
Han Liu
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace,
PO1 3HE Portsmouth, Email: Han.Liu@port.ac.uk

Alexander Gegov
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace,
PO1 3HE Portsmouth, Email: Alexander.Gegov@port.ac.uk

 1

Induction of Modular Classification Rules by Information Entropy

Based Rule Generation

Han Liu and Alexander Gegov

Abstract Prism has been developed as a modular classification rule generator following

the separate and conquer approach since 1987 due to the replicated sub-tree problem

occurring in Top-Down Induction of Decision Trees (TDIDT). A series of experiments

have been done to compare the performance between Prism and TDIDT which proved

that Prism may generally provide a similar level of accuracy as TDIDT but with fewer

rules and fewer terms per rule. In addition, Prism is generally more tolerant to noise with

consistently better accuracy than TDIDT. However, the authors have identified through

some experiments that Prism may also give rule sets which tend to underfit training sets

in some cases. This paper introduces a new modular classification rule generator, which

follows the separate and conquer approach, in order to avoid the problems which arise

with Prism. In this paper, the authors review the Prism method and its advantages

compared with TDIDT as well as its disadvantages that are overcome by a new method

using Information Entropy Based Rule Generation (IEBRG). The authors also set up an

experimental study on the performance of the new method in classification accuracy and

computational efficiency. The method is also evaluated comparatively with Prism.

1 Introduction

Automatic generation of classification rules has been an increasingly popular technique

in commercial applications such as a decision making system. Classification rule

generation approaches can be subdivided into two categories: ‘divide and conquer

approach’ [1], which is also known TDIDT and induces rules in the intermediate form of a

decision tree, and ‘separate and conquer approach’, also called ‘covering approach’,

which induces ‘If-Then’ rules directly from training instances. Both approaches can be

traced back to 1960s [2, 3] and achieve a comparable accuracy. A well-known example

of classification rule generators following ‘divide and conquer approach’ is C4.5, a

version of decision trees, introduced by Quinlan [1]. It is a widely used method but its

representation has a serious potential drawback as mentioned in [4] in that a tree may

contain many redundant terms (attribute-value pairs) as there are rules which cannot be

easily represented by a tree structure if these rules have no common attributes. This

problem is called replicated subtree problem and will be mentioned in section 2 in

details. The existence of this problem motivated the development of Prism method [5]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Han.Liu@port.ac.uk
mailto:Alexander.Gegov@port.ac.uk

 2 Han Liu and Alexander Gegov

with the aim to generate modular classification rules using the separate and conquer

approach.

 In this paper, section 2 introduces the replicated subtree problem and the principle of

TDIDT and Prism in generating classification rules. It also describes the advantages of

Prism compared with TDIDT and its disadvantages that are going to be avoided in the

new method that the authors proposed. Section 3 explains the proposed method and

mention about dealing with some common issues arising in classification tasks such as

clash, conflict resolution and continuous attributes. Section 4 describes the setup of

experimental study and presents the results. Section 5 evaluates the performance of this

proposed method analysing its strengths and limitations. Section 6 summarises the

contribution of the current work to real world applications and highlights future work

aimed at overcoming the limitations identified in section 5.

2 Related Work

As stated in Section 1, a decision tree may result in a replicated subtree problem. The

Prism algorithm has been developed to solve this problem. This section describes the

principle of the two algorithms and compare them in accuracy and computational

efficiency as well as identifies some limitations of Prism in the following subsections.

2.1 Decision Tree Algorithm

Decision trees have been a popular method as a means of generating classification rules

and they are based on the fairly simple but powerful TDIDT algorithm [4]. The basic idea

of this algorithm can be illustrated in Figure 1.

IF all cases in the training set belong to the same class

THEN return the value of the class

ELSE

(a) Select the attribute A to split on*
(b) Sort the instances in the training set into non-empty subsets, one for each value

of attribute A
(c) Return a tree with one branch for each subset, each branch having a descendant

subtree or a class value produced by applying the algorithm recursively for each
subset in turn.

*When selecting attributes at step (a) the same attribute must not be selected more

than once in any branch.

