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Abstract

Internal waves are modelled in two different circumstances: in a contin-
uously stratified fluid and at the interface between two immiscible fluids.
This is done using the lattice gas approach. The standard single-phase
model and an immiscible two-phase model are both modified to incorpo-
rate gravitational interactions. Standing internal waves are set up in both
models and are seen to oscillate under the action of the gravitational in-
teraction. The results obtained suggest that the lattice-gas approach can
be a useful tool in the modelling of such phenomena.
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1 Introduction

1.1 Internal Waves

Internal waves occur in two circumstances: on a continuous density gradient and
on a density step at the interface of two fluids.

Continuously Stratified Fluids

Continuous density gradient internal waves can occur in any stratified fluid and
are most commonly found in the ocean and in the atmosphere where a density
gradient is produced. In the ocean the density is a function

p=ppT,x)

of the pressure p, the temperature 1" and the salinity x, defined as the proportion
by mass of the dissolved salts. The composition of the dissolved salts also varies
but not by enough to have a significant effect on the density. In the ocean we
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expect the temperature to vary between the freezing point of sea water, 271 K
and a maximum values of about 300 K giving a density change of about 0.5%
The salinity varies from about x = 0.034 to xy = 0.037 giving a density change
of about 0.2% [1]. In the ocean it is found that the variation of T" and x is much
more important than the density changes produced by variations in the pressure
p with depth [1]. Thus we are in fact interested in the variable

pa(T,x) = p(pa T, x),

the density that sea water at temperature T and salinity y would have if it was
brought to atmospheric pressure p, without changing 7" or y. In general we ex-
pect p, to vary between about 1020 and 1030 kg m~>, a variation of only about

1%.

In the atmosphere density gradients are produced primarily by pressure varia-
tions; here the pressure variations can cause very large density differences. At
the earth the pressure is atmospheric pressure p,, this pressure decreases with
increased altitude and approaches zero at the limit of the atmosphere. The vari-
ation in the density in the atmosphere can be much greater than the density
variations in the ocean.

Density Steps

Interfacial internal waves can occur whenever two fluids of different densities
come into contact with an interface between them. Step-like density stratifica-
tions which approximate to the two miscible fluid situation can be found in the
ocean. This can occur when fresh water rivers flow into the salt water of the
sea. The fresh water settles on top of the salt water and interfacial waves can be
formed at the boundary. This happens in practice in many deep estuaries such
as the Norwegian fjords provided conditions are such that there is no extensive
mixing of the two layers. Mixing can be caused by strong tidal motion and also
by rough seas.

1.2 Lattice gas modelling

The lattice gas model has been used successfully over the past few years to model
a number of fluid phenomena ranging from simple single fluid simulations such as
flow round plates [2] and channel flow [3] to more complicates flows involving two
or more fluids including the Kelvin-Helmholtz instability [4], the combustion of
gases [5] and wave motion at a free surface [6]. Lattice gas models have a number
of advantages over more traditional numerical methods, particularly where fluid
mixing and phase transitions can occur. The simulation is always performed on
a regular grid and can be efficiently implemented on a massively parallel com-
puter. Solid boundaries and multiple fluids can be introduced in a straightforward



manner and the simulation is performed equally efficiently regardless of the com-
plexity of the boundary or interface. The efficient implementation of complex
boundaries has already been exploited in the study of flow through porous me-
dia [7, 8] where the porous media is represented by a random configuration of
boundaries. It is the fast, parallel implementation, which the lattice gas is ideally
suited to, and, when interfacial waves are being considered, the simplicity with
which the interface is simulated, which make the lattice gas model a good choice
for internal wave simulations.

The Standard FHP Model

The lattice gas method on a hexagonal lattice was first introduced by Frisch,
Hasslacher and Pomeau (FHP) [9]. Here we consider the FHPIII model which
consists of an ensemble of fluid ‘particles’ moving on an underlying hexagonal grid.
Each particle moves along one of the six links d;(i = 1,6) where the direction of
d; is given by sin(%i —Z)t+ cos(%i — %)3, where ¢ and j are unit vectors along
the orthogonal z- and y—axis shown in figure 1, or remains at rest at one of
the intersection points (sites) of the lattice, link dy. The link directions and the
coordinate system are shown in Figure 1. The following constraints are applied

to the motion of the particles:

1. Only one particle is allowed on each link at one time; this is referred to as
the exclusion principle.

2. Particles on link dy have zero velocity and all other particles travel at unit
speed moving from one site to a neighbouring site in each time-step. A
particle travelling on link d; has velocity e;, where |e;| = 1.

