
The Clinical Document Editor – a Powerful Tool for CDA Implementation

Philip Scott

1
, Robert Worden

2
, David Bowen

3

1
University of Portsmouth, Portsmouth, UK.

2
Open Mapping Software Ltd, Cambridge, UK.

3
Great Ormond Street Hospital for Children, London, UK.

Abstract

Background: Documents constructed according to the HL7 Clinical Document Architecture

(CDA) need to be reviewed, edited and approved by an author, who is usually a clinician. The

CDA specification does not require any particular editing tool to be used in creating CDAs.

The tools used to edit CDAs have typically been specific to a particular profile of CDA, and

even to the application using that profile. There are widely used style sheets to render and

view CDA documents, but there are no comparable widely deployed tools for creating the

CDA itself. Objectives: This paper describes an open source toolset to create production-

quality, clinician-oriented, web-based editors and viewers for any profile of CDA. Methods:

We illustrate the process of developing and deploying a clinical document editor using the

example of the Consent Directive CDA. We introduce the Clinical Document Constructor

Architecture. Results: The Clinical Document Editor toolset allows fully-functioning,

clinician-ready editors to be rapidly developed and deployed for any CDA profile.

Conclusions: The emphasis hitherto has been on the structure and computability of CDA

documents, but the lack of tools to produce and edit the CDA format is now a significant

constraint on its adoption. Tools to efficiently create and edit CDA documents are an essential

step in making CDA applications acceptable to practicing clinicians, and thus in realizing the

potential of CDA for healthcare interoperability.

Keywords

CDA, HL7, greenCDA, composition, construction, creation, authorship.

Correspondence to:

Dr Philip Scott

University of Portsmouth

Lion Terrace, Portsmouth PO1 3HE, UK.

E--mail Philip.scott@port.ac.uk

1 Introduction

Healthcare interoperability is the business of making healthcare IT systems effectively share

information. Interoperability is becoming increasingly important, at both national and local

levels, to deliver better patient care and value for money, in a period of over-stretched

healthcare budgets and ageing populations. It depends almost entirely on having agreed and

workable standards for healthcare information. The HL7 Clinical Document Architecture

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(CDA) is such a standard, and is a central component of interoperability programmes across

the world [2, 4-6]. However, there are a number of issues in the practical deployment of

CDA.

1.1 CDA Complexities

The first issue is that the HL7 CDA standard is technically highly complex. This complexity

imposes a steep learning curve on developers using CDA to interface their systems, and

significantly increases the costs and timescales of building CDA interfaces.

A second problem is that, as the name implies, CDAs are documents. They are therefore not

just to be created automatically from data in healthcare IT systems; they need to be reviewed,

edited and signed off by authors, who are typically qualified clinicians. There is a dearth of

effective tools to allow clinicians to do this job. The task of creating CDA documents is often

supported with only a low level of automation, leading to inefficient use of clinicians’ time,

and to errors and omissions in the documents.

These two problems are related. The high technical complexity means that the serialized

XML format of CDA is very different from anything a clinician would want to review or edit;

therefore the editing tools have a lot of work to do, to bridge the gap between the complex

XML representation and a clinician-friendly editor view. So editing tools are hard to build,

and there are not many good ones available. Those that do exist tend to be specialized to a

particular domain or application, such as for creation of discharge summaries.

1.2 The role of greenCDA

This paper suggests that not only are the two problems closely related; but also their solutions

are closely related, through the development of ‘greenCDA’ [3]. The term greenCDA defines

a much simplified XML format, which contains all the variable data in a CDA for a specific

use case, but which can be transformed to the full standard-conformant CDA by an automatic,

reliable transform. The idea of greenCDA was proposed to simplify the task for developers

needing to interface their systems via standard CDA; but it can equally simplify the task of

presenting that information to a clinician for editing and approval.

