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Abstract. This work explores the tensor and combinatorial constructs under-

lying the linearised higher-order variational equations LVEkψ of a generic au-

tonomous system along a particular solution ψ. The main result of this paper is
a compact yet explicit and computationally amenable form for said variational

systems and their monodromy matrices. Alternatively, the same methods are

useful to retrieve, and sometimes simplify, systems satisfied by the coefficients
of the Taylor expansion of a formal first integral for a given dynamical system.

This is done in preparation for further results within Ziglin-Morales-Ramis

theory, specifically those of a constructive nature.

1. Motivation and first definitions.

1.1. Introduction. Integrability, an informal word for reasonably simple solvabil-
ity, is an important problem in Dynamical Systems. Its opposite phenomenon, and
specifically low predictability with respect to time, is usually summarised under
the term chaos. If the system is Hamiltonian, as are most problems in Mechanics,
the “chaos vs solvability” disjunctive is doubly advantageous. On one hand, it is
amenable to the techniques of Symplectic Geometry. On the other, theory and
empirics yield the specific, thus observable integrability condition described in §1.3.

The introduction of the algebraic approach by Ziglin, Morales-Ruiz and Ramis
produced hallmark contributions to the study of the integrability of Hamiltonian
systems [6, 22, 23, 31], essentially couched on a study of the invariants of a given
matrix group, associated to a linear system: the first-order variational equations
introduced in 1.2. A second step forward was carried out by Morales-Ruiz, Ramis
and Simó ([24]) in order to extend the preceding Galoisian framework to the groups
of the higher-order variational equations along a particular solution.

The second step described above is the driving force behind this paper. A con-
structive version of the Morales-Ramis-Simó theorem was already started in [2] and
tangentially tackled from another viewpoint in [5] (see §5) and the present work
aims at expanding this effort by offering a closed-form expression for the linearised
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higher variationals. May the reader bear in mind that nowhere from §2 onwards,
except for §6, is the system required to be Hamiltonian.

1.2. Dynamical systems and variational equations. In accordance with re-
sults described in §1.3 and thereafter, we need to observe the following convention
outside of Sections 2 and 3: dependent and independent variables for all dynami-
cal systems will be allowed to be complex. Any open set T ⊆ P1

C is an admissible
domain for the time variable, embedded into the Riemann sphere to include t =∞
as a valid singularity. Consider an autonomous holomorphic dynamical system:

ż = X (z) , where X : U ⊆ Cn → Cn. (DS)

Conserved quantities and solution curve foliations are defined similarly to their
real-valued counterparts. Indeed, a first integral of (DS) is a function F : U → C
constant along every solution of (DS). And for every z ∈ U , the unique solution
ϕ (t, z) of (DS) such that ϕ (0, z) = z allows us to define a function ϕ (·, ·) in n+ 1
variables called the flow of (DS). Clarifying preliminary comments are in order
whenever a particular solution ψ (t) is considered:

a) partial derivatives ∂k

∂zkϕ (t,ψ) are multilinear functions of increasing order (or
multidimensional matrices, see e.g. [17]) and appear in the Taylor series of the
flow along ψ:

ϕ (t, z) = ϕ (t,ψ) +
∂ϕ (t,ψ)

∂z
{z −ψ}+

1

2!

∂2ϕ (t,ψ)

∂z2
{z −ψ}2 + . . . ; (1)

b) each of these derivatives ∂k

∂zkϕ (t,ψ) satisfies an echeloned set of differential
systems, depending on the previous k − 1 partial derivatives and customarily
called variational equations or systems. They are explicitly called higher-
order whenever k ≥ 2.

c) variational system for k = 1 is linear and satisfied by the linear part of the
flow along ψ:

Ẏ1 = A1Y1, A1 (t) := X ′ (ψ) ∈ Matn (K) , (VEψ)

K = C (ψ) being the smallest differential field containing C (t) and the solution.
d) For k ≥ 2, however, the system is not linear, yet a linearised version may be

found. The aim of the present paper is to do so with explicit formulae.

1.3. Morales-Ramis-Ziglin theory and extensions. Heuristics of all results
within the Ziglin-Morales-Ramis-Simó theoretical framework are firmly rooted in
the following principle, expected to affect a widespread class of systems:

If general system (DS) is “integrable” in some reasonable sense, then the
system satisfied by each of the partial derivatives of the flow at every par-
ticular solution ψ of (DS) must be also integrable in an accordingly rea-
sonable sense.

Any attempt at ad-hoc formulations of this heuristic principle has an asset and a
drawback:

• there is a valid integrability axiom for linear systems, e.g. (VEψ): the solv-
ability of the Zariski identity component of the (linear algebraic) differential
Galois group [22, 29];
• an explicit incarnation of this principle requires a clear notion of “integrability”

for (DS).
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The latter item is cleared in the Hamiltonian case by the Liouville-Arnold Theorem
establishing a sufficient condition for a system to admit, at least locally, a new set
of variables rendering it integrable by quadratures. Said condition is the hypothesis
on H in the following:

Theorem 1.1 (Morales-Ruiz, Ramis, 2001). Let XH be an n-degree-of-freedom
Hamiltonian system having n independent first integrals in pairwise involution, de-
fined on a neighborhood of an integral curve ψ. Then, Galoisian identity component
Gal (VEψ)

◦
is an abelian group. �

See [23, Cor. 8] or [22, Th. 4.1] for a precise statement and a proof.

