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Abstract

Progressive interfacial waves are simulated between two viscous, im-
miscible fluids using a lattice Boltzmann model and compared to waves
generated in a laboratory tank, where their velocities are measured using
a film-based particle image velocimetry system. The numerical and experi-
mental velocities are compared for two similar, steep waves and the results
are found to be in good agreement. The results are also compared with
a first order wave theory, in both cases they predict velocities up to 40%

greater than the theory.

Keywords: Internal waves; lattice Boltzmann; particle image velocimetry:;

non-linear waves; gravity waves.

1 Introduction

Interfacial internal waves occur between fluids with different densities, such as
when fresh water flows onto salt water in an estuary, or where there is a sharp
increase in a fluid’s potential density with depth, such as at a sharp thermoclyne
in the ocean. The stratification conditions required to sustain internal wave mo-
tion are present in many bodies of water including all of the deep oceans, and

there are many mechanisms which can generate the waves.

The vertical excursions made by fluids elements during the passage of an in-



ternal wave is likely to be much greater than that of surface waves, even if both
are forced by the same event, such as an earthquake, wind shear or tidal forcing.
Such internal wave motion, be it a regular or occasional occurrence, can have an
important influence on offshore operations [1, 2]. In most cases surface waves,
currents and wind loading will be dominant in determining the design of an off-
shore drilling platforms, however, the design of risers and mooring lines may be
significantly influenced by internal waves. One area where there is at present
drilling interest is the United Kingdom North-West Approaches. This is a re-
gion between Shetland, the Faeroe Islands and the north of mainland Scotland.
Relatively warm water is driven through this area by the North Atlantic Drift
which flows above a region of colder water known as Norwegian Deep Water.
In this region there is evidence of internal waves [3]. In such circumstances an

understanding of the wave kinematics is clearly important.

Recent developments in the study of this phenomenon have included numer-
ical simulations using a lattice Boltzmann (LB) model [4] and the measurement
of whole two-dimensional velocity fields using Particle Image Velocimetry (PIV)
[5]. Here we consider both of these techniques and make a comparison between

the velocities obtained for two similar waves.

Other theoretical and numerical methods [6, 7, 8, 9, 10] are available which

can be applied to study internal waves. Unlike many numerical schemes which



consider an inviscid fluid the LB model incorporates the correct viscous behaviour
of the fluids. The alternative approach to numerical modelling which is offered
by the LB model could offer advantages in a number of areas. For example,
the LB model has been shown to be ideal for simulating complex or irregular
boundaries. This suggests that the LB technique would be useful for studying
problems involving the interaction of internal waves with sills and complex bed
topography. The nature of the LB model makes it ideally suited to parallel

implementation, enabling efficient use of ever expanding computer resources.

2 Lattice Boltzmann simulations of interfacial

waves

The LB technique [11, 12] involves simulating the Boltzmann equation,

fi(r—l_ei?t—l_l)_fi(rvt): _[fi(rvt)_fi(rvt)]vfor iZO,l,...,b, (1)

on a regular grid where each grid point is connected to b neighbours by the
vectors e; for i = 1, 2, ..., b and where eg is the null vector. Here fi(7,1) is
the distribution function of the ¢th link at site # and time t. The equilibrium
value of the distribution function, f., is defined so that the simulated fluid has
the correct macroscopic properties and the relaxation time, 7, is a free variable

which determines the fluid viscosity. The form of f; used in this study and



the macroscopic equations which it satisfies will be considered below. The fluid

density and momentum are defined at each site and each time step as

fi (2)

b
=0

=3

and

b
pu; = Zfiei- (3)

The simulation is completely discretized in space and time and is ideally suited

to parallel implementation.

