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ABSTRACT 31 

INTRODUCTION: Dynamic movements require synergistic involvement of numerous muscles, 32 

whereby different muscular and task demands could alter the ratio of this synergistic activation. 33 

METHODS: Participants completed isometric, isotonic, isokinetic, and squat jump (SJ) tasks. Mean 34 

RMS EMG was collected from the medial and lateral gastrocnemius (MG, LG) and soleus (SOL), 35 

then pooled, and each muscle’s activation was expressed as a percentage of the pooled activation.  36 

RESULTS: The MG contributed 9-14% more to total muscle activation in isometric and isotonic 37 

tasks versus the SJ task. The SOL contributed 8% more to the SJ task compared to the isometric and 38 

isotonic tasks. Across all tasks, MG activation was 4.0 % greater than SOL and 10.5% greater than 39 

LG. SOL activation was 6.5% greater in all tasks compared to LG.   40 

DISCUSSION: Task and intensity influences the ratio of activation in the triceps surae.  41 

 42 

 43 

Keywords: 44 

 45 

Electromyography, triceps surae, synergists, soleus, gastrocnemius, neuromuscular ratio 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

  55 



3 
 

INTRODUCTION 56 

Dynamic movements require synergistic involvement of numerous muscles across many joints in 57 

order to produce the desired outcome 
1,2

.  At the joint level, individual muscles usually responsible for 58 

producing the joint actions are often grouped, for example, knee extensors, hip flexors, and plantar 59 

flexors. One such muscle group is the triceps surae (TS), which consists of the soleus (SOL), medial 60 

gastrocnemius (MG), and lateral gastrocnemius (LG) muscles and produces plantar flexion and 61 

stabilization of the ankle complex in the transverse plane when contracted. The TS is an important 62 

group in activities such as walking, running, and jumping
3,4

, where its components act both 63 

synergistically and independently to produce given outcomes. Tamaki, et.al. 
5
 indicated that there are 64 

numerous combinations of synergistic activation within the TS, while Neptune et al 
6
 intimated that 65 

the roles a TS muscle plays in a muscle action may be modified by other synergistic muscles. This 66 

suggests that the neuromuscular interplay between the 3 muscles may vary dependant on the task and 67 

its intensity. 68 

Due to the differing attachments and fiber compositions of the muscles of the TS which influence 69 

force generation capability, the need to look at them individually is evident
7-9

. However as they work 70 

collectively to produce ankle plantar flexion, the ability to understand the contribution of each 71 

synergist to the total muscle activation required for movement completion is needed.  Synergism or 72 

muscle co-ordination is defined as the distribution of force among individual muscles to produce a 73 

given motor task 
10

 . Muscle activation during low level contractions has been shown to rotate in the 74 

TS, knee extensors, and elbow flexors while force levels are maintained, indicating that the muscles 75 

work together to produce the desired outcome 
11-14

. De Luca and Erim 
15

 concluded that the CNS 76 

considers synergistic muscles as a functional unit as opposed to individual muscles when producing or 77 

maintaining force, based on the common drive being shown in wrist muscle motor units. Obata et al 
16

 78 

also supported the theory of synergistic common drive in the triceps surae  by showing a functional 79 

coupling of inputs for synergistic plantar flexors, as indicated by common EMG frequency responses. 80 

The aforementioned studies’ approach to muscle synergism support the notion of a dynamic system 81 

controlling movement patterns, whereby an inherent between-muscle variability will be present within 82 
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the synergistic muscle group
17

; however the goal and the outcome of the movement will remain 83 

unchanged. Thus the motor control system recruits motor units not in an established pattern, but does 84 

so based on factors such as nature of action, goal of the movement, and individual skill level
17

 The 85 

aforementioned papers and motor control theories suggest that, while individual muscles assist in 86 

movement-specific tasks, their contributions may not be patterned. Thus, it is valid to consider them 87 

as a single unit. 88 

Examining the interplay in muscle activation within a muscle group has been researched previously. 89 