Theorem 1.2 (Morales-Ruiz, Ramis, Simó, 2005, [24, Th. 5]). Let H be as in
the previous theorem. Let Gk be the differential Galois group of the k-th variational
equations VEkψ, k ≥ 1, and G := lim←−Gk the formal differential Galois group (inverse

limit of the groups) of XH along ψ. Then, the identity components of the Galois
groups Gk and G are abelian. �

Theorem 1.2 makes use of the language of jets, after proving non-linear VEkψ
equivalent to any consistent linearised completion. Efforts towards a constructive
version of this main Theorem, as well as the line of study described in §5, are ham-
pered by a lack of consensus on the explicit block structure of this completion. The
present work, summarised in its main result (Proposition 4) aims at contributing
to fill in this gap. Hence, outcomes will be restricted to symbolic calculus and bear
no new results in the above theoretical framework.

Notation 1. Part of the conventions listed below were already introduced in [5].

1. The modulus i = |i| of a multi-index i = (i1, . . . , in) ∈ Zn is the sum of its
entries. Multi-index addition and subtraction are defined entrywise as usual.

2. Multi-index order : (i1, . . . , in) ≤ (j1, . . . , jn) means ik ≤ jk for every k ≥ 1.
3. Standard lexicographic order : (i1, . . . , in) <lex (j1, . . . , jn) if i1 = j1, . . . , ik−1 =

jk−1 and ik < jk for some k ≥ 1.
4. Given complex analytic F : U ⊂ Cn → C we define the lexicographically sifted

differential of F of order m as the row vector F (m) (x) := lex

(
∂mF

∂x
i1
1 ...∂x

in
n

(x)

)
,

where |i| = m and entries are ordered as per <lex on multi-indices.

5. We define dn,k :=
(
n+k−1
n−1

)
, Dn,k :=

∑k
i=1 dn,i. It is easy to check there are

dn,k k-ples of integers in {1, . . . , n}, and just as many homogeneous monomials
of degree n in k variables.

Notation 2. Given integers k1, . . . , kn ≥ 0, we define the usual multinomial coef-
ficient as (

k1 + · · ·+ kn
k1, . . . , kn

)
:=

(
k1 + · · ·+ kn

k

)
:=

(k1 + · · ·+ kn)!

k1!k2! · · · kn!
.

For a multi-index k ∈ Zn≥0, define k! := k1! · · · kn!. For any two such k, j, we define(
k

p

)
:=

k1!k2! · · · kn!

p1!p2! · · · pn! (k1 − p1)! (k2 − p2)! · · · (kn − pn)!
=

(
k1
p1

)(
k2
p2

)
· · ·

(
kn
pn

)
, (2)

and the multi-index counterpart to the multinomial,
(
k1+···+km
k1,...,km

)
:= (k1+···+kn)!

k1!k2!···kn! .
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2. Symmetric products and powers of finite matrices.

2.1. Definition and properties. The compact formulation called for by (1) and
Notation 1 (3) will be achieved through a product � that was already defined by
other means by U. Bekbaev (e.g. [8, 9, 10, 11]) and will be systematised using basic
categorical properties of the tensor product. Let K be a field and V a K-vector
space. See [13, 14, 18] for details.

Definition 2.1. An rth symmetric tensor power of V is a vector space S,
together with a symmetric multilinear map ϕ : V r := V× r. . . ×V → S satisfying
the following universal property : for every vector space W and every symmetric
multilinear map f : V r → W there is a unique linear map f� : S → W such that
the following diagram commutes:

V × V× r. . . ×V
ϕ

��

f // W

S

f�

88

In other words, HomK (S,W ) ∼= S (V n,W ) holds between the vector space of linear
maps S →W and the vector space of symmetric multilinear maps V n →W .

Proposition 1. Given any K-vector space V and any r ∈ N,

a) a symmetric power (SymrV, ϕ) exists, unique up to isomorphism. We write

v1 � · · · � vr := ϕ (v1, . . . ,vr), v
�k := v� k· · · �v for any v ∈ V , and

v�p := v�p11 � · · · � v�pnn , for any v1, . . . ,vn ∈ V and multi-index p ∈ Zn≥0.

b) For any multilinear map f : V r → W , the linear map f� induced by the uni-
versal property is defined on the generators of SymrV as f� (v1 � · · · � vr) =
f (v1, · · · ,vr) .

c) If dimK V = n < ∞ then every basis {e1, . . . , en} of V induces a basis for
SymrV :

{(e1� r1. . . � e1)� (e2� r2. . . � e2) � · · · � (en� rn. . . � en) : ri ≥ 0, |r| = r} ; (3)

hence, dimK SymrV = dn,r. Conventions Sym1V = V and Sym0V = K arise
naturally.

