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Abstract Prism has been developed as a modular classification rule generator following 

the separate and conquer approach since 1987 due to the replicated sub-tree problem 

occurring in Top-Down Induction of Decision Trees (TDIDT). A series of experiments 

have been done to compare the performance between Prism and TDIDT which proved 

that Prism may generally provide a similar level of accuracy as TDIDT but with fewer 

rules and fewer terms per rule. In addition, Prism is generally more tolerant to noise with 

consistently better accuracy than TDIDT. However, the authors have identified through 

some experiments that Prism may also give rule sets which tend to underfit training sets 

in some cases. This paper introduces a new modular classification rule generator, which 

follows the separate and conquer approach, in order to avoid the problems which arise 

with Prism. In this paper, the authors review the Prism method and its advantages 

compared with TDIDT as well as its disadvantages that are overcome by a new method 

using Information Entropy Based Rule Generation (IEBRG). The authors also set up an 

experimental study on the performance of the new method in classification accuracy and 

computational efficiency. The method is also evaluated comparatively with Prism. 

 

1 Introduction  

 

Automatic generation of classification rules has been an increasingly popular technique 

in commercial applications such as a decision making system. Classification rule 

generation approaches can be subdivided into two categories: ‘divide and conquer 

approach’ [1], which is also known TDIDT and induces rules in the intermediate form of a 

decision tree,  and ‘separate and conquer approach’, also called ‘covering approach’, 

which induces ‘If-Then’ rules directly from training instances. Both approaches can be 

traced back to 1960s [2, 3] and achieve a comparable accuracy. A well-known example 

of classification rule generators following ‘divide and conquer approach’ is C4.5, a 

version of decision trees, introduced by Quinlan [1]. It is a widely used method but its 

representation has a serious potential drawback as mentioned in [4] in that a tree may 

contain many redundant terms (attribute-value pairs) as there are rules which cannot be 

easily represented by a tree structure if these rules have no common attributes. This 

problem is called replicated subtree problem and will be mentioned in section 2 in 

details.  The existence of this problem motivated the development of Prism method [5] 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Han.Liu@port.ac.uk
mailto:Alexander.Gegov@port.ac.uk


        2                                                                                                                   Han Liu and Alexander Gegov 

 

with the aim to generate modular classification rules using the separate and conquer 

approach.  

   In this paper, section 2 introduces the replicated subtree problem and the principle of 

TDIDT and Prism in generating classification rules. It also describes the advantages of 

Prism compared with TDIDT and its disadvantages that are going to be avoided in the 

new method that the authors proposed. Section 3 explains the proposed method and 

mention about dealing with some common issues arising in classification tasks such as 

clash, conflict resolution and continuous attributes. Section 4 describes the setup of 

experimental study and presents the results. Section 5 evaluates the performance of this 

proposed method analysing its strengths and limitations. Section 6 summarises the 

contribution of the current work to real world applications and highlights future work 

aimed at overcoming the limitations identified in section 5. 

 

2 Related Work 

 

As stated in Section 1, a decision tree may result in a replicated subtree problem. The 

Prism algorithm has been developed to solve this problem. This section describes the 

principle of the two algorithms and compare them in accuracy and computational 

efficiency as well as identifies some limitations of Prism in the following subsections. 

 

2.1 Decision Tree Algorithm 

 

Decision trees have been a popular method as a means of generating classification rules 

and they are based on the fairly simple but powerful TDIDT algorithm [4]. The basic idea 

of this algorithm can be illustrated in Figure 1. 

 

 

IF all cases in the training set belong to the same class 

THEN return the value of the class 

ELSE  

(a) Select the attribute A to split on* 
(b) Sort the instances in the training set into non-empty subsets, one for each value 

of attribute A 
(c) Return a tree with one branch for each subset, each branch having a descendant 

subtree or a class value produced by applying the algorithm recursively for each 
subset in turn. 

 
*When selecting attributes at step (a) the same attribute must not be selected more 

than once in any branch. 

 

Fig.1 TDIDT Tree generation algorithm [4] 

 

    One popular method of attribute selection for step (a) illustrated in figure 1 is based on   

average entropy of an attribute [4], which is to select the attribute that can minimize the 

value of entropy for the current subset being separated, thus maximize information gain. 

