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Investigation of a lattice gas model for surface gravity waves
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A recently proposed lattice gas model for simulating surface waves at a free boundary is described
in detail. Simulated waves are compared to linear theory and are seen to compare well, provided an
additional parametere is introduced. This parameter,e, is investigated and found to be required due
to the density gradient produced across the fluid by the gravitational interaction. Its value and the
values of the other model parameters are found for a range of gravitational strengths. ©1997
American Institute of Physics.@S1070-6631~97!01009-X#
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I. INTRODUCTION

The study and numerical simulation of surface grav
waves has many important applications in oceanography
safety of ships, the design of oil platforms, the processe
coastal erosion, and the generation of wave power. There
a number of standard numerical techniques such as fi
difference, finite element, and boundary integration wh
can be applied to simulating flows with a free surface, see
example Refs. 1 and 2. When applying these traditional
merical methods to surface wave simulations, major pr
lems may arise in satisfying the dynamic conditions at
free surface, particularly when breaking waves are con
ered, when the surface elevation may become a multi-va
function of the horizontal coordinate~s!. This limits their ap-
plication to the early stages of wave breaking.3,4 The lattice
gas model is a more recent numerical tool for the study
general fluid motion and has only very recently been app
to the simulation of surface waves.5 Although less developed
than the traditional numerical techniques, lattice gas sim
tions have features which make them appealing in cer
situations. Any boundary, ranging from a flat plate to a co
plex, random surface can be implemented equally efficien
this has been utilized in the study of flow through poro
media,6 an application which is of great importance in o
exploration.7 The implementation of the model is always pe
formed on a regular grid which, in contrast to the irregu
grids used in some traditional simulations, makes the lat
gas model ideally suited to benefit from the high perf
mance of massively parallel computers. Another advant
of the lattice gas model which is of particular relevance
surface wave modeling is that the surface appears in
model in a ‘‘natural’’ way. The position of the surface can
found at any time, but there is no algorithmic requiremen
track it; the simulation is treated in the same way at
interface as it is within the liquid and within the gas. Th
suggests that the lattice gas model could be useful in
study of wave phenomena, including breaking, although
first necessary to fully test the model and determine the
fect of the model parameters, which is the purpose of
paper.

It has been shown5 that surface waves can be produc
Phys. Fluids 9 (9), September 1997 1070-6631/97/9(9)/2585/
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using an FHP8 model with long-range interactions9 and a
gravitational interaction incorporated. Waves simulated
this way give good agreement with the predictions of line
wave theory, although there is some discrepancy between
actual wavelength-to-depth ratio used in the simulation a
the apparent wavelength-to-depth ratio observed in
model. The viscosity of the fluid,n, and an important scaling
parameter,g, were discussed in Ref. 5, but their numeric
values were not considered. The ‘‘strength’’ of the gravi
tional interaction was measured in terms of a parameterSg .
This is a measure of the ratio of the number of actual imp
mentations of the interaction to the number of possi
implementations, a parameter which is useful in the form
lation of the computer algorithm but which is not associa
with the physical strength of the interaction. In this paper
present the results of numerous simulations performed
different values of the model parameters. The effect of
gravitational interaction is considered and the implemen
tion parameterSg is related to the acceleration due to grav
g. We look at the effect of the density gradient produc
across the fluid by the gravitational interactions and sh
that this can be accounted for by rescaling the depth b
new parameter,e. This new parameter is seen to depend
the strength of the gravitational interactions and its value
found for relevant gravitational strengths. The values of
viscosity n and the scaling parameterg are considered and
found experimentally from the simulations.

II. THE MODEL

We now review the lattice gas model5 used in the simu-
lations. It is based on the FHP8 model of Frisch, Hasslacher
and Pomeau which was first introduced in 1986 and
since been used in a variety of fluid simulations ranging fr
single fluid simulations such as flow round a plate10 and flow
in a pipe11 to multiple fluid simulations.12–14Their technique
has been altered in a number of ways14,15,9,16to allow it to
model different phenomena. Here we use the long-range
teraction first proposed by Appart and Zaleski9,16 and a
gravitational interaction. These models and their basic pr
erties are described below.
258513/$10.00 © 1997 American Institute of Physics
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A. Definition of a lattice gas model

Lattice gas models belong to the class of cellular
tomata and are used for simulating fluid systems. A cellu
automata consists of a lattice whose sites, the intersec
points of the lattice, can take on a finite number of sta
The automaton evolves in discrete time steps; the stat
each site at any time is determined by the state of a se
neighboring sites at the previous time step. Typically
number of neighbor sites required to update a site is smal
the FHP model a hexagonal lattice is used and each si
updated from the state of the site at the previous time s
and the state of the six nearest neighbor sites. The intro
tion of the long-range interaction requires that the state
sites three lattice steps away is known for each update;
gravitational interactions require only the previous state
the site be known.

