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Investigation of a lattice gas model for surface gravity waves
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A recently proposed lattice gas model for simulating surface waves at a free boundary is described
in detail. Simulated waves are compared to linear theory and are seen to compare well, provided an
additional parameter is introduced. This parametey, is investigated and found to be required due

to the density gradient produced across the fluid by the gravitational interaction. Its value and the
values of the other model parameters are found for a range of gravitational strengti997©
American Institute of Physic§S1070-663(97)01009-X]

I. INTRODUCTION using an FHP model with long-range interactiohsind a
gravitational interaction incorporated. Waves simulated in

The study and numerical simulation of surface gravity> ; q t with th dicti £l
waves has many important applications in oceanography, thttl,;]IS way give good agreement wi € predictions of finear

safety of ships, the design of oil platforms, the processes offave theory, although there is some d|§crepanqy between the
coastal erosion, and the generation of wave power. There a tual wavelength-to-depth ratio used n the S|mulat|qn and

a number of standard numerical techniques such as finit ed aIpE)r?]ren't Waxele][l?r;[h-ftlo—.g}epthdratlg obstervted Iln the

difference, finite element, and boundary integration whichMOC€!- The VISCOsity ot the Tiuiid;, and an Important scaling

can be applied to simulating flows with a free surface, see foPaIr ametery, wet;re dls_((:jussid _:_';] Rff't 5 btjr;c”th?l:hnumengal
example Refs. 1 and 2. When applying these traditional nuyd!ues were not considered. The strength ™ of the gravita-

merical methods to surface wave simulations, major prob'—[Ional interaction was measured in terms of a pararrfer

lems may arise in satisfying the dynamic conditions at theTh|st|st.a mea:fsutrr(]a Of t:]e ra:!o oftth(ihnumberbof ac;ual |mptl):a—
free surface, particularly when breaking waves are consiglnentations ot ihe interaction to the number of possible

ered, when the surface elevation may become a muIti—value'&nplemematlons’ a parameFer which 'S.US(?M in the fqrmu-
function of the horizontal coordina®. This limits their ap- lation of the computer algorithm but which is not associated

plication to the early stages of wave breakigThe lattice with the physical strength of the interaction. In this paper we
gas model is a more recent numerical tool for the study opresent the results of numerous simulations performed for
general fluid motion and has only very recently been applie ifferent values of the model parameters. The effect of the

to the simulation of surface wavéslthough less developed gravitational interaction is considered and the implementa-
tion parametef, is related to the acceleration due to gravity

than the traditional numerical techniques, lattice gas simula- We look at the effect of the densit dient duced
tions have features which make them appealing in certaitt € look at the etlect of the densily gradient produce
situations. Any boundary, ranging from a flat plate to a com-2cross the fluid by the gravitational interactions and show

plex, random surface can be implemented equally efficientl 1,;hat this can be accounted for by rescaling the depth by a

this has been utilized in the study of flow through porousneW parametere. This ngw.parar.neter IS Seen to erend on
media® an application which is of great importance in oil the strength of the gravitational interactions and its value is
explor;ition? The implementation of the model is always per- fqund _for relevant graviftational strengths. The yalues of the
formed on a regular grid which, in contrast to the irregularv'scos'tyy and the scaling parameter are considered and

grids used in some traditional simulations, makes the Iatticé\ound experimentally from the simulations.

gas model ideally suited to benefit from the high perfor-

mance of.masswely paralle! co_mputers..Another advantagﬁ_ THE MODEL

of the lattice gas model which is of particular relevance to

surface wave modeling is that the surface appears in the We now review the lattice gas modelsed in the simu-

model in a “natural” way. The position of the surface can belations. It is based on the FlPnodel of Frisch, Hasslacher,

found at any time, but there is no algorithmic requirement toand Pomeau which was first introduced in 1986 and has

track it; the simulation is treated in the same way at thesince been used in a variety of fluid simulations ranging from

interface as it is within the liquid and within the gas. This single fluid simulations such as flow round a ptdiand flow

suggests that the lattice gas model could be useful in thi a pipé* to multiple fluid simulationg?~'*Their technique

study of wave phenomena, including breaking, although it ichas been altered in a number of wHys*%to allow it to

first necessary to fully test the model and determine the efmodel different phenomena. Here we use the long-range in-

fect of the model parameters, which is the purpose of thigeraction first proposed by Appart and ZalésKiand a

paper. gravitational interaction. These models and their basic prop-
It has been showrthat surface waves can be producederties are described below.
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A. Definition of a lattice gas model

Lattice gas models bglong to the.class of cellular au- 2) —p « — => / OR \
tomata and are used for simulating fluid systems. A cellular
automata consists of a lattice whose sites, the intersection
points of the lattice, can take on a finite number of states. ‘/
The automaton evolves in discrete time steps; the state of b)—> =>
each site at any time is determined by the state of a set of \
neighboring sites at the previous time step. Typically the \'
number of neighbor sites required to update a site is small. In c) , => Gc—
the FHP model a hexagonal lattice is used and each site is /‘
updated from the state of the site at the previous time step
and the state of the six nearest neighbor sites. The introduc-
tion of the long-range interaction requires that the state of d) —0 => <
sites three lattice steps away is known for each update; the
gravitational interactions require only the previous state of
the site be known. e) —»O— => OR X‘
B. The FHP model
A hexagonal grid is used for the FHP model. Each of the H—re—= ‘/< 0

sites are connected to their six nearest neighbors by the links

g =sin(mi/3— w/6)i+cos@@i/3— w/6)j, i=1, 2, ..., 6. ‘/

The site is considered to be the ligk. Fluid “particles” are 2 ® = 4_%%
allowed to travel with unit speed along the linkg—e; or /‘ ’\