3. At each time-step the particles at each site collide in such a way that the
number of particles and the momentum are conserved at each site.

These constraints make the FHP model very suitable for computer implementa-
tion. The model is naturally discretized in space and time since only the state
of each site at each time-step is required to fully describe the system and to cal-
culate the state of the system at the next time-step. The restriction of only one
particle on each link means that the state of each site can be represented by one
7-bit number s = (ng, n1, n2, N3, n4,ns,ng) Where n; is one if there is a particle
on link d; and zero otherwise. Updating the model between time-steps is also
efficient since the new state of each site at any time-step depends only on its own
state and the state of its six nearest neighbours at the previous time-step and the
outcome of the particle collisions. Since there are only 7 possible links for the
particles to travel on and a maximum of 7 particles allowed at each site, there



are only ever a maximum of two possible outcomes which conserve both particle
number and momentum. There is no need to calculate these outcomes at each
site at each time-step; they are found using a look-up table. Any set of collision
rules can be used provided they conserve particle number and momentum. Here
we use the FHPIII collisions which are formed from the basic collisions shown in
Figure 2 and their rotations through +60°, the basic collisions with a spectator
particle (moving or at rest) and the dual of these collisions (found by swapping
full and empty links). In Figure 2 the left-hand column represents the particles
approaching the site before collision. The right hand column represents the out-
come of the collision. Where there are two possible outcomes one is picked at
random. Rest particles are represented by a solid sphere. Provided the FHP
collisions satisfy the conservation of mass and momentum equations

Zni(t—l—l,r—l—ei) :Zni(t,r) (1)

k3 k3

and

Zemi(t—l— 1,1‘ —I-BZ) = Zemi(t,r) (2)
at each site, it can be shown [10, 9] to satisfy the equations

Op + Z Oi(pu;) =0

and

Oulpus) + 3 Os,[pg(d)usu;) = —0u. P+ 3 O, [(p)Ojui]

where p is the density, P is the pressure, d is the density per link, d = p/7 and
v is the viscosity. For the FHPIIT model [10]

9D = 15— (3
and 11 1 1
YT 8d(1 —d)1—8d(1 —d)jT 8§ (4)

These are the continuity equation and the Navier-Stokes equation with an extra
factor g which is a function of the density and of the collision rules used. The
viscosity, v, i1s also a function of the density and the collision rules. The Navier-
Stokes equation can be recovered by rescaling the velocity and pressure by ¢ [11]:
u' — ug, P' = P/g. We then recover the Navier-Stokes equation in the scaled
variables.

Calculating Macroscopic Quantities



The microscopic density p and velocity uw at each site are defined by

p(t, T) « Z ni(tv T)

k3

and
pu(t,r) def > emi(t,r).

Macroscopic quantities such as the fluid velocity and density are found by dividing
the grid into cells containing several lattice sites and averaging the microscopic
velocity or density over the cell. The larger the cell the less noisy the results will
be, however, the size of a cell is restricted by the limits imposed on the overall
grid size by computer memory and time restrictions. Typically a cell will be no
smaller than 16 by 16 sites. Figure 3 shows four averaging cells, each 6 sites by

Table 1: The total number of particles 3" n; on each link, the x and y components
of the averaged velocity u, its magnitude and inclination from the horizontal, 6,
the total number of particles N and the average density p for the four averaging
cells shown in Figure 3.

Cell | ¥y | Sng | Sns | >Sng | N |p Uy | Uy |u| 0
() | () | (1) | () | (deg)
A |6 |3 1[4 [3 [16[16/36]0 [2/p |2/p |90
B 5 3 5 3 16 | 16/36 | 0 0 0 ~
¢ ola a3 3 |1al1a36 1/ | 1/p | V2 p |45
D |4 |5 |3 3 |[15]15/36|2/p | 1/p | VB/p | 265

6, on a portion of a square lattice (a square lattice has been used for convenience
to demonstrate the averaging principle). Table 1 shows the microscopic details of
the total number of particles >_n; 7 =1,..,4 on each link and the total number of
particles in each cell, N. Also shown in the table are the details of the macroscopic
velocity w and the macroscopic density p which are derived from the microscopic
quantities. The angle 8 is the angle between the velocity direction and the z-axis.
Note that the density is defined to be the mean number of particles per site in the
cell rather than the mean number of particles per unit volume and the velocity
is defined as the vector sum of all the microscopic velocities.