B. The FHP model

A hexagonal grid is used for the FHP model. Each of
sites are connected to their six nearest neighbors by the
ei5sin(pi/32 p/6)i1cos(pi/32 p/6)j , i 51, 2, . . . , 6.
The site is considered to be the linke0 . Fluid ‘‘particles’’ are
allowed to travel with unit speed along the linkse12e6 or
remain at rest in linke0 and an exclusion principle is applie
allowing only one particle to travel in each direction along
link. Each of the fluid ‘‘particles’’ is considered to have un
mass. The model evolves from timet to time t11 in two
steps: the streaming stepS and the collision stepC . In the
streaming step the particles on linkse12e6 move from their
original site to one of the six neighboring sites, any parti
on link e0 remains at rest at the site. In the collision step a
particles newly arriving at a site and any rest particle alre
present at the site are allowed to collide in such a way
the mass~particle number! and the momentum are conserv
at each site on the grid. Here we use the FHP-III collis
rules; that is all possible collisions which conserve both m
and momentum are allowed. Various subsets of these r
make up the FHP-I and FHP-II collision rules. A set of co
lision rules on a hexagonal lattice is shown in Fig. 1, wh
the small filled circles represent the lattice site and the la
empty circles represent a rest particle at the site. The
hand column represents the possible incoming configurat
or in-states. The right-hand column represents the outgo
configurations or out-states. When there are two differ
possible outcomes one of the choices is picked at rand
The full set of collisions can be obtained by combining t
collisions of Fig. 1 with the collisions found by rotating th
particles through multiples ofp/3 and by considering the
duals of all the collision formed by swapping the full an
empty links. It can clearly be seen that all the individu
rules conserve both mass and momentum at each site. T
are 76 possible collisions: 15 two-particle collisions of ty
~a!, ~c!, and~d!; 23 three-particle collisions of type~b!, ~e!,
and ~f!; 23 four-particle collisions and 15 five-particle coll
sions. The four- and five-particle collisions are the dual
the three and two particle collisions respectively. The dua
a collision is found by adding particles to the empty lin
and removing particles from the links which were origina
2586 Phys. Fluids, Vol. 9, No. 9, September 1997
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filled: example~g! is the dual of example~f!. There are a
total of 18 collisions of type~f! which can be considered t
be collisions of type~a! or ~c! with a spectator particle~a
particle which does not take part in the collision and whi
continues traveling in a straight line!. There are two possible
outcomes in example~f! because it can be thought of a
either example~a! with a spectator particle traveling on lin
e6 or as example~c! rotated through 2p/3 with a spectator
particle traveling on linke5 . One restriction with the FHP-III
model is that collisions~b! and ~e! are not interchangeable
that is, the~e! in-state cannot collide to give the~b! out-state
even though this conserves mass and momentum. This
striction has no effect on the properties of the model,
simplifies its implementation since it restricts the maximu
possible number of out-states for each in-state to two. Si
the particles travel at unit speed along the lattice, or rem
at rest, it is possible to completely discretize the model. O
the state of each site at the previous time step is require
calculate the state of each site at the next time step. In p
tice, this was modeled using a 7-bit integer~between 0 and
127! to represent the states of each site, each bitsi ,i 51, 7
being 1 if there is a particle on linkei 11 and 0 otherwise.
The streaming operation is performed by shifting the grid
each of the six link directions and using bit arithmetic. T
collisions are performed using a lookup table which takes
in-state as input and outputs the out-state. A solid bound
can be inserted in the model. Any particle arriving at
boundary site is either reflected back along the link it a
proached on~no-slip boundary! or it is reflected so that the

FIG. 1. Collision rules for the FHP model. The sites are represented by
small filled circles and rest particles are represented by the large em
circles.
Buick, Greated, and Easson
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momentum perpendicular to the boundary is reversed and
momentum parallel to the wall is conserved~free-slip bound-
ary!. Thus a particle approaching a horizontal bound
along link e4 will move off along link e1 if it is a no-slip
boundary and along linke6 if it is a free-slip boundary. Pro-
vided the collision rules satisfy the conservation of mass
momentum, that is,

(
i

ni~ t11,r1ei !5(
i

ni~ t,r ! ~1!

and

(
i

eini~ t11,r1ei !5(
i

eini~ t,r !, ~2!

at each site, it can be shown17,18 that

] tr1¹•ru50 ~3!

and

] tu1g~d!u•¹u52¹P1n¹2u, ~4!

wherer is the density,P is the pressure,d is the density per
link, d5r/7, n is the viscosity which is found to be a func
tion of the density, andg(d) is a density-dependent function
For the FHP-III model

g~d!5
7~122d!

12~12d!
~5!

and

n5
1

28

1

d~12d!

1

128d~12d!/7
2

1

8
. ~6!

It is possible to rescale certain variables in Eq.~4! in order to
produce the Navier–Stokes equation. Following Wolfram18

we can defineũ5g(d)u andP̃5g(d)P so that Eq.~4! gives
the Navier–Stokes equation in the rescaled variables.
Reynolds number is given by

Re5
ŨL

n~d!
5

ULg~d!

n~d!
. ~7!

The form of the viscosity,n(d), depends on the grid use
and also on the allowed collisions while the scaling fact
g(d), which is required due to the non-Galilean invarian
of the model at the microscopic level,17 depends on the grid
which is being used and not on the set of allowed collisio
All the results presented here will be unscaled meas
ments. Where required the ‘‘g’’ factor will be introduced into
the equation of motion.

C. Long-range interactions rules

The long-range interaction rules were first introduced
Appert and Zaleski.9 The interaction was further develope
in Ref. 16. The interactions used here are effectively
same as these interactions, however the implementation
ies slightly.5 Figure 2 shows the basic interactions acti
along thee2 direction on two sites a distanceR apart. The
interaction can take place only if there are particles trave
in both directions indicated by the solid arrows and if the
are no particles traveling in the direction of either of t
Phys. Fluids, Vol. 9, No. 9, September 1997
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dashed arrows. If this is the case, the particles are flip
from the solid link to the dashed link. These five basic int
actions are also applied along thee1 ande3 directions.