Fig.1 TDIDT Tree generation algorithm [4]

 One popular method of attribute selection for step (a) illustrated in figure 1 is based on

average entropy of an attribute [4], which is to select the attribute that can minimize the

value of entropy for the current subset being separated, thus maximize information gain.

Some examples of decision trees using entropy as attribute selection technique include

ID3, C4.5 and C5.0.

 Induction of Modular Classification Rules by Information Entropy Based Rule Generation 3

 Entropy was introduced by Shannon in [6], which is a measure of the uncertainty

contained in a training set, due to the presence of different classifications [4]. It can be

calculated in the following way [4]:

 To calculate the entropy for each attribute-value pair in the way that the entropy

of a training set is denoted by E and is defined by the formula: E= -∑K
i=1pi log2 pi

summed over the classes for which pi ≠0 (p denotes the probability of class i) if

there are k classes.

 To calculate the weighted average for entropy of resulting subsets.

 For the conditional entropy of an attribute-value pair, pi denotes the posterior

probability for class i when given the particular attribute-value pair as a condition. On the

other hand, for initial entropy, the pi denotes the priori probability for class i. The

information gain is calculated by subtracting the initial entropy from the average entropy

of a given attribute.

2.2 Replicated Subtree Problem

In a PhD project at the Open University, Cendrowska criticised the principle of

generation of decision trees which can then be converted into a set of individual rules,

compared with the principle of generation of classification rules directly from training

instances [4]. She comments the following:

 “The decision tree representation of rules has a number of disadvantages…[Most]

importantly, there are rules that cannot easily be represented by trees.”

 She gave an example with the following rule set:

 Rule 1: If a=1 and b=1 Then class= x

 Rule 2: If c=1 and d=1 Then class= x

 This kind of rule set may not fit into a tree structure. However, if they are forced to fit

into a tree structure, then it is required to add other terms to at least one of the two rules,

which would require at least one other rule to cover instances excluded by the addition of

other terms.

 For the above example, we need to have four attributes a, b, c and d, each of which

has three possible values 1, 2 and 3, and is to be selected for partitioning at the root

node.

 The rule set would be listed as follows and it is illustrated in Figure 2:

 If a=1 and b=1 then class=x

 If a=1 and b= 2 and c=1 and d=1 then class=x

 If a=1 and b=3 and c=1 and d=1 then class=x

 If a=2 and c=1 and d=1 then class= x

 If a=3 and c=1 and d=1 then class=x

 It was pointed out in [9] that ID3 is difficult to manipulate for expert systems as it is

required to examine the whole tree in order to extract rules about a single classification.

It has been partially solved by converting a tree to a set of individual rules but there are

some rules that are not easily fit into a tree structure as is the replicated subtree problem

 4 Han Liu and Alexander Gegov

mentioned above. In a medical diagnosis system, this problem may lead to unnecessary

surgery [5, 9]. The reasons identified in [9] are the following:

 The decision tree is attribute oriented

 Each iteration in the generation process chooses the attribute on which to be split

aiming at minimizing the average entropy. i.e. measuring the average uncertainty.

However, this doesn’t necessarily mean that the uncertainty for each rule is reduced.

 An attribute might be highly relevant to one particular classification and irrelevant to

the others. Sometimes only one value of an attribute is relevant.

Fig. 2 Cendrowska’s replicated subtree example [7, 8]

2.3 Prism Algorithm

As mentioned in section 1, the development of Prism algorithm was motivated due to the

existence of the replicated subtree problem. Original Prism was introduced by

Cendrowska in [5] and its basic idea can be illustrated in Figure 3.

For each classification (class= i) in turn and starting with the complete training set each
time:

1. Calculate the probability class =I for each attribute-value pair.
2. Select the attribute-value pair with the largest probability and create a subset of

the training set comprising all the instances with the selected attribute-value pair
(for all classifications)

3. Repeat 1 and 2 for this subset until a subset is reached that contains only
instances of class i. The induced rule is then the conjunction of all the attribute-
value pairs selected.

