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suggest that the lattice Boltzmann model is a useful technique for studying a range of
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1. Introduction

The lattice Boltzmann model (LBM) has developed from the lattice gas automata (LGA)
[1, 2, 3] which considers the evolution of a number of idealised fluid ‘particles’ which
move at unit speed on a regular grid subject to particle convection and simplified col-
lision rules which conserve the total fluid mass and momentum. The main application
of the LGA has been to fluid dynamics [4, 5, 6], however, sound propagation has also
been considered. Frisch et al. [2] showed that the LGA incorporates sound wave prop-
agation in the small perturbation limit. Numerical and theoretical evaluations of this
LGA technique were performed by Margolus et al. [7], Chen et al. [8] and Lavallée
[9]. The idea was also employed by Chen et al. [10] who proposed a model to directly
simulate a linear sound wave without treating the sound wave as a small perturba-
tion limit. The LGA approach to emulating sound waves was also developed by Sudo
and Sparrow [11, 12] who considered sound propagation in one and two dimensions
and who further developed their model to include dissipation [13]. These developments
have lead to a number of successful applications of the LGA to the study of acoustical
problems: Numrich et al. [14] considered underwater sound propagation, Stansell and
Greated [15] simulated acoustic streaming in a pipe and Rothman [16] and Huang et al.
[17] modelled seismic P-waves in a homogeneous and inhomogeneous media respectively.

Despite the successful application of the LGA to many problems, both in fluid
dynamics and in acoustics, there are a number of difficulties associated with LGA simu-
lations. Two particular problems are the statistical noise associated with the simulation
due to the small number of ‘particles’ being considered, and the viscosity being limited
to relatively high values. These both limited the range of application of the LGA, see
for example [9, 15]. In an attempt to overcome these drawbacks the LGA evolved in a
number of stages and developed into the LBM; details of the various steps can be found
in, for example [18, 19]. The development of the LBM was driven mainly for its use in
fluid dynamics since the LBM can be shown [18] to mimic the incompressible Navier-
Stokes and continuity equations. Recently Buick et al. [20] have applied the technique
to simulate linear sound waves when the pressure variations are considered to be a small
perturbation. Here we extend the scope of the simulations to consider non-linear waves
and show that the LBM method and the incompressible approximation are not limited
to the linear regime. In all the simulations the amplitude of the density variation is no
greater than 1 % of the ambient density so that the incompressible LBM equations can
be applied to a good approximation [20].

2. The Lattice Boltzmann Model

The LBM considered here evolves on a fixed hexagonal lattice. The sites on the lattice
are joined by unit vectors e;, where i =1, 2, ..., 6, while e; is defined to be the null
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Figure 1. The hexagonal grid on which the simulations are performed. The vectors
ey, ...,eg are unit vectors along the directions of the grid and eq is the null vector.

vector; see figure 1. The simplified, discretised Boltzmann equation [21, 22] is given by
fZ(T—FeZ,t—f—At)—fZ(T,t):QZ(T,t) ’LZO, 1, ceey 6, (1)

where f;(r,t) are the distribution functions along the links e; at site  and time ¢ and
Q;(r,t) is the collision operator. The left hand side of equation (1) is the convection
operator and describes streaming of the distribution functions on the grid. This operator
can be seen to be linear in velocity space. The simplification of the Boltzmann equation

occurs in the form of the collision operator which is taken to be the BGK approximation
(23, 21, 24]:

(r,0) =~ [fi(r0) = Filr.1)], @)

where f; is the equilibrium distribution function and 7 is the relaxation time. The
form of Q;, given in equation (2), represents a relaxation of the distribution towards its
equilibrium value and recovers the non-linear form of the fluid, ensuring that the fully
non-linear Navier-Stokes equation is satisfied. The equilibrium distribution functions
depend only on the fluid density, p, and velocity, u, at each site which can be calculated
from the distribution functions as

pP= Z i (3)
and

PUg = Z fi€ia: (4)

where the Greek subscripts represent vector components and summation over repeated
Greek indices is assumed. Thus the collision process requires only local information
to introduce non-linear effects into the simulation. Up to O(u?), we assume that the
equilibrium distribution function has the general form [25],
p(A+Be,--u+C’(e,~-u)2+Du2), i=1,..,6
filr,t) = (5)
1% (A() + D0u2) 1=0.
This expansion up to second order in u ensures that the simulations have second order
accuracy, however the expansion is only valid for small Mach numbers M = u/c,, where
¢, is the speed of sound in the medium. The constants A, Ay, ..., Dy can be found for

the specific lattice being used and the required properties of the fluid. Here we require
that the collisions conserve mass and momentum, that is

p= Z 71 (6)
and

PUo = Z?ieia) (7)
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and that the fluid is isotropic and exhibits Galilean invariance. These requirements are
fulfilled by