When assessing the synergistic responses within the quadriceps muscle to a low level isometric task, a 90 

reduction in motor unit activation in 1 muscle is offset by increased activation in another 
18

. This term 91 

has been coined alternate muscle activation and utilizes compensatory neural recruitment from 92 

adjacent synergists to maintain force levels 
18,14,19

. At higher isometric force loads (>40% MVC) the 93 

alternate muscle activation phenomenon has not been shown 
20

.  The absence of this phenomenon at 94 

lower levels may be due  to an  incomplete saturation of recruited muscle fibers, as this is not 95 

considered to occur until ~80% MVC 
21

. The alternate activation phenomenon provides insight into 96 

synergistic activation within a muscle group at very low level (<5% MVC), long duration isometric 97 

tasks, however limited research exists regarding responses of the TS muscle group to higher intensity 98 

activities that are not isometric.  Kinugasa 
22

 showed a different distribution of muscle activation 99 

among TS muscles during a single leg calf-raise exercise, and Ball and Scurr  
23

 showed that 100 

normalized EMG activation levels differed between the TS muscles based on task and intensity. Jones 101 

and Caldwell
24

 showed the modification of muscle activation in the bi-articular muscles (hamstrings, 102 

rectus femoris, gastrocnemius) when jump direction was changed, noticing particularly a trade-off in 103 

activation between the hamstrings and rectus femoris, without significant alteration in  ground 104 

reaction force. This suggests that muscle activation patterns are altered to maintain the necessary force 105 

outputs to complete the jump. Jones and Caldwell
24

 focussed on a within-task variation, however an 106 

understanding on how the distribution of this muscle activation in a muscle group may change 107 

between different tasks with similar joint actions is not well understood.  108 
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We used a simple RMS proportionality ratio, whereby individual muscle activation is pooled, and 109 

each individual muscle’s activation is expressed in relation to the total activation. The process of 110 

expressing neuromuscular activation as a ratio or in relation to the activation of other muscles has 111 

been used previously in studies of lower back pain 
25

, fatigue, 
26

 and  closed chain kinetic exercises 112 

27,28
, for the purposes of understanding co-contraction ratios within movement or to show preferential 113 

recruitment of 1 muscle over another. We used the ratio in the form of a proportional percentage 114 

contribution to assess changes in the distribution of muscle activation between synergists during 115 

different tasks. The aim of the study is to assess whether the percentage contribution of each muscle 116 

to the total neuromuscular activation of the triceps surae varies with load and joint action type as 117 

generated by different tasks. Furthermore, we aimed to assess the intra-subject reliability of the RMS 118 

proportionality ratio between days and between weeks.  119 

 120 

MATERIALS AND METHODS 121 

Participants  122 

Fifteen recreationally active men (age: 25 ± 4.7 yrs.; Stature: 1.79 ± 0.05 m; body mass: 76.9±8.5 kg) 123 

gave informed consent to participate. Stature was recorded using a stadiometer (Leicester, UK), and 124 

mass was recorded using calibrated weighing scales (SECA, Germany). All participants had a 125 

minimum of 1 year of resistance training experience. Jumping was familiar within all the sports they 126 

played. The investigation was approved by an institutional review board for use on human participants 127 

in line with the Declaration of Helsinki (2000) code of ethics on human experimentation.  128 

 129 

Procedures 130 

Participants initially attended a familiarization session on each test, paying particular attention to 131 

technique and posture. Following a minimum 48 hour rest, their next testing session involved 132 

assessment of individual 1-repetition maximum (1RM) which was used to assign loads in the 133 

isometric and isotonic tasks. The first testing session was conducted no less than 5 days after 1RM 134 

testing and involved completion of all tasks in a randomized order based on a Latin squares design. 135 