Let J i
(x) , ;x P $a,b,c,d,e%, i P $1,2,3% be the operator

which implements interactionx, from Fig. 2, along direction
ei . If the interaction cannot take place the operatorJ i

(x)

defaults to the identity operator,I , leaving the particles un-
changed. If we define the operators

J ~x!5
def

J j
~x!+J k

~x!+J l
~x! , xP$a,b,c,d,e%, ~8!

where j ,k,l are a random ordering or 1,2,3, then we c
define an overall interaction operator

J 5
def

J ~a!+J ~b,c!+J ~d,e!, ~9!

where

J ~b,c!5
defH J ~b! if only b-flip is possible

J ~c! if only c-flip is possible

J ~b!+J ~c! if both flips are possible

,

~10!

and J (d,e) is defined similarly. The combining of interac
tionsJ (d) andJ (e) is required to prevent unwanted rotation
being produced in the flow. InteractionsJ (b) and J (c) are
combined for simplicity. The long-range interactions ha
the effect of separating the fluid into two distinct phases.9,16

The dense phase has a density of approximately 4.0 part
per site and the rare phase has a density of approximately
particles per site whenR53. A definite interface is formed
between the two fluids. If a larger value ofR is used, there is
a larger difference between the densities of the two flui

FIG. 2. The basic long-range interactions acting in the direction ofe2 .
Particles at sitesR lattice units apart are flipped from the solid link direc
tions to the dashed directions provided there is initially a particle in both
solid links and no particles in either of the dashed links.
2587Buick, Greated, and Easson
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however, using too large a value, greater than 7, causes
ternal structure to appear within the dense fluid.R 5 3 is used
in all the results presented here.

D. Gravitational interactions

Body forces can be introduced into the model by flippin
particles so as to change the momentum at a site. Grav
tional interactions can be simulated on a hexagonal grid
flipping particles, after the collision, from linke1 to link e3

and frome6 to e4 , provided there is not already a particle on
the destination link. The strength of the interaction will de
pend on the number of particles flipped in a single time ste
This is done by introducing a gravitational operato
G 5G 11G 2 , whereG 1 flips a particle frome1 to e3 with
probabilitySg/100 andG 2 flips a particle frome6 to e4 with
probability Sg/100 and bothG 1 and G 2 default to I , the
identity operator, if there is no particle in the original link o
a particle is already in the destination link. Thus bothG 1 and
G 2 have the effect of introducing a momentum change in th
negative horizontal directionSg% of the time that such an
interaction is possible.

Introducing gravity as well as the long-range interactio
produces the same separation, but now the dense phas
situated at the bottom of the grid and the rare phase at
top. An approximately horizontal interface separates the tw
fluids. This can be seen in Fig. 3 for different values ofSg

where the curves have been smoothed slightly for clarity. W
see that the strength of the gravitational interaction has lit
effect on the fluid densities at the interface. The strength
the interaction does, however, produce a density gradie
across both fluids, the gradient being larger for larger valu
of Sg . For Sg<0.75 the gradient is approximately linear.

FIG. 3. Height plotted against density for different values ofSg . The graphs
have been smoothed slightly to enhance their clarity.
2588 Phys. Fluids, Vol. 9, No. 9, September 1997
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E. Model implementation and wave simulations

The model is allowed to evolve under the action of
the processes described above. Thus the system evolve
cording to the evolution operator

E5S +J +G +C . ~11!

When this operator is applied to a grid with an initially ra
dom density profile and zero average velocity with a so
boundary at the top and bottom and continuous bound
conditions at the other two edges, the fluid separates to
a density profile as shown in Fig. 3, and the average velo
once it has reached equilibrium will still be zero. The heig
at which the interface occurs will depend only on the avera
density of the initial setup. Once the fluid has evolved to t
steady state a standing wave at an extreme of its oscilla
can be inserted at the interface.5 This is done by superimpos
ing a sinusoidal interface of the required wavelength a
amplitude over the horizontal surface. The sites which w
previously above the horizontal interface but are now bel
the sinusoidal surface are filled with particles so they have
average density of 4.0 particles per site and zero aver
velocity. The sites which were initially below the horizont
interface but are now above the sinusoidal surface are fi
with average density 0.1 and zero average velocity. Any a
plitude of wave can be inserted but here we restrict ourse
to small amplitudes so that the wave falls into the line
range. The wavelength used is always the horizontal siz
the grid.

III. MAKING MEASUREMENTS FROM THE
SIMULATIONS AND THEIR ERRORS

Measurements made from the lattice are in terms of
tice units~lu!. The unit of length is the lattice spacing and th
unit of time is the time step. Velocities are measured in l
tice lengths per time step and densities in particles per s
The microscopic densityr and velocityu at each site are
defined by

r~ t,r !5
def

(
i

ni~ t,r ! ~12!

and

ru~ t,r !5
def

(
i

eini~ t,r !. ~13!

Macroscopic quantities are found by averaging the mic
scopic quantities over a number of sites. Three types of
eraging are possible: spatial averaging, temporal averag
and ensemble averaging. Spatial averaging can alway
used efficiently since the spatial scale of the simulated fl
must always be large compared with the lattice spacing if
model is to produce meaningful results. Temporal avera
can also be used effectively either when a steady state flo
being simulated or for a flow which varies on a time sca
significantly larger than the averaging time being used. E
semble averaging can always be used by running a sim
tion a number of times starting from the same initial con
tions but using a different random seed during t
Buick, Greated, and Easson
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simulation. All measurements of velocity and density tak
here are spatially averaged over at least 256 sites and o
significantly more. In a small number of stated occasio
ensemble averaging was also used to reduce the noise
error in the density and velocity measurements can be sh
to be19

Dr51.128Ad~12d!