Hence, product � operates exactly like products of homogeneous polynomials in sev-
eral variables.

Remark 1. Symr may also be defined in terms of the tensor power by SymrV =⊗r
V/ ∼ modulo the relation v1 ⊗ · · · ⊗ vr ∼ vσ(1) ⊗ · · · ⊗ vσ(r), σ ∈ Sr.

Given any K-vector space W and two linear maps f, g : V →W , define

h : V × V → Sym2W, h (v1,v2) :=
1

2
[f (v1)� g (v2) + f (v2)� g (v1)] . (4)

Immediately bilinear and symmetric, it is granted a unique linear h� : Sym2V →
Sym2W , h� (v1 � v2) := h (v1,v2), by the universal property. Write f � g := h�.
Then f � g = g� f and (f1 ◦ f)� (g1 ◦ g) = (f1 � g1) ◦ (f � g) for any linear maps
f1, g1 : W →W1. A similar construction applies to the symmetric product of m ≥ 3
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linear maps fi : V →W :

SymmV
f1�···�fm // SymmW

v1 � · · · � vm � // 1
m!

∑
σ∈Sm f1

(
vσ(1)

)
� · · · � fm

(
vσ(m)

)
.

(5)

Let us generalise the above symmetric product into one involving any two linear
maps

f : Symj1V → Symi1W, g : Symj2V → Symi2W, j1, j2, i1, i2 ≥ 0.

Assume V and W finite-dimensional, V having basis {e1, . . . , en}. Defining the
bilinear map ϕ (u1,u2) := u1 � u2,ui ∈ SymjiV, we are interested in finding a
bilinear function h in terms of f and g generalising (4), for which there is a unique
linear h� completing the diagram

Symj1V × Symj2V

ϕ

��

h // Symi1+i2W

Symj1+j2V

h�

66
(6)

We want h to yield coefficient 1 for all-round repeated vectors as in (4). Symmetric,

multilinear h̃ : V ×j1+j2 → Symi1+i2W is easier to define, generalising (4) and the
example in [22, p. 155]: for any u1, . . . ,uj1+j2 ∈ V ,

h̃ (u1, . . . ,uj1+j2) :=αj1,j2
∑

f
(
uσ(1) �· · ·� uσ(j1)

)
� g
(
uσ(j1+1) �· · ·� uσ(j1+j2)

)
, (7)

where αj1,j2 = 1

(j1+j2
j1

)
and the sum is taken over σ ∈ Sj1,j2 with

Sj1,j2 := {σ ∈ Sj1+j2 : σ (1) < · · · < σ (j1) and σ (j1 + 1) < · · · < σ (j1 + j2) .} (8)

Define (ϕ1 × ϕ2) (u1, . . . ,uj1+j2) =
(
ui1 � · · · � uij1 ,uij1+1

� · · · � uij1+j2

)
, ϕi be-

ing the universal map of SymjiV ; we intend the diagram of functions involving the
Cartesian product

V ×j1+j2

ϕ1×ϕ2

��
h̃

((
Symj1V × Symj2V

h // Symi1+i2W

(9)

to commute. Let ui1 , . . . ,uij1+j2
∈ {e1, . . . , en}. Split into copies of separate basis

vectors:
{
ui1 , . . . ,uij1

}
= {e1, p1. . ., e1, . . . , en, pn. . ., en},

{
uij1+1 , . . . ,uij1+j2

}
={

e×q11 , . . . , e×qnn

}
, with |p| = j1 and |q| = j2, and define k = p + q. The ex-

pression of (7) in these basis elements is now an immediate consequence of basic
combinatorics:

h̃
(
e1 k1. . ., e1, . . . , en, kn. . ., en

)
=

1(
j1+j2
j1

) ∑
|P|=j1,P≤k

[
n∏
i=1

(
ki
Pi

)]
f
(
e�P

)
� g

(
e�k−P

)
,

leaving no option for (9) to commute but

h
(
e�p, e�q

)
=

1(
j1+j2
j1

) ∑
|P|=j1,P≤p+q

[
n∏
i=1

(
pi + qi
Pi

)]
f
(
e�P

)
� g

(
e�p+q−P) .
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Finally, the universal property on
(
Symj1+j2V, ϕ̃

)
yields a unique h� such that

h� ◦ ϕ̃ ≡ h̃,

V ×j1+j2

ϕ1×ϕ2

��
h̃

((
ϕ̃

))

Symj1V × Symj2V
h //

ϕ

��

Symi1+i2W

Symj1+j2V

h�

66 (10)

and ϕ◦(ϕ1 × ϕ2) ≡ ϕ̃. Fixing ϕ (and h) the uniqueness of h� follows from construc-
tion: any other h• rendering (6) commutative would require the commutativity of
the outer perimeter of (10), hence h• ≡ h�. Hence all we need to do is express
f � g := h� in terms of its action on base elements (3) to obtain a simple, explicit
form.