R ja—v
R :
remain at rest in linke, and an exclusion principle is applied

allowing only one particle to travel in each direction along a . .
. 9 y p. N . s . g. FIG. 1. Collision rules for the FHP model. The sites are represented by the
link. Each of the fluid “particles” is considered to have unit small filled circles and rest particles are represented by the large empty

mass. The model evolves from tinteto timet+1 in two  circles.

steps: the streaming step and the collision stef”. In the

streaming step the particles on links— e; move from their

original site to one of the six neighboring sites, any particlefilled: example(g) is the dual of exampléf). There are a

on link ey remains at rest at the site. In the collision step anytotal of 18 collisions of typdf) which can be considered to
particles newly arriving at a site and any rest particle alreadye collisions of type(@ or (c) with a spectator particléa
present at the site are allowed to collide in such a way thaparticle which does not take part in the collision and which
the masgparticle numberand the momentum are conserved continues traveling in a straight linerhere are two possible

at each site on the grid. Here we use the FHP-III collisionoutcomes in exampléf) because it can be thought of as
rules; that is all possible collisions which conserve both masgither examplda) with a spectator particle traveling on link
and momentum are allowed. Various subsets of these rules or as exampléc) rotated through 2/3 with a spectator
make up the FHP-I and FHP-II collision rules. A set of col- particle traveling on linles. One restriction with the FHP-III
lision rules on a hexagonal lattice is shown in Fig. 1, wheremodel is that collisiongb) and (e) are not interchangeable;
the small filled circles represent the lattice site and the largéhat is, the(e) in-state cannot collide to give thb) out-state
empty circles represent a rest particle at the site. The lefteven though this conserves mass and momentum. This re-
hand column represents the possible incoming configuratiorstriction has no effect on the properties of the model, but
or in-states. The right-hand column represents the outgoingimplifies its implementation since it restricts the maximum
configurations or out-states. When there are two differenpossible number of out-states for each in-state to two. Since
possible outcomes one of the choices is picked at randonthe particles travel at unit speed along the lattice, or remain
The full set of collisions can be obtained by combining theat rest, it is possible to completely discretize the model. Only
collisions of Fig. 1 with the collisions found by rotating the the state of each site at the previous time step is required to
particles through multiples ofr/3 and by considering the calculate the state of each site at the next time step. In prac-
duals of all the collision formed by swapping the full and tice, this was modeled using a 7-bit integeetween 0 and
empty links. It can clearly be seen that all the individual 127) to represent the stateof each site, each bg; ,i=1, 7
rules conserve both mass and momentum at each site. Thdveing 1 if there is a particle on link,,; and O otherwise.
are 76 possible collisions: 15 two-particle collisions of typeThe streaming operation is performed by shifting the grid in
(@), (c), and(d); 23 three-particle collisions of typé), (e), each of the six link directions and using bit arithmetic. The
and (f); 23 four-particle collisions and 15 five-particle colli- collisions are performed using a lookup table which takes the
sions. The four- and five-particle collisions are the dual ofin-state as input and outputs the out-state. A solid boundary
the three and two particle collisions respectively. The dual otan be inserted in the model. Any particle arriving at a
a collision is found by adding particles to the empty links boundary site is either reflected back along the link it ap-
and removing particles from the links which were originally proached or(no-slip boundaryor it is reflected so that the

@)
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momentum perpendicular to the boundary is reversed and the R

momentum parallel to the wall is conservécbe-slip bound- l - T E - > @
ary). Thus a particle approaching a horizontal boundary

along link e, will move off along link e, if it is a no-slip f K

boundary and along link; if it is a free-slip boundary. Pro- R ®)
vided the collision rules satisfy the conservation of massand =~~~ "~ F

momentum, thatis, e R ... ©
Z ni(t+1,r+q)=2 n;(t,r) (1 34 \(/x

and 7‘

..... R ... (d)
2 eni(t+1lr+e)=2 entr), )
at each site, it can be showh'8that
dp+V-pu=0 (3
and
du+y(d)u-Vu=—-VP+ V2, (4 v

wherep is the densityP is the pressured] is the density per
link, d=p/7, v is the viscosity which is found to be a func- FIG. 2. The basic long-range interactions acting in the directiore,of

tion of the density, ang(d) is a density-dependent function. Particles at site® lattice units apart are flipped from the solid link direc-
For the EHP-III m’odel tions to the dashed directions provided there is initially a particle in both the

solid links and no particles in either of the dashed links.

7(1—2d)
y(d)= 21-d) 5
and dashed arrows. If this is the case, the particles are flipped
from the solid link to the dashed link. These five basic inter-
, 1 1 1 1 © actions are also applied along tegande;, directions.