4. Remove all instances covered by this rule from the training set.
Repeat 1-4 until all instances of class I have been removed

*For each rule, no one attribute can be selected twice during generation

Fig. 3 Basic Prism Algorithm [4]

 Induction of Modular Classification Rules by Information Entropy Based Rule Generation 5

 The original Prism is based on the assumption that all attributes in a training set are

categorical. When there are actually continuous attributes, one way to deal with that is

discretisation of attribute values prior to generating rules as described in [4, 7, 8] such as

ChiMerge [10]. In addition, Bramer’s Inducer software [11] provides implementation that

deals with continuous attributes as described in [4, 7, 8]. On the other hand, the original

version of Prism doesn’t take clash problem into account. However, the Inducer software

implementations of Prism algorithm provide the strategy of dealing with a clash set as

the following [4]:

If a clash occurs while generating the rules for class i:

1. Determine the majority class for the subset of instances in the clash set.
2. If this majority class is class I, then compute the induced rule by assigning all

instances in the clash set to class i. If it is not, discard the whole rule.
3. If the induced rule is discarded, then all instances that match majority class

should be deleted from the training set before the start of the next rule induction.
If the rule is kept, then all instances in the clash set should be deleted.

Fig. 4 Dealing with clashes in Prism

 Another problem considered in Prism called tie-breaking is that there are two or more

attribute-value pairs which have the equally highest probability. The original Prism

decides to choose arbitrarily whereas Bramer improved it by choosing the one with the

highest total frequency [4].

 In addition, with the motivation of improving the computation efficiency, Bramer

pointed out that the original Prism always deletes instances covered by rules generated

so far and then resets the training set to its original state once the generation for a target

class is finished. This undoubtedly increases the number of iterations resulting in high

computational cost [12]. Therefore, Bramer developed two new versions of Prism called

PrismTC, which chooses the majority class as the target class for each rule being

generated, and PrismTCS, which chooses the minority class as the target class for each

rule being generated, respectively. Both versions select a new class as the target class

after a rule generated and do not reset the dataset to its original state as well as set an

order in which rule is being applied to predict unseen instances. Prism TCS does not

restore the training set to its original state and thus is faster than Original Prism but also

provides a similar level of classification accuracy [8, 12]. However, Bramer’s experiments

show that PrismTC doesn’t compare well against Original Prism and PrismTCS [8, 12].

2.4 Comparing Prism with Decision Tree Learning

Bramer described in [13] a series of experiments to compare the performance of Prism

against that of TDIDT on a number of datasets. He concluded the following:

 Prism algorithm may give classification rules at least as good as those generated

from TDIDT algorithms.

 There are generally fewer rules but also fewer terms per rule generated, which is

likely to aid their comprehensibility to domain experts and users. This result

 6 Han Liu and Alexander Gegov

indicates that Prism generally performs consistently better than TDIDT in terms of

accuracy.

 The main difference is that Prism generally prefers to leave a test instance

unclassified rather than to give it an incorrect classification.

 The reasons why Prism is more noise tolerant than TDIDT may be due to the

generation of fewer terms per rule in most cases.

 Prism generally has higher computational efficiency than TDIDT and it may be

further improved by parallelisation.

 As mentioned in section 2.2, there is a case that only one value of an attribute is

relevant to a particular classification and that ID3 (a version of decision tree) is not taken

into consideration. Deng pointed out in [9] that the Prism method is attribute-value-

oriented and pays much attention to the relationship between an attribute-value pair and

a particular classification, thus generating fewer but more general rules than a decision

tree learning method.

2.5 Limitations of Prism

Prism algorithm also has some disadvantages. One of them is that the Original version

of Prism may generate a rule set which may result in a classification confliction in

predicting unseen instances. Let us see the example below:

Rule 1: If x=1and y=1 then class= a

Rule 2: If z=1 then class= b

 Therefore, what should the classification be for an instance with x=1, y=1 and z=1?