Notation 3. When dealing with matrix sets, we will use super-indices and subind-
ices:

1. The space of (i, j)-matrices Mati,jm,n (K) is either defined by its underlying set,
i.e. all dm,i × dn,j matrices having entries in K, or as vector space

HomK

(
SymjKm; SymiKn

)
.

2. It is clear from the above that Mat0,0n (K) is the set of all scalars α ∈ K and

Mat0,kn (K) (resp. Matk,0n (K)) is made up of all row (resp. column) vectors
whose entries are indexed by dn,k lexicographically ordered k-tuples.

2. Reference toK may be dropped and notation may be abridged if dimensions are
repeated or trivial, e.g. Mati,jn := Mati,jn,n, Matim,n := Mati,im,n, Matn := Mat1n,
etcetera.

Checking product � defined below renders diagrams (6) and (10) commutative is
immediate.

Definition 2.2 (Symmetric product of finite matrices). Let A ∈ Mati1,j1m,n (K),

B ∈ Mati2,j2m,n (K), i.e. linear maps A : Symj1Kn → Symi1Km and B : Symj2Kn →
Symi2Km. Given any multi-index k = (k1, . . . , kn) ∈ Zn≥0 such that |k| = k1 + · · ·+
kn = j1 + j2, define C := A�B ∈ Mati1+i2,j1+j2m,n by

C
(
e�k11 · · · e�knn

)
=

1(
j1+j2
j1

) ∑
p

(
k

p

)
A
(
e�p11 · · · e�pnn

)
�B

(
e�k1−p11 · · · e�kn−pnn

)
, (11)

notation abused by removing � to reduce space within basis elements (3), binomials
as in (2) and summation taking place for specific multi-indices p, namely those such
that

|p| = j1 and 0 ≤ pi ≤ ki, i = 1, . . . , n.

The following is a mere exercise in induction:

Lemma 2.3. Defining
⊙r

i=1Ai recursively by
(⊙r−1

i=1 Ai

)
�Ar with Ai ∈ Matki,jim,n ,

(A1 � · · · �Ar) e�k =
1(

j1+···+jr
j1,j2,...,jr

) ∑
p1,...,pr

(
k

p1, . . . ,pr

) r⊙
i=1

Aie
�pi , (12)
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if |k| = j1 + · · ·+ jr, sums obviously taken for p1 + · · ·+ pr = k and |pi| = ji, for
every i = 1, . . . , r. �

Remarks 1.
1. For an equivalent “non-monic” formulation of (11) (i.e. one for which entry 1,1

need not have coefficient 1) using multi-indices in both columns and rows, see
e.g. [8, 9, 10, 11].

2. Notation in Proposition 1 extends to matrices: SymrA := A�r := A
r

� · · ·� A.
3. For square A ∈ Mat1,1n , powers �r according to (11) and (12) are obviously

consistent with multiple product (5), hence equal to established definitions for
group morphism Symr : GLn (V ) → GLn (Symr (V )) in multilinear algebra
textbooks such as the expression in terms of the permanent of A (e.g. [13, Th.

9.2]), or 1
r!As

r· · · sA in [2, 5, 7].

Example 1. Given matrices A ∈ Mat1,12 (K) and B ∈ Mat3,22 (K), we may write
them as

A =
(
Ae1 Ae2

)
= (aij)i≤2,j≤2 , B =

(
Be�2

1 Be1 � e2 Be�2
2

)
= (bij)i≤4,j≤3 ,

and it is immediate to check that the (4, 3) (hence four-column, five-row) matrix
product

A�B =
(

(A�B)
(
e�3
1

)
(A�B)

(
e�2
1 � e2

)
(A�B)

(
e1 � e�2

2

)
(A�B)

(
e�3
2

) )
,

is equal to
a11b11

a12b11+2a11b12
3

2a12b12+a11b13
3 a12b13

a21b11 + a11b21 M2 N2 a22b13 + a12b23
a21b21 + a11b31 M3 N3 a22b23 + a12b33
a21b31 + a11b41 M4 N4 a22b33 + a12b43

a21b41
a22b41+2a21b42

3
2a22b42+a21b43

3 a22b43

 ,

where Mi, Ni are defined by

Mi =
2(a21bi−1,2 + a11bi,2) + a22bi−1,1 + a12bi,1

3
,

Ni =
2(a22bi−1,2 + a12bi,2) + a21bi−1,3 + a11bi,3

3
.

The following is straightforward to prove from either direct application of the
universal property or the techniques used in [8, 10], and will not be delved into
here:

Proposition 2. For any A, B, C, and whenever products make sense,

a) A�B = B �A.
b) (A+B)� C = A� C +B � C.
c) (A�B)� C = A� (B � C).
d) (αA)�B = α (A�B) for every α ∈ K.

e) If A is square and invertible, then
(
A−1

)�k
=
(
A�k

)−1
.

f) A�B = 0 if and only if A = 0 or B = 0.
g) If A is a square (1, 1)-matrix, then Av1�Av2�· · ·�Avm = A�mv1�· · ·�vm.
h) If v is a column vector, then (A�B)v�(p+q) = (Av�p)� (Bv�q), p, q ∈ Z≥0.