~28d(1-d) 1-8d(1—-d)/7 8
It is possible to rescale certain variables in E4.in order to
produce the Navier—Stokes equation. Following Wolftam

we can definei= y(d)u andP= y(d) P so that Eq(4) gives
the Navier—Stokes equation in the rescaled variables. Th

Let 7%, Vx e {a,b,c,d,e}, i € {1,2,3 be the operator
which implements interactior, from Fig. 2, along direction
e . If the interaction cannot take place the operqﬁff‘)
defaults to the identity operata#;, leaving the particles un-
(éhanged. If we define the operators

Reynolds number is given by def
UL ULy FN= 7% 70 71, xefab,c,d.el, (®)
Rezwz%. (7) where j,k,| are a random ordering or 1,2,3, then we can
v v define an overall interaction operator
The form of the viscosityp(d), depends on the grid used o
and also on the allowed collisions while the scaling factor, . _e Aa). AbC). Hde)
J= 7% 700 7108, ©

y(d), which is required due to the non-Galilean invariance
of the model at the microscopic lev€ldepends on the grid where

which is being used and not on the set of allowed collisions. Ab) i ini i

7 if only b-flip is possible
All the results presented here will be unscaled measure- X def ‘//(C) _ y .p- P _
ments. Where required the/™ factor will be introduced into Feo=4 7 if only c-flip is possible
the equation of motion. 7P 70 if both flips are possible

(10

and 7(%® is defined similarly. The combining of interac-
The long-range interaction rules were first introduced bytions 7% and 7(® is required to prevent unwanted rotations

Appert and ZalesKl. The interaction was further developed being produced in the flow. Interactiong® and 7(9) are

in Ref. 16. The interactions used here are effectively theeombined for simplicity. The long-range interactions have

same as these interactions, however the implementation vathe effect of separating the fluid into two distinct pha&s.

ies slightly® Figure 2 shows the basic interactions actingThe dense phase has a density of approximately 4.0 particles

along thee, direction on two sites a distand® apart. The per site and the rare phase has a density of approximately 0.1

interaction can take place only if there are particles travelingparticles per site wheR=3. A definite interface is formed

in both directions indicated by the solid arrows and if therebetween the two fluids. If a larger value Rfis used, there is

are no particles traveling in the direction of either of thea larger difference between the densities of the two fluids,

C. Long-range interactions rules
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E. Model implementation and wave simulations

8,=0125 The model is allowed to evolve under the action of all
007 e S,4=0.250 the processes described above. Thus the system evolves ac-
‘‘‘‘‘‘ S4=0.750 cording to the evolution operator
- _ Sg=1 250 ((75‘:.76{70 Go (11)
g — —8,=1.750 When this_operat_or is applied to a grid with an ini_tially ran-
= dom density profile and zero average velocity with a solid
.% -== §¢=2.250 boundary at the top and bottom and continuous boundary
I - 84=2.750 conditions at the other two edges, the fluid separates to give
Ny a density profile as shown in Fig. 3, and the average velocity
RN once it has reached equilibrium will still be zero. The height
'..”\i:i}. at which the interface occurs will depend only on the average
SN \'\}.‘ density of the initial setup. Once the fluid has evolved to this
T | 1 steady state a standing wave at an extreme of its oscillation
0 1 2 3 4 5 6 7 can be inserted at the interfat@his is done by superimpos-
Density (particles per site) ing a sinusoidal interface of the required wavelength and

amplitude over the horizontal surface. The sites which were
FIG. 3. Height plotted against density for different valueSpf The graphs  previously above the horizontal interface but are now below
have been smoothed slightly to enhance their clarity. the sinusoidal surface are filled with particles so they have an
average density of 4.0 particles per site and zero average
velocity. The sites which were initially below the horizontal
interface but are now above the sinusoidal surface are filled
however, using too large a value, greater than 7, causes iHYith average density 0.1 and zero average velocity. Any am-
ternal structure to appear within the dense flid= 3 is used plitude of wave can be inserted but here we restrict ourselves

in all the results presented here. to small amplitudes so that the wave falls into the linear
range. The wavelength used is always the horizontal size of
the grid.

o . ) Ill. MAKING MEASUREMENTS FROM THE
D. Gravitational interactions SIMULATIONS AND THEIR ERRORS

Body forces can be introduced into the model by flipping  peasurements made from the lattice are in terms of lat-
particles so as to change the momentum at a site. Gravitgice units(lu). The unit of length is the lattice spacing and the
tional interactions can be simulated on a hexagonal grid byt of time is the time step. Velocities are measured in lat-
flipping particles, after the collision, from ling, to link &;  tice lengths per time step and densities in particles per site.

and fromes to e, provided there is not already a particle on The microscopic densitp and velocityu at each site are
the destination link. The strength of the interaction will de- gefined by

pend on the number of particles flipped in a single time step.

This is done by introducing a gravitational operator def

©=%,+%,, where % flips a particle frome; to e; with p(t,r)=2i ni(t,r) (12
probability S,/100 and.s flips a particle fromes to e, with

probability Sy/100 and both; and &, default to.7, the and

identity operator, if there is no particle in the original link or def

a particle is already in the destination link. Thus bgthand pu(t,r)= 2 en;(t,r). (13