7S
~14!

and

Du5C~r!S21/2, ~15!

whereS is the number of sites averaged over andC(r) is no
larger then 0.28 for the densities used in our simulations

During the simulation the height of the center of t
wave is recorded every 40 time steps. This is done by c
sidering a column 16 sites wide about the center of the wa
The wavelength used in all cases is much larger than
units. The density is then measured in each row of the
umn and the height of the surface found; this is taken to
the height at which the density drops below two particles
site. The averages of these 16 results are then fitted
curve of the form

Ae2at cosS 2pt

t
1c D1h, ~16!

whereA is the initial amplitude,a is the damping constant
t is the period,h is the mean water depth, andc is a phase
difference in the range2p,c,p introduced to account fo
any inaccuracies in initializing the wave and any small init
time before the wave starts to oscillate. We expectc to be
small if the wave has been initialized correctly; typically w
found ucu!p.

There will be many sources of error which contribute
the total error in the fitted parameters. In particular t
amount of time over which data are acquired will be imp
tant in determining the size of the error. In order to asses
effect a wave was initialized on a 2048 by 128 grid withh
5 57 lu,l 5 2048 lu, andA522 lu. The wave was allowed
to evolve using free-slip boundary conditions for 20 000 tim
steps and the height of the wave at its center was reco
every 40 time steps. These results were then analyzed u
the curve-fitting routine 20 times, each time the results
the first n thousand time steps were considere
n51,2, . . . ,20. The values of the fitted parameters
shown in Fig. 4, normalized by their final value, found aft
20 000 time steps, plotted against the number of period
the wave which were considered in the curve fitting. T
period of the wave was calculated from the results fot
5 20 000. Note that some of the parameters found from
than one period of results lie outside the range of the gra
These results suggest that, provided more than one perio
the wave is analyzed, the parameters are found to vary
less than 3% from their mean value with the exception
a which varies by no more than 10%. If more than tw
periods are analyzed the variation ina is within 3% of its
mean value as are the other parameters.

It is also important to be aware of the repeatability of t
experiments. To investigate this, a wave was set up o
Phys. Fluids, Vol. 9, No. 9, September 1997
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2048 by 256 lattice with wavelength 2048 lu, initial ampli
tude 22 lu, and mean water level 191 lu. This simulation w
run seven times using different random seeds and each
was fitted to a curve. Each simulation was run for 7000 tim
steps ;1.25 periods. The percentage standard deviatio
found in the fitted parameters,a, t, andh, in which we are
interested, were found to be 5.7, 3.0, and 0.14, respective
These results suggest that values of the damping const
the period, and the mean water depth can be found w
reasonable accuracy even if the wave is only allowed
evolve for one and a quarter periods. This allows the resu
to be taken in a time efficient manner. The error ina will be
taken to be 6% and the error int to be 3%. In every simu-
lation the mean water level,h was always found to be within
0.2% of the value to which it was initialized, and so thi
value is used.

IV. EQUATIONS DESCRIBING A LINEAR WAVE

The following equations~see, for example, Refs. 20 and
21! describe the behavior of linear waves and are used
compare the waves produced here to real waves and to a
us to find value for the model parameters. We are interes
here in two-dimensional waves in thex-y plane where the
mean water level is aty50 andh is the water depth. The
dispersion relation

v25gk tanhkh ~17!

relates the frequency and wave number of waves with a fr
slip boundary condition aty52h. The frequency of a wave
on a no-slip bed is reduced by a factor

12~n/2v!1/2k/~sinh 2kh! ~18!

giving a, typically small, decrease in the angular frequenc
Damping of waves is caused by internal viscosity in a
waves and by bed friction if there is significant wave motio
at the bed. The internal viscous effects give a proportion
loss of amplitude per unit time of

2nk2 ~19!

FIG. 4. The normalized fitted parameters plotted against the number
wave periods which were considered in the fitting procedure.
2589Buick, Greated, and Easson
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and bed friction causes a proportional loss of amplitude
unit time of

S nv

2 D 1/2 k

~sinh 2kh!
. ~20!

The velocities under a two-dimensional linear standing w
are given by

vx5
2av cosh@k~y1h!#

sinh~kh!
sin~kx!sin~vt !,

~21!

vy5
av sinh@k~y1h!#

sinh~kh!
cos~kx!sin~vt !,

wherea is the wave amplitude. The velocities at the surfa
of a wave att5t/4,x5l/4 are given by

vx
~0!5

a

g
A gk

tanh~kh!
,

~22!

vy
~0!5

a

g
Agk tanh~kh!.

Let h* be the depth below which there is only negligib
motion due to the surface wave. This is commonly taken
be when

h* 5l/2, ~23!

where the energy loss due to bed friction is only 2% of
long wavelength limit.20 If h.h* , then the viscosityn can
be related toa, first introduced in Eq.~16!, using Eq.~19!.
This gives

a5bn, ~24!

where

b52k2. ~25!

Energy dissipation due to bottom friction need not be c
sidered here because the velocity at the bottom bounda
negligible. Whenh,h* and free-slip boundary condition
are used, we can write, assuming that in the shallow w
limit the x velocity is independent ofy and they velocity is
negligible,

a5
h

h*
bn. ~26!

When h,h* and no-slip boundary conditions are used t
viscosity is found by solving

a5
h

h*
bn1

S nv

2 D 1/2

k

sinh 2kh
. ~27!

This comes from Eq.~26! with the attenuation term due t
bed friction given in Eq.~20! added.

V. RESULTS

Numerous standing wave simulations were performed
the Connection Machine CM-200 at Edinburgh Universi
2590 Phys. Fluids, Vol. 9, No. 9, September 1997
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The results of these simulations are presented in this sec
and, through a comparison with theory, the model para
eters are studied.