1.3 Colour Models

Two different fluids can be modelled by labelling the particles according to the
fluid they belong to. Thus a ‘red” and a ‘blue’ fluid can be simulated at the
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same time provided the number of red particles, 3", n; ’, and the number of

bl
blue particles, Y, nZ , are conserved at each time-step. This is achieved if the

conservation of colour equations

>un,
Yo,

r(t—}—l,r—l—ei) = >,n;
b(t—l—l,r—l—ei) = Yun

e
(t.7)

are added to the conservation of mass and momentum equations (1) and (2).
Provided these quantities are conserved there is no need to further restrict the
particles after a collision. Thus if a red and a blue particle collide head-on then
they will collide according to the collision rule shown in the first row of Figure 2,

(
()

N e Ty

one of the two outcomes being picked at random as in the single-particle model.
To allow for the conservation of colour all that is required is that after the col-
lision one of the particles is red and one is blue. This can be achieved either by
randomly selecting which is red and which is blue or using some other scheme.
If the random method is used then the two fluids will mix together, however
different methods can be used to assign the colour and these will influence the
behaviour of the model.

The Colour-Field Model

The colour-field surface tension model was devised by Rothman et al. [12]. Tt
specifies a method for distributing the colour after a collision (subject to the
conservation laws) which causes the two fluids to fully separate and produces a
surface tension between them. Let C;(¢,7), the colour density of link d; at time
t and site v, be given by

Ci(t,r) ©n(t,v) — 0P (t,v),

the difference between the number of red and blue particles on the link. Due to
the exclusion principle C; can take the values -1, 0 and 1. The colour density at

a site is given by
= Z Oi(tv ’I").
The local colour flux q[s")(¢,7),s®)(¢,7)] is given by

qls"(t,7), sV (t,m)] 3 Cift,v)e

and is the difference between the red momentum and the blue momentum at =
at time ¢ where the site is in state s = s(") & s(b), the sum of the red and blue
states. The local colour field f(¢,r) is given by

Fl,r) E Y eY Cilt,r + ),



Table 2: The possible outcomes of a head-on collision between one red and one
blue particle
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which is the microscopic gradient of the colour density C(¢, 7). The work W (s("), s®))
performed by the flux against the field is

W(s®),s0) = —f . g(s, sO),

The out-state of any FHP interaction s") — /(") s®) — §'®) is then chosen such
that
W(S/(r), S/(b)) — min W(S”(T), S//(b))
$11(r) g11(2)

where (7). s"®) are all the possible collision outcomes. Here the effect of the
colour field model is maximised by not only considering s”("), s"®) to be the
possible outcomes of any collision but also by considering the possibility of no
FHP collision taking place and the (colourless) particles continuing in a straight
line. Consider the first collision shown in Figure 2 where one particle is red
and one is blue, we can represent s(") and s®) by s = (0,0,1,0,0,0,0) and
s() =(0,0,0,0,0,1,0) (a red particle in link 2 and a blue particle in link 5). The
possible outcomes are shown in Table 2 where (a) and (b) are the two colour
distributions possible for the first outcome shown in Figure 2, (¢) and (d) are
the two distributions possible for the second outcome shown in Figure 2 and (e)
and (f) are possible distributions if no collision takes place. The outcome selected
(s'(r), 5'(6)) is the one which minimises W. The effect of this additional interaction
is to separate the two fluids with a definite interface between them. Other than
the labelling of the particles, the two fluids are treated in the same way and so
both fluids have the same properties.

1.4 Gravitational Interactions in the FHP Model

To simulate a gravitational force we need to introduce an interaction which will
decrease the fluid momentum in the vertical direction while preserving the mo-
mentum in the horizontal direction. This was done in the basic FHP model



by flipping a small number of particles from link d; to d3 and from link dg to
dy provided there were no particles already on the destination links. With this
implementation of gravity the z-direction is horizontal and the y-direction is ver-
tical. The strength of such an interaction depends on the number of flips which
take place each time-step. We ensure that the number of such particle flips is
small compared to the number of FHP collisions so that the additional interac-
tion, while producing a noticeable effect, will only have a negligible affect on the
other properties of the fluid [13]. There are two parameters which describe the
gravitational interaction. The first is .S, which is the percentage of all possible
gravity flips which are performed. The other is g which is the mean number of
flips per site per time-step, this is measured during the simulation.

In a two-particle model gravitational interactions were introduced in a similar
manner, however when two fluids of different ‘densities” were being considered it
was required that the interaction strength be greater for the ‘heavier’ fluid then
for the ‘lighter’ fluid. This was done either by having the gravitational interaction
acting only on the heavier fluid or by having it acting on both fluids but with
different strengths.