1 — dy 1 2 ~1
Ay =d B=-, C=-, D=— d Dy=-1,8
6 ) 0 0, 3a 37 6 an 0 7()

where dy is an arbitrary constant. This determines the equilibrium distribution function

A=

which is applied here. In general, a different equilibrium distribution function can be
used if different fluid properties are required.

The macroscopic equations can be derived from the lattice Boltzmann equations
by performing a multiscaling Chapman-Enskog expansion [2] in the time and space
derivatives such that

0 0 5 0

a — Ea—tl +e€ 8_t2 (9)
and

0 0

— — 10

ox - 6(%1’ (10)
and the distribution function is expanded about the equilibrium value,

Ji— 71 + ffi(l) + €2fi(2)a (11)

where € is the Knudsen number which must be small. If we further assume that the
lattice spacing, e;, and the time-step, At, are small parameters, and of the same order
as €, then equation (1) can be Taylor expanded and combined with equation (2).
Substituting the expression for the equilibrium distribution functions, equation (5),
and the Chapman-Enskog expansions, equations (9)—(11), and retaining terms up to
second order in € we obtain [25] the continuity and Navier-Stokes equations for an
incompressible, isothermal fluid in two-dimensions:

Oip + Opptiq =0 (12)
and
1—4d,
OpUg + Oppupty = —0, 5 p + v0g0gpugy + (0,0pug, (13)
where
T—1/2
_ 14
v="" (14)
and

()05

are the kinematic shear and bulk viscosities. The pressure term in equation (13) is
p = (1—dy)p/2 which, for a perfect gas, gives the speed of sound as ¢, = [(1 — dg)/2]'/2.

In deriving equations (12) and (13) there have been a number of assumptions
made which restrict the application of the LBM. In the expansion of the equilibrium
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distribution function it is assumed that the Mach number M = u/c, is small; in the
Taylor expansion of the Boltzmann equation the length and time scales of the simulation,
e; and At, are assumed to be small; finally the density variation must also be assumed
to be small since the equations of motion are for an incompressible fluid. Since we are
dealing with a perfect gas where p is proportional to p we can write, for a progressive
plane wave,

L 7} (16)

Po  Cs
where p' is a density variation due to the sound wave and pg is the ambient density.
Here the low Mach number approximation and the incompressibility condition reduce
to the one constraint. The further constraint that e; and At are small requires that the
macroscopic scales of the wave are much larger than the microscopic scales of the grid,
that is for a wave of wavelength A and period T

le;] < A and At < T. (17)

This can always be achieved by selecting suitable values of A and 7.

It is worth noting that while the LBM satisfies the incompressible Navier-Stokes
equation the simulated fluid can experience density variations. These arise from the
definition of p, equation (3), which does not constrain p to be constant. In many fluid
dynamics applications, for example pressure driven Poiseuille flow, this is seen as a
disadvantage since so called compressibility errors are observed in a LBM simulation
[26] and in many cases the pressure gradient is approximated by a body force to remove
this effect [27]. Here we use this feature of the LBM in the limit that we consider only
low Mach numbers.

3. Non-linear Acoustics

In this section we consider acoustic waves where the amplitude is large enough that non-
linear motion is observed, but where the restriction that the Mach number, M = u/c;,
is small, as is required for the lattice Boltzmann model to be applicable. Under these
conditions non-linear phenomena are locally small (of the order of M), however the
effects are cumulative and increase with the distance of propagation and will, after a
sufficient propagation distance, significantly distort the wave. To consider this we start
from the Navier-Stokes and continuity equations and the equation of state of the fluid,
see for example [28, 29, 30]:

O01p + Oapta =0, (18)
2
P [Ortig + ua0pug| = —0ap + pr0g0sts + p [C +v (1 — 5)] 0a0gug, (19)
and