A. The need for a vertical scaling parameter

We now consider three examples which demonstrate
need to introduce a parametere which scales the horizonta
displacement, and we observe the effect that such a pa
eter has on the simulations. All three examples were run w
Sg50.5.

1. Velocity variation with depth

The need to introduce a scaling parametere to scale the
depth was first observed5 when considering the dependen
of the wave velocity with depth. This can be seen explici
here where we consider a wave on a free-slip bed usin
4096 by 256 site grid. A wave with mean water level of 1
lu was set up and allowed to oscillate and the velocity w
calculated after a quarter period when it had its maxim
value. The velocity was averaged over six ensemble exp
ments. Thex component of the velocity atx5l/4 is shown
in Fig. 5 as is the velocity distribution predicted from line
theory for a wave with the same wavelength but with a de
of e times the simulation depth. That is, whene51, the
velocity was calculated from Eq.~21! while for e Þ 1 the
velocities were calculated from

vx5Ae

cosh@ke~y1h!#

sinh~ekh!
, ~28!

whereAe is a normalizing factor which ensures the velociti
coincide at the surface (y 5 0). The velocity within the top
25 lu appears to follow a distribution between thee 5 1.0 and
e 5 2.0 curves. It then follows thee 5 3.0 distribution in the
next 75 lu. For depths greater than 100 lu the measured

FIG. 5. The variation in the peakx velocity with height for the simulated
wave and also the linear theory predictions of the velocity for waves wit
depth to wavelength ratioe times the depth to wavelength ratio of th
simulated wave.
Buick, Greated, and Easson
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locity distribution is roughly parallel to thee54.0 curve.
Here we see the need to scale the water depth by some
rametere and that in generale is itself a function of depth.
Despite the variation ofe with depth it can be seen from Fig
5 that if e was to take a constant value of about 3, at
depths a good fit with the data would be obtained. We n
also that this approximation is most accurate in the up
section of the wave where the velocities are largest.

2. The dependence of the damping constant on the
mean water level

Waves of wavelength 2048 lu were initialized for
range of mean water levels. These simulations were then
using no-slip boundary conditions. Some of the simulatio
were then repeated using free-slip boundary conditions.
values of the damping constanta found from the curve fit-
ting are shown in Fig. 6. Also shown are the following fitte
curves:

~a! The no-slip results were fitted to Eq.~24! for h.h*
and Eq.~27! for h<h* to find the best-fit values o
h* andn: fit ~a!.

~b! The no-slip results were also fitted to Eq.~24! for
h.h* and Eq.~29! for h<h* to find the best-fit val-
ues ofh* , n ande: fit ~b!.

~c! The free-slip results were fitted to Eq.~24! for h.h*
and Eq.~26! for h<h* to find the best-fit values o
h* andn:

a5
h

h*
bn1

S nv

2 D 1/2

k

sinh 2keh
. ~29!

The best-fit parameters are shown in Table I along withe,
the root mean square deviation of the results from the bes
curve. The fitted curves~b! and ~c! show a good agreemen
with the results with nearly all the points being within tw
standard deviations of the curves. The fitted curve~a! is

FIG. 6. The variation in the damping constant,a, with the mean water
level, h, for both the no-slip and the free-slip boundary conditions wh
Sg50.5. Also shown are three best-fit curves.
Phys. Fluids, Vol. 9, No. 9, September 1997
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clearly not going through the data points. Despite the erro
in the measured quantities which will affect the accuracy o
the results in Table I, we can clearly see the necessity
introducing e and the sensitivity of the results toe when
comparing curves~a! and~b!. We also see that a good fit can
be obtained by assuming thate is a constant at all depths. A
value of 2.66 was found explicitly in fit~b!. Since the ex-
pressionh/h* should properly be writteneh/eh* , we also
obtain two implicit values fore, 2.89 and 2.94 when com-
paring the the values ofh* for curves~b! and ~c! with the
expected value ofl/2.

3. The dependence of the surface velocity on the
mean water level

Velocities under a number of waves in different wate
depths were measured after a quarter period for a free-s
bed, the period of the wave, as well as the damping consta
having been found previously using the curve-fitting metho
described above. Figure 7 shows thex components of veloc-
ity for six of the waves plotted against height from the bed
Note that the origin has been displaced from the mwl to th
bed. This has been done only in Fig. 7 to aid the presentati
of the results. From Eq.~22! we expectvx to be constant for
h large enough theAtanhkh.1. This is true to within 5%
for h.484 lu. In Fig. 7 the surface velocity appears consta
for h as small as 200 lu. This is again consistent with intro
ducing a scaling parametere into Eq. ~22! with a value

TABLE I. Best-fit parameters for the curves shown in Fig. 6 whenSg

50.5.

h* n e e

No-slip best fit~a! 415 13.6 — 1.12131024

No-slip best fit~b! 348 20.8 2.66 3.15131025

Free-slip best fit 357 21.6 — 2.45631025

FIG. 7. The variation inx velocity with height for six waves with free-slip
boundaries whenSg50.5.
2591Buick, Greated, and Easson
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;3. In the deep water limit we see thatvx→0.042. For
a54.131024,t55200, A520, anda5A exp(2at/4) this
givesAg/g50.065, which is consistent with values obtain
in the next section.

4. Summary of results concerning a vertical scaling
parameter

We have seen the need to introduce a scaling param
e in the previous examples where the gravitational stren
Sg was 0.5. For this value ofSg we can considere to be
independent of depth and, using this constant value, g
agreement is found with linear theory when consider
properties of the whole wave and also when considering
velocities of the wave at its surface. When similar expe
ments are carried out withSg50.125, and hence a negligibl
density gradient across the fluid, we do not observe the s
need to introducee. We therefore conclude thate is required
to account for the density gradient withe51 when there is
no density gradient ande increasing as the gradient in
creases.