Universal property on (7) and diagram (10) with different notation yields:
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Lemma 2.4. For any two matrices A ∈ Mati,jn and B ∈ Matp,qn and v1, . . . ,vj+q ∈
V , (A�B) (v1 � · · · � vj+q) is equal to

1(
j+q
q

) ∑
σ∈Sj,q

A
(
vσ(1) � · · · � vσ(j)

)
�B

(
vσ(j+1) � · · · � vσ(j+q)

)
, (13)

Sj,q defined as in (8). �

Lemma 2.5. a) ([8, 10]) For any A ∈ Matp,qn , B ∈ Matq,rn , and v ∈ SymjKn,

(v �A)B = v � (AB) . (14)

b) If ei are the columns of Idn,
∑n
m=1

(
em � Id�k−1n

)(
eTm � Id�k−1n

)
= Id�k+1

n .

Proof. a) It suffices to prove it for basis elements of Symr: for any k such that
|k| = r,

(v �A)Be�k = v � (AB) e�k. (15)

But this is immediate from equation (13) or the definition (11) of � itself.
b) Using the previous item and the associative property in Proposition 2, and the

fact that em � eTm ∈ Mat2,2n is zero save for a 1 in position m,m,
n∑

m=1

(
em � Id�k−1

n

)(
eTm � Id�k−1

n

)
=

[
n∑

m=1

(
em � eTm

)]
� Id�k−1

n = Id�2
n � Id�k−1

n .

2.2. More properties of �. We need to generalise some of the properties in
Proposition 2 for later purposes. Applying the universal property on (4) (with

V := SymkKn) or (7) (with j1 = j2 = k), followed by (11) and (16) for m = 2,
as well as the universal property on (5) (with vi :=

⊙m
i=1Aie

�pi) and prepending(|j|
j

)−1∑
p1,...,pm

(
k

p1,...,pm

)
as in (12) for arbitrary m, we obtain

Lemma 2.6. Given square A,B ∈ Matk,kn and matrices Xi ∈ Matk,jin , i = 1, 2,

(A�B) (X1 �X2) =
1

2
(AX1 �BX2 +BX1 �AX2) , (16)

and in general for any square A1, . . . , Am ∈ Matk,kn and any Xi ∈ Matk,jin , i =
1, . . . ,m, (

m⊙
i=1

Ai

)(
m⊙
i=1

Xi

)
=

1

m!

∑
σ∈Sk

m⊙
i=1

Aσ(i)Xi. � (17)

Defining B := Id�m−jn and vi := Xie
�pi where |pi| = qi in equation (13), we have:

Lemma 2.7. Given A ∈ Mat1,jn and X1, . . . , Xm such that Xi ∈ Mat1,qin , 1 ≤ j ≤
m,(
m

j

)(
A� Id�m−jn

) m⊙
i=1

Xi =
∑

1≤i1<···<ij≤m

[
A
(
Xi1 � · · · �Xij

)]
�

⊙
s6=i1,...,ij

Xs. � (18)

An immediate consequence of either Lemma 2.6 or Lemma 2.7 is

Corollary 1. Given a square matrix A ∈ Mat1,1n and X1, . . . , Xm such that Xi ∈
Mat1,jin ,(
A� Id�m−1n

)( m⊙
i=1

Xi

)
=

1

m

m∑
i=1

(AXi)�
(
X1 � · · · � X̂i � · · · �Xm

)
. �

(19)
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Xv � Id�rn

)
X�r = Xv�X�r in virtue of (14); applying this, (15), Proposition 2

and a detailed scrutiny of the effect on basis products e�? yields:

Lemma 2.8. Given square matrix X ∈ Mat1,1n , any vector v ∈ Kn and r ≥ 1,(
Xv � Id�r

)
X�r = X�r+1

(
v � Id�r

)
. � (20)

If (K, ∂) is a differential field [29] and we extend derivation ∂ entrywise, ∂ (ai,j) :=
(∂ai,j), the Leibniz rule holds on vector products x�y as trivially as it does for ho-

mogeneous polynomials in n variables in virtue of Proposition 1 or Symk1+k2 (V ?) ∼=
Sk1+k2 (V,K); (11) implies:

Lemma 2.9. For any given X ∈ Matk1,j1n (K) and Y ∈ Matk2,j2n (K),

∂ (X � Y ) = ∂ (X)� Y +X � ∂ (Y ) . � (21)

Although the next result will be rendered academic by simplified expressions
in §4.1, it is worth writing for the sake of clarifying certain routinely-appearing
matrices a bit further. The proof is immediate from commutativity and (17), (19),
Lemma 2.9, the distributive property and (19), as well as simple induction in (c):