Some examples of decision trees using entropy as attribute selection technique include 

ID3, C4.5 and C5.0. 
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    Entropy was introduced by Shannon in [6], which is a measure of the uncertainty 

contained in a training set, due to the presence of different classifications [4]. It can be 

calculated in the following way [4]: 

 To calculate the entropy for each attribute-value pair in the way that the entropy 

of a training  set is denoted by E and is defined by the formula: E= -∑K
i=1pi log2 pi 

summed over the classes for which pi ≠0 (p denotes the probability of class i) if 

there are k classes. 

 To calculate the weighted average for entropy of resulting subsets.  

    For the conditional entropy of an attribute-value pair, pi denotes the posterior 

probability for class i when given the particular attribute-value pair as a condition. On the 

other hand, for initial entropy, the pi denotes the priori probability for class i. The 

information gain is calculated by subtracting the initial entropy from the average entropy 

of a given attribute. 

 

2.2 Replicated Subtree Problem 

 

In a PhD project at the Open University, Cendrowska criticised the principle of 

generation of decision trees which can then be converted into a set of individual rules, 

compared with the principle of generation of classification rules directly from training 

instances [4]. She comments the following: 

   “The decision tree representation of rules has a number of disadvantages…[Most] 

importantly, there are rules that cannot easily be represented by trees.” 

    She gave an example with the following rule set: 

 

   Rule 1: If a=1 and b=1 Then class= x 

   Rule 2: If c=1 and d=1 Then class= x 

 

    This kind of rule set may not fit into a tree structure. However, if they are forced to fit 

into a tree structure, then it is required to add other terms to at least one of the two rules, 

which would require at least one other rule to cover instances excluded by the addition of 

other terms. 

    For the above example, we need to have four attributes a, b, c and d, each of which 

has three possible values 1, 2 and 3, and is to be selected for partitioning at the root 

node. 

    The rule set would be listed as follows and it is illustrated in Figure 2: 

 

   If a=1 and b=1 then class=x 

   If a=1 and b= 2 and c=1 and d=1 then class=x 

   If a=1 and b=3 and c=1 and d=1 then class=x 

               If a=2 and c=1 and d=1 then class= x 

   If a=3 and c=1 and d=1 then class=x 

 

    It was pointed out in [9] that ID3 is difficult to manipulate for expert systems as it is 

required to examine the whole tree in order to extract rules about a single classification. 

It has been partially solved by converting a tree to a set of individual rules but there are 

some rules that are not easily fit into a tree structure as is the replicated subtree problem 
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mentioned above. In a medical diagnosis system, this problem may lead to unnecessary 

surgery [5, 9].  The reasons identified in [9] are the following: 

 The decision tree is attribute oriented  

 Each iteration in the generation process chooses the attribute on which to be split 

aiming at minimizing the average entropy. i.e. measuring the average uncertainty. 

However, this doesn’t necessarily mean that the uncertainty for each rule is reduced. 

 An attribute might be highly relevant to one particular classification and irrelevant to 

the others. Sometimes only one value of an attribute is relevant. 

 
 

Fig. 2 Cendrowska’s replicated subtree example [7, 8] 

 

2.3 Prism Algorithm 

 

As mentioned in section 1, the development of Prism algorithm was motivated due to the 

existence of the replicated subtree problem.  Original Prism was introduced by 

Cendrowska in [5] and its basic idea can be illustrated in Figure 3.  

 

 
For each classification (class= i) in turn and starting with the complete training set each 
time: 

1. Calculate the probability class =I for each attribute-value pair. 
2. Select the attribute-value pair with the largest probability and create a subset of 

the training set comprising all the instances with the  selected attribute-value pair 
(for all classifications) 

3. Repeat 1 and 2 for this subset until a subset is reached that contains only 
instances of class i. The induced rule is then the conjunction of all the attribute-
value pairs selected. 

4. Remove all instances covered by this rule from the training set. 
Repeat 1-4 until all instances of class I have been removed 
 
*For each rule, no one attribute can be selected twice during generation 

 

Fig. 3 Basic Prism Algorithm [4] 
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     The original Prism is based on the assumption that all attributes in a training set are 

categorical. When there are actually continuous attributes, one way to deal with that is 

discretisation of attribute values prior to generating rules as described in [4, 7, 8] such as 

ChiMerge [10]. In addition, Bramer’s Inducer software [11] provides implementation that 

deals with continuous attributes as described in [4, 7, 8]. On the other hand, the original 

version of Prism doesn’t take clash problem into account. However, the Inducer software 

implementations of Prism algorithm provide the strategy of dealing with a clash set as 

the following [4]: 

 

 
If a clash occurs while generating the rules for class i: 

1. Determine the majority class for the subset of instances in the clash set. 
2. If this majority class is class I, then compute the induced rule by assigning all 

instances in the clash set to class i. If it is not, discard the whole rule. 
3. If the induced rule is discarded, then all instances that match majority class 

should be deleted from the training set before the start of the next rule induction. 
If the rule is kept, then all instances in the clash set should be deleted. 