Repeat sessions were then conducted the next day (between-days) and 1 week later (between-weeks). 136 
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In the testing sessions a standardized warm up comprising 5 minutes of a general warm up and 5 137 

minutes of dynamic stretches were completed before each method. A minimum of 10 minutes rest 138 

was provided between each task. 139 

 140 

1RM Strength Assessment 141 

All participants were 1RM tested for an isotonic heel-raise using a standard protocol 
29

. The isotonic 142 

heel raise required the participant to stand with both knees extended and raise the heel at a cadence of 143 

1 s to the maximum point of plantar flexion followed immediately by a controlled return. The 144 

maximum point was defined as maximal plantar flexion during an unloaded heel raise task. Load was 145 

placed on the scapula region of the participant with a barbell.  146 

 147 

Isometric and Isotonic Tasks 148 

Participants performed 4 standing isometric (ISOM) and isotonic (ISOT) heel raises (using the 149 

technique described in the previous section). The isotonic heel raise was performed using the 150 

technique in the previous section. An isometric heel raise followed the isotonic technique, where the 151 

heel was raised at a cadence of 1 s to the maximum point of plantar flexion and held in this position 152 

for 3 s. Three loads were used based on the pre-assessed 1RM; 100% (ISOMMAX; ISOTMAX), 75% 153 

(ISOMsubmax; ISOTsubmax), and bodyweight (no barbell) (ISOMBW; ISOTBW).  154 

 155 

Isokinetic Task 156 

A calibrated Biodex 3-Pro Isokinetic Dynamometer (Biodex, USA) recorded the concentric isokinetic 157 

plantar flexion. The participant lay supine with the hip and knee extended. Velcro straps secured the 158 

chest, pelvis, thigh, and foot to the dynamometer bed. A towel was folded under the straight knee to 159 

minimize hyperextension. The ankle joint axis of rotation distal to the lateral malleolus was aligned 160 

with the axis of the lever arm of the Biodex. The dorsiflexion/plantarflexion range of motion was 161 

recorded for each participant (range: 10° dorsiflexion to 45° plantar-flexion). Limb weight was 162 

measured with the ankle relaxed in order to correct the measured torques for the effects of gravity. 163 

Following a sub-maximal practice, 4 maximal concentric plantar-flexions and passive dorsiflexions 164 
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were performed at angular velocities of 1.05 rad·s
-1

 (ISOKSLOW), 1.31 rad·s
-1

 (ISOKMED), and 1.83 165 

rad·s
-1

 (ISOKFAST). A 1-minute rest was provided between each repetition. 166 

 167 

Squat Jump Task 168 

Participants performed 4 maximal squat jumps (SJ) on each testing day. The participant descended to 169 

a knee flexion angle of 90° (as indicated by a goniometer), paused for 3s, and then jumped for 170 

maximum height. The participant’s arms remained across the chest or to the side throughout the 171 

movement. Participants were allowed a 3-min rest between jumps. 172 

 173 

Electromyography  174 

During all tasks, EMGs were collected (1000 Hz) using an 8-channel Datalog EMG system 175 

(Biometrics, UK). The contracted muscle belly of the dominant medial (MG) and lateral 176 

gastrocnemius (LG) and soleus (SOL) were identified. The dominant limb was defined as the limb 177 

used to kick a ball. Electrodes were positioned in accordance with the SENIAM project guidelines. 178 

Electrode placement was marked using a chinograph pencil and reapplied each day until the final 179 

testing session 
30

. No electrode removal occurred within day. The skin was prepared by shaving and 180 

cleansing to reduce impedance (≤10 kΩ). Biometrics SX230 active (Ag/AgCl) bipolar pre-amplified 181 

disc electrodes (Gain x 1000; Input impedance >100 MΩ; common mode rejection ratio >96 dB; 182 

noise 1-2 µV rms; bandwidth 20-450 Hz) with 1 cm separation were applied parallel to the muscle 183 

fibers using hypoallergenic tape (3M, UK). A passive reference electrode (Biometrics R300) was 184 