The ‘green’ version of any CDA contains precisely that variable information which differs

from one CDA instance to another, and which needs to be populated (for instance by

extracting data from existing applications) to make a full CDA instance. It contains this

information in the simplest possible form, with none of the HL7 fixed information (such as

classCodes and coding systems) which adds to the developer’s workload. So a greenCDA is

typically three times smaller, and much simpler to understand, than a full CDA. By the same

token, the greenCDA contains precisely the variable information which needs to be presented

to the clinician and edited by him or her. Therefore the greenCDA is a very good starting

point for presenting information in a clinician-friendly form, for editing and approval.

1.3 Semantic mapping

We have previously reported the use of semantic mapping to simplify the use of CDA by

generating reliable two-way transforms between canonical and ‘green’ CDA. The essence of

the method is to map disparate data structures (defined as XML schemas) to a common UML

class model and from this to generate two-way transformations [7-8]. The result is a flattened

XML structure that preserves the semantic precision of canonical CDA while replacing

machine-orientated fixed attribute codes in deeply nested XML structures with humanly

meaningful business names. This paper describes an Open Source toolset which extends that

approach to the construction of CDA documents.

1.4 Functional objectives

The editing toolset described in this paper allows developers rapidly to create clinical

document editors with the following properties:

(a) Pre-population of the CDA with coded data from any data source, which can then be

edited;

(b) Full text editing of any variable field in the CDA, including extended descriptive text;

(c) Easy parameterized configuration of the layout and appearance of the editor;

(d) Drop-down menu selection for fields with coded values;

(e) Automatic populating of fields which depend on the values of other fields;

(f) Validation of all user-entered data;

(g) Role-based access control, giving different authors the ability to edit or view different

parts of the document, in a pipelined workflow;

(h) Several differently-configured editors may be developed for the same CDA profile;

(i) The editor generates a fully conformant CDA instance at the end of the process.

2 Methods

We illustrate the process of developing and deploying a clinical document editor using the

example of the Consent Directive CDA, a draft standard for trial use (DSTU) issued by HL7

in May 2010. This is a deliberately simple use case that does not take content from any back-

end data store. We also introduce the Clinical Document Constructor Architecture.

2.1 Consent Directive Use Case

The Consent Directive addresses the problem of patients or their authorised representatives

giving permission for certain people to see their medical records. A consent directive is in

effect a statement by the patient along the following lines: “I wish the following set of people

(A, B, C…) to be able to see my healthcare records (of types X, Y, Z…) for the following

purpose (…), over the time period (...)”.

Patient consent is becoming increasingly important in territories such as the UK, where

patient access to and control of their own healthcare records is now an important element of

the national healthcare information strategy [1]. Therefore it is important to have a standards-

based way to exchange information about the access consents which a patient has defined.

There needs to be a means for the patient (or their representative) to edit and alter the

permissions he or she has defined, for different caregivers to have access to his or her health

records. So the patient needs to be able to create, edit and modify HL7 Consent Directive

CDAs. As part of the “miConsent” project, funded by the UK Government’s Technology

Strategy Board (TSB) and the Wellcome Trust “Sintero” project, we have created an editor

for this purpose, using the tools and approach described here. This example serves to illustrate

the process of defining a clinical document editor for any CDA profile, by the same process.

2.2 greenCDA Mapping Definition

The first step in defining the editor is to define the greenCDA and the green to canonical CDA

transforms. This process is mostly automated, using the open source tools and methods

described in our previous papers [7-8]. The developer’s manual task is to pick out the leaf

nodes of the full CDA tree which need to be retained in the greenCDA, to decide which

internal nodes of the full CDA may be collapsed to simplify the structure and to give

meaningful ‘business’ names to all the nodes. The tools do the rest. This includes generating

a schema and example of the simplified XML and generating the precise two-way CDA

transforms.