Lemma 2.10. Let (K, ∂) be a differential field.

a) If Y is a square n× n matrix having entries in K and ∂Y = AY , then

∂ SymkY = k
(
A� Symk−1 (Idn)

)
SymkY. (22)

b) If X ∈ Mat1,j1n and Y ∈ Mat1,j2n satisfy systems ∂X = AX + B1 and ∂Y =
AY +B2 with A ∈ Mat1,1n , Bi ∈ Mat1,jin , then symmetric product X�Y satisfies
linear system

∂ (X � Y ) = 2
(
A� Iddn,k

)
(X � Y ) + (B1 � Y +B2 �X) . (23)

c) If ∂Xi = AXi +Bi, i = 1, . . . ,m, with Xi, Bi ∈ Mat1,jin , A ∈ Mat1,1n then

∂

m⊙
i=1

Xi = m
(
A� Id�m−1dn,k

) m⊙
i=1

Xi +

m∑
i=1

Bi �
⊙
j 6=i

Xj . � (24)

Remark 2. Albeit not explicitly as in (22), the matrix proven equal to k(A �
Id�k−1n ) has appeared in numerous references (e.g. [2, 3, 4, 5, 7]) whenever a dif-

ferential equation for Symk arises, has been sometimes labelled symk and has been
consistently called symmetric power in the sense of Lie algebras, its Lie group coun-
terpart therein equal to �k as defined in this paper.

3. Symmetric products and exponentials of infinite matrices. The next
step towards a compact form to linearised higher variationals is assembling the
matrix blocks alluded to in Lemma 2.10 and Remark 2 together into a single matrix.
Again, we follow paths already trod with other aims and formulations, e.g. by
Bekbaev in [10].

3.1. Products and exponentials. Of the myriad ways to note a set of infinite
matrices, we may need one taking finite submatrix orders into account. Alterna-
tively, of all the ways in which to write a K-algebra S, a need may arise to express
it whenever possible S = Sym (V ) :=

⊕
k≥0 Symk (V ) for a given vector space.



10 SERGI SIMON

Notation 4. Let Matn,m (K) denote the set of block matrices A = (Ai,j)i,j≥0 with

Ai,j : SymiKm → SymjKn, hence Ai,j ∈ Mdn,i×dm,j (K) = Mati,jn,m (K):

A =



. . .
...

...
...

· · · A2,2 A2,1 ← A2,0

· · · A1,2 A1,1 ← A1,0

· · · A0,2 A0,1 ← A0,0


We write Mat := Matn,n if n is unambiguous. Conversely, Mati,jn,m is embedded in
Matn,m by identifying every matrix Ai,j with an element of Matn,m equal to 0 save
for block Ai,j .

We define a product on Matn,m. For a formulation yielding the same results see
[11, p. 2].

Definition 3.1. For any A,B ∈ Matn,m (K), define A�B = C ∈ Matn,m (K) by

C = (Ci,j)i,j≥0 , Ci,j =
∑

0≤i1≤i, 0≤j1≤j

(
j

j1

)
Ai1,j1 �Bi−i1,j−j1 . (25)

Same as always, �k will stand for powers built with this product.

The following is immediate and part of it has already been mentioned before,
e.g. [10]:

Lemma 3.2. (Mat (K) ,+,�) is an integral domain, its identity element 1Mat equal
to zero save for block (1Mat)0,0 = 1K . Mat (K) is also a unital associative K-algebra
with the usual product by scalars. �

Definition 3.3. (See also [10]) for every matrix A ∈ Matn,m we define the formal
power series

exp�A := 1 +A�1 +
1

2
A�2 + · · · =

∞∑
i=0

1

i!
A�i.

Whenever A = 0 save for a finite distinguished submatrix Aj,k (e.g. Examples 1
below or Lemma 3.6), the abuse of notation exp�Aj,k = exp�A will be customary.

Commutativity of � renders the proof of the following similar to that of scalar
exponentials:

Lemma 3.4.
a) For every two A,B ∈ Matn,m, exp� (A+B) = exp�A� exp�B.
b) For every Y ∈ Matn,m and any derivation ∂ : K → K, ∂ exp� Y = (∂Y ) �

exp� Y.

c) ([8, Corollary 3]) Given square matrices A,B ∈ Mat1,1n , exp�AB = exp�A
exp�B.

d) In particular, for every invertible square A ∈ Mat1,1n , exp�A
−1 =

(
exp�A

)−1
.
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Examples 1.
1. Let A ∈ Mat (K) such that all blocks are zero except for 1,1, the reader can

check that

exp�A1,1 = exp�

(
A1,1 0

0 0

)
= diag

(
· · · , A�k1,1, . . . , A1,1, 1

)
.