1.5 Boundary Conditions

Two different boundary conditions can be applied at the edge of the grid. A solid
boundary can be applied which is either no-slip or free-slip. A no-slip bound-
ary reflects the particles back along the direction they approach in. A free-slip
boundary reflects particles so that their momentum parallel to the boundary is
conserved and their momentum perpendicular to the boundary is reversed. In
the simulations described here all the free-slip boundaries are along the direc-
tions of the x-axis. Thus a particle approaching the solid boundary along link
dy is reflected back along link d3. These solid boundary conditions can also be
applied in the interior of the grid to simulate solid objects. The other kind of
boundary condition applied here is the continuous boundary condition. This
is always applied at the edge of the grid and acts so that particles moving off
the grid at one edge move onto the grid at the opposite edge. Thus a particle
on a N, by N, grid with position (N,,y) and velocity e; at time ¢ will move to
position (1,y) at time ¢; if a continuous boundary is applied at + = 1 and = N,.

1.6 Errors in a Lattice Gas Model

The lattice gas model is different in several ways from the more traditional nu-
merical methods which have been applied to fluid simulations. There is also a
marked difference in the way errors appear in the results. The model involves



tracking particles as they move and collide according to simple rules. This is im-
plemented using integer or Boolean arithmetic so there are no errors introduced
by, for example, rounding errors or finite difference approximations to derivatives;
sources of error which appear in other numerical techniques. The absence of such
errors means that changing the grid size does not affect the accuracy of the re-
sults in the way it would if a traditional numerical method was being applied. In
fact, changing the grid size changes the problem which is being simulated. Con-
sider, for example, the simulation on a N, by N, grid of a wave with wavelength
A = N,. If the simulation is repeated on a 2N, by 2N, grid then either the
wavelength is kept the same and two wavelengths of the wave are simulated or
the wavelength of the new wave becomes 2NV, and one wavelength is simulated as
before. In the first case there is no change in the resolution of either of the two
wavelengths being simulated (although an ensemble average could be performed
over the two wavelengths). The second case describes the action which would
normally be taken in a numerical simulation to reduce the error, here it changes
the wave which is being simulated in the same way that doubling the wavelength
of a wave produced in a wave tank would change the wave period and velocities.
This has been shown to be the case for surface waves [6] and also applies to the
internal waves being considered here.

The errors in measurements made from a lattice gas simulation come from the
size of averaging cell used, not the grid size. The error in the density and velocity
measurements are given by [14]

d(1 — d)

Ap=1.128
p 75

and

Au = M (5)

V'S
where S is the number of sites which are averaged over and C(p) is no larger than
0.43. Tt should be noted that the source of this error is the measuring technique
and so the error is the same at all times: it does not accumulate over time. To
reduce the error the averaging process must be over as many sites as possible.
The size of the averaging cell is restricted since is must be small compared to
the typical length scale over which the simulation is changing. Temporal av-
eraging is also possible, again, provided the averaging takes place over a time
significantly smaller than the smallest time scale of the simulation. Ensemble av-
eraging can also be performed between different simulations of the same problem.



2 Numerical Simulations

A number of simulations were performed on the CM-200 at Edinburgh Univer-
sity for both internal waves in a stratified fluid and interfacial waves at a density
step. The stratified fluid was produced using the FHPIII model with the addi-
tional gravitational interaction; a horizontal density step was produced using the
colour-field model with the additional gravitational interaction. The gravitational
interaction is required here because we are simulating gravity waves. In each case
a horizontal boundary was placed at the bottom and top of the computational
grid and a continuous boundary was used at the other edges. The grid size used
varied for the different simulations but in every case the wave amplitude was con-
siderably smaller than its wavelength. Standing waves were simulated throughout
because of the simplicity with which they can be set up. An initial experiment
was run in which the fluid is initially given zero average velocity and allowed to
settle under the action of the gravitational interaction. This gave the density
profile which we would expect when no waves were present. A small sinusoidal
standing wave at the extreme of its oscillation (the wave velocities all zero) was
then superimposed to give the initial conditions for the wave simulations. These
waves were then allowed to oscillate under gravity. At prescribed times during
the simulation the velocity and density of the fluid(s) were found by averaging
the microscopic quantities.