B. Determining the values of the model parameters

We wish to determine the values of the model para
eters for different values ofSg and to see how the acceler
tion due to gravity is related toSg .

1. Gravity flips within the fluid

First we need to consider the number of gravity flips p
site per time step,m. A simulation was run on a 2048 by 51
grid with a flat surface at height 191 lu, for 1000 upda
using a strength factorSg50.5. The total number of gravity
flips was recorded along with the position where they
curred. The average number of flips in each row of the g
was then calculated and is shown in Fig. 8. This shows
the vast majority of the flips take place in the more den
fluid and that within this fluid the flips are fairly evenl
distributed with only a gradual variation caused by the d
sity gradient across the fluid. Thus the number of grav

FIG. 8. The average number of gravity flips at different heights above
bottom boundary after 1000 time steps whenSg50.5.
2592 Phys. Fluids, Vol. 9, No. 9, September 1997

Downloaded 18 Jun 2001 to 129.215.72.215. Redistribution subject to A
ter
h,

d
g
e
-

e

-

r

s

-
d
at
e

-
y

flips per site per time step,m, does in general have some
dependence on the density. We have already observed t
the effect of the density gradient produced across the fluid
the gravitational interactions can be accounted for by scalin
the depth by a parametere which is assumed to be a function
of Sg . Although some variation ine has been observed with
depth, we have seen that it is adequate to use an aver
value of e to describe the whole wave. We extend this as
sumption here to assume that the density of the whole wa
can be described by an average densityr̄ and we can define
the mean values ofm and g to be m̄5m( r̄ ) and
ḡ 5g( r̄ ). The mean densityr̄ will be taken to be the aver-
age density at which there is non-negligible motion; the de
sity at depths where there is no motion should not be impo
tant. To investigate how the mean number of gravity flip
m̄ is related to the implementation strengthSg and how it is
related to the model parameters, several simulations were
up using a grid size of 2048 by 256 for a number of differen
Sg values in the range 0.125–3.0. Figure 9 shows the var
tion in the mean number of particle flips per site per tim
step, m̄, with the strength of the gravitational interaction
Sg . The smoothed line through the points can be used to fin
m̄, for any Sg in the range 0.125–3.0. These are effectiv
limits for Sg , whenR53, since below 0.125 the fluid tends
to float above the surface due to the long-range interactio
pulling the bottom layer of particles upward toward the res
of the body of fluid. Above 3.0 the density gradient is fairly
large and the density at the bottom of the wave is larg
compared to 7, the maximum density. It is worth noting tha
as shown in Fig. 10,m̄2 is approximately linear over this
range. Thusm̄ can be estimated from the equation

m̄252.5231025Sg25.4531026; 0.25,Sg,3. ~30!

e

FIG. 9. The variation in the mean number of gravity flips per site pe

timestep,m̄, with the gravitational strength parameter,Sg . The smoothed

line through the points can be used to predict the value ofm̄ for any Sg

between 0.125 and 3.0.
Buick, Greated, and Easson
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2. Relating the mean number of gravity flips to the
wave period

Consider an ensemble of particles each of massm evolv-
ing onS sites forT time steps under gravity. Let the avera
density of particles ber̄ and the average number of partic
flips per site per unit time bem̄. The vertical component o
the force exerted by gravity on the whole fluid of massM is
given by

Fy5Mg5Sr̄ mg5
dPy

dt
, ~31!

wherePy is the vertical component of the particles mome
tum. The rate of change of vertical momentum due to grav
is given by

dPy

dt
5mSm̄dvy , ~32!

wheredvy is the change in the vertical speed of each part
flipped:

dvy5A3ḡ . ~33!

Equating Eqs.~31!–~33! we find g, the acceleration due to
gravity is given by

g5
A3mg

r̄
. ~34!

But from Eq.~17!, with the scaling factore added, we know
that g is given by

g54p2@t2k tanh~keh!#21. ~35!

Equating Eqs.~34! and ~35! we get

m̄5B
1

t2
, ~36!

where

FIG. 10. The approximately linear relationship betweenm̄2 andSg and the
best-fit straight line through the points.
Phys. Fluids, Vol. 9, No. 9, September 1997
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B5
4p2 r̄

A3ḡk tanh~keh!
. ~37!

Figure 11 shows the relationship between the inve
squared periodt22 and the mean number of gravity flips pe
site per time step. Also shown is the best-fit straight li
through the points. The straight line fits through all the poi
except whenSg50.125. We see from Eq.~36! that the gra-
dient of the straight line is 1/B, although the straight line fit
does not go exactly through the origin. It can be seen fr
Eq. ~37! that B depends on the values ofe, r̄ , and ḡ . As-
suming thate increases withSg , and recalling the values
previously found fore when Sg50.5, we can see that th
tanh(keh) factor should vary only slowly forSg>0.5 as it
approaches unity. We note that an increase ine has the effect
of increasing the apparent depth causing the motion to t
place in a smaller region of the fluid closer to the free s
face. Sincer̄ is defined as the average fluid density in whi
there is motion, that is the average density of the ‘‘top
portion of fluid where the wave velocity is non-negligible, a
increase ine will cause the depth at whichr5 r̄ to move
closer to the surface. From Fig. 3 we see that a value or̄

54.5 is a good estimate forSg.0.5. If r̄ is approximately
independent ofSg , then ḡ should also be approximatel
constant~as should the viscosityn). Thus we would expect
B(Sg) to be approximately constant for largerSg values. We
see that this is in fact a good approximation for allSg values
in our range. This gives

t22.a31025m̄1931029. ~38!