One rule gives class a, the other one gives class b. We need to give a method of

choosing only one classification to classify the unseen instance [4]. This method is

known as a conflict resolution strategy. Bramer mentioned in [4] that Prism uses the ‘take

the first rule that fires’ strategy in dealing with the conflict problem and therefore it is

required to generate the most important rules first as much as possible. However, the

original Prism cannot actually introduce an order to a rule according its importance as

each of those rules with a different target class is independent of the others. As

mentioned above, this version of Prism would restore the training set to its original size

after the completion of rule generation for class i and before the start for class i+1. This

indicates the rule generation for each class may be done in parallel so the algorithm

cannot directly rank the importance among rules. Thus the ‘take the first rule that fires’

strategy may not deal with the confliction well. The PrismTCS doesn’t restore the dataset

to its original state unlike original Prism and thus can introduce the order to a rule

according to its importance. This problem is partially resolved but PrismTCS may

potentially lead to underfitting of a rule set. PrismTCS always chooses the minority class

in the current training set as the target class of the rule being generated. Since the

training set is never restored to its original size as mentioned above, it can be proved

that one class may always be selected as the target class until all instances of this class

have been deleted from the training set because the instances of this minority class

covered by the current rule generated should be removed prior to generating the next

rule. This case may result in that the majority class in the training set may not be

necessarily selected as the target class to generate a list of rules until the termination of

 Induction of Modular Classification Rules by Information Entropy Based Rule Generation 7

the whole generation process. In this case, there is not even a single rule having the

majority class as its consequence (right hand side of this rule). In some implementations,

this problem has been partially solved by assigning a default class (usually the majority

class) in predicting unseen instances when there is not a single rule that can cover this

instance. However, this should be based on the assumption that the training set is

complete. Otherwise, the rule set may still underfit the training set as the conditions of

classifying instances to the other classes are probably not strong enough. On the other

hand, if a clash occurs, both the original Prism and PrismTCS would prefer to discard the

whole rule than to assign the majority class to the rule. As mentioned above, Prism may

generally generate more general and fewer rules than decision tree learning methods.

One reason is potentially due to discarding rules. In addition, the clash may happen in

two main ways as follows:

1) One of the instances has at least one incorrect record for its attribute values or its

classification [4].

2) The clash set has both (or all) instances correctly recorded but it is impossible to

discriminate between (or among) them on the basis of the attributes recorded and

thus it may be required to examine further values of attributes [4].

 When there is noise present in datasets, Prism may be more tolerant than decision

tree learning as mentioned above. However, if the reason why a clash occurs is not due

to noise, then it may result in underfitting of the rule set by discarding rules as it will leave

many unseen instances unclassified in prediction stage. Prism would decide to discard

the rules in some cases is probably because it uses the so-called ‘from outcome to

cause’ approach. As mentioned in section 2.3, each rule being generated should be pre-

assigned a target class and then the conditions should be searched by adding terms

(antecedents) until the adequacy conditions are met. Sometimes, it may not necessarily

receive adequacy conditions even after all attributes have been examined. This indicates

the current rule covers a clash set that contains instances of more than one class. If the

target class is not the majority class, this indicates the search of causes is not successful

so the algorithm decides to give up by discarding the incomplete rule and deleting all

those instances that match the target class in order to avoid the same case to happen all

over again [7, 8]. This actually not only increases the irrelevant computation cost but also

results in underfitting the rule set.

3 Information Entropy Based Rule Generation Method

As mentioned in Section 2, Prism has some obvious limitations. For this reason, a new

rule generation method IEBRG using the separate and conquer approach is introduced.

This method avoids the underfitting of data sets and does not lead to any redundant

computational effort.

3.1 Essence of the Method

This method is attribute-value-oriented like Prism but it uses the ‘from cause to outcome’

approach. In other words, it doesn’t have a target class pre-assigned to the rule being

generated. The main difference with respect to Prism is that IEBRG focuses mainly on

minimising the uncertainty for each rule being generated no matter what the target class

 8 Han Liu and Alexander Gegov

is. A popular technique used to measure the uncertainty is information entropy as

mentioned in section 2.1. Once the antecedents added so far can reduce the entropy of

the subset to 0, there is no uncertainty remaining in the subset to decide a classification

assigned to this rule as the consequence. The basic idea of IEBRG with using entropy

can be illustrated in Figure 5.