Here we employ a binary fluid model [13, 14] which simulates two immiscible
fluids which, in the presence of gravity [15, 4], can have different potential den-
sities. This LB approach to interfacial wave simulation has been developed from
the lattice gas model which has previously been used to simulate surface waves
[16, 17]. It has been applied successfully to linear, internal standing waves and
the results compared favorably with theory in a previous paper, [4], where the
model is described in detail. Here we give a brief description of the numerical
technique. The simulations are performed on a hexagonal grid (b = 6) with the
unit link vectors given by e; = sin(%i —Z)i+ COS(% — gk, fori=1,2, .., 6,
where ¢ and k are orthogonal unit vectors in the horizontal and vertical directions

respectively. The system is described in terms of the overall density (irrespective



of fluid type), p, and the density difference, Ap, between the two fluids. Thus,
if the two fluids we are considering have densities p; and ps, then p = p1 + po
and Ap = p; — ps so that Ap will be constant in each fluid (other than a small
density change in each fluid introduced by the gravitational force) and positive
in one fluid and negative in the other; in the interface region Ap varies smoothly
through zero with a tanh-like profile. The values of p and Ap are found from
the distribution functions f; and d; as p = 3, f; and Ap = >°. d; while the fluid
velocity, u, is given by pu = Y. f;e;. The two distribution functions are simu-
lated directly using two Boltzmann equations. The first one describes the motion
of the entire system and is the same as equation (1) with an additional gravity

term:

Fi(r+ et + A = f(rt) = ——[f(r, ) = Ti(r )] + 2 F e (4)

T, 3
The second equation describes the interaction of the two fluids:

di(r + ent+1) = di(r,t) = ——[di(r 4) — To(r, )], (5)

TA

where F' is the body force, f; and d; are the distribution functions of the overall
density and the density difference respectively, and f; and d; are the correspond-
ing equilibrium distributions. Details of the form of F, f; and d; are given in

appendix A, as are the macroscopic equation satisfied by such a system. The



units of the lattice are the time-step between collisions and the separation of the

grid points: the lattice units (lu).

An important consideration in performing LB simulations is to ensure that the
fluid system exhibits Galilean invariance. The LB model becomes non-Galilean
invariant when there is a variation in the density, although this can be corrected
using a model with a higher number of grid directions [18]. Here variations in
p occur from two sources: firstly through a small change which occurs at the
interface of the binary fluid model (in the absence of gravity) [18], the second is
through the density gradient introduced into each fluid by the body force [15].
Here we consider the non-Galilean invariance to be negligible since a density
variation of a few percent is likely to produce a similar relative error in the
simulation [18]. Further, we note that the density difference between the two
binary fluids is influenced by the ratio of the terms g, and ¢, see appendix A
and [15]. However, the variation in the parameter p (which leads to Galilean
invariance) is influenced by the magnitude of ¢, and ¢, [15]. This means that any
non-Galilean invariance due to the inclusion of gravity will occur over the whole
fluid, not just at the interface; however, the vales of g, and g, can be selected such
that the change in p over the whole fluid is negligible but the relative densities

of the two fluids, 7, is significant.



2.1 Progressive wave initialisation

The waves were initialised by first setting up a standing wave as described in [4],
such that the interface is at an extreme of its oscillation and the fluid velocity is
zero everywhere!. The standing wave was then allowed to oscillate for a quarter
period. The magnitude of the horizontal velocity @(z) is found half way between
the node and the antinode, and the magnitude of the vertical velocity @w(z) at
the antinode. The density profile p(z) is found at any value of x. A progressive
wave was then initialised with velocities u(x,z) = @(z)sin(kx) and w(z,z) =
W(z) cos(ka) and density p(x,z) = p(z). This means that the velocity and density
used to initialise the progressive wave simulation are correct for the model and
wave parameters selected. The initial values of the distribution functions f; and
d; are given by fi(z,z,t = 0) = f;(u(x,2),w(z,2),p(2)) and di(z,2,t = 0) =
di(u(z,2),w(x,2),p(z)), where f; and d; are given in appendix A. Finally, the
interface n(x) = acos(kx) is imposed by shifting each column of sites by an
amount n(x) to produce the interface. Values shifted off the grid are discarded.

Sites near the boundary which are not assigned a new value by the shifting

operation retain their original value.