%5 have the effect of introducing a momentum change in the !
negative horizontal directio®;% of the time that such an Macroscopic quantities are found by averaging the micro-
interaction is possible. scopic quantities over a number of sites. Three types of av-
Introducing gravity as well as the long-range interactioneraging are possible: spatial averaging, temporal averaging,
produces the same separation, but now the dense phaseaisd ensemble averaging. Spatial averaging can always be
situated at the bottom of the grid and the rare phase at thesed efficiently since the spatial scale of the simulated flow
top. An approximately horizontal interface separates the twenust always be large compared with the lattice spacing if the
fluids. This can be seen in Fig. 3 for different valuesS3f  model is to produce meaningful results. Temporal averages
where the curves have been smoothed slightly for clarity. Wean also be used effectively either when a steady state flow is
see that the strength of the gravitational interaction has littldeing simulated or for a flow which varies on a time scale
effect on the fluid densities at the interface. The strength osignificantly larger than the averaging time being used. En-
the interaction does, however, produce a density gradierdemble averaging can always be used by running a simula-
across both fluids, the gradient being larger for larger valuefon a number of times starting from the same initial condi-
of S;. For §;<0.75 the gradient is approximately linear.  tions but using a different random seed during the
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simulation. All measurements of velocity and density taken 2.0+

here are spatially averaged over at least 256 sites and ofte
significantly more. In a small number of stated occasions
ensemble averaging was also used to reduce the noise. T _§ 1.5
error in the density and velocity measurements can be show g o m A
to be'® S a 4 4
ncz A ax x E o 0] g a °© a
d(1-d) 1.0 nnsﬂi gkekn A T
Ap=1.128\/—— 14 3 ¥m0 oo
7S .% 0 + Y
£ +.+ X
and 2‘3 os1 T o h
Au=C(p)S~*?, (15
whereS is the number of sites averaged over &g) is no x
larger then 0.28 for the densities used in our simulations. 00 T T T T T !
During the simulation the height of the center of the 0.0 05 10 15 .2'° 25 30
wave is recorded every 40 time steps. This is done by cor Number of Periods

sidering a column 16 sites wide about the center of the wave.

The Wavelength used in all cases is much Iarger than 16!G. 4. 'I"he normalized fitted_param_eters plqtted against the number of
units. The density is then measured in each row of the colvave periods which were considered in the fitting procedure.

umn and the height of the surface found; this is taken to be

the height at which the density drops below two particles peboag by 256 lattice with wavelength 2048 Iu, initial ampli-
site. The averages of these 16 results are then fitted to @qe 22 |u, and mean water level 191 lu. This simulation was

curve of the form run seven times using different random seeds and each run
2t was fitted to a curve. Each simulation was run for 7000 time
Ae cos(TwL y|+h, (16)  steps~1.25 periods. The percentage standard deviations

found in the fitted parameters, 7, andh, in which we are
whereA is the initial amplitude« is the damping constant, interested, were found to be 5.7, 3.0, and 0.14, respectively.
7 is the periodh is the mean water depth, andis a phase These results suggest that values of the damping constant,
difference in the range- 7<<4< introduced to account for the period, and the mean water depth can be found with
any inaccuracies in initializing the wave and any small initialreasonable accuracy even if the wave is only allowed to
time before the wave starts to oscillate. We expgdb be  evolve for one and a quarter periods. This allows the results
small if the wave has been initialized correctly; typically we to be taken in a time efficient manner. The errorimvill be
found | | < 7. taken to be 6% and the error into be 3%. In every simu-
There will be many sources of error which contribute tolation the mean water leveh, was always found to be within
the total error in the fitted parameters. In particular the0.2% of the value to which it was initialized, and so this
amount of time over which data are acquired will be impor-value is used.
tant in determining the size of the error. In order to asses this
effect a wave was initialized on a 2048 by 128 grid with |/, EQUATIONS DESCRIBING A LINEAR WAVE
= 57 lu,A = 2048 lu, andA=22 lu. The wave was allowed ] ]
to evolve using free-slip boundary conditions for 20 000 time___ 1he following equationgsee, for example, Refs. 20 and
steps and the height of the wave at its center was recordef) describe the behavior of linear waves and are used to
every 40 time steps. These results were then analyzed usifi§mpare the waves produced here to real waves and to allow
the curve-fitting routine 20 times, each time the results foidS 0 find value for the model parameters. We are interested
the first n thousand time steps were considered,here in two-dimensional waves in they plane where the

n=1.2, ... ,20. The values of the fitted parameters ardn€an water level is a=0 andh is the water depth. The
shown in Fig. 4, normalized by their final value, found after diSPersion relation
20 000 time steps, plotted against the number of periods of  2=gk tanhkh (17)

the wave which were considered in the curve fitting. The
period of the wave was calculated from the results tfor

= 20 000. Note that some of the parameters found from les
than one period of results lie outside the range of the graprf.)
These results suggest that, provided more than one period of 1— (v/2w)Y%/(sinh Xh) (18

the wave is analyzed, the parameters are found to vary b

less than 3% from their mean value with the exception OéDI:r:gir?, tﬁg'ﬁgzessmg”’Cgﬁgre%asbe '?n?:nzp%lij;igzeql:ﬁng'
a which varies by no more than 10%. If more than two ping y y

periods are analyzed the variation anis within 3% of its waves and by bed friction if there is significant wave motion
mean value as are the other parameters at the bed. The internal viscous effects give a proportional

It is also important to be aware of the repeatability of theIOSS of amplitude per unit time of
experiments. To investigate this, a wave was set up on a 2vk? (19

relates the frequency and wave number of waves with a free-
§Iip boundary condition at=—h. The frequency of a wave
n a no-slip bed is reduced by a factor
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and bed friction causes a proportional loss of amplitude pe! 102

unit time of ~70
v 1/2 k '
- = (20 g 6.5
2 (sinh Zh) e
The velocities under a two-dimensional linear standing wave ~ __-- -7 ;;‘ x / 6.0
are givenby =T X < J/ 5.5
—aw costik(y+h)] 4 -
Uy= Sinf(kh) sin(kx)sin(wt), _ - X% ) 5.0 >
(2D - T T XX 4.5
_awsinffky+h] x X X ~ £ =10 '
Uy sinhkhy  cotkwsin(t), X~ TTITIEZE0| e
—_— —  -£=40
wherea is the wave amplitude. The velocities at the surface |35
of a wave at = 7/4,x=2\/4 are given by
3.0