From Eq.~37! we get

ḡ .7.331022
r̄

tanh~keh!
. ~39!

FIG. 11. The variation in the inverse square periodt22 with the mean

number of gravity flips per site per timestepm̄ and the best-fit straight line
through the points.
2593Buick, Greated, and Easson
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3. The variation of the damping constant with S g

Now consider the dependence of the damping cons
a on the gravitational strength,Sg . As discussed earlier we
expect the damping constant, when a free-slip boundar
applied, to be given by

a5H 2nk2
h

h*
when h,h*

2nk2 when h>h*

, ~40!

whereh* depends on the value ofe through Eq.~23! with
e added:

eh* 5
l

2
. ~41!

Assuming we can writee5e(Sg) and that the mean wate
level h is selected such thatl/2e(3),h,l/2e(0.125), then
a plot of a againstSg will have two regions, one at lowe
values ofSg wherea varies withSg and one at higher value
of Sg wherea is independent ofSg . We will consider these
regions separately. Whenh>h* the viscosityn is given by

n5
a

2k2
. ~42!

Whenh,h* we can combine Eqs.~40! and ~41! to get

e5
pa

2nk3h
. ~43!

Figure 12 shows the dependence of the damping c
stant, a, on the gravitational strength parameter,Sg . The
graph can be divided into two section. Initiallya is increas-
ing with Sg , then it remains constant, within the error limit
Due to the noise it is not possible to find the exact value
Sg where this changeover takes place, but it is clearly
tween 0.75 and 1.25. The later portion, although noisy, s
gests n( r̄ )51866% for r̄ 54.5. Plotting a against
tanh(A4 Sg), Fig. 13 gives a straight line fit forSg<1.25

FIG. 12. The variation in the damping constant,a, with the strength of the
gravitational interaction,Sg .
2594 Phys. Fluids, Vol. 9, No. 9, September 1997
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(tanh(A4 Sg)<0.78). The straight line also appears to
through the value forSg51.5 but this may simply be a co
incidence. The equation of the best-fit straight line in Fig.
is

a51.0631023 tanh~A4 Sg!25.0831024, ~44!

which, when combined with Eq.~43!, gives

e5
1

nk3h
@9.3531024 tanh~A4 Sg!24.4731024. ~45!

This empirical equation, which should in general be true
any value ofh andl, can be used to calculatee. The equa-
tion also relies on the value of the viscosityn being known;
the value ofn has been considered earlier.

Thus we finde to be an increasing function ofSg which
is approximately unity when there is a negligible dens
gradient across the depth of the fluid. Physicallye accounts
for the density gradient produced across the fluid by
gravitational force. This is significant whenSg.0.125 ~see
Fig. 3! but is not considered in standard linear wave theo
When there is a negligible gradiente.1; however, when the
gradient is significante can take a value as large as 5.

4. Summary of the values found for the model
parameters

The viscosity n has been found to be 1866% for
Sg>1.25, 20.8 and 21.666% when Sg50.5. Given the
magnitude of the error in the measurements it is not poss
to determine whether the viscosity is remaining constant
all gravitational strengths or whether it is decreasing sligh
as the gravitational strength increases. The mean den
where motion is observed,r̄ , is approximately constant fo
all but the smallest value ofSg considered so we expect th
viscosity to be approximately constant over the range ofSg

values with value about 21.

FIG. 13. The variation ina with tanh@(Sg)
1/4# and the best-fit straight line

through the points withSg<1.25 (tanh@(Sg)
1/4#<0.78), the values where

there is significant wave motion at all depths.
Buick, Greated, and Easson
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The Galilean scaling parameterḡ is also only a function
of density and so we again expect that it should be appr
mately constant forSg>0.25. From Eq.~37! with r̄ 54.5
and from Fig. 11 we see thatḡ;0.33 in this range. This is
the same as theg value for a FHP-III model with no addi
tional interactions found from Eq.~5! whenr54.3.

The scaling parametere is given by Eq.~45!. As before
we expect this to be a good approximation fore when
Sg>0.25. We have seen that whenSg50.125e;1. We do
not expecte to take a value less than unity for any value
Sg .

The value of the acceleration due to gravityg can be
found: ~1! from its relation to the wave periodt through Eq.
~17! with e inserted:

t52p@gk tanh~keh!#21/2, ~46!

or ~2! from Eq. ~34! by considering the average number
gravity flips and using the previously found value ofḡ and
taking r̄ 54.5. The value ofg found using both these meth
ods is shown in Fig. 14 where the values calculated
method~1! are represented by3 and the values calculate
by method~2! are represented by1. These two methods
show good agreement forSg>0.75. ForSg<0.5 the agree-
ment is less good because our assumptions aboutr̄ and m̄
being constant for allSg are less valid. Here the value ofg
can be found by method~1! since no approximations hav
been made. The close agreement between the two met
shows that the assumptions made are valid and that the
ues found for the model parameters are reliable.