!This involves insuring that the density profile is correct for the body force which is being
imposed. This was achieved in [4] by allowing the system to settle, however, the density profile
can also be calculated [15].



3 Wave generation and velocity measurement in

a laboratory wave tank

The experiments were performed in a wave flume of length 6m, width 0.4m and
total depth 0.6m. To achieve stratification the tank was partially filled with
fresh water and then a saline solution was slowly bled in underneath. Using this
method a density profile can be set up in the tank which has an approximate

tanh profile:

p:ﬁ[l—atanh (272)] (6)

The mean density, p, and the density difference, 2ap, are determined by the con-
centration of the saline solution, while [, which describes the vertical thickness of
the interface, was measured using an aspirating conductivity probe. Practically,
the thickness of the interface was determined by the length of time over which the
saline solution was bled into the tank; this typically took a number of hours. The
waves were generated using a friction driven, oscillating paddle, centred about
the interface, which was computer controlled and driven in the vertical direction

only [5].

3.1 Velocity measurement

The fluid velocity in the tank was measured using Particle Image Velocimetry

(PIV) [19, 20, 5, 21]. PIV can be divided into the following stages: seeding,



illumination, image capture, analysis and post processing. The seeding particles
used were conifer pollen which have a size of around 70 gm. A measurement
area of length 0.5m, centered around 2.6 m from the wavemaker, was illuminated
using a 15 W Argon-Ion laser and a scanning beam technique. Figure 1 shows

the set up of the tank and laser system. Images of the particles were recorded on

120 format film.

It is a requirement of the analysis technique that the pollen particles must
have moved at least two diameters between successive pulses. Due to the slow
speed with which internal waves move, this is not always achievable, even for the
steep waves being considered here. For this reason an image shifting system [22]
was employed which has proved ideal in several studies [23, 24, 25]. The camera
photographs the measurement zone through its image in a mirror. The mirror
is rotated between exposures and so superimposes an artificial displacement on
the actual particle displacement. This displacement is removed after the analysis
stage. In the context of the current investigation, image shifting is essential in
removing directional ambiguity and minimise effects such as particle overlap [20].
The disadvantage is an effective loss of dynamic range, the absolute dynamic
range is the same however the velocities of interest occupy only a fraction of this

range, the remainder being occupied by the shift velocity.

PIV analysis is performed by dividing the image of the measurement zone into
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several interrogation regions, each containing a number of pollen particle images.
The negatives were analysed using a Young’s Fringe auto-correlation technique
to obtain a velocity vector for each region. The location of symmetric peaks
in the two-dimensional auto-correlation plane gives the local mean displacement
between successive illumination pulses. Provided the magnitude of the displace-
ment added by the image shifting is greater than the actual displacement, it is
also possible to determine in which direction the particles are travelling along
the measured displacement. Since the time between the laser pulses is know, the
velocity of the particle (including the shifting velocity) can be found. The known
shift velocity is then removed during the post-processing. This is not a constant

velocity across the whole of the measurement zone [24, 22].

Since PIV analysis is a statistical process, there is a finite probability of an
erroneous vector being produced. This can be due to a low seeding concentra-
tion in a particular interrogation region, or variations in illumination or visibility.
Erroneous vectors, which are very different from the surrounding vectors, can be
removed in a region with a poor signal-to-noise ratio. This explains the small
number of missing vectors in figures 2 and 4, mainly near the edges of the mea-

surement zone.

Refractive index changes are a potential source of error, however large errors
are not realised in practice [26]. In this investigation, the interface region was ap-

11



proximately mid-way between the top and bottom of the film. Thus the path of
the scattered light from the interface region travels approximately normal to the
surfaces of the experimental set-up and onto the surface of the recording medium.
This greatly reduces refraction effects. Secondly, PIV measures relative displace-
ments. For these wave studies the displacement of the seeding particles is small
(hence the need for an image shifting system) and the time separation between
frames was significantly shorter than the time for particles to move through the
interface. This means that particles which were being correlated were in general
in regions of similar refractive index. Finally it should be noted that the interface

itself generally consisted of no more than one vector per column.