3 Results and Discussion

3.1 Internal Waves in a Stratified Fluid

A 2048 by 1024 site grid was initialised with an average density of py = 2.1
particles per site and zero velocity with a horizontal free-slip boundary at the
top and bottom edges and with continuous boundary conditions on the other
edges. The system was then allowed to evolve under the FHPIII collision rules
and the gravitational interaction with strength S, = 0.15 for 3,000. The gradient
across the stratified fluid was found by averaging the density across each of the
rows. This is shown in Figure 4 where the density gradient is seen to be con-
stant across the fluid. A sinusoidal wave was then superimposed on the density
gradient as described in section 2. The system was allowed to evolve and the ve-
locity and density were measured by averaging over 32 by 16 site cells every 1,000
time-steps. The height of the central wave was found from each density result
by counting the number of cells with density greater than py in each of the 64
columns. This method only gives the height to the nearest averaging cell, however
given the noise in the density, this is an acceptable method. These heights were
then Fourier transformed to find the mean height and amplitude of the wave.
Figure 5 shows the height of the central wave at its centre, calculated from its
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mean height and amplitude, plotted against time. Also shown in Figure 5 is the
best-fit damped cosine curve of the form Ae™**cos(2nt/T + ¢) + h with the fitted
parameters shown in Table 3. The best-fit curve shows a good agreement with
the data. A is the initial amplitude of the wave, a is the damping constant, 7 is

Table 3: The best fit data for the curve in Figure 5. All units are in terms of
lattice units and time-steps.

A « T h 10 €
19.52 | -1.14 x107° | 3122 | 439 | -0.0246 | 1.271

the wave period, h i1s the mean depth and ¢ is a phase shift which is introduced
to account for any initial time during which the set-up wave settles down to its
natural form before it starts to oscillate. The variable ¢ allows for any error in
the set up of the wave, we expect it to be small if the wave has been initialised
properly. All units measurements are in lattice units (lu), that is the units of
length and time are the lattice spacing and the time-step. The root mean square
deviation between the data points and the curve is given by €. The attenuation is
seen to be negligible over the first 10,000 time-steps (3 periods) and the best-fit
decay constant o was found to be small and negative. There will be some error
in the fitted parameters here due to the small number of data points and also due
to them being only accurate to the scale of the averaging cells. Clearly a must
be positive but very small.

The density profile across the whole wave at times t=3,000 and t=8,000 are shown
in Figures 6 and 7. These figures show the density distribution of the fluid when
the wave is approximately at each extreme of its motion. The density measure-
ments are slightly noisy due to the random factors involved in the model and
the size of the averaging cell. Despite the noise, a sinusoidal density variation
can clearly be seen across the fluid at each height, the amplitude of the variation
being seen to be approximately constant at all heights.

Figure 8 shows the z-velocity distribution of the fluid at t=4,000 time-steps
averaged over 64 by 32 site cells and extrapolated using a bilinear extrapolation
routine. This has the effect of further reducing the noise. The interpolated figure
shows two main features:

1. the z-velocity distribution in the z-direction has a sinusoidal variation as
expected;
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2. There is a small variation of the z-velocity in the y-direction, the magnitude
of the velocity being slightly larger at the bottom of the wave than at the
top.

Similar results are found for the z-velocity at the other times when results were
taken, with the magnitude of the velocity dependent on the phase of the wave.
The error in the velocities, given by equation (5), is + 0.009 which is greater
than 10 % of the maximum extrapolated velocities in Figure 8. For waves with
phases such that the velocities are lower the noise can become excessive. Similar
results were obtained for the y-velocities but they were smaller and consequently
noisier.

3.2 Interfacial Internal Wave Simulation on a Density Step

Internal waves on a density step were implemented using the colour-field model
and the gravitational interaction for waves of wavelength 2048 lu. The simulation
was run for two cases: case (a) where gravity acted only on the heavy particles
with a strength S, = 0.15 and case (b) where the gravitational interaction acts on
the heavy particles with strength S, = 0.2 and the light particles with strength
S, = 0.1. In both cases the grid was initialised by first setting up a system with
zero average velocity and with an average density of 4.9 particles per site. This
is the density at which the colour-field rules give optimal separation of the two
fluids [12]. The grid was then divided into two sections with a horizontal line sep-
arating them; the bottom section slightly larger than the top section. Particles in
the bottom section were then coloured red and the other particles coloured blue.
The system was then allowed to evolved for 2000 time-steps under the required
gravitational interaction and the colour-field surface tension rules and the height
of the interface between the two fluids found.