—1)c? 1 1
p = Cipl + b D) ) sp,2 - X <_ - _> Oalars (20)
Po Cy Cp
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where D is the number of dimensions, x is the coefficient of thermal conductivity, ¢, and
¢, are the specific heats at constant pressure and volume, v = ¢,/c, and the pressure and
density (p and p) are respectively defined as the sum of the ambient (py and py) and the
perturbation (p" and p'). The kinematic shear and bulk viscosities and the speed of sound
are v, ¢ and ¢, respectively, as before. Substituting the equation of state, equation (20),
into the continuity and Navier-Stokes equations (18) and (19), expressing the pressure
and the density as the sum of the ambient value and the perturbation, and neglecting
the term p'ugdsu, since it is O(M?) we obtain

ap’ ou op
— 21
5 Tt ) tugs =0 (21)
and
ou du _ ,0p  2ecip Opf 0%u
= —— b— 22
(po+p)8t+po - % 5z T Pobo g (22)

where b = (+ (1+1—2/D)v+ x(1/¢, — 1/¢y)/po, € = (v + 1)/2 and we have used
one-dimensional notation since we are interested in the propagation of plane waves.

To proceed further it is not possible to consider a classical perturbation expansion
of equations (21) and (22) using linear wave theory as a first order approximation. This
is because linear theory does not give a satisfactory first approximation, since no matter
how small the initial amplitude the long-term behaviour will be non-linear in the absence
of dissipation. It is therefore necessary to use a multiple scale method where z, ¢ and
X = Mz are considered to be independent variables and 0/0r — 0/0x + M0/0X.
This allows a good description of the wave up to distances x = O(1/M). Following this
approach and introducing 7 = t — z/c,, equations (21) and (22) can be shown to satisfy
Burgers’ equation [28]

ou e au b 0%u
ox 02 or 2683072

Finally, it is convenient to change to dimensionless variables ¢ = u/U, 0 = eMkxz and

(23)

6 = wt where U, w and k are the initial velocity, angular frequency and wave number of
the source and M has been re-defined here as M = U/c;,. In these co-ordinates Burgers’
equation is

9 _ % 0%q

o0 Y90 T "o (24)

where
111
— 25
~ 2%ReM (25)
and Re is the acoustical Reynolds number given by
c
Re= — 26
6= (26)

The dimensionless propagation parameter, o, describes the development of the
shock wave for 0 < ¢ < 1. The shock formation distance for a sinusoidal sound wave with
amplitude unity is ¢ = 1. That is, 0 = 1 determines the distance at which a sinusoidal
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wave in an inviscid fluid is transformed into a discontinuous wave of sawtooth shape.
In a viscous fluid the wave is transformed into an almost sawtooth shape, however,
the action of viscous damping prevents a total discontinuity forming. Note that the
multiple scale method used in the derivation of Burgers’ equation is valid for distances
up to x = O(1/M), that is distances of the order of the shock formation distance o = 1.

3.1. Solution of Burgers’ equation

Here we consider the solution of Burgers’ equation for two cases, firstly the analytic
solution for the special case for an inviscid medium where x = 0, and secondly the
numerical solution of the full Burgers’ equation.

3.1.1. Inviscid Fluid We wish to solve the inviscid Burgers’ equation

dqg  Oq

o0 ag =Y 27)
for the initial condition

q(0,0)|,_o = f(0)- (28)

Following Crighton et al. [29] we consider a curve in the (o, 6) plane for which € is some
definite function of . On this curve we have

j—g=§—§+<%>%:0 if %:—q. (29)
Let I' be one such curve where ¢ is constant, then I' is the straight line § = —qo + ¢.
The point where this line cuts the #-axis occurs when o = 0, which gives ¢ =6 or

q=f(9), (30)
where ¢ is defined through

¢ =0+ qo. (31)

Now, equation (27) preserves the parity and periodicity of the initial function. Thus,
if we now consider the special case of a sinusoidal source, f(6) = sin#, the solution of
equation (27) must have the form

q(o,0) = il a, (o) sin(nf), (32)
where
an(o) = %/OW q(o, 0) sinnddo. (33)

Substituting in equations (30) and (31) and changing the variable of integration from 6
to ¢, equation (33) can be expressed as

an(0) = =T, (no), (34)

no
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where J,, is the Bessel function of order n. This gives the Fubini-Ghiron solution for
the development of a shock in an inviscid fluid:

o0

qg=> n—iJn(na) sin(n@). (35)

n=1
This solution holds for 0 < ¢ < 1 since for 0 > 1 the § — ¢ relationship in not 1-1 and
the change of integration variable in not possible.