2. If the only non-zero block in A is a row vector,

A =

(
· · · 0 0 · · · 0
· · · 0 x · · · 0

)
, x =

(
x1, . . . , xdn,k

)
∈ Mat0,kn (K) ,

the only non-zero block in A�j is
(
A�Aj−1

)
0,jk

=
(
jk
k

)
·
(
(j−1)k
k

)
· · ·
(
2k
k

)
A�j0,k

e.g. for k = 1, exp�A =
∑
j≥0 x

�j =

(
· · · 0 0 0 0 0
· · · x�4 x�3 x�2 x 1

)
.

3. If the only non-zero block in A is column 0,k, the only one in A�j is jk,0, ob-
tained by switching rows and columns and expunging binomials from(
A�Aj−1

)
0,jk

in 2. For k = 1,

exp� x = exp�

(
0 x

0 0

)
=



...
...

0 1
j!
x�j

...
...

0 x

0 1


.

Fourth example (27), i.e. matrices equal to 0 save for block row 1,k, deserves special
attention.

Notation 5. For every set of indices 1 ≤ i1 ≤ · · · ≤ ir such that
∑r
j=1 ij = k,

cki1,...,ir is defined as the amount of totally ordered partitions of a set of k elements

among subsets of sizes i1, . . . , ir. We write cki if i = (i1, . . . , ir) and omit super-index
k if |i| is known beforehand.

Remarks 2.
1. cki1,...,ij = #I

i1,...,ij
1,...,k in (43) below,

∑
|i|=k c

k
i1,...,ij

=
{
k
j

}
, the Stirling number

of the second type ([1, §24.1.4]), and
∑k
j=1

∑
|i|=k c

k
i1,...,ij

= Bk, the kth Bell

number [27, Vol 2, Ch. 3].
2. Since each subset of size is is supposed to be ordered, we must divide the

total amount by the orders of the corresponding symmetric groups, hence the
explicit formula:

cki1,...,ij =

(
k

i1 i2 ··· ij

)
n1! · · ·nm!

,

{
(i1, . . . , ij) = (k1 n1. . . k1, · · · , km nm. . . km) ,
1 ≤ k1 < k2 < · · · < km.

(26)

Lemma 3.5. Let Y ∈ Mat (K) equal to zero outside of block row 1,k, k ≥ 1:

Y :=

(
· · · Y3 Y2 Y1 0
0 0 0 0 0

)
, Yi ∈ Mat1,in . (27)

Let Zr,s, s, r ≥ 1, be the corresponding block in exp� Y . Then,

a) Row block r in exp� Y is recursively obtained in terms of row blocks 1 and
r − 1:

Zr,s =
1

r

s−r+1∑
j=1

(
s

j

)
Yj � Zr−1,s−j . (28)
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In particular, Zr,r = Y �r1 and Zr,s = 0dn,r,dn,s whenever r > s.
b) For every m, r ≥ 1 and any v ∈ Kn,(

Y1v � Id�rn
)
Zr,r = Zr+1,r+1

(
v � Id�rn

)
. (29)

c) Using Notation 5 and (26), for every s ≥ r

Zr,s =
∑

i1+···+ir=s
csi1,...,irYi1 � Yi2 � · · · � Yir . (30)

d) Let A ∈ Mat (K) similar to Y , its horizontal strip not necessarily at level 1,∗:

A :=


· · · A3 A2 A1 0
· · · 0 0 0 0

...
...

...
...

· · · 0 0 0 0
0 0 0 0 0

 , At ∈ Matp,tn .

For every t, i ≥ 1 and s ≥ t+ i, the following factorization holds:

s−i∑
j=t

(
s

j

)
(AtZt,j)� Zi,s−j =

(
t+ i

i

)(
At � Id�in

)
Zt+i,s. (31)

e) If Q ∈ Matn has only its square 1,1 block different from zero, then exp�QY =(
exp�Q

) (
exp� Y

)
.

Proof. a) Using (25) on A = Y , B = Y �s−1, as well as the fact Zi,j = 0 for i > j,
(28) ensues.

b) Direct from (20) in Lemma 2.8.
c) By induction. For s = 1, r can only be equal to 1 in order to have a non-zero

block and Z1,1 = Y1 = c11Y1. Assume (30) holds for all r smaller than or equal
to s− 1. Summand redistribution renders Zr,s = 1

r

∑
j1+···+jr=s Cj1,...,jrYj1 �

Yj2�· · ·�Yjr where Cj1,...,jr splits into a certain sum, each of whose m terms is
easily checked to be equal to nmc

s
j1,...,jr

, hence the coefficient of Yj1 � · · ·�Yjr
in equals 1

r

∑m
i=1 nic

s
j1,...,jr

= csj1,...,jr .
d) the left-hand side in (31), expressed in terms of (30) and applying distributivity,

equals

s−i∑
j=t

(
s

j

) ∑
m1,...,mt

∑
k1,...,ki

cjm1,...,mtc
s−j
k1,...,ki

[At (Ym1 � · · · � Ymt)]� Yk1 � · · · � Yki . (32)

A tedious exercise in counting index multiplicities and applying basic combi-
natorics allows us to apply Lemma 2.7 to At and Y�m � Y�k := Ym1

� · · · �
Ymt � Yk1 � · · · � Yki :(

s

j

)
cjmc

s−j
k [At (Ym1 � · · · � Ymt)]� Yk1 � · · · � Yki =

(
i+ t

i

)(
At � Idin

)
Y�m � Y�k.