More recent methods, particularly digital PIV (DPIV) [27, 21, 26], eliminate
the need to use image shifting since single particle images are recorded on suc-
cessive frames rather than multiple exposures on a single image. This eliminates
the possibly of the multiple images of a particle overlapping. Furthermore the
digital recording of images enables the analysis to be performed using numerical
procedures, with cross correlation techniques using Fourier transforms usually

employed. Evidently this differs from the Young’s fringes method employed here.
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4 Comparison between interfacial wave simula-

tions and experimental results

The following comparison is between two interfacial waves: wavep;, which was

generated in a wave tank and wave,; which was simulated using the LB model.

4.1 Wave parameters

We now consider the parameters describing the two waves.

4.1.1 Density Profile

Wave,,, has a density profile

)

(7)

where p = 1044 kgm ™, a = 0.044 and [, the interface thickness, is 0.019m. Away

from the interface the asymptotical densities are p; = 998 kgm™> and p, = 1090

kgm™>. The potential density can be considered as being the same as the fluid

density here. Wave, ; has x = 0.1 which gives an interface width with [ ~ 10

lattice units (lu). In the upper fluid the density is proportional to g, and in the

lower fluid it is proportional to gs. In the interface region we expect the density

to vary in a smooth manner since the order parameter varies smoothly over the

interface [14]. Away from the interface the ratio of the potential densities is

13



name parameter || wavepry wave, g VV\;E;L\\/,%PLI;/

Dimensionless interface thickness [/ 0.026 9.8 x 1072 | 2.6
Dimensionless wave amplitude a/A 0.020 0.017 1.2
Dimensionless upper fluid depth khy 2.1 2.5 0.84
Dimensionless lower fluid depth khy 2.2 3.8 0.58
Density ratio 0 1.1 1.1 1.0
Froude number (F) ev/k/g 0.99 0.99 1.0
Reynolds number (Re) e/ (kv) 2.6 x 10* | 9.2 x 10? | 28

Table 1: The dimensionless parameters describing wavep;, and wave ;. The depth
of the upper and lower fluids are iy and hy respectively, A is the wavelength, & is
the wavenumber, v the viscosity, v is the density ratio of the two fluids, ¢ is the
acceleration due to gravity, a is the wave amplitude, ¢ is the wave celerity w/k,
is the interface thickness and ¢’ is the reduced gravity: ¢’ = g(v — 1)/(y + 1).

v = p2/p1 = 1.118 and a = 0.056.

4.2 Dimensionless parameters

The parameters describing the two waves are measured in different units. To di-
rectly compare the waves it is necessary to consider the dimensionless parameters
describing them. There are a number of dimensionless parameters which can be
derived, an exhaustive set of independent parameters is shown in table 1. Any
other dimensionless parameter can be expressed in terms of these in table 1. For

completeness the dimensional parameters are given in appendix B.
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4.2.1 Comparison of dimensionless parameters

When comparing two waves, whether they are simulated results, experimental
results from a wave tank, results from a field experiment or theoretical predic-
tions, the dimensionless parameters need to be matched as closely as possible. In
practice it is not possible to have all the dimensionless parameters the same for
both waves but they must be of a similar order. The ratios {/A are not perfectly
matched, but this should only affect the velocities close to the interface. The
different interface thicknesses should have little effect on the comparison since
the experimental results are measured every 0.0125 m which is similar to {. The
ratios a/A are both of a similar size. The values of kh; are somewhat different
for the two waves, however we are interested in tanh(kh;). For both waves this is
never smaller than 0.97 in either fluid so both waves can be considered as deep
water waves. The values of v, the density ratio, are similar for both waves giving
a density difference of about 10%. The internal Froude number, F' = cm, is
approximately unity for both waves. This is expected for deep waves through the
dispersion relation. The Reynolds number Re, which can be taken to be ¢/(kv),
is different for both waves. The Reynolds number of wavep;,, the experimental
wave, is almost thirty times the Reynolds number of wave, ;, the simulated wave.
Both Reynolds numbers are, however, large enough that we expect viscous ef-
fects to be small in both waves but slightly larger in the simulated wave. We