placed on the wrist pisiform. The Datalog used a high-pass third-order filter (18 dB/octave; 20 Hz) to 185 

remove DC offsets due to membrane potential and a low-pass filter for frequencies above 450 Hz. The 186 

electrodes contained an eight-order elliptical filter (-60 dB at 550 Hz). 187 

  188 

Data Processing  189 

In the Datalog Analysis Software (Biometrics, UK) the raw EMG signals (mV) recorded from each 190 

task were root mean squared (RMS) and filtered at a window length of 20 ms. Window length was 191 

chosen on the basis of the suggested ranges to allow for detection of rapid alterations in EMG 192 
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activation, as may be found in high-speed tasks 
31

. Due to the variance in EMG amplitudes that are 193 

provided by varying the filtering window length, this was applied to the EMG activation from all 194 

tasks. Shewhart’s protocol determined onset and offset of muscle activation by calculating the mean 195 

of three 50 ms. windows of inactivity prior to the test and calculating 2SD above this mean value 
30

. 196 

In the isometric task, mean RMS EMG was recorded from the 3 s isometric period as indicated by an 197 

event marker (Biometrics, UK). Mean RMS EMG from the isotonic task was taken from between-198 

EMG amplitude onset and offset of the concentric contraction. Mean RMS EMG from the concentric 199 

isokinetic task were taken during the isokinetic window as indicated by the Biodex system. Mean 200 

RMS EMG from the SJ was recorded from the propulsion phase of the jump as indicated by a contact 201 

switch (Biometrics, UK). Total EMG was the sum score of the EMG activation from each triceps 202 

surae muscle during that task: 203 

 204 

SOL mV + MG mV + LG mV = Total TS Activation.  205 

 206 

RMS ratio percentage was then calculated by representing each individual’s muscle activation as a 207 

proportion of the total: 208 

 209 

 (Individual Muscle Activation / Total TS Activation) *100 210 

 211 

Statistical analysis 212 

Log-transformed typical error of measurement as an intra-subject coefficient of variance percentage 213 

(TEMCV%) were used to assess the intra-subject reliability of the RMS ratio percentage of each muscle 214 

and the total muscle activation between days (Day 1-2) and between weeks (Day 2-3). In accordance 215 

with British Association of Sport and Exercise Sciences (BASES), International Society for the 216 

Advancement of Kinanthropometry (ISAK), and Yang et al. 
32

 , reliability threshold values for 217 

TEMCV% were set at excellent (<5%), good (5-12%), acceptable (12-16%), and poor (>16%). These 218 

thresholds have been used effectively in previous research 
33

.  These thresholds are highlighted in the 219 

results tables using shading. We used IBM SPSS for Windows (version 19) to perform repeated-220 
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measures ANOVAs to assess the main effects between the % proportions between each task. 221 

Differences were evaluated further with post hoc Bonferonni pairwise comparisons to assess the 222 

clinically significant differences between each task for each muscle and between each muscle within 223 

each task. The 95% confidence limits of these mean differences were also recorded. 224 

 225 

RESULTS 226 

Comparisons between Tasks. 227 

The RMS ratio percentage for each task can be seen in Figure 1. Across all tasks there was a 228 

significant difference in muscle activation (P>0.0001; power 0.997); MG on average 4.00% was 229 

greater in all tasks compared with SOL (P=0.044; 95% CI: 0.95-7.9%). SOL in contrast was 6.5% 230 

greater in all tasks compared with LG (P=0.012; 95% CI: 1.4-11.7%). MG had 10.5% greater relative 231 

activation compared to LG in all tasks (P=0.01; 95% CI: 4.7-16.4%). Figure 2 shows the total muscle 232 

activation required for each task. The SJ required significantly greater total activation compared to all 233 

other tasks apart from the ISOK task (P < 0.05). ISOM BW required significantly lower total 234 

activation compared to all other tasks (P < 0.05)  235 

Analysis of individual muscle contributions showed that SOL was significantly different between 236 

tasks (P=0.04; power = 0.913). Post hoc tests (Figure 3) revealed that SOL contributed ~8% more to 237 

total muscle activation in SJ compared to ISOM SUBMAX (P=0.05; 95% CI: 0.0-15%), ISOT SUBMAX 238 