The density of the two fluids is shown in Figure 9 for case (a) where the density
has been found by averaging over each row. Figure 9 shows a small but constant
density gradient across the heavy fluid as is expected, since gravity acts in this
fluid. The lighter fluid also has a constant, but smaller, density gradient across
it despite the fact that gravity is not acting on it. This was seen to be a general
feature and independent of the value of S, in the heavy fluid. This is produced
in the interface region where the gravitational interaction reduces the vertical
momentum of the heavy particles. This momentum change is passed on, to some
extent, to the lighter particles during the implementation of the colour-field rules.
Increasing S, in the heavy fluid increased the density gradient in the heavy fluid
but left the density gradient in the lighter fluid unchanged. Figure 9 also shows
what appears to be a large mixed area between the two fluids where there are
significant numbers of both particles. In reality this is simply due to the inter-
face not being completely horizontal; the interface between the two fluids (where
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both particles are present) is rarely more than one of two sites thick. For case
(b) a similar graph was obtained but here the density gradients of both fluids
depended on their value of 5;. A new sinusoidal interface was drawn in place of
the horizontal interface and all the particles re-coloured red if they were below
the interface and blue if they were above it. For both simulations the height of
the wave at its centre was found every 40 time-steps. This was done by con-
sidering a central column 16 sites wide. The number of rows containing mainly
red particles was found in the column and also the number of rows containing
mainly blue particles. The results are shown for cases (a) and (b) in Figures 10
and 11 respectively, along with the best-fit curves as before. A good likeness is
seen between the data and the best-fit curves. The values found for the best-fit
parameters are given in Table 4.

The results for case (a) show the wave amplitude A, the damping constant o and

Table 4: The best fit parameters for the curves in Figures 10 and 11. All units
are in terms of lattice units and time-steps.

case | fluid A « T h ¢ €

(a) | red 22.92 | 4.290 x107° | 14,633 | 220 | -0.2348 | 3.74
) | blue | -24.04 | 4.431 x107° | 14,512 | 233 | -0.2741 | 4.07
) | red 27.22 | 8.680 x107° | 21,870 | 222 | -0.0753 | 3.38
) | blue || -33.12 | 1.048 x10~* | 18,810 | 230 | -0.136 | 2.95

the period 7 for the two fluids agreeing to within a few percent and the phase
factor ¢ is only a few percent of a period, suggesting that the wave was initialised
well. The mean variation, ¢, between the curve and the data is also small, 3 or
4 lattice units, suggesting a good fit. The values of € obtained for case (b) are
no larger then the ones obtained for case (a), suggesting the curve is as good a
fit, although the best-fit parameters obtained for the red and blue fluids differ
slightly more for case (b) than case (a). Comparing the values of the periods and
the damping constants obtained for the two cases considered, it is seen that the
period and the damping constant are larger for case (b). The larger period is
case (b) suggests that the effective gravitational strength depends on the average
number of particles flipped in both fluid and not on the absolute number in ei-
ther. The mean number of particles flipped per site per time-step, u, for the two
simulations are shown in Table 5. The change in the damping constant is due to
the different densities of the fluids in the two simulations. The results also show
that the sum of the mean depths, h, for both simulations is slightly greater than
the grid size. This can be explained by the surface between the two fluids not
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Table 5: The mean number of gravity flips per site per time-step for the two
simulations

case || mean flips in | mean flips in
heavy fluid light fluid
(a) 1.33 x107? —

(b) 1.40 x10=* | 8.35 x107*

being completely flat and also the fluids settling down slightly at the start. This
is also reflected in the difference between the values of A found for both fluids.

Velocity plots at times t=4,000 and t=10,000 are shown in Figures 12 and 13 for
case (a). These vector plots show the motion of the two fluids. The thick arrows
represent cells in which at least 95 % of the particles are heavy particles while
the thinner arrows are for cells containing only light particles and also the cells
at the boundary which are partially filled with both particles. The difference in
the depth of the two fluids seen in Figures 10 and 11 can also be seen here. The
wave motion can be observed in both of the fluids as can an area between the two
fluids where the velocities are small. This area is particularly noticeable when
the fluid velocities are largest. It is not clear from the results whether this is due
to the motion of the two fluids travelling in opposite directions at the boundary
causing a small boundary layer to be set up or whether it is due to the averaging
cell containing particles travelling in both directions. The velocities obtained are
small, many being less than 0.01 and so they are fairly noisy. The wave motion
is however distinct and its clarity can be improved either by using an ensemble
averaging technique [6] or a filtering technique. The velocities of the red and blue
fluids were also recorded for case (b) and show the same features, although the
velocities tend to be smaller due to the increased damping.