note that for both waves the value of Re is smaller than would be observed in the
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ocean. The effect of the different Reynolds number on the two waves can most
easily be seen through the ratio of the boundary layer thickness to the wavelength
/A = \/m. Wave,,, and wave,; have §/A = 9.84 x 10™* and 5.24 x 107
respectively. Both are small, however the relative boundary layer thickness of
the simulated waves is about five times larger. The boundary layer thickness is
considerably smaller than the spacing of the experimental results: 6/ Az ~ 1/17,
where Az is the separation of the results. For the simulated waves §/Axz = 5.4
giving several grid points within the boundary layer?. It is also interesting to con-
sider ¢/l which is 0.037 and 0.534 for wave,;, and wave,; respectively. For both
waves this is less than unity, but is larger for wave;; due to its lower Reynolds

number.

4.3 Velocity comparisons

The PIV results are shown in figures 2 and 4 at two different times. The simu-
lated results are shown in figures 3 and 5 for areas with the same dimensionless
size. The results plotted are the dimensionless velocities, w/c. The axes have
been chosen so that z = 0 is the mean level of the interface and + = 0 is at a

trough.

Velocity profiles were extracted from the experimental and simulation results

?In the presentation of the results here the resolution of wave; 5 has been reduced in figures
3 and 5 to match the resolution of the experimental results, this gives §/Az = 0.31.

16



in figures 2-5. The horizontal profile is shown in figure 6 for the results at the
wave trough and in figure 7 at the wave crest. The vertical velocity profile at
r = A/4, the midpoint between the crest and the trough, is shown in figure 8.
The experimental results from figures 2 and 4 are represented by a ‘x’ and a
‘4’ respectively. The dashed line represents the simulation results and the solid
line is the linear solution (see appendix C). Error bars have been included for
a number of the experimental results in figure 6 for an error of £ 9 %. This is
an estimate of the upper bound of the combined errors involved in the measure-
ments calculated away from the interface [28]. The main sources of error in the
measurements are: buoyancy of the seeding particles in different density regions;
velocity biasing errors in the image analysis, lens aberrations in the image cap-
ture system; and refractive index effects. There is clearly some degree of scatter
in the experimental results which is generally in agreement with the £ 9 % error
bars. The vertical velocities, displayed in figure 8, show good agreement between

the simulation results and the experimental results.

The horizontal results, shown in figures 6 and 7, are qualitatively similar,
however quantitatively there are some discrepancies. In each of the three sets of
measurements the horizontal velocities in one of the fluids agree well, while in the
other fluid the magnitude of the experimental results are somewhat smaller than
the simulation results. These discrepancies are too large to be explained by a 9%
error in the measurements. As figure 6 demonstrates, it is not always the same

17



fluid which contains the discrepancy. This effect can also be seen in figures 2 and
4 where the magnitude of the horizontal velocity above and below the troughs
and crest are different. Since the difference appears as a shift in the horizontal
velocity, it might be suspected that the image-shifting system is introducing the
observed difference. This was not the case since any error would be present in
both fluids. The distortion and systematic error introduced by the image-shifting
system was removed in the PIV post-processing. The biggest difference between
the waves is that the wave tank admits an infinite number of vertical modes. The
first mode is dominant but other modes may be present. While it is possible
that higher modes might develop further over time in the numerical simulation
they will be small at the time the measurements were taken since they were not
present in the initialisation process. In contrast, higher modes in the laboratory
waves may be introduced by the wavemaker. Thus the influence of higher modes
will be greater in the PIV results than in the LB simulations. The differences
in the dimensionless parameters, see table 1, will undoubtedly contribute to the
differences observed in the results. However, it is probable that the main reason
for the deviation between the two sets of results is due to the presence of other
modes in the experimental results. The presence of higher modes in the experi-
mental results would explain the variations in the horizontal velocities of wave,
in figure 6. The experimental results were found to satisfy continuity within the