 

 

Fig. 4 Dealing with clashes in Prism 

 

    Another problem considered in Prism called tie-breaking is that there are two or more 

attribute-value pairs which have the equally highest probability. The original Prism 

decides to choose arbitrarily whereas Bramer improved it by choosing the one with the 

highest total frequency [4]. 

    In addition, with the motivation of improving the computation efficiency, Bramer 

pointed out that the original Prism always deletes instances covered by rules generated 

so far and then resets the training set to its original state once the generation for a target 

class is finished. This undoubtedly increases the number of iterations resulting in high 

computational cost [12]. Therefore, Bramer developed two new versions of Prism called 

PrismTC, which chooses the majority class as the target class for each rule being 

generated, and PrismTCS, which chooses the minority class as the target class for each 

rule being generated, respectively. Both versions select a new class as the target class 

after a rule generated and do not reset the dataset to its original state as well as set an 

order in which rule is being applied to predict unseen instances. Prism TCS does not 

restore the training set to its original state and thus is faster than Original Prism but also 

provides a similar level of classification accuracy [8, 12]. However, Bramer’s experiments 

show that PrismTC doesn’t compare well against Original Prism and PrismTCS [8, 12]. 

 

2.4 Comparing Prism with Decision Tree Learning 

 

Bramer described in [13] a series of experiments to compare the performance of Prism 

against that of TDIDT on a number of datasets. He concluded the following: 

 Prism algorithm may give classification rules at least as good as those generated 

from TDIDT algorithms. 

 There are generally fewer rules but also fewer terms per rule generated, which is 

likely to aid their comprehensibility to domain experts and users. This result 
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indicates that Prism generally performs consistently better than TDIDT in terms of 

accuracy. 

 The main difference is that Prism generally prefers to leave a test instance 

unclassified rather than to give it an incorrect classification. 

 The reasons why Prism is more noise tolerant than TDIDT may be due to the 

generation of fewer terms per rule in most cases. 

 Prism generally has higher computational efficiency than TDIDT and it may be 

further improved by parallelisation.  

     As mentioned in section 2.2, there is a case that only one value of an attribute is 

relevant to a particular classification and that ID3 (a version of decision tree) is not taken 

into consideration. Deng pointed out in [9] that the Prism method is attribute-value-

oriented and pays much attention to the relationship between an attribute-value pair and 

a particular classification, thus generating fewer but more general rules than a decision 

tree learning method. 

2.5 Limitations of Prism 

Prism algorithm also has some disadvantages. One of them is that the Original version 

of Prism may generate a rule set which may result in a classification confliction in 

predicting unseen instances. Let us see the example below: 

 

Rule 1: If x=1and y=1 then class= a 

Rule 2: If z=1 then class= b 

    Therefore, what should the classification be for an instance with x=1, y=1 and z=1? 

One rule gives class a, the other one gives class b. We need to give a method of 

choosing only one classification to classify the unseen instance [4]. This method is 

known as a conflict resolution strategy. Bramer mentioned in [4] that Prism uses the ‘take 

the first rule that fires’ strategy in dealing with the conflict problem and therefore it is 

required to generate the most important rules first as much as possible. However, the 

original Prism cannot actually introduce an order to a rule according its importance as 

each of those rules with a different target class is independent of the others. As 

mentioned above, this version of Prism would restore the training set to its original size 

after the completion of rule generation for class i and before the start for class i+1. This 

indicates the rule generation for each class may be done in parallel so the algorithm 

cannot directly rank the importance among rules. Thus the ‘take the first rule that fires’ 

strategy may not deal with the confliction well. The PrismTCS doesn’t restore the dataset 

to its original state unlike original Prism and thus can introduce the order to a rule 

according to its importance. This problem is partially resolved but PrismTCS may 

potentially lead to underfitting of a rule set. PrismTCS always chooses the minority class 

in the current training set as the target class of the rule being generated. Since the 

training set is never restored to its original size as mentioned above, it can be proved 

that one class may always be selected as the target class until all instances of this class 