1. Calculate the conditional entropy of each attribute-value pair in the current

subset
2. Select the attribute-value pair with the smallest entropy to spilt on, i.e. remove

all other instances that contain no attribute-value pair.
3. Repeat step 1 and 2 until the current subset contains only instances of one

class (the entropy of the resulting subset is zero).
4. Remove all instances covered by this rule.

Repeat 1-4 until there are no instances remaining in the training set.

* For each rule, no one attribute can be selected more than once during generation.

Fig. 5 IEBRG algorithm

3.2 Justification of the Method

As mentioned in Section 2.5, all versions of Prism need to have a target class pre-

assigned to the rule being generated. As mentioned in section 2.2, an attribute might

be not relevant to some particular classifications. Sometimes only one value of an

attribute is relevant. Therefore, the Prism method chooses to pay main attention to the

relationship between an attribute-value pair and a particular class. However, the class

to which the attribute-value pair is highly relevant is probably unknown, as can be seen

from the example in Table 1 below with reference to the lens 24 dataset. This dataset

shows that P (class=3|tears=1) =1 illustrated by the frequency table for attribute

“tears”. The best rule generated first would be “if tears=1 then class=3”.

Table 1 Lens 24 dataset example

Class Label Tears=1 Tears=2

Class=1 0 4

Class=2 0 5

Class=3 12 3

total 12 12

 This indicates that the attribute-value “tears=1” is only relevant to class 3. However,

this is actually not known before the rule generation. According to the PrismTCS

strategy, the first rule being generated would select “class =1” as the target class as

it is the minority class (Frequency=4). Original Prism may select class 1 as well as it

is of a smaller index. As described in [4], the first rule generated by Original Prism is

“if astig=2 and tears=2 and age=1 then class=1”. Therefore, the computational

performance is slightly worse than expected and the resulting rule is more complex.

Sometimes, the Prism method may even generate an incomplete rule reaching a

 Induction of Modular Classification Rules by Information Entropy Based Rule Generation 9

clash as mentioned in 2.5 if the target class assigned is not a good fit to some of

those attribute-value pairs in the current training set. Then the whole rule may be

discarded resulting in underfitting and redundant computational effort.

 In order to find a better strategy for reducing the computational cost, the authors

proposed the method mentioned in section 3.1. In this technique, the first iteration of

the rule generation process for the “lens 24” dataset can make the resulting subset’s

entropy reach 0. Thus the first rule generation is compete and its rule is represented

by “if tears=1 then class=3”.

 In comparison with the Prism family, this algorithm may reduce significantly the

computational cost. In addition, in contrast to Prism, the IEBRG method deals with

clashes (introduced in section 3.3) by assigning the majority class in the clash set to

the current rule. This may potentially reduce the underfiting of rule sets thus reducing

the number of unclassified instances although it may increase the number of

misclassified instances. On the other hand, the IEBRG may also have the potential to

avoid clashes occurring better than Prism.

3.3 Dealing with Clashes

There are two principal ways of dealing with clashes mentioned in [4] as follows:

1) Majority voting: to assign the most common classification of the instances in

the clash set to the current rule.

2) Discarding: to discard the whole rule currently being generated

In this paper, the authors choose ‘majority voting’ as the strategy of dealing with this

problem as the objective of this paper is mainly to validate this method and find its

potential in improving accuracy and computation efficiency as much as possible.

3.4 Dealing with Tie-breaking and Conflict

The tie-breaking problem is solved by deciding which attribute-value pair is to be

selected to split the current subset when there are two or more attribute-value pairs

that equally match the selection condition. In the IEBRG method, this problem may

occur when two or more attribute-value pairs have the equally smallest entropy. The

strategy is the same as the one applied to Prism by taking the one with the highest

total frequency as introduced by Bramer in [4].