(P=0.016; 95% CI: 1.00-15.6%), and ISOT BW (P=0.019; 95% CI: 0.93-16.3%).  239 

MG was also shown to be significantly different between tasks (P<0.0001; power = 1.000). Post hoc 240 

tests for MG (Figure 3) revealed the contribution of MG to the SJ to be 9-14% lower than the 241 

isometric and isotonic tasks. Post hoc tests also revealed the contribution of MG to the ISOKFAST task 242 

to be 7-15% lower that the isometric and isotonic tasks. LG was also shown to be significantly 243 

different between tasks (P=0.02; power = 0.93). However, post hoc tests only revealed differences 244 

between 2 pairs and only at the 0.1 alpha level.  245 
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Within task MG was shown to contribute significantly more to total synergist activation in the ISOM 246 

and ISOT tasks, whereas SOL contributed more during the SJ task (Figure 4). No differences were 247 

shown between the individual muscle contributions in the ISOK tasks. 248 

Between Day Reliability of Total EMG Activation 249 

Between-day analysis of total EMG activation required by the TS to complete the task was assessed 250 

(Table 1). The SJ task was shown to be acceptable between days and between weeks. ISOK MED and 251 

ISOK FAST had good/acceptable reliability across all 3 days. The ISOTSUBMAX and ISOK SLOW were 252 

poor between weeks, whereas ISOM BW was poor between days (>16% TEMCV%). 253 

Between Day reliability of EMG activation per Muscle 254 

All isotonic (10.35-14.15%) and isokinetic (9.18-12.77%) tasks produced a reliable contribution of 255 

SOL EMG activation to the completion of each task both between days and between weeks (Table 2). 256 

ISOMSUBMAX and SJ also produced reliable contributions both between days and between weeks. The 257 

ISOM BW task did not require a reliable contribution of SOL to the task completion. All tasks apart 258 

from ISOT BW between days required a reliable contribution of MG EMG activation to complete the 259 

tasks (Table 2). MG produced the lowest reliability of all muscle groups, with good reliability being 260 

shown between day and between weeks in 8 of the tasks. The ISOM MAX, ISOT MAX, ISOK SLOW, and 261 

ISOK MED produced a reliable contribution of LG activation to complete the task (Table 2). ISOT BW 262 

produced the lowest reliable contribution across all conditions. 263 

 264 

DISCUSSION 265 

This study showed that the RMS proportionality ratio within the TS changes according to the task and 266 

intensity requirements. The LG contributed least to total muscle activation for each task; MG 267 

contributed more in the static isometric and isotonic tasks, whereas SOL was the dominant contributor 268 

in the SJ. Reliable total EMG activation both between days and weeks was shown for all tasks apart 269 

from ISOM BW and ISOT BW. The reliability of each individual muscle’s contribution to total muscle 270 

activation was task dependant, with ISOM MAX, ISOT MAX, ISOK SLOW, and ISOK MED showing 271 
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acceptable reliability between days and between weeks for every muscle. The increased reliability at 272 

the higher contraction intensities is likely due to fewer possible muscle activation solutions available 273 

to carry out the task based on the assumed higher motor unit recruitment required 
34

. This is in 274 

contrast to lower intensity tasks whereby a larger number of muscle activation solutions would be 275 

available as less of the motor unit pool is recruited 
34

. 276 

This study showed that the RMS proportionality ratio varies depending on the type of task required by 277 

the neuromuscular system. This supports the notion put forward by Kinugasa, et.al. 
22

 that the amount 278 

of activated muscle and its distribution would differ in the TS when placed under different conditions 279 

and echoes the dynamical systems approach to variable control of motor patterns
35