have been deleted from the training set because the instances of this minority class 

covered by the current rule generated should be removed prior to generating the next 

rule. This case may result in that the majority class in the training set may not be 

necessarily selected as the target class to generate a list of rules until the termination of 
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the whole generation process. In this case, there is not even a single rule having the 

majority class as its consequence (right hand side of this rule). In some implementations, 

this problem has been partially solved by assigning a default class (usually the majority 

class) in predicting unseen instances when there is not a single rule that can cover this 

instance. However, this should be based on the assumption that the training set is 

complete. Otherwise, the rule set may still underfit the training set as the conditions of 

classifying instances to the other classes are probably not strong enough. On the other 

hand, if a clash occurs, both the original Prism and PrismTCS would prefer to discard the 

whole rule than to assign the majority class to the rule. As mentioned above, Prism may 

generally generate more general and fewer rules than decision tree learning methods. 

One reason is potentially due to discarding rules.  In addition, the clash may happen in 

two main ways as follows: 

1) One of the instances has at least one incorrect record for its attribute values or its 

classification [4]. 

2) The clash set has both (or all) instances correctly recorded but it is impossible to 

discriminate between (or among) them on the basis of the attributes recorded and 

thus it may be required to examine further values of attributes [4]. 

    When there is noise present in datasets, Prism may be more tolerant than decision 

tree learning as mentioned above. However, if the reason why a clash occurs is not due 

to noise, then it may result in underfitting of the rule set by discarding rules as it will leave 

many unseen instances unclassified in prediction stage. Prism would decide to discard 

the rules in some cases is probably because it uses the so-called ‘from outcome to 

cause’ approach. As mentioned in section 2.3, each rule being generated should be pre-

assigned a target class and then the conditions should be searched by adding terms 

(antecedents) until the adequacy conditions are met. Sometimes, it may not necessarily 

receive adequacy conditions even after all attributes have been examined. This indicates 

the current rule covers a clash set that contains instances of more than one class. If the 

target class is not the majority class, this indicates the search of causes is not successful 

so the algorithm decides to give up by discarding the incomplete rule and deleting all 

those instances that match the target class in order to avoid the same case to happen all 

over again [7, 8]. This actually not only increases the irrelevant computation cost but also 

results in underfitting the rule set. 

 

3 Information Entropy Based Rule Generation Method 

 

As mentioned in Section 2, Prism has some obvious limitations. For this reason, a new 

rule generation method IEBRG using the separate and conquer approach is introduced. 

This method avoids the underfitting of data sets and does not lead to any redundant 

computational effort. 

 

3.1 Essence of the Method 

 

This method is attribute-value-oriented like Prism but it uses the ‘from cause to outcome’ 

approach. In other words, it doesn’t have a target class pre-assigned to the rule being 

generated. The main difference with respect to Prism is that IEBRG focuses mainly on 

minimising the uncertainty for each rule being generated no matter what the target class 
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is. A popular technique used to measure the uncertainty is information entropy as 

mentioned in section 2.1. Once the antecedents added so far can reduce the entropy of 

the subset to 0, there is no uncertainty remaining in the subset to decide a classification 

assigned to this rule as the consequence. The basic idea of IEBRG with using entropy 

can be illustrated in Figure 5. 

 

 
1. Calculate the conditional entropy of each attribute-value pair in the current 

subset 
2. Select the attribute-value pair with the smallest entropy to spilt on, i.e. remove 

all other instances that contain no attribute-value pair. 
3. Repeat step 1 and 2 until the current subset contains only instances of one 

class (the entropy of the resulting subset is zero). 
4. Remove all instances covered by this rule. 

Repeat 1-4 until there are no instances remaining in the training set. 
 
* For each rule, no one attribute can be selected more than once during generation. 
 

 

Fig. 5 IEBRG algorithm 

 

3.2 Justification of the Method 

 

As mentioned in Section 2.5, all versions of Prism need to have a target class pre-

assigned to the rule being generated. As mentioned in section 2.2, an attribute might 

be not relevant to some particular classifications. Sometimes only one value of an 

attribute is relevant. Therefore, the Prism method chooses to pay main attention to the 

relationship between an attribute-value pair and a particular class. However, the class 

to which the attribute-value pair is highly relevant is probably unknown, as can be seen 

from the example in Table 1 below with reference to the lens 24 dataset. This dataset 

shows that P (class=3|tears=1) =1 illustrated by the frequency table for attribute 

“tears”. The best rule generated first would be “if tears=1 then class=3”. 