An example of a ‘green’ Consent Directive is shown below.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ClinicalDocument xmlns="urn:hl7-org:v3">

 <id docId="1234"/>

 <patient birthDate="19461028" gender="2" patientId="11223344">

 <address>

 <city>Leicester</city>

 <streetAddressLine>3 Oadby Road</streetAddressLine>

 <state>Leics</state>

 </address>

 <email address="aperson@me.com"/>

 <name>

 <prefix>Mrs.</prefix>

 <given>Alice</given>

 <family>Person</family>

 </name>

 </patient>

 <author dateTime="20120531">

 <id authorId="11223344"/>

 </author>

 <body>

 <consentSection purpose="Treatment">

 <title>Consent Directive Details</title>

 <receivers>

 <receiver>

 <address>

 <city>Leicester</city>

 <streetAddressLine>3 Memory Lane</streetAddressLine>

 </address>

 <email address="bob@gppractice.com"/>

 <name>

 <prefix>Dr.</prefix>

 <given>Bob</given>

 <family>Hippocrates</family>

 </name>

 </receiver>

 </receivers>

 <informationTypes>

 <informationType code="GAIN" displayName="Global Appraisal of Individual Needs

(GAIN)"/>

 </informationTypes>

 </consentSection>

 </body>

</ClinicalDocument>

Manifestly this is a piece of vanilla XML, with none of the technical complexity usually

associated with HL7 V3 messages, such as CDA. The equivalent full CDA, which can be

produced by applying the automatically generated transform, is about four times larger and is

much more deeply nested.

2.3 CDA Editor

Having created the greenCDA mapping definition we now have a functioning editor for the

CDA, which works as shown in Figure 1.

Figure 1: CDA editing steps

Step 0 occurs before the other steps in the case where there is an existing full CDA to be

updated – for instance, when a patient wishes to change a consent directive he has previously

made. Then in step 0 the editor may use another generated transform to convert the full CDA

into a greenCDA, to be used in step 1. Alternatively, step 0 may be used with step 1 to view

an existing CDA, with no ability to change it. The other steps are as follows.

1. In the case where there is no existing CDA document, the editor (which is resident on

a web server) starts with either an empty ‘skeleton’ instance of the green CDA, or a skeleton

instance in which pieces of coded data from other systems have already been added, and

transforms it into HTML, which is sent to be shown on a browser.

2. The HTML displays whatever content is already in the Green CDA, and has input

fields where the user may enter text, and control buttons allowing the user to add or delete

optional and repeated parts of the green XML. The user fills in some of the text fields, and

may add optional or repeating elements.

3. JavaScript in the browser passes back information about the user actions as they occur.

This allows the editor on the server to update its green XML instance, and pass back updated

information in HTML to the browser (see later for what this information may be). The cycle

(1) – (2) – (3) may repeat an unlimited number of times.

4. When the user is satisfied with what he sees, he presses a ‘Finish’ button. This causes

the server code to take its current copy of the greenCDA instance, and convert it to a full

CDA instance, to be used in whatever way CDAs are used. The conversion is done using the

green to full CDA transform which was automatically created when defining the greenCDA.

As soon as any greenCDA definition has been created using the toolset, an editor with these

capabilities can be installed and run from any web server. It is only a basic raw editor, in the

following respects:

• Every variable field in the greenCDA can be edited, but only by free text input from

the user.

• The layout of all text fields is a default vertical layout, which is a set of 2*N HTML

tables with two columns: label and input area.

• The labels of the text input fields are default labels, taken from the tag names of the

greenCDA.

• All text input fields are single-line fields with a default size.

• There are button controls to add or remove all optional or repeating parts of the XML.

• There is no validation of entered data.

While this is only a very basic editor, it is editorially complete, in that the user can in

principle use it to create any greenCDA instance which is compatible with the greenCDA

schema – and thus to create any full CDA needed for the use case. It gives all the controls

needed to do this from a browser.

2.4 Editor Configuration

The next step is iteratively to refine the editor to remove these basic restrictions, and to turn it

into an editor fit to be put in front of end users. This is done in a largely parameter-driven

fashion. For all its operations, the editor consults a tabular ‘Editor Configuration File’. This

file is created by the developer, using a spreadsheet tool such as Microsoft Excel®, and stored

as a comma-separated-values (csv) file. It has detailed directives telling the editor what to do

at any node of the green XML. Editor configuration files can be developed and tested in a

rapid develop-and-test cycle with a turnaround of minutes for each iteration.

An extract of a typical editor configuration file is shown in Figure 2.