1 I )
v(0)=E‘ [ gk , -150 -100 -50 0
Xy Vtanhkh) y ()

(22

a
U;O):—\/gk tanh(kh). FIG. 5. The variation in the peak velocity with height for the simulated
Y wave and also the linear theory predictions of the velocity for waves with a

Let h* be the depth below which there is onIy negligible depth to wavelength ratie times the depth to wavelength ratio of the
. . imulated .
motion due to the surface wave. This is commonly taken o ed wave

be when

h* =\/2, (23)  The results of these simulations are presented in this section
and, through a comparison with theory, the model param-

where the energy loss due to bed friction is only 2% of itSuiars are studied.

long wavelength limit° If h>h*, then the viscosity can

be related tax, first introduced in Eq(16), using Eq.(19). ) )
A. The need for a vertical scaling parameter

This gives
a= By (24) We now consider three examples which demonstrate the
’ need to introduce a parametewhich scales the horizontal
where displacement, and we observe the effect that such a param-
B=2Kk> (25) eter has on the simulations. All three examples were run with
' S,=0.5.
]

Energy dissipation due to bottom friction need not be con-

sidered here because the velocity at the bottom boundary & Velocity variation with depth

negligible. Whenh<h* and free—slip boundary conditions The need to introduce a sca"ng parameteo scale the
are used, we can write, assuming that in the shallow wateglepth was first observédvhen considering the dependence
limit the x velocity is independent of and they velocity is  of the wave velocity with depth. This can be seen explicitly

negligible, here where we consider a wave on a free-slip bed using a
h 4096 by 256 site grid. A wave with mean water level of 189

a=— . (26) lu was set up and allowed to oscillate and the velocity was

h* calculated after a quarter period when it had its maximum

Whenh<h* and no-slip boundary conditions are used thevalue. The velocity was averaged over six ensgmble experi-
ments. Thex component of the velocity at=\/4 is shown

viscosity is found by solvin
y y ¢ in Fig. 5 as is the velocity distribution predicted from linear

ve v2 theory for a wave with the same wavelength but with a depth
h 2 of e times the simulation depth. That is, wher=1, the
a= h—*BV+ sinh &h (27) veloc?ty was calculated from Eq21) while for e # 1 the
velocities were calculated from
This comes from Eq(26) with the attenuation term due to costike(y+h)]
bed friction given in Eq(20) added. vo=A —y (28)
* 7€ sinh(ekh)
whereA, is a normalizing factor which ensures the velocities
V. RESULTS coincide at the surfacey(= 0). The velocity within the top

25 lu appears to follow a distribution between the 1.0 and
Numerous standing wave simulations were performed ore = 2.0 curves. It then follows the = 3.0 distribution in the
the Connection Machine CM-200 at Edinburgh University.next 75 lu. For depths greater than 100 lu the measured ve-
2590 Phys. Fluids, Vol. 9, No. 9, September 1997 Buick, Greated, and Easson
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TABLE |. Best-fit parameters for the curves shown in Fig. 6 wign

541079 | —os5
4510 h* v € e
7 No-slip best fit(a) 415 13.6 — 1.12x10°4
' No-slip best fit(b) 348 20.8 2.66 3.15410°°
§3*10"— Free-slip best fit 357 21.6 — 2.45610°°
[72]
b
E 241071 4 No—Sip
= e
: __ Z:,efsﬁihf Best Fit () clearly not going through the data points. Despite the errors
1910 - - = No=Sip : Best Fit (b) in the measured quantities which will affect the accuracy of
—— Free—Siip : Best Fit the results in Table |, we can clearly see the necessity of
introducing € and the sensitivity of the results t© when
0%10° T T T T 1 comparing curvega) and(b). We also see that a good fit can
0 200 400 600 800 1000 be obtained by assuming thais a constant at all depths. A
h (i) value of 2.66 was found explicitly in fitb). Since the ex-

pressionh/h* should properly be writterh/eh*, we also
FIG. 6. The variation in the damping constaat, with the mean water ~ obtain two implicit values fore, 2.89 and 2.94 when com-

level, h, for both the no-slip and the free-slip boundary conditions whenparing the the values df* for curves(b) and (c) with the
Sy=0.5. Also shown are three best-fit curves. expected value ok/2.

locity distribution is roughly parallel to the=4.0 curve. 3. The dependence of the surface velocity on the

Here we see the need to scale the water depth by some palean water level

rametere and that in generat is itself a function of depth. Velocities under a number of waves in different water
Despite the variation of with depth it can be seen from Fig. depths were measured after a quarter period for a free-slip
5 that if e was to take a constant value of about 3, at allped, the period of the wave, as well as the damping constant,
depths a good fit with the data would be obtained. We notéaving been found previously using the curve-fitting method
also that this approximation is most accurate in the uppegescribed above. Figure 7 shows theomponents of veloc-

section of the wave where the velocities are largest. ity for six of the waves plotted against height from the bed.
Note that the origin has been displaced from the mwl to the