 

Table 1 Lens 24 dataset example 

Class Label Tears=1 Tears=2 

Class=1 0 4 

Class=2 0 5 

Class=3 12 3 

total 12 12 

 

  This indicates that the attribute-value “tears=1” is only relevant to class 3. However, 

this is actually not known before the rule generation. According to the PrismTCS 

strategy, the first rule being generated would select “class =1” as the target class as 

it is the minority class (Frequency=4). Original Prism may select class 1 as well as it 

is of a smaller index. As described in [4], the first rule generated by Original Prism is 

“if astig=2 and tears=2 and age=1 then class=1”. Therefore, the computational 

performance is slightly worse than expected and the resulting rule is more complex. 

Sometimes, the Prism method may even generate an incomplete rule reaching a 



            Induction of Modular Classification Rules by Information Entropy Based Rule Generation  9 

 

 

clash as mentioned in 2.5 if the target class assigned is not a good fit to some of 

those attribute-value pairs in the current training set. Then the whole rule may be 

discarded resulting in underfitting and redundant computational effort. 

    In order to find a better strategy for reducing the computational cost, the authors 

proposed the method mentioned in section 3.1. In this technique, the first iteration of 

the rule generation process for the “lens 24” dataset can make the resulting subset’s 

entropy reach 0. Thus the first rule generation is compete and its rule is represented 

by “if tears=1 then class=3”.  

    In comparison with the Prism family, this algorithm may reduce significantly the 

computational cost. In addition, in contrast to Prism, the IEBRG method deals with 

clashes (introduced in section 3.3) by assigning the majority class in the clash set to 

the current rule. This may potentially reduce the underfiting of rule sets thus reducing 

the number of unclassified instances although it may increase the number of 

misclassified instances. On the other hand, the IEBRG may also have the potential to 

avoid clashes occurring better than Prism.  

 

3.3 Dealing with Clashes 

 

There are two principal ways of dealing with clashes mentioned in [4] as follows: 

1) Majority voting: to assign the most common classification of the instances in 

the clash set to the current rule. 

2) Discarding: to discard the whole rule currently being generated 

In this paper, the authors choose ‘majority voting’ as the strategy of dealing with this 

problem as the objective of this paper is mainly to validate this method and find its 

potential in improving accuracy and computation efficiency as much as possible.  

    

3.4 Dealing with Tie-breaking and Conflict  

The tie-breaking problem is solved by deciding which attribute-value pair is to be 

selected to split the current subset when there are two or more attribute-value pairs 

that equally match the selection condition. In the IEBRG method, this problem may 

occur when two or more attribute-value pairs have the equally smallest entropy. The 

strategy is the same as the one applied to Prism by taking the one with the highest 

total frequency as introduced by Bramer in [4].  

    The classification conflict problem may occur to modular classification rule 

generator such as Prism. Similarly, the IEBRG may also face this problem. The 

authors choose the ‘take the first rule that fires’ strategy which is already mentioned 

in section 2.3 because this method may potentially generate the most important rules 

first. Let us see the example below: 

 

Rule 1: if x=1 and y=1 then class= 1; 

Rule 2: if x=1 then class=2; 

This seems as if there is a conflict problem but the two rules can be ordered as rule 1 

is more important. In other words, the two rules can be represented in the following 

two ways: 

             Rule 2: if x=1 and y≠1 then class=2; 



        10                                                                                                                   Han Liu and Alexander Gegov 

 

This indicates that after the first rule has been received, the term ‘x=1’ can directly 

reduce the entropy of the subset to 0 as all uncertainty has been removed from the 

current set after removing those instances covered by the first rule. Thus the first rule 

is more important than the second one. 

4 Experimental Setup and Results 

 

In this experimental study, the authors use 10 datasets retrieved from the UCI repository 

[14] as illustrated by table 2 and 3. The authors set to compare the classification 

accuracy and computation efficiency performed by Prism and IEBRG. For accuracy 

measure, the authors choose to use cross-validation [4]. With regards to efficiency, the 

authors choose the whole dataset as training set to build the model and then use the 

same dataset to do testing. The efficiency is measured in terms of the number of rules 

and the number of terms (antecedents) per rule during modelling stage. For the Prism 

algorithm, the authors also count the number of discard rules as they actually rise the 

computational cost. The accuracy and efficiency are illustrated in Tables 2 and 3, 

respectively. 