Figure 2: Example editor configuration file

The Editor Configuration file has one row for every possible XPath in the greenCDA, as

defined in the first column (which is automatically generated by the tools). The rest of each

row tells the editor, through a number of different directives in the other columns, what to do

at any node reached by that XPath. As the screenshot shows, there are several different types

of directive (Label, Size, etc.) each with different effects – and it is not necessary to use all of

them, if you are content with the default behaviour at that node.

Some editor directives (for instance, those for validation of user input) invoke Java methods

in an Editor support class supplied by the editor developer. A set of useful methods for these

purposes are supplied with the tools in a base support class.

The editor configuration file and a few Java support methods are sufficient to support a fully-

functioning, clinician-ready editor.

The editor is deployed by installing a header web page and a simple package on a web server,

such as Apache TomCat. The installation package includes the usual things required for a web

service, including:

• A set of fixed Java archive (.jar) files for Eclipse EMF and the editor tools.

• A Java archive for the class and methods developed by the editor developer for

special-purpose validation, dynamic menus, or data lookup.

• A small XML steering file defining the locations of other resources, such as fixed files

or databases, used by the editor.

• The editor configuration file.

• A few files created in the process of defining the greenCDA, which tell the editor

about the structure of the green CDA and how to transform it to and from full CDA.

• HTML for the editor entry page, together with a cascading stylesheet (css) and a small

fixed JavaScript file.

The detailed contents of this web server editor package are described, for the Apache Tomcat

web server, in the toolset documentation.

2.5 Editor Capabilities

In this section we describe the current set of directives available to control the editor at any

node of the green XML, and the extended editor capabilities they define.

Label: this directive overrides the default label (taken from the greenCDA tag name) with

something which may be more informative for the user.

Size: this directive allows the editor designer to set either the width of a single-line text-input

field, or the width and depth of multi-line text input fields.

Instructions: this directive may contain a number of pre-defined instructions to the editor,

separated by semi-colons. Some important instructions are:

• Horizontal: this introduces a horizontal table layout for all nodes below the node – so

that repeated groups of items become multiple rows of the table. This might, for instance, be

used to show medications in a table, with one row per medication.

• Section+, Section- : these either force or prevent the editor from introducing a section

divider at this level.

Menu: this allows the user to set the value of a data item by picking from a dropdown menu,

rather than free text input. It is possible to have a static set of values defined directly in the

editor directives file, and with different paired values for display to the user, and for storage in

the greenCDA, if required. Alternatively, the allowed values may be defined dynamically by a

Java method, which may for instance look up the values in some other file or database, or

make the values depend on the value of some other field.

Validate: This allows the editor designer to call a Java method to validate the data input for

the field, and to display any error message in a table. Java methods are provided out-of-the-

box for common and simple validations, but the designer may define any validation methods

and error messages he wishes.

Lookup: This allows the value of some field to be determined not directly by user input, but

by a lookup from other values dependent on input elsewhere in the greenCDA. For instance,

this gives a way to ensure that certain coded values in the CDA are consistent with values in

tables in the rendered text. It also offers a way to retrieve data automatically and populate any

part of the CDA which is provided by an external data source, such as a patient administration

system or a medications system.

Read, Hide: These directives selectively control access to parts of the document. They

depend on each user of the editor being assigned a role when he signs on to the editor. Then

the ‘Read’ directive states that all nodes below this node in the greenCDA are read-only for

any of the roles defined in that column; similarly the ‘Hide’ directive can make the nodes in

the sub-tree hidden from certain roles. The special role ‘all’ can be used to make parts of the

document read-only or hidden for all users of the editor.

CSS_Class: This directive allows the editor designer to assign a value to the attribute ‘class’

in the node of the displayed HTML, so that a cascading style sheet may format the node and

its descendants in some way dependent on the class.

Order: This directive allows the editor to present a set of sibling nodes of the greenCDA to

the user in a different order from that defined in the greenCDA.

By using these capabilities selectively across the nodes of the greenCDA XML, and by using

cascading style sheets to further control the editor appearance, it is possible to create one or

more web-based editors or viewers for any CDA, which have all the capabilities needed for

reliable, efficient editing and review of the necessary information.