2. The dependence of the damping constant on the bed. This has been done only in Fig. 7 to aid the presentation

mean water level of the results. From Eq22) we expect, to be constant for

s h large enough the/tanhkh=1. This is true to within 5%
Waves of wavelength 2048 lu were initialized for a for h>484 lu. In Fig. 7 the surface velocity appears constant

range of mean water levels. These simulations were then "Wt h as small as 200 lu. This is again consistent with intro-
using no-slip boundary conditions. Some of the simulationsducing a scaling parameter into Eq. (22) with a value

were then repeated using free-slip boundary conditions. The
values of the damping constaatfound from the curve fit-
ting are shown in Fig. 6. Also shown are the following fitted

curves: 0.14
(@ The no-slip results were fitted to ER4) for h>h* 0.12-

and Eq.(27) for h=<h* to find the best-fit values of

h* and v it (a). o1f
(b) The no-slip results were also fitted to E®4) for

h>h* and Eq.(29) for h<h* to find the best-fit val- 0084 %

ues ofh*, » ande: fit (b). , #A’
(c) The free-slip results were fitted to E4) for h>h* > 006 °

and Eq.(26) for h<h* to find the best-fit values of

h* andv:

) 1/2
_h (7) k -
@=L BV Ginh Zen 29
1 I

The best-fit parameters are shown in Table | along with 0 200 400 600 800
the root mean square deviation of the results from the best-f y (u)

curve. The fitted curveg) and(c) show a good agreement

with the resuIFs _W|th nearly all the points pemg W|th|n. tWO FiG. 7. The variation i velocity with height for six waves with free-slip
standard deviations of the curves. The fitted cufae is boundaries whe,=0.5.
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FIG. 8. The average number of gravity flips at different heights above the Sg

bottom boundary after 1000 time steps wi&y*=0.5.
FIG. 9. The variation in the mean number of gravity flips per site per

timestep,z with the gravitational strength paramet&,. The smoothed
~3. In the deep water limit we see that—0.042. For line through the points can be used to predict the valug dor any S,
a=4.1x10"% 7r=5200,A=20, anda=A exp(—ar/4) this  between 0.125 and 3.0.
gives./g/ y=0.065, which is consistent with values obtained
in the next section.

flips per site per time stegy, does in general have some
dependence on the density. We have already observed that
the effect of the density gradient produced across the fluid by
We have seen the need to introduce a scaling parametee gravitational interactions can be accounted for by scaling
€ in the previous examples where the gravitational strengththe depth by a parametemwhich is assumed to be a function
Sy was 0.5. For this value of; we can considek to be  of S;. Although some variation i@ has been observed with
independent of depth and, using this constant value, goodepth, we have seen that it is adequate to use an average
agreement is found with linear theory when consideringvalue of € to describe the whole wave. We extend this as-
properties of the whole wave and also when considering theumption here to assume that the density of the whole wave
velocities of the wave at its surface. When similar experi-can pe described by an average dengitgnd we can define

ments are carried out wit§;=0.125, and hence a negligible —
the mean values ofu and to be u= and
density gradient across the fluid, we do not observe the same- H I o M(p)

need to introduce. We therefore conclude thatis required 7~ ¥(P). The mean density will be taken to be the aver-
to account for the density gradient with=1 when there is age density at which there is non-negligible motion; the den-

no density gradient and increasing as the gradient in- sity at de_pths where there is no motion should not b? impor-
creases. tant. To investigate how the mean number of gravity flips
w is related to the implementation streng and how it is
related to the model parameters, several simulations were set
up using a grid size of 2048 by 256 for a number of different

We wish to determine the values of the model param— values in the range 0.125-3.0. Figure 9 shows the varia-
eters for different values Cﬁg and to see how the accelera- tion in the mean number of partic'e f||ps per site per time

tion due to gravity is related t8§,.

4. Summary of results concerning a vertical scaling
parameter

B. Determining the values of the model parameters

step,; with the strength of the gravitational interaction,
1. Gravity flips within the fluid Sy - The smoothed line through the points can be used to find

First we need to consider the number of gravity flips pers, for any Sy in the range 0.125-3.0. These are effective
site per time stepy. A simulation was run on a 2048 by 512 limits for Sg, whenR=3, since below 0.125 the fluid tends
grid with a flat surface at height 191 lu, for 1000 updatesto float above the surface due to the long-range interactions
using a strength factd®,=0.5. The total number of gravity pulling the bottom layer of particles upward toward the rest
flips was recorded along with the position where they oc-Of the body of fluid. Above 3.0 the density gradient is fairly
curred. The average number of flips in each row of the gridarge and the density at the bottom of the wave is large
was then calculated and is shown in Fig. 8. This shows thagompared to 7, the maximum density. It is worth noting that,
the vast majority of the flips take place in the more denses shown in Fig. 10u? is approximately linear over this
fluid and that within this fluid the flips are fairly evenly range. Thus¢7can be estimated from the equation
distributed with only a gradual variation caused by the den-
sity gradient across the fluid. Thus the number of gravity = u?=2.52x 10*589—5.45>< 10" 6; 0.25<§4<3. (30
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FIG. 10. The approximately linear relationship betwe,?nand S, and the
best-fit straight line through the points.