   

Table 2 Classification accuracy: Prism vs IEBRG 

Dataset Prism IEBRG  

Lens24 75% 75% 

Vote  96% 93% 

Weather  67% 71% 

Contact-lenses 67% 75% 

Breast-cancer 72% 75% 

Lung-cancer 74% 78% 

Nurse  43% 61% 

Car  70% 71% 

Kr-vs-kp 65% 84% 

Tic-tac-toe 67% 46% 
 

 

Table 3 Computational efficiency: Prism vs IEBRG 

Dataset Prism IEBRG 

 Count(rules) Count(terms) 
per rule 

Count(discard 
rules) 

Count(rules)  Count(terms) 
per rule 

Lens24 9 2.25 1 4 1.25 

Vote  19 5.74 1 7 1.71 

Weather  3 2.0 1 2 1.0 

Contact-lenses 4 2.75 2 4 1.4 

Breast-cancer 12 1.33 0 7 1.0 

Lung-cancer 3 1.0 0 4 1.0 

Nurse  70 7.9 272 121 6.99 

Car  5 4.0 55 23 3.96 

Kr-vs-kp 77 6.74 0 9 1.0 

Tic-tac-toe 164 8.06 88 91 6.65 
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5 Evaluation 

Table 2 shows that IEBRG performs better than Prism in classification accuracy in most 

cases.  Table 2 also shows that the classification accuracy performed by IEBRG in ‘Tic-

tac-toe’ dataset is slightly worse than that done by Prism. The reason is not entirely clear 

but it may be due to the presence of noisy data as Prism is generally more tolerant to 

noise as mentioned in section 2.4. The authors need to take further investigation about 

the tolerance to noisy data for IEBRG. In addition, if the noise is actually present in a 

training set, this may be handled by feature selection techniques and pruning strategies.             

    In terms of computational efficiency, Table 3 shows that IEBRG performs better than 

Prism. It is obvious from the comparison of number of rules and number of terms per rule 

that IEBRG generates fewer but more general rules than Prism in most datasets. 

Although IEBRG generates more rules than Prism in three datasets namely ‘Lung-

cancer’, ‘Nurse’ and ‘Car’, it is obvious from the comparison of the number of terms per 

rule and number of discarded rules that IEBRG gives more general rules than Prism in 

two of the three cases and Prism discards more rules in ‘Nurse’ and ‘Car’ datasets. In 

both datasets, Prism not only increases significantly the redundant computational effort 

but also losses accuracy compared with IEBRG due to discarding many rules. This also 

shows that IEBRG performs better than Prism in dealing with clashes by assigning the 

majority class to a rule rather than discarding rules if the reason why clashes occur is not 

due to the presence of noise. This is probably because the attributes recorded in the 

dataset are not sufficient and the uncertainty remaining in the set may become 0 if one 

extra attribute is added to be examined. In this case, majority voting would potentially be 

the dominant strategy through looking at the results shown by table 2 and 3. On one 

hand, this may avoid underfitting of rule sets. On the other hand, this can increase the 

probability of getting correct classifications. However, it is also dependent on application 

domains. For example, in domains where the decision making system operates under 

uncertainty, it may be required to leave instances unclassified such as safety critical 

systems. 

 

6 Conclusion 

This paper has reviewed TDIDT and Prism as well as identified some limitations of 

Prism. A new modular rule generation method, called IEBRG, has been proposed and 

validated. The experimental study has shown that IEBRG has the potential to avoid 

underfitting of rule sets and to generate fewer but more general rules as well as to 

perform relatively better in dealing with clashes. IEBRG can also generate the most 

important rules first so that it can effectively avoid the classification conflict problem by 

taking the ‘take the first rule that fires’ strategy. However, the experiments are all based 

on datasets that contain no continuous attributes. Therefore, the authors will make 

further experiments against continuous attributes which can be dealt with by some 

strategies such as ChiMerge [10] and another strategy as described in [4, 7, 8]. 

Furthermore, the authors will investigate the overcoming effects of noise by using some 

pruning methods such as J-pruning, which has been applied to Prism [15] and decision 

trees [16], and Jmax-pruning, which has been applied to Prism [7, 8]. Both methods have 

shown good performance in experimental studies and are based on J-measure, which 

was introduced into the classification rules literature by Smyth and Goodman [17] who 
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strongly justified the use of J-measure as information theoretic means of quantifying the 

information content of a rule. 
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