4 Discussion

Two different approaches have been used to simulate internal waves. Internal
waves on a continuous density gradient were modelled using the FHPIII model
with additional gravitational interactions. Internal waves on a density step were
modelled using an FHPIIT model with two distinct particle types by introducing
colour-field surface tension interactions and gravitational interactions.
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4.1 Internal Waves in a Stratified Fluid

The ability of a lattice gas model to perform such simulations was demonstrated.
The density and velocity profile of the wave were found at selected times. The
wave motion could be seen clearly in the density plots and the velocity plots also
showed evidence of wave motion although they were some what noisier. The wave
was seen to damp only slowly; over three periods there was no noticeable decay.

4.2 Interfacial Internal Waves on a Density Step

Internal waves on a density step were also simulated. It has been seen that waves
can be produced provided one fluid is made ‘heavier’ than the other. It was
shown that this difference in the strength of the gravitational interaction can be
simulated by applying the gravitational interaction with different strengths to the
two fluids, where the lower strength can be zero. The velocities of these internal
waves were found to be relatively small and therefore fairly noisy, however they
are clearly seen to describe wave motion in both the fluids. The noise in the
results can be reduced using ensemble averaging techniques.

4.3 Comparison of models

One major difference between the results obtained for the two different types of
internal waves studied was the size of the damping constant. The density of the
two fluids at the interface is about 4.9 particles per site which, because of the
duality of the model (swapping particles and empty links in one collision rule
produces another allowed collision), means the viscosity of the fluid should be
the same as the viscosity of a fluid with density 7 - 4.9 = 2.1 particles per site.
This is the density which was used to model waves in the stratified fluid. The
colour-field collision rules affect on the fluid when there are particles of different
colours present at the same site. This only occurs in a small number of sites on
either side of the fluid interface so the additional interaction should have only a
minimal affect on the viscosity of either fluid. A small increase in the viscosity of
the colour-field fluid is expected however [12], because the in-state is allowed to
be the same as the out-state even when a collision can occur. A higher damping
rate is observed in practice for interfacial waves when compared to other motion
in a fluid with same viscosity. One feature of the FHP model is that the viscosity
can be large even at a density of 2.1 particles per site, the density where it is
minimum for the FHPIII collision rules, so we would expect some damping due to
viscous effects. These effects have been minimised by using the FHPIII collision
rules which give the lowest viscosity of any of the standard rules and by using
large wavelengths which have the effect of increasing the Reynolds number of the
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simulation.

4.4 Comparison of Results with Experiment and Theory

Standing internal waves have been studied experimentally by Thorpe [15]. He
performs experiments on standing interfacial waves and standing waves in a strat-
ified fluid using a tank 14 inches long fitted with two plungers, one at either end,
a fixed distance above the tank bottom. His photographic results [15] show the
same features as the results obtained here. For the stratified fluid his results show
a sinusoidal variation in the density at all depths. The size of the variation is
reduced slightly at the top and bottom of the tank due to the boundaries. Other
than this the density variations shown in Figures 6 and 7 compare well with the
experimental results. The results obtained here for the interfacial internal waves
also compare well to Thorpe’s experimental results for low amplitude waves.

A qualitative comparison can be made between the results obtained and their
expected theoretical values which are well established [1, 16]. This is done for
the wave on a continuously stratified fluid and for the interfacial wave when
gravity acts on both fluids. For both waves we expect the maximum horizontal
velocity to be v’ = wa where a is the wave amplitude at the time the velocities
were measured and w is the wave frequency w = 27 /7. Here u' is the theoretical
velocity and is related to the measured velocity through the scaling relation:
u = wa/g. The frequency of the wave in the continuously stratified fluid is the
Vaisala-Brunt frequency:

where (G is the acceleration due to gravity. The rate of damping is
a = 2k*v.

The rate of damping and the frequency of an interfacial wave, in deep water, is
given by [17]

w=wy—w
and

a=w + o

where

wo = Gku

(f+1)

e wl/Qﬂkf\/;
C(+ )2
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and
L)
(1+/)?
where p is the density of the lighter fluid and fp is the density of the heavier fluid.
To find G we consider the total force acting on S sites containing M particles
(each of unit mass) at a given time. The total force is MG = SpG. This is equal
to the change in momentum which is S7iv/3g since each particle flip changes a
particles measured speed by v/3 and its scaled speed by v/3g. The value of 7 is

taken to the average of the two values of p in the two fluids. Equating these two
expressions gives
V3[ig

p
where p is taken to be the average of the value in each fluid for the interfacial