2. Relating the mean number of gravity flips to the
wave period

Consider an ensemble of particles each of nmgwvolv-

ing on S sites forT time_steps under gravity. Let the average
density of particles be and the average number of particle

flips per site per unit time bE The vertical component of
the force exerted by gravity on the whole fluid of masss
given by

— dP
Fszg=Spmg=d—ty, (31

whereP, is the vertical component of the particles momen-
tum. The rate of change of vertical momentum due to gravit

is given by

dp,

F=mS(T§vy, (32)

141077

8+10 ™ 2+

6410 5

44105

2108

0+10° T T T T T

+107°

o

FIG. 11. The variation in the inverse square period with the mean

number of gravity flips per site per timest@and the best-fit straight line
through the points.

B 471'2p_
V3 vk tanh(keh)

Figure 11 shows the relationship between the inverse
squared period 2 and the mean number of gravity flips per
site per time step. Also shown is the best-fit straight line
through the points. The straight line fits through all the points
except wher5;=0.125. We see from Eq36) that the gra-
dient of the straight line is B, although the straight line fit
does not go exactly through the origin. It can be seen from

Eq. (37) thatB depends on the values ef p, andy. As-

(37

ysuming thate increases withSy, and recalling the values

previously found fore when S;=0.5, we can see that the
tanhkeh) factor should vary only slowly fol5;=0.5 as it
approaches unity. We note that an increase liras the effect

of increasing the apparent depth causing the motion to take

whereév  is the change in the vertical speed of each particleplace in a smaller region of the fluid closer to the free sur-

flipped:

ovy=+37.

Equating Eqs(31)—(33) we find g, the acceleration due to
gravity is given by

(33

V3uy

p

But from Eq.(17), with the scaling factoe added, we know
thatg is given by

(39

g=47 7’k tanh(keh)] 1. (35
Equating Egs(34) and(35) we get
— 1
u=B—, (36)
T
where

Phys. Fluids, Vol. 9, No. 9, September 1997

face. Sincep is defined as the average fluid density in which
there is motion, that is the average density of the “top”
portion of fluid where the wave velocity is non-negligible, an
increase ine will cause the depth at whicbzp_to move
closer to the surface. From Fig. 3 we see that a valup of
=4.5 is a good estimate fd8,>0.5. If p_iS approximately

independent ofS,, then y should also be approximately
constant(as should the viscosity). Thus we would expect
B(S;) to be approximately constant for larggy values. We
see that this is in fact a good approximation for@jlvalues
in our range. This gives

7 2=ax 10 %u+9x107°. (38)
From Eq.(37) we get
J=73x102_— " (39)
tanh(keh)
Buick, Greated, and Easson 2593
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FIG. 12. The variation in the damping constasat, with the strength of the
gravitational interactionS, .
FIG. 13. The variation inx with tant(S,)**] and the best-fit straight line
through the points witt5,<1.25 (tanfi(S)"*]<0.78), the values where
there is significant wave motion at all depths.

3. The variation of the damping constant with S

Now consider the dependence of the damping constant
a on the gravitational strengtlg,. As discussed earlier we (tanh({/%)sO.?S). The straight line also appears to go
expect the damping constant, when a free-slip boundary ihrough the value fo6;= 1.5 but this may simply be a co-

applied, to be given by incidence. The equation of the best-fit straight line in Fig. 13
is
h
2vk?— when h<h* _ 3 Ay 4
o o , 40 a=1.06x10"2 tani({/S,) —5.08x 104, (44)
2 K2 when h=h* which, when combined with Eq43), gives
whereh* depends on the value ef through Eq.(23) with _ 4 4y 4
e arlded: € Vk3h[9'35>< 10 % tanh({/S,) —4.47x10°%. (45
b = ﬁ 41) This empirical equation, which should in general be true for
“arTa any value ofh and\, can be used to calculate The equa-

tion also relies on the value of the viscositybeing known;
the value ofv has been considered earlier.

Thus we finde to be an increasing function &; which
is approximately unity when there is a negligible density
gradient across the depth of the fluid. Physicallgccounts
for the density gradient produced across the fluid by the
gravitational force. This is significant whe®,>0.125(see

a Fig. 3 but is not considered in standard linear wave theory.
V= % (42 When there is a negligible gradieat=1; however, when the

gradient is significant can take a value as large as 5.
Whenh<h* we can combine Eqg40) and (41) to get

Assuming we can writee=€(Sy) and that the mean water
level h is selected such that/2e(3)<h<<A/2¢(0.125), then
a plot of @ againstS; will have two regions, one at lower
values ofSy wherea varies withS; and one at higher values
of Sy wherea is independent o§;. We will consider these
regions separately. Wher=h* the viscosityv is given by

