non-symmetric constructions.

Construction Rule

Figure 4d 3 + 2 + 2 ∗ red + (2 ∗ red− 1) + (red− 1)

Figure 2c 2 ∗ 3 + 2 ∗ (2 ∗ red− 1) + (red− 1)

Figure 2e 2 ∗ (2 ∗ red− 1) + (red + 1)

The construction in Figure 4d has the most complicated rule, as it needs a different
expression for each part of the construction, while the most similar symmetric construc-
tions, i.e. Figure 2c (2.22) and Figure 2e (1.96) are simpler owing to their symmetry.

4. Discussion and Conclusion

In this paper an approach for strategy identification in the domain of mathematical gener-
alisation was presented. Details of knowledge representation and strategy identification
were provided and some examples of pedagogically-driven scenarios were given.

The approach presented in this paper was chosen because of the nature of learning
in ELEs and because of the characteristics of the domain. Classic approaches to learner
modelling monitor the level of mastery of certain concepts of the domain mainly by as-
sessing how well the learners are doing in solving problems. In ELEs, the focus is on
exploration of the task and construction of knowledge. Therefore, the focus is on the in-
teractions of the learners with the system rather than on the outcomes of their problem-



solving. Our approach allows identification of strategies followed by the learners while
solving a task, enabling the possibility of personalised feedback or other courses of ac-
tions, like informing the teachers or identifying a peer that is following the same strategy
and would be able to help.

Although we illustrated our approach using only one task, the approach is general
and works for other tasks, e.g. [2], provided that knowledge of the possible strategies in
solving the task is available.

Our future work investigates possibilities for intelligent support [9] upon recognition
of strategies: personalised feedback to learners, inform teachers of the learners’ strate-
gies, pairing learners for collaboration to discuss similarities and differences between
their approaches and the equivalence on the derived rules.

Acknowledgements

This work is partially funded by ESRC, UK, as part of the MiGen Project (TLRP e-
Learning Phase-II, RES-139-25-0381).

References

[1] S. Aksoy, R.M. Haralick: Feature normalisation and likelihood-based similarity measures for image
retrieval, Pattern Recognition Letters 22 (2001), 563-582.

[2] M. Cocea, G. Magoulas: Combining Intelligent Methods for Learner Modelling in Exploratory Learn-
ing Environments. Proceedings of the 1st International Workshop on Combinations of Intelligent Meth-
ods and Applications (CIMA 2008), in conjunction with the 18th European Conference on Artificial
Intelligence (ECAI-08) (2008), 13-18.

[3] M. Cocea, G. Magoulas: Identifying strategies in user’s exploratory learning behaviour for mathematical
generalisation, Proceedings of The 14th International Conference on Artificial Intelligence in Education
(2009).

[4] T. de Jong and W.R. van Joolingen: Scientific discovery learning with computer simulations of concep-
tual domains, Review of Educational Research, 68 (1998), 179-202.

[5] J. Kaput: Technology and Mathematics education. In D. Grouws (ed.) Handbook of Research on Math-
ematics Teaching and Learning, New York: Macmillan (1992) 515-556.

[6] J.L. Kolodner: Case-Based Reasoning, Morgan Kaufmann Publishers, Inc., 2nd edn. (1993).
[7] J. Mason: Generalisation and algebra: Exploiting children’s powers. In L.Haggarty, Aspects of Teaching

Secondary Mathematics: Perspectives on Practice, Routledge Falmer and the Open University (2002),
105-120.

[8] R. Noss, C. Hoyles, E. Geraniou, S. Gutierrez-Santos, M. Mavrikis, D. Pearce: Broadening the sense
of ‘dynamic’: an intelligent system to support students’ mathematical generalisation. Submitted to The
International Journal on Mathematics Education (2008).

[9] D. Pearce, E. Geraniou, M. Mavrikis, S. Gutierrez-Santos, K. Kahn: Using Pattern Construction and
Analysis in an Exploratory Learning Environment for Understanding Mathematical Generalisation: The
Potential for Intelligent Support. In S. Gutierrez-Santos, M. Mavrikis (eds.), Proceedings of the 1st
International Workshop on Intelligent Support for Exploratory Environments, EC-TEL’08 (2008).