 The classification conflict problem may occur to modular classification rule

generator such as Prism. Similarly, the IEBRG may also face this problem. The

authors choose the ‘take the first rule that fires’ strategy which is already mentioned

in section 2.3 because this method may potentially generate the most important rules

first. Let us see the example below:

Rule 1: if x=1 and y=1 then class= 1;

Rule 2: if x=1 then class=2;

This seems as if there is a conflict problem but the two rules can be ordered as rule 1

is more important. In other words, the two rules can be represented in the following

two ways:

 Rule 2: if x=1 and y≠1 then class=2;

 10 Han Liu and Alexander Gegov

This indicates that after the first rule has been received, the term ‘x=1’ can directly

reduce the entropy of the subset to 0 as all uncertainty has been removed from the

current set after removing those instances covered by the first rule. Thus the first rule

is more important than the second one.

4 Experimental Setup and Results

In this experimental study, the authors use 10 datasets retrieved from the UCI repository

[14] as illustrated by table 2 and 3. The authors set to compare the classification

accuracy and computation efficiency performed by Prism and IEBRG. For accuracy

measure, the authors choose to use cross-validation [4]. With regards to efficiency, the

authors choose the whole dataset as training set to build the model and then use the

same dataset to do testing. The efficiency is measured in terms of the number of rules

and the number of terms (antecedents) per rule during modelling stage. For the Prism

algorithm, the authors also count the number of discard rules as they actually rise the

computational cost. The accuracy and efficiency are illustrated in Tables 2 and 3,

respectively.

Table 2 Classification accuracy: Prism vs IEBRG

Dataset Prism IEBRG

Lens24 75% 75%

Vote 96% 93%

Weather 67% 71%

Contact-lenses 67% 75%

Breast-cancer 72% 75%

Lung-cancer 74% 78%

Nurse 43% 61%

Car 70% 71%

Kr-vs-kp 65% 84%

Tic-tac-toe 67% 46%

Table 3 Computational efficiency: Prism vs IEBRG

Dataset Prism IEBRG

 Count(rules) Count(terms)
per rule

Count(discard
rules)

Count(rules) Count(terms)
per rule

Lens24 9 2.25 1 4 1.25

Vote 19 5.74 1 7 1.71

Weather 3 2.0 1 2 1.0

Contact-lenses 4 2.75 2 4 1.4

Breast-cancer 12 1.33 0 7 1.0

Lung-cancer 3 1.0 0 4 1.0

Nurse 70 7.9 272 121 6.99

Car 5 4.0 55 23 3.96

Kr-vs-kp 77 6.74 0 9 1.0

Tic-tac-toe 164 8.06 88 91 6.65

 Induction of Modular Classification Rules by Information Entropy Based Rule Generation 11

5 Evaluation

Table 2 shows that IEBRG performs better than Prism in classification accuracy in most

cases. Table 2 also shows that the classification accuracy performed by IEBRG in ‘Tic-

tac-toe’ dataset is slightly worse than that done by Prism. The reason is not entirely clear

but it may be due to the presence of noisy data as Prism is generally more tolerant to

noise as mentioned in section 2.4. The authors need to take further investigation about

the tolerance to noisy data for IEBRG. In addition, if the noise is actually present in a

training set, this may be handled by feature selection techniques and pruning strategies.

 In terms of computational efficiency, Table 3 shows that IEBRG performs better than

Prism. It is obvious from the comparison of number of rules and number of terms per rule

that IEBRG generates fewer but more general rules than Prism in most datasets.

Although IEBRG generates more rules than Prism in three datasets namely ‘Lung-

cancer’, ‘Nurse’ and ‘Car’, it is obvious from the comparison of the number of terms per

rule and number of discarded rules that IEBRG gives more general rules than Prism in

two of the three cases and Prism discards more rules in ‘Nurse’ and ‘Car’ datasets. In

both datasets, Prism not only increases significantly the redundant computational effort

but also losses accuracy compared with IEBRG due to discarding many rules. This also

shows that IEBRG performs better than Prism in dealing with clashes by assigning the

majority class to a rule rather than discarding rules if the reason why clashes occur is not

due to the presence of noise. This is probably because the attributes recorded in the

dataset are not sufficient and the uncertainty remaining in the set may become 0 if one

extra attribute is added to be examined. In this case, majority voting would potentially be

the dominant strategy through looking at the results shown by table 2 and 3. On one

hand, this may avoid underfitting of rule sets. On the other hand, this can increase the

probability of getting correct classifications. However, it is also dependent on application

domains. For example, in domains where the decision making system operates under

uncertainty, it may be required to leave instances unclassified such as safety critical

systems.