.  Prior studies have 280 

indicated differing roles for individual TS muscles within different tasks 
36,6,37

. During walking, SOL 281 

is considered to play a more important role than MG, 
36

 and it has also been shown that differing 282 

activation levels occur during isometric and jump tasks 
24

 
38

. In our study MG and SOL contributed 283 

most to total muscle activation in any task, and LG contributed least in all tasks. The cause for the 284 

greater contribution from MG may lie in its anatomical structure. The MG has shorter fascicle lengths 285 

and larger fascicle angles compared to LG 
8
 and thus contains more fibers per unit volume 

39
. The 286 

shorter fascicle lengths and density of muscle fibers in MG may lend itself to increased activation 287 

within the dynamic-based movements compared to the LG,  although in isometric movements fascicle 288 

lengths and angles have not been shown to differentiate and influence force levels 
40

.  289 

Interestingly, based on twitch fiber composition, this study showed that MG contributed most to total 290 

activation in isometric and isotonic tasks, however in the dynamic ballistic action (SJ) the SOL 291 

contributed most to total activation, which has been shown in a previous study
24

. Although a ballistic 292 

movement, the plantar flexion requirements of the SJ are based mainly on carrying out force 293 

generated at hip and knee extension. Luhtanen and Komi 
41

 showed that trunk (10%) and knee 294 

extension (56%) caused 66% of the total take-off velocity compared to 22% from plantar flexion. This 295 

was further compounded by Jones and Caldwell
24

 who showed that ankle plantar flexion occurred last 296 

in a vertical jump, with EMG activation from LG and SOL peaking later than vastus lateralis. The SJ 297 

may also prevent optimal use of MG, as the jump commences in a bent-knee position. In this position 298 
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MG is slack, and thus any contractile ability is diminished until the slack is removed 
42

.  Creswell, 299 

et.al. 
43

 showed activation of MG and LG both decrease as muscle length decreases based on isometric 300 

exertions. SOL activation remained relatively high at all knee angles, thus indicating that the reduced 301 

ratio contribution for MG compared to SOL during an SJ may be the result of an un-optimal muscle 302 

length at the commencement of the SJ action, where most force is generated.  Sirin and Patla12
 also 303 

showed that trade-off between individual muscles of the plantar flexors was more evident in the 304 

extended knee position compared to the bent knee position. The ISOM, ISOT and ISOK tasks were all 305 

completed in the knee extended position which may cause the differences between the different TS 306 

muscles. Any differences shown are likely due to the muscle action and intensity of the task opposed 307 

to the influence of the knee angle. 308 

The low LG contributions in all the tasks may be the result of the proportion of LG to total TS 309 

volume. Kinugasa 
22

 showed that LG makes up 16% of total TS volume compared to MG (31%) and 310 

SOL (53%). LG is considered to play a complementary role within the TS during isometric plantar 311 

flexion, whereby the movement can be produced without initial activation of the LG, 
44

and MG and 312 

SOL are the prime movers. Thus the contribution of LG may be more dominant in the latter stages of 313 

the movement, which would not be picked up in our analysis, as mean EMG was used for assessment. 314 

Furthermore, Nardone, et.al. 
45

 explored the shift in activation from fast to slow twitch muscle during 315 

eccentric actions in the TS using EMG. They suggested preferential recruitment of SOL over LG 316 

during the task; however initiation of the task required more LG activation. LG has been shown to be 317 

activated preferentially in cycling activities, where increased knee flexion occurs 
46