By tuning the configuration file it is possible to do rapid iterative refinement of the

appearance and behaviour of an editor, to ensure that it meets clinicians’ needs.

We have described the currently available set of directives for tuning the behaviour of the

editors. As the tool framework is open source and will be refined with further use, it is likely

that further types of directive and capabilities will be added in response to requirements.

2.6 Clinical Document Constructor Architecture

In the discussion so far, we have dealt only lightly with two issues: the issue of gathering data

together, in greenCDA format, from a number of source systems to populate the coded data

parts of the CDA; and the issue of distributing the full CDA document once it has been made.

A fuller treatment of these issues is had by regarding the clinical document editor as the

central component of a three-component Clinical Document Constructor architecture. This

architecture is designed to have a clean simple greenCDA–based interface between its three

components, so that suppliers may competitively supply any of the three components, and

providers may independently choose best-of-breed elements for each component.

The Clinical Document Constructor architecture is illustrated in Figure 3.

Figure 3: Clinical Document Constructor architecture

Thus the task of gathering data from source systems belongs in the data gatherer component

1, which may be supplied by an integration supplier. The editor is the ‘document composer’

component 2. The task of distributing the resulting CDA belongs in the document sender

component 3. GreenCDA XML is the interface between all three components.

Because it is usually straightforward to convert data from its native format to the simple

greenCDA format, a simple version of the data gatherer component (1) can easily be built as

part of the editor configuration, using the Java extension methods described above. For more

complex applications involving many source systems, a specialized data gatherer component,

perhaps within an integration engine, is desirable. Similar remarks apply to the document

sender component.

3 Results

This section illustrates how these capabilities have been used in developing two editors for the

HL7 Consent Directive CDA. By using two different base HTML pages and editor directive

files, we have developed two independent editors for the same CDA. The first editor is used

for the purpose of a patient registering himself with some consent-assigning service; this

editor enables the patient to input only his or her demographic details, and fills in that part of

the CDA, hiding all parts of the CDA concerned with actually giving consent. The second

editor hides the demographic details, but allows the patient to add or remove the different

caregivers he wishes to give consent to.

These two editors are related in a simple workflow: first define the patient demographics, then

give and revoke consents for that patient. The editor framework has the necessary hooks to

define this and more complex or state-dependent workflows.

The appearance of both these editors is rather basic, as the project did not have budget for

extensive refinement. More could easily have been done on the appearance of the editors,

with only modest extra work – mainly in refining a cascading style sheet.

Figure 4 shows the appearance of the ‘register patient’ editor.

Figure 4: Register Patient Editor

Visible in this figure are:

• Drop-down menus are used for the name prefix, and for the gender. The user-visible

gender values are not the values stored in the XML (which uses gender codes 1, 2, etc.).

• Horizontal layout is used for the person’s name, and address. Parts of the address

have been re-ordered compared to the greenCDA.

• Validation has detected errors in the NHS number and the date of birth.

Once the patient has completed using this editor, the partially completed greenCDA is saved.

At this editing session or in subsequent sessions, when the patient wishes to give or revoke

consents, this partially completed CDA is retrieved, and the appearance of the second

‘consent-giving’ editor is shown in Figure 5.

Figure 5: Consent-giving Editor

Visible in this figure are:

• The patient’s email address was used to retrieve the appropriate partially-filled consent

directive.

• Patient demographic details have been hidden, as they are not relevant.

• It is assumed there is a separate process (not shown here) for registering carers, and for

defining a short-list of carers whom the patient may wish to give consent to. This information

is stored in a database.

• The patient sees the details of carers he has already given consent to, in a table.

• The possible actions (in the right-hand ‘Action’ cells of the table) are to add or remove

a receiver/carer row, or to reorder the rows.

• All the patient needs to do is to choose the email address (assumed known) of a new

carer he wishes to give consent to. Other details of that carer are then filled in automatically

by lookup from the database. If it turns out to be the wrong carer, the row can be removed.