6 Conclusion

This paper has reviewed TDIDT and Prism as well as identified some limitations of

Prism. A new modular rule generation method, called IEBRG, has been proposed and

validated. The experimental study has shown that IEBRG has the potential to avoid

underfitting of rule sets and to generate fewer but more general rules as well as to

perform relatively better in dealing with clashes. IEBRG can also generate the most

important rules first so that it can effectively avoid the classification conflict problem by

taking the ‘take the first rule that fires’ strategy. However, the experiments are all based

on datasets that contain no continuous attributes. Therefore, the authors will make

further experiments against continuous attributes which can be dealt with by some

strategies such as ChiMerge [10] and another strategy as described in [4, 7, 8].

Furthermore, the authors will investigate the overcoming effects of noise by using some

pruning methods such as J-pruning, which has been applied to Prism [15] and decision

trees [16], and Jmax-pruning, which has been applied to Prism [7, 8]. Both methods have

shown good performance in experimental studies and are based on J-measure, which

was introduced into the classification rules literature by Smyth and Goodman [17] who

 12 Han Liu and Alexander Gegov

strongly justified the use of J-measure as information theoretic means of quantifying the

information content of a rule.

7 References

1. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1993.

2. E.B. Hunt, P.J. Stone, J. Marin, Experiments in Induction, Academic Press, New York,

1966.

3. R.S. Michalski, On the Quasi-Minimal solution of the general covering problem, in:

Proceedings of the Fifth International Symposium on Information Processing, Bled,

Yugoslavia, pp. 125–128, 1969.

4. Bramer, M.A. (2007). Principles of Data Mining. London: Springer.

5. J. Cendrowska, PRISM: an algorithm for inducing modular rules, International Journal

of Man-Machine Studies 27 (1987) 349–370.

6. C. Shannon (1948). A mathematical theory of communication, Bell System Technical

Journal, vol.27, no.3, 379-423. Fonn.

7. Stahl, F and Bramer, Max (2011) Induction of modular classification rules: using Jmax-

pruning. In: In Thirtieth SGAI International Conference on Innovative Techniques and

Applications of Artificial Intelligence, Cambridge.

8. Stahl, F and Bramer, Max (2012) Jmax-pruning: A facility for the information theoretic

pruning of modular classification rules. Knowledge-Based Systems 29 (2012) 12-19.

9. Deng.X. A Covering-based Algorithm for Classification: PRISM. CS831: Knowledge

Discover in Databases, 2012.

10. R. Kerber, Chimerge: Discretization of numeric attributes. In: AAAI'92 Proceedings of

the tenth national conference on Artificial intelligence, pp. 123-128, 1992.

11. M.A. Bramer, Inducer: a public domain workbench for data mining, International

Journal of Systems Science 36 (2005) 909–919.

12 Stahl, F and Bramer, Max (2012). Computationally efficient induction of classification

rules with the PMCRI and J-PMCRI frameworks. . Knowledge-Based Systems 35 (2012)

49-63.

13. Bramer, M.A. (2000). Automatic Induction of classification Rules from Examples

Using N-Prism. In Research and Development in Intelligent Systems XVI, Springer-

Verlag, pp. 99-121.

14. C.L. Blake, C.J. Merz, UCI repository of machine learning databases, Technical

Report, University of California, Irvine, Department of Information and Computer

Sciences, 1998.

15. Bramer, M.A. (2002). Using J-Pruning to Reduce Overfitting of Classification Rules in

Noisy Domains. Proceedings of 13th International Conference on Database and Expert

Systems Applications— DEXA 2002, Aix-en-Provence, France, September 2–6, 2002.

16. Bramer, M.A. (2002). Using J-Pruning to Reduce Overfitting in Classification Trees.

In: Research and Development in Intelligent Systems XVIII. Springer-Verlag, pp. 25-38.

17. Smyth, P. and Goodman, R.M. (1991). Rule Induction Using Information Theory. In:

Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Discovery in Databases.

AAAI Press, pp. 159-176.