; LG is proposed to 318 

act as a mediator to transfer energy between knee and ankle, compared to MG which is more utilized 319 

in ankle plantar flexion. The work of Nardone  
47

, Kinugasa 
22

 and Ericson
46

 indicates that the role of 320 

LG role in contributing to movement changes depending on the task (isometric, eccentric or cycling), 321 

which is supporteed further by our data. The RMS proportionality ratio may be affected by electrode 322 

placement, however Kouzahki et al 
18

 showed no differences in EMG activation between proximal 323 

and distal portions of the quadriceps muscles during a low level isometric contraction in addition to 324 

no time lag effects. Kinugasa et al 
22

 also showed no regional activation differences in proximal and 325 
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distal EMG activation in SOL and LG during a single leg calf raise, however distal portions of MG 326 

had greater activation compared to proximal. We followed the SENIAM guidelines for electrode 327 

placements, where the electrode was placed on the distal portion of the MG. This indicates that the 328 

RMS proportionality ratios shown here can be considered representative of proportions at the whole 329 

muscle level. We did not remove the electrodes between tasks on a single day. Any potentiation 330 

effects from previous exercise that may cause elevated motor neuron pool excitability would be 331 

factored out, as all tests within-day were randomized.  332 

Total muscle activation required to complete the task remained reliable between days and between 333 

weeks. The reliability of total activation was acceptable, indicating that a common level of muscle 334 

activation is required to complete the tasks over a short time period. Ball et al 
33

 showed non-335 

acceptable reliability for individual absolute peak EMG activation from each individual TS muscle. 336 

This indicates that reliability may be improved when ‘pooling’ the activation contributions and 337 

representing the data as relative to total activation. Reliability of EMG is considered poorer than 338 

conventional outcome measures based on the sensitivity of the measuring device and the relatively 339 

small numbers generated. Reliability may also be affected by extrinsic factors such as electrode 340 

removal and replacement. In recognition of the limitations, we did not consider the normalized 341 

activation of the muscle, thus comparisons between tasks may be considered invalid. However all 342 

tasks occurred in the same day with no electrode removal, and the EMG values represent the mean 343 

total muscle activation of each muscle in order to complete that task. Trials were not included unless 344 

task completion occurred. Surface EMG is limited in its ability to record deep muscles, thus other 345 

plantar flexors or assistance muscles such as fibularis longus, fibularis brevis and tibialis posterior 346 

could not be recorded, and thus their contributions to the movements are unknown. Previous studies 347 

that have used ratios/proportions of activation have either used root mean square (RMS) or peak of a 348 

linear envelope EMG signal as the value to use in producing the ratio 
26,27,25

. Previous studies that 349 

utilize ratios have also assessed dynamic actions as opposed to isometric actions alone
25,27

. This is in 350 

light of the work of Farina, et.al. 
48

 on decoding the neuromuscular signal, whereby raw EMG signals 351 

should be viewed with caution based on amplitude cancellation, muscle movement and other limiting 352 
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factors. Our study presents RMS values as a ratio with no electrode removal, thus activation variations 353 

are in relation to each other, which supports synergistic theory that movements can be accounted for 354 

via numerous synergies 
2
. 355 

 356 

This study shows that differing recruitment strategies are placed on the TS when the task and intensity 357 

changes. MG and SOL contribute most to total muscle activation in each task, and LG provides the 358 

lowest contribution to all tasks. The RMS proportionality ratio of synergistic activation used between 359 

days and weeks is reliable. Assessing muscle activation requirements of synergistic muscles using the 360 

RMS proportionality ratio is a reliable approach to understanding synergist contributions. Future 361 

studies should consider the influence of bilateral exercises on synergistic contributions and 362 

proportionality from different sections of the movement. Further research should also be conducted 363 

based on how proportionality of muscle activation varies throughout the range of motion of different 364 

movements. 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 
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Abbreviations: 377 