• The links at the bottom of the screen are for test purposes only, allowing a developer

directly to view the greenCDA or full CDA

Both of these editors were developed using fairly simple tweaking of the ‘raw’ editor which

comes out of the process of defining the green Consent Directive CDA, spending a few hours

in tuning an editor configuration file and the few small Java support methods (for validation

and data lookup) to which it refers.

4 Discussion

In order for the CDA standard to achieve its full potential in improving interoperability

between healthcare systems, it needs to be acceptable to two key communities: to developers

who need to build interfaces using CDA, and to clinicians who will author CDA documents. It

can be argued that the clinicians are the more important of these two communities. If CDA-

based systems are not appealing to clinicians and effectively reduce their workload, those

systems will be used unwillingly or not at all in clinical practice.

We contend that greenCDA on its own is a major step forward in making the CDA standard

acceptable and deployable by the developer community. It reduces the technical problems of

interfacing systems to CDA to a standard run-of-the-mill XML interfacing problem, with

none of the extensive technical complexity of HL7 RIM-based models.

The development described here of a Clinical Document Editor framework builds on

greenCDA, to make CDA-based systems more acceptable and efficient for clinicians. It is

now possible rapidly to build and configure editors which automatically gather the necessary

information from source systems, present it in a clear form to clinicians, allowing them to

edit, review or approve it within access controls appropriate to their role.

A typical application for the Clinical Document Editor is in discharge messages from acute

hospital trusts in the UK. The Royal College of Physicians of London has defined a set of

headers and required content for discharge messages, to be adapted to individual local needs;

and the NHS have defined a CDA-based document profile to embody this information.

Providers of primary care are very keen to receive more prompt and high quality discharge

messages from acute care, particularly including accurate and up-to-date information about

medications. The Clinical Document Editor framework can be used to build clinician-ready

editors for these CDA discharge documents, which automatically capture medication

information from acute trust systems where that is available – so that clinicians do not need to

re-enter medication information, in order to send it reliably in standard CDAs to primary care

or other recipients. The same editing tools can also be used to view the resulting CDA

discharge documents, in any clinical setting, using only a web browser. Once a generic editor

for discharge summaries has been created, individual NHS trusts could then configure and

extend it to meet their local needs. This illustrates the use of the Clinical Document Editor to

realize the potential of CDA for healthcare interoperability.

The use of greenCDA and the associated editor tools is not restricted to the UK. The toolset is

available from http://www.openmapsw.com/downloads/downloads.htm. We look forward to

working with the developer community to realize and extend the potential of the Clinical

Document Editor toolset.

References

[1] Department of Health, The power of information: putting all of us in control of the health and care

information we need, <http://informationstrategy.dh.gov.uk/about/the-strategy/> [Accessed 7 June 2012]

[2] R.H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F.M. Behlen, P.V. Biron, A. Shabo Shvo, HL7 Clinical

Document Architecture, Release 2, J Am Med Inform Assoc 13 (2006) 30-39.

[3] HL7. GreenCDA Project. <http://wiki.hl7.org/index.php?title=GreenCDA_Project> [Accessed July 2011].

[4] D. Kaminker, HL7 Clinical Document Architecture Ambassador Briefing, 11th International HL7

Interoperability Conference, Rio de Janeiro, Brazil, 2010.

[5] NHS Connecting for Health. NHS Interoperability Toolkit Correspondence releases.

<http://www.uktcregistration.nss.cfh.nhs.uk/trud3> [Accessed 9 August 2012].

[6] Office of the National Coordinator for Health Information Technology, Health Information Technology:

Initial Set of Standards, Implementation Specifications, and Certification Criteria for Electronic Health

Record Technology, Federal Register 75 (144) <http://www.gpo.gov/fdsys/pkg/FR-2010-07-28/pdf/2010-

17210.pdf> [Accessed January 2011]

[7] P. Scott, R. Worden, Semantic mapping to simplify deployment of HL7 v3 Clinical Document

Architecture, J Biomed Inform (2012).

[8] R. Worden, P. Scott, Simplifying HL7 version 3 messages, Studies in Health Technology and Informatics

169 (2011) 709-713.