4. Summary of the values found for the model

T
i (43)  parameters

T 20n o
The viscosity v has been found to be ¥8%% for

Figure 12 shows the dependence of the damping conS,=1.25, 20.8 and 21:66% when S,=0.5. Given the
stant, @, on the gravitational strength paramet&,. The  magnitude of the error in the measurements it is not possible
graph can be divided into two section. Initialyis increas- to determine whether the viscosity is remaining constant for
ing with Sy, then it remains constant, within the error limits. all gravitational strengths or whether it is decreasing slightly
Due to the noise it is not possible to find the exact value ofas the gravitational strength increases. The mean density
Sy where this changeover takes place, but it is clearly bewhere motion is observeg, is approximately constant for
tween 0.75 and 1.25. The later portion, although noisy, sugall but the smallest value @, considered so we expect the
gests v(p)=18+6% for p=4.5. Plotting @ against viscosity to be approximately constant over the rang&pf
tanh({/s—g), Fig. 13 gives a straight line fit foS§;<1.25  values with value about 21.
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*10°3 : particle. To relate the results to real waves we cannot convert
1.2 the lattice gas units to Sl units, but must instead compare
« waves with the same dimensionless quantities, such as the
1o + Reynolds number and the Froude number, as would be done
' * when relating experiments performed in a wavetank to
x waves in the ocean. As notes above, the dimensionless ratio
0.8+ o + a/\<1 so all the waves are linear. When the dimensionless
+ productkh is such that tantkf)=1 the waves which can be
o 0.6 s considered as being in deep water. On the other hand, when
tanhkh) is significantly less than unity, shallow water waves
X + are being considered. The Froude number, which can be
x + taken asF=ck/g, wherec=w/k is the wave celerity, is
x simply F= ytanhkh) through Eq.(17). The Reynolds num-
02 . ber, taken here to be\/v, is 21 and 72 for the smallest and
+ largest values o, respectively. These are relatively low
0.0 T T T T T T ) Reynolds numbers so the viscous effects are clearly impor-
60 05 10 15 20 25 30 35 tant. This was observed in the simulation results.
S, Here there are the additional questions of whether the
simulated waves map onto ripples, where surface tension is
FIG. 14. Graph showing the value of the acceleration due to gravity foimportant, and, given the high viscosity, whether the waves
different values ofS; . can truly be considered as hydrodynamic. Considering first
the influence of the surface tension we consider

0.4+

N 1/2
The Galilean scaling parameteris also only a function — (@ (47)
of density and so we again expect that it should be approxi- "

g

mately constant fol§;=0.25. From Eq.(37) with p=4.5  whereo is the surface tension. Whea<k,, the waves can
and from Fig. 11 we see that~0.33 in this range. This is be considered as purely gravity waf&s was done heye
the same as the value for a FHP-IIl model with no addi- otherwise the effect of the surface tension must be consid-
tional interactions found from Ed5) whenp=4.3. ered by replacing the dispersion relation, Etj7), with?®

The scaling parameteris given by Eq.(45). As before 5 12
we expect this to be a good approximation ferwhen w'=(gtp Tokik. (48)
S;=0.25. We have seen that wh&)=0.125¢~1. We do  For water waves, surface tension is only important in waves
not expecte to take a value less than unity for any value of with a wavelength of a few millimeters. In the simulations,
S;- whereo is of order unity?? k,, is significantly smaller than

The value of the acceleration due to gravifycan be k even for the smallest values & so the waves are pure
found: (1) from its relation to the wave perioeithrough Eq.  gravity waves. Capillary waves, where there is no gravity
(17) with € inserted: and the surface tension is the only restoring force, are con-
sidered by Flekkg and Rothmar® When considering a

- -1/2
7=2mlgk tanttkeh) ", (48) wave in a viscous fluid the parameter
or (2) from Eq. (34) by considering the average number of W2/ p| 12
gravity flips and using the previously found value pfand X= E(—) (49
- w

taking p =4.5. The value ofj found using both these meth-
ods is shown in Fig. 14 where the values calculated bydetermines the affect of viscosity on the wadé® If y is
method(1) are represented by and the values calculated small then the motion is essentially irrotational except near
by method(2) are represented by-. These two methods boundaries where a boundary layer with thickness the order
show good agreement f@,>0.75. ForS,<0.5 the agree- of (vl w)Y?is formed. A boundary layer is not formed at the

ment is less good because our assumptions apoand .~ Pottom when free-slip boundary conditions are applied. The
being constant for al§, are less valid. Here the value gf ~ values ofy for the smallest and largest valuesSfare 0.39
can be found by methodl) since no approximations have and 0.29, respectively. Both are smaller than unity showing
been made. The close agreement between the two method@t we are in the hydrodynamic regime although, as ob-
shows that the assumptions made are valid and that the vaterved earlier, the viscosity is important.

ues found for the model parameters are reliable. Another interesting question is whether a liquid—gas
wave model which simulates waves between two phases of a

single-component fluid, such as at a water—steam interface,
can be realistically compared to a two-phase, two-component
All the results presented here are in terms of lattice unitssystem such as water and air. At a single-component liquid—
The unit of length is the separation of the grid sites, the unigas interface there is an exchange of particles, and hence
of time is the time taken for a particle to move from one sitemomentum, between the two phases. There can also be an
to a neighboring site and the unit of mass is the mass of axchange of momentum across a two-component liquid—gas

C. Scaling from a lattice system to a real fluid system
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interface, for example, the production of ocean waves by th@rid the distribution function, a statistical representation of
wind, although clearly the mechanisms of the momentunthe fluid, is evolved. The simulation then involves solving
transfer are different, particularly since there is no particlethe Boltzmann equatidh on a regular grid. Details of the
exchange between the phases. During the simulations deevelopment and application of the lattice Boltzmann model
scribed here there was no observed deviation from the exare given in Ref. 28. More recently lattice Boltzmann models
pected two-component behavior caused by the singlehave been developed which can simulate phase separation
component nature of the model. Any evaporation/and binary fluid mixture$®-3!It is anticipated that the wave
condensation effects were negligible compared to the waveodeling ability of the FHP model demonstrated here can be
motion in the liquid phase. In the gas phase there were neealized in such models.

measurable velocities observed. Thus we conclude that the

single-component model is valid for simulating the water—air
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