EMG – electromyography 378 

TS – Triceps Surae 379 

SOL – Soleus 380 

MG – Medial Gastrocnemius 381 

LG – Lateral Gastrocnemius 382 

1RM – one repetition maximum 383 

RMS – Root mean square 384 

CV – coefficient of variation 385 

ISOMMAX – Isometric Maximum 386 

ISOMSUBMAX – Isometric sub-maximum 387 

ISOMBW – Isometric Bodyweight 388 

ISOTMAX – Isotonic Maximum 389 

ISOTSUBMAX – Isotonic sub-maximum 390 

ISOTBW – Isotonic Bodyweight 391 

ISOKSLOW – Isokinetic Slow (1.05 rad·s
-1

) 392 

ISOKMED – Isokinetic Medium (1.31 rad·s
-1

) 393 

ISOKFAST – Isokinetic Fast (1.83 rad·s
-1

) 394 

SJ – Squat Jump 395 

 396 

 397 

 398 

 399 

 400 

 401 
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Table 1: Reliability (TEMCV% and 95% Confidence limits) of pooled muscle activation (SOL+ 515 

MG + LG) across all conditions between days and between weeks (n = 15). Shading indicates 516 

TEMCV% threshold        = excellent (<5%);       = good (5-12%);        = acceptable (12-16%);         =   517 

poor (16%>) 518 

TASK Between Day Between Week 

   

 

TEMCV% Upper Lower TEMCV% Upper Lower 

   ISOM MAX 12.9 

 

10.5 20.4 9.8 7.9 15.2 

 

 

   ISOM SUBMAX 13.0 10.6 20.5 18.0 15.0 29.5 

   ISOM BW 18.6 15.5 30.7 11.9 9.7 18.7 

   ISOT MAX 9.7 7.8 15.0 12.2 9.9 19.1 

 

  

ISOT SUBMAX 11.4 9.2 17.8 16.0 13.2 25.9 

 

  

ISOT BW 14.8 12.1 23.6 11.7 9.5 18.3 

 

  

ISOK 60 12.8 10.4 20.1 18.4 15.3 30.3 

 

  

ISOK 75 12.5 10.2 19.7 12.5 10.2 19.7 

   ISOK 105 12.5 10.1 19.6 11.2 9.1 17.5 

   SJ 9.8 7.9 15.1 9.2 7.4 14.2 

    519 

   520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 
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Table 2: Reliability (TEMCV%) of mean RMS EMG proportionality ratios across all 529 

conditions between days and between weeks for the SOL, MG and LG (n = 15). Shading 530 

indicates TEMCV% threshold        = excellent (<5%);       = good (5-12%);        = acceptable (12-531 

16%);         =   poor (16%>) 532 

          TASK Between Day Between Week 

   

 

SOL MG LG SOL MG LG 

   ISOM MAX 15.71 8.82 15.27 17.44 10.10 12.68 

   ISOM SUBMAX 13.80 8.10 18.11 14.10 8.30 11.31 

   ISOM BW 19.99 10.30 26.08 18.40 12.00 21.00 

   ISOT MAX 14.15 9.74 13.48 11.18 8.11 11.04 

 

  

ISOT SUBMAX 12.92 7.61 22.17 10.35 11.53 14.91 

 

  

ISOT BW 12.70 19.28 42.53 11.95 9.59 21.48 

 

  

ISOK SLOW 12.18 14.74 13.23 12.44 12.91 15.66 

 

  

ISOK MED 9.18 9.91 13.52 12.77 13.14 15.02 

   ISOK FAST 12.27 10.83 12.44 10.82 11.64 21.59 

   SJ 8.52 6.73 11.21 9.00 10.73 17.11 

    533 

 534 

 535 

 536 
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Figure Captions 537 

Figure 1: RMS proportionality ratio of each TS muscle to total muscle activation during different 538 

tasks.  539 

Figure 2: Total muscle activation (SOL + MG + LG) based on mean RMS (mV) required for task 540 

completion. 541 

Figure 3: Significant percentage differences (P<0.05) between each condition for SOL and MG 542 

muscles. LG is not shown, since there was  no significant percentage difference between conditions. 543 

Figure 4: Significant percentage differences (P<0.05) between each muscle for each condition. The 544 

ISOK task is not shown, since there was no significant percentage difference between muscles. 545 