C. Scaling from a lattice system to a real fluid system

All the results presented here are in terms of lattice un
The unit of length is the separation of the grid sites, the u
of time is the time taken for a particle to move from one s
to a neighboring site and the unit of mass is the mass

FIG. 14. Graph showing the value of the acceleration due to gravity
different values ofSg .
Phys. Fluids, Vol. 9, No. 9, September 1997
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particle. To relate the results to real waves we cannot con
the lattice gas units to SI units, but must instead comp
waves with the same dimensionless quantities, such as
Reynolds number and the Froude number, as would be d
when relating experiments performed in a wavetank
waves in the ocean. As notes above, the dimensionless
a/l!1 so all the waves are linear. When the dimensionl
productkh is such that tanh(kh).1 the waves which can be
considered as being in deep water. On the other hand, w
tanh(kh) is significantly less than unity, shallow water wav
are being considered. The Froude number, which can
taken asF5cAk/g, wherec5v/k is the wave celerity, is
simply F5Atanh(kh) through Eq.~17!. The Reynolds num-
ber, taken here to becl/n, is 21 and 72 for the smallest an
largest values ofSg , respectively. These are relatively lo
Reynolds numbers so the viscous effects are clearly imp
tant. This was observed in the simulation results.

Here there are the additional questions of whether
simulated waves map onto ripples, where surface tensio
important, and, given the high viscosity, whether the wav
can truly be considered as hydrodynamic. Considering fi
the influence of the surface tension we consider

km5S rg

s D 1/2

, ~47!

wheres is the surface tension. Whenk!km the waves can
be considered as purely gravity waves20 ~as was done here!,
otherwise the effect of the surface tension must be con
ered by replacing the dispersion relation, Eq.~17!, with20

v25~g1r21sk2!k. ~48!

For water waves, surface tension is only important in wa
with a wavelength of a few millimeters. In the simulation
wheres is of order unity,22 km is significantly smaller than
k even for the smallest values ofSg so the waves are pur
gravity waves. Capillary waves, where there is no grav
and the surface tension is the only restoring force, are c
sidered by Flekko”y and Rothman.23 When considering a
wave in a viscous fluid the parameter

x5
v2

g S n

v D 1/2

~49!

determines the affect of viscosity on the wave.24,25 If x is
small then the motion is essentially irrotational except n
boundaries where a boundary layer with thickness the o
of (n/v)1/2 is formed. A boundary layer is not formed at th
bottom when free-slip boundary conditions are applied. T
values ofx for the smallest and largest values ofSg are 0.39
and 0.29, respectively. Both are smaller than unity show
that we are in the hydrodynamic regime although, as
served earlier, the viscosity is important.

Another interesting question is whether a liquid–g
wave model which simulates waves between two phases
single-component fluid, such as at a water–steam interf
can be realistically compared to a two-phase, two-compon
system such as water and air. At a single-component liqu
gas interface there is an exchange of particles, and he
momentum, between the two phases. There can also b
exchange of momentum across a two-component liquid–

r
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interface, for example, the production of ocean waves by
wind, although clearly the mechanisms of the moment
transfer are different, particularly since there is no parti
exchange between the phases. During the simulations
scribed here there was no observed deviation from the
pected two-component behavior caused by the sin
component nature of the model. Any evaporatio
condensation effects were negligible compared to the w
motion in the liquid phase. In the gas phase there were
measurable velocities observed. Thus we conclude that
single-component model is valid for simulating the water–
interface.

VI. CONCLUSION

We have shown that by applying a gravitational intera
tion to a separable FHP model we can simulate a dense
a rare fluid separated by a horizontal interface which can
used to model gravity surface waves. When the strengt
the gravitational interaction is small the dense fluid had v
tually no density gradient across it. When a larger grav
tional interaction is used, a density gradient is formed in
dense fluid. We have shown that when a density gradien
produced we can introduce a scaling parametere which ac-
counts for the gradient. Waves produced using this mo
have been seen to behave according to linear wave th
provided the additional scaling parameter is incorporat
Using the model we have found values for the fluid viscos
the scaling parametere, the Galilean invariant scaling pa
rameter,g, and the acceleration due to gravity for a range
values of the implementation parameter,Sg .

The model has shown considerable potential for p
forming surface gravity wave simulations. There are ho
ever a few limitations. The fluid viscosity is high,n;20
compared to the viscosity of an FHP-III model which can
as low as 0.35. This high viscosity causes the waves to
damped very rapidly even when a large wavelength is us
It is possible to simulate waves which oscillate for up to
periods before being completely damped, but this require
considerable amount of computer time. It is clear from
results presented here that the measurements taken from
simulations are fairly noisy. The noise in density and velo
ity measurements can be reduced by using larger avera
cells or using ensemble averaging. The noise in meas
ments of the wave period and the damping constant can
reduced by considering longer simulations and by averag
over a number of results. Any reduction in the level of no
is again at the expense of computer time. The lack of G
ilean invariance in the model requires that a scaling par
eterg be introduced in order that the fluid obeys the Navie
Stokes equation. Strictly speakingg is a function of the
densityr. We have shown that to a good approximation
can use an average valueḡ for the whole fluid despite any
density gradient in it. If a Galilean invariant model could
used this approximation would no longer need to be ma
These limitations are common to all lattice gas models
they have been overcome for single-component, single-ph
models by using a lattice Boltzmann approach26 where,
rather than considering the individual particles moving o
2596 Phys. Fluids, Vol. 9, No. 9, September 1997

Downloaded 18 Jun 2001 to 129.215.72.215. Redistribution subject to A
e

e
e-
x-
e-
/
e
o

he
r

-
nd
e

of
-
-
e
is

el
ry

d.
,

f

r-
-

e
d.

a
e
the
-
ing
e-
be
g

e
l-
-

e.
t
se

a

grid the distribution function, a statistical representation
the fluid, is evolved. The simulation then involves solvin
the Boltzmann equation27 on a regular grid. Details of the
development and application of the lattice Boltzmann mo
are given in Ref. 28. More recently lattice Boltzmann mod
have been developed which can simulate phase separ
and binary fluid mixtures.29–31 It is anticipated that the wave
modeling ability of the FHP model demonstrated here can
realized in such models.
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