3.1.2. Numerical Solution We now turn our attention to the numerical solution of
equation (24) [31]. To do this we consider a travelling wave of the form

oo

qg=>_ ay(o)sinnb. (36)

n=1
Considering first the non-linear term:

=[S ][5 o]

Collecting together terms with the same frequency this can be re-written as

8q 1 & s lapam —p
U35 =3 [msmm@ (Z 5 Z Ap—myp | | - (38)

m=1 p=1 p=m+1
Calculating the other derivatives the solution of Burgers’ equation reduces to solving
the following set of first-order partial differential equations

n—1 0
% =n (Z % -y ap_nap) — kn’ay, (39)
p=1 p=n+1
where a;|,_, =1 and a,|,_, = 0 for n > 2. This can be solved by truncating the series
to N harmonics and solving the N equations using a variable-order variable-step Adams
method [32, 33]. The solutions presented here were truncated at N = 20, although only
the first six harmonics are plotted.

4. Numerical Simulations

The development of the shock wave was simulated using the lattice Boltzmann model
described in section 2. This was done using a grid consisting of A sites in the z-direction
and m sites in the y-direction, where A is the wavelength of the sound wave being
simulated and m is an arbitrary number. Periodic boundary conditions were applied at
each of the grid edges. Since plane waves are being simulated the value of the pressure
and the velocity, and hence the distribution functions, f;, are the same on each column (z
constant) and so the value of m is totally arbitrary. Here m = 4 was used. A sinusoidal
source was mimicked by initialising the grid with a sinusoidal pressure (density) and
velocity variation. That is, the velocity and density were specified according to

2
p = po + asin (%) (40)
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Figure 2. The measured pressure variation as a function of time for the first 16
periods of oscillation. This corresponds to the development of the shock front.

and
acg 2rx

u—posm(/\>. (41)
The initial values of f; at £ = 0 were then calculated by substituting these values into
equation (5). The constant dy in equation (8) can in general be varied to change the
ratio of the shear and bulk viscosities; here is was fixed at dy = 1/2. The value of the
amplitude parameter a in equations (40) and (41) and the ambient density py determine
the Mach number: M = a/py. Here we choose a = 0.1 and py = 10 giving M = 0.01
which satisfies the lattice Boltzmann constraint that M < 1. It is usual to express the
intensity of a sound wave in terms of the sound pressure level rather than the Mach
number. Comparing the simulations to a sound wave in air at atmospheric pressure,
M = 0.01 corresponds to a pressure variation of 1 x 10% Pa which gives a sound pressure
level [20] of 201log(1 x 103/2 x 107°) = 154 dB SPL. The simulation is then allowed to
evolve and the density and velocity measured at position z = \/2 giving a time series
record of the wave. The lattice exhibits periodicity and hence all other positions, for
a particular phase, are equivalent. This differs from a typical experimental setup and
the theory in section 3 where a source is positioned in a medium and measurements
are made at different positions giving a spatial record of the sound wave. Complete
information for a particular phase can be obtained by measurements at different dis-
tances from the source at a single arbitrary time. The constant dispersion relation of
our simulation ensures complete space-time ergodicity and these two situations become
completely equivalent . That is to say, measurements at time ¢ and ¢ + 6t from our
simulations can equally be thought of as measurements at positions x and = + dx where
T = c,t and dx = c¢,0t.

The LBM described in section 2 has equation of state p = ¢2p which corresponds
to a fluid with v = 1, with no thermal energy dissipation. This arises from the term
0a(1 — do)p/2 in equation (13) being equated to the term J,p in the Navier-Stokes
equation, with ¢, = [(1 — dy)/2]'/2. We note that a different choice for the equilibrium
distribution function, equation (5), could change the equation of state of the simulated
fluid [34]. The dissipative term b is now expressed as b = v+ ( (since we are considering
two-dimensions) and the constant ¢ = 1. Thermal dissipation effects can, however,
be simulated using an effective viscosity which incorporates both viscous and thermal
losses. This was not done here.

5. Simulation Results

A typical set of results is shown in figure 2 which shows the variation in the normalised
pressure with time during the formation of the shock wave. Initially the variation is
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Figure 3. A stacked profile of the pressure variation as a function of the wave phase
at selected times during the development of the shock front. The distortion of the
initial sinusoidal variation to the ‘N’-shaped shock wave is clearly visible.