error limits.
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Despite these differences, the vertical profile is seen to fit well with the exper-
imental results. The horizontal velocity shows the same qualitative features and
the comparison is as good as can be expected, given the presence of other modes
in the experimental results. It is interesting to note that despite the difference
in the Reynolds number there is little difference in the shape of the horizontal
velocity close to the interface. The prediction of linear theory is also shown in
figures 6, 7 and 8 (solid line) for comparison. The two waves have ak > 0.1
so it is not expected that linear theory will provide a good agreement with the
steep waves considered here. In each case the results of the simulations predict
velocities up to 40% greater than linear theory. The experimental results for the

vertical velocities also show higher velocities than linear theory.

5 Conclusion

We have considered the simulation of steep, progressive interfacial internal waves
using a LB model and the measurement of the velocity field of a steep, progressive
interfacial wave in a wave tank using PIV. A comparison has been made between
the simulated waves and experimental waves. The results were seen to be in
qualitative agreement. Quantitative differences are believed to be due to the
rather unsteady nature of the steep wave group as it propagates in the laboratory

tank and the presence of higher modes.
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A Details of the binary fluid model

The parameters F, f; and d; are given by [15, 13, 14]

F =pg=g.p—Ap)+ag(p+ Ap)k, (8)

72» =A + Buaem + CU2 + Duau5€iaei5 + Gagemeig, 1= 1, ey 6, (9)

70 — AO + 007 (10)
d; = H + Kuageio + Ju + Quauseineis, i=1,...,6 (11)

and
EO — HO—I_JOv (12)

where summation over the repeated indices o and (3 is assumed and

Ao=p—6A, A= (pl'—sApV?Ap/2 — kpN7?p[2)/3, B=p/3, C=—p[6,

26 [0pdp  OApOA
Co=—p, D=2p/3, ny:Gyl’:_[a_Za_Z—l_ axpa—ylo

3
2 2 2 2
3 [\ 0z dy oz dy

H=TAp/3, K=Ap/3, J=-Ap/6, Jo=—Ap, Q=2Ap/3.

], HOZAp—6H,

Y

(13)
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The chemical potential difference is given by

Adp T o (M) — kV2Ap. (14)
P
The interfacial energy x, the temperature T', the interaction strength parameter
A, the mobility I' and the relaxation times 7, and 74 (in equations (4) and (5))
are free to be varied to change the properties of the binary fluid. Here these
parameters have the values k = 0.001, 7= 0.5, A = 1.1, ' = 0.1 and 74 = 0.789.
The relaxation parameter for the whole fluid determines the viscosity of the fluid
as
27, — 1

v = T (15)

With this selection of parameters g; ~ 3¢g,/4 4+ g,/4 and g2 =~ g, /4 + 3¢, /4.

The macroscopic equations for the binary fluid system can be found using a
Taylor expansion technique [14, 18, 15] to give, in the incompressible limit, the
continuity equation

dp
E—FV',O’LL—O, (16)

the Navier-Stokes equation

I(pu)
ai

+ (V- pu)u=—Vpo +vV:i(pua) + VIV - (pu)] + F,  (17)
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where v and ( are the kinematic and bulk viscosities and pg is the pressure; and

the convection-diffusion equation

oA
a—t"’ + V(Apu) = TOVZAu + 7, (18)

where 6 is the diffusion coefficient and Z can be neglected [18].