G —

wave. The value of p is taken to be its mean value and v(d) and g(d) are calcu-
lated from equations (4) and (3) using this mean value. The ratio f is the value
of 1 in the denser fluid divided by p in the lighter fluid. Using these values the
following theoretical values are found at ¢ = 7/4 for the continuously stratified
fluid: 7 = 3,607, a = 1.9 x 107% and u = 0.11; and for the two-fluid simulation:
7 = 19,300, a = 6.22 x 107% and v = 0.017, all in lattice units. With the ex-
ception of a for the interfacial wave these theoretical values are consistent with
the values obtained in the simulations. The theoretical velocity is slightly larger
than the maximum values shown in figure 8, however, the velocities in figure 8
were measured at ¢ = 4,000 time-steps, slightly after they have their maximum
value. The velocities shown in figure 12 are slightly larger than the theoretical
velocity, however, figure 12 is for case (a) which is not as heavily damped as case
(b). The theoretical value of o for the interfacial wave predicts a significantly
smaller damping rate than was observed. This may partly be due to Harrison’s
theoretical expression [17] being a series solution in terms of /v only up to order
O(v). This would not totally explain the difference between the simulation result
and the theoretical value and it suggests that the wave is being damped by the
action of the colour-field rules acting at the surface.

4.5 Relating the Simulation Results to Real Physical Prob-
lems

All the results presented here are in terms of lattice units which describe the
lattice gas model. It is important to be able to relate the results of a simula-
tion to a real problem in the physical world. To do this we must compare the
dimensionless parameters between the two situations. To do this we examine the
dimensionless parameters describing the simulated waves. The ratio of the initial
wave amplitude to the wavelength is small for each wave, it is never larger than
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0.016. This means that we are considering linear waves. The depth of the strat-
ified fluid is half of the wavelength. The fluid depths in the two-fluid simulation
is such that kh has a maximum value of 0.71. For this value tanh(kh) = 0.61,
however, since a no-slip boundary is applied at the top and bottom of the fluid
the wave can be considered as being in deep water. The Reynolds number and

Froude number, defined Re = ¢/kv and ¢y/k/G respectively where ¢ is the wave

celerity ¢ = w/k, of the two waves considered above are 2140 and 0.8 for the
continuous wave and 300 and 0.5 for the interfacial wave. The ratio of the fluid
densities in the two-fluid simulation is f = 1.68. The simulations relate directly
to a wave 1n the real world with the same or similar dimensionless numbers.

5 Conclusion

We have seen that the lattice gas model can be applied to simulate internal waves,
both on a continuous density profile and at a density step between two immiscible
fluids. The results obtained, although noisy, show the same qualitative features
as waves produced in a wave tank by Thorpe [15]. The results also showed rea-
sonable agreement with theory except for the damping rate of the interfacial wave
which was significantly larger than predicted. This may be due to the action of
the colour-field rules at the interface.
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Figure 1: The six directions of the hexagonal lattice.
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Figure 2:

The basic FHP collision rules.
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Figure 3: An example of averaging on a section of a square lattice with four
averaging cells, shown by the dashed lines, superimposed over the grid. The
individual particles are represented by the small arrows and the average velocities
by the large arrows. The details of the different velocities and densities are shown

in Table 1.
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Figure 6: The density profile of an internal wave in a stratified fluid at t = 3,000
computed using the FHPIIT model.
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Figure 7: The density profile of an internal wave in a stratified fluid at t = 8,000
computed using the FHPIIT model.
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Figure 8: The extrapolated z-velocity distribution of an internal wave in a strat-
ified fluid after 4,000 time-steps.
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Figure 9: The variation in density with height for both fluids when gravity acts
only on the heavy fluid with strength 5, = 0.15
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Figure 10: The fluid depth at the centre plotted against time for both the red and
blue fluids and the best fit curves through both sets of data found when gravity
is applied to the heavy particles only with a strength S, = 0.15.
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Figure 11: The fluid depth at the centre plotted against time for both the red
and blue fluids and the best fit curves through both sets of data when gravity

is applied to the heavy fluid with strength S, = 0.2 and to the light fluid with
strength 5, = 0.1.
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Figure 12: Velocity vector plot for the interfacial internal wave after 4,000 time-
steps. Averaging cells containing red particles are represented by the thick arrows.
The cells containing only or predominantly blue particles and cells at the bound-
ary containing significant numbers of each particle are represented by the thin
arrows.
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Figure 13: Velocity vector plot for the interfacial internal wave after 10,000 time-
steps. Averaging cells containing only or predominantly red particles are rep-
resented by the thick arrows. The cells containing only or predominantly blue
particles and cells at the boundary containing significant numbers of each particle
are represented by the thin arrows.
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