Figure 4. A typical example of the Fourier transform of a three wavelength segment
of the signal at selected times during the evolution of the shock wave. (a) represents
the initial segment at £ = 3)\/2 and shows most of the wave energy concentrated in the
fundamental harmonic with the amplitude of the second and third harmonic starting
to increase. (b) and (c) show the spectrum at later times and show the increasing
prominence of the higher harmonics and the decrease of the fundamental harmonic as
o increases.

Figure 5. The variation in the relative amplitude of the first six harmonics for
an initially sinusoidal non-linear wave during the development of the shock front for
three different Reynolds numbers, the Mach number is M = 0.01. In each case the
numerical solution of Burgers’ equation (24) is represented by a solid line. Also shown
for comparison is the Fubini-Ghiron solution, equation (35), for each of the harmonics.

approximately sinusoidal, however this can be see to change as the wave evolves. This
distortion of the initial sine wave can be seen more clearly in figure 3 which shows a
stack profile representing the normalised pressure of the wave plotted against the wave
phase at different times. The change in the form of the oscillation can be clearly seen
in figure 3.

In order to compare these results with the theoretical analysis we need to look
at the growth and decay of the fundamental and higher harmonics within the waves.
This was done by dividing the results into segments with length 37" in such a way that
segment [ contains (I — 1)T+ 1 < t < (I +2)T. Each of these segments was then
Fourier transformed and the resulting spectrum considered to represent the wave at
x = (I +1/2)\. Typical results of such a procedure are shown in figure 4 which shows
the change in the spectrum at selected distances from the source. As expected the
amplitude of the higher harmonics is seen to increase with propagation distance, this
is due to energy being transferred to these harmonics from the fundamental harmonic
which is seen to decrease in amplitude. The change in the magnitude of each frequency
component was extracted from the Fourier transform for waves with three different
Reynolds numbers, Re ~ 1,600, 1,100 and 160. This was achieved using a fixed
wavelength A = 500 and varying the fluid viscosity using 7 = 0.55, 0.57 and 0.95
respectively. In each case the Mach number was fixed at M = 0.01. These are shown in
figure 5 for the first six harmonics along with the numerical solution of Burgers’ equation
and the inviscid Fubini-Ghiron solution for comparison. In general the simulation results
show excellent agreement with the numerical solution of Burgers’ equation. There are,
however, some regions where there is a small deviation. One source of error in the
analysis is that we are performing the Fourier transform over three wavelengths during
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which there is a change in the amplitudes of the harmonics, both due to energy transfer
between the harmonics and due to viscous damping. Therefore the Fourier transform
will not only contain peaks at the frequency of the harmonics, but also contributions
due to the change in these amplitudes over the sample. This can be seen in figures 4 (a)
and (b) where the values between n = 1 and n = 2 and between n = 2 and n = 3 are
not zero. These figures represent the early stages in the development of the shock wave
where there is the largest change in the amplitude of the harmonics. At later times, see
figure 4 (c), the change in the harmonic amplitudes is smaller and so is the value of the
Fourier transform between the harmonics. In general these additional contributions are
small and, combined with numerical error, account for the small deviations observed,
particularly when the harmonic amplitude is small; see for example figure 5 (d)—(f) at
small 0. As expected the results approach the inviscid Fubini-Ghiron solution as the
Reynolds number increases.

6. Conclusion

The use of a BGK lattice Boltzmann model for simulating non-linear propagative acous-
tic waves has been considered. It has been seen that a range of problems in non-linear
acoustics are within the dynamic range of the lattice Boltzmann model and the ap-
plication of the technique has been demonstrated. This was done by simulating the
development of a shock front from an initially sinusoidal non-linear wave. The results
of the simulation agreed well with theory, suggesting that the lattice Boltzmann model
is indeed a useful approach to simulating non-linear acoustical phenomena.

The simulations presented here have been limited to considering progressive waves
in an unbound media. This is not a fundamental restriction of the technique which
should be equally applicable to studying standing waves and propagation in a pipe
where the action of the walls significantly influences the acoustics; indeed the ability of
the LBM to model complex boundary situations is well established. An investigation of
this and the steady state acoustic streaming flows setup by the attenuation of a sound
field in the boundary layer is currently in progress.
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