B Dimensional parameters

The wave parameters for the two waves and the units they are measured in are

shown in table 2.

wWavepy wave, g
parameter || value unit value ‘ unit
hy 0.245 m 414 lu
ha 0.254 m 610 lu
A 0.740 m 1024 lu
k 8.49 m~! 6.14 x 1072 | lu=!
w 1.9 s71 1.73 x 1072 | (time-steps)™*
v 1.0 x 107% | m%s~! || 0.05 lu?(time-steps) ™!
) 7.3x107* | m 5.37 lu
g 9.8 ms™' || 9.0 x 1072 | lu (time-steps)™*
a 0.015 m 17.3 lu
c 0.22 ms™ || 0.282 lu (time-steps)™*
) 0.019 m 10 lu

Table 2: The value of the parameters describing wave,;, and wave,, and the units
in which they are measured. The depth of the upper and lower fluids are hy and
hsy respectively, A is the wavelength, k is the wavenumber, w the frequency, v the
viscosity, & is the boundary layer thickness (v/w)'/?, g is the acceleration due to
gravity, a is the wave amplitude, ¢ is the wave celerity w/k, and [ is the interface
thickness.
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C First-order analytic solution

Based on the analysis of Thorpe [29], it can be shown that the streamfunction v,

defined such that uw = —1, and w = ¥, satisfies the vorticity equation [5, 28]

V2 — 2 = Qu 4+ Qo+ Qu+ Q. (19)
p+p

where

Qv = J(v2¢7¢)t7

Qb = _ﬁ‘](ﬁv ¢)x7

Qi = a5 (A lJ(V,0) = Vi (20)
(o [T (s ) = il + (p 4 5): [T (8208) = 0]}

V(vzqvax - v2¢zz)t7

I

Qv

and the subscripts represent differentiation, ¢ is the acceleration due to gravity,
p(z) is the static density profile, p(x,z,t) is the small density fluctuations due
to the wave motion, .J is the Jacobian derivative: J(a,b) = b.a; — bya. and @,
Qp, Qg and @, represent non-linear terms. Here (), contains terms which are
neglected when the Navier-Stokes equation is linearised; (), contains non-linear
terms which arise from the buoyancy equation; (J; contains terms which are
neglected in the Boussinesq approximation; and (), contains the viscous terms.

Assuming that @), can be neglected, solutions for equation (19) can be obtained
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[5, 28] by means of a perturbation expansion in ¢ = ak following Thorpe [29]:
Wz, z,t) = UM (z)elhe=wt) L 2@ (5)e2ilke=wt) 1 (21)

To first order this gives [5, 28]

2

/ A

Note that this reduces to Thorpe’s equation [29] if we make the Boussinesq ap-
proximation, an approximation which can be made in the ocean. In the wave
tank and simulations the Boussinesq approximation is satisfactory for the first
order expansion considered here, however, it could not be applied in a higher
order theory. Equation (22) can be solved with the bottom boundary condition
=0

V(T 2 ottome ) = 0 and the ‘rigid lid” surface condition ¥(x, 24 1 face )

using a ‘shooting method’ [30].
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Figure Captions
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Figure 1: A schematic diagram of the wave tank and laser system.

Figure 2: Vector plot of the dimensionless velocity /¢ for wave,, at time 1.

Figure 3: Vector plot of the dimensionless velocity w/c for wave, ; corresponding
to wavepry in figure 2.

Figure 4: Vector plot of the dimensionless velocity /¢ for wave,, at time 2.

Figure 5: Vector plot of the dimensionless velocity w/c for wave, ; corresponding
to wavepry, in figure 4.

Figure 6: The horizontal component of the dimensionless velocity v’ = u/c as a
function of the dimensionless length z/A for the two troughs shown in figure 2
(x) and figure 4 (+). The dashed line represents the simulation results. Also
shown, for comparison, is the linear solution (solid line), see appendix C.

Figure 7: The horizontal component of the dimensionless velocity v’ = u/c as a
function of the dimensionless length z/A for the crest shown in figure 4 (+). The
dashed line represents the simulation results. Also shown, for comparison, is the
linear solution (solid line), see appendix C.

Figure 8: The vertical component of the dimensionless velocity w’ = w/c as a
function of the dimensionless length z/A at @ = A/4 shown in figure 2 (x) and
figure 4 (+). The dashed line represents the simulation results. Also shown, for
comparison, is the linear solution (solid line), see appendix C.
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