(33)

The fact every summand in (32) fits the same profile as the left-hand side in

(33) allows us to factor
(
i+t
i

) (
At � Idin

)
out of the whole sum, namely Zi+t,s.

e) Replacing each factor Yij by QYij in (30) and applying Lemma 2 we obtain

exp�QY =
(
Z̃r,k

)
where Z̃r,s =

∑
i1+···+ir=sQ

�r�csi1,...,irYi1�Yi2�· · ·�Yir =
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Q�rZr,s, hence matrix exp� Y appears multiplied by diag
(
· · · , Q�2, Q�1, 1

)
=

exp�Q.

Lemma 3.6. Let A and Y be as in Lemma 3.5. Then,(
A exp� Y

)
� exp� Y =

(
A� exp� Idn

)
exp� Y. (34)

Proof. Based on (25), B := A� exp� Idn ∈ Mat (K) is defined recursively by

B1 = A1, Bk =


(
k
k−1
)
A1 � Id�k−1n(

k
k−2
)
A2 � Id�k−2n

... Bk−1(
k
0

)
Ak

 , k ≥ 2.

Let

Φ1 = Y1, Φk =


Zk,k
Zk−1,k

... Φk−1
Z1,k

 , k ≥ 2,

be the matrix formed by the first k row and column blocks in exp� Y . Let Mr

be the block row r of B, Ak := (A1,k, A1,k−1 . . . , A1,1) the first k blocks in A and

Zk := (Zk,k, Zk−1,k . . . , Z1,k)
T

the first block column in Φk. Given s ≥ 1, block

1,s in A exp� Y equals AsZ
s =

∑s
j=1AjZj,s, hence for every r = 1, . . . , k block r,k

in
(
A exp� Y

)
� exp� Y can be rewritten, in virtue of (31) with p = 1, s = k and

i = r − 1, as
∑k−r+1
t=1

(
t+r−1
r−1

) (
At � Id�r−1n

)
Zt+r−1,k = MrZ

k.

3.2. Application to power series. Since polynomials and power series split into
homogeneous components, Example 1(3) implies:

Lemma 3.7.
a) Let F ∈ K [[x]], x = (x1, . . . , xn), be a formal series. Then there exists a set

of row blocks M1,i
F ∈ Mat1,im,n (K), i ≥ 0 such that F admits the expression

F (x) = MF exp�X, where

MF :=

(
· · · M1,2

F M1,1
F M1,0

F

· · · 0 0 0

)
∈ Mat1,n (K) , X :=

(
0 x
0 0

)
.

b) If F = F1 × · · · × Fm is a vector power series, adequate M1,i
F ∈ Mat1,im,n (K)

render

F (x) = MF exp�X where MF :=

(
· · · M1,2

F M1,1
F M1,0

F

· · · 0 0 0

)
∈ Matm,n.

Following Definition 3.3, write F (x) = MF exp� x if it poses no clarity issue.

From the above Lemma it follows that every formal power series can be expressed
in the form MF exp� x, where abusing notation once again

MF = JF +M1,0
F :=

(
· · · M1,2

F M1,1
F 0

· · · 0 0 0

)
+

(
0 M1,0

F

0 0

)
. (35)

In other words: MF equals the sum of two matrices with easily computable �-
exponentials: one following Example 1 (3) (same as x) and one following (27).
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Lemma 3.4, Lemma 3.2 and the universal property of finite products � yield the
following two results; see [8, 10] for a proof.

Lemma 3.8. Given power series F = (F1, . . . , Fm) and G = (G1, . . . , Gp) in n and
m indeterminates, respectively,

a) If n = m, MFG = MF �MG.
b) exp� F (x) =

(
exp�MF

) (
exp� x

)
.

c) MG◦F = MG exp�MF .

d) exp�
(
MG exp�MF

)
=
(
exp�MG

) (
exp�MF

)
. �

Corollary 2. Let F (x) = (F1, . . . , Fp) (x1, . . . , xn) be a vector power series, y =
F (x) and

X = Rx,X exp� x ∈ KN ,
Y = Sy,Y exp� y ∈ KP ,

}
Rx,X ∈ MatN,n (K) , Sy,Y ∈ MatP,p (K) ,

be independent and dependent variable changes, which we assume admit formal
inverse changes

x = RX,x exp�X,
y = SY,y exp� Y ,

}
RX,x ∈ Matn,N (K) , SY,y ∈ Matp,P (K) .

Then, the expression of F in the new variables, written in that in those old, is

MF,X,Y = Sy,Y
(
exp�MF,x,y

)
exp�RX,x where y = F (x) = MF,x,y exp� x. � (36)

As was hinted at in [10, p. 5], this result shows interesting light on the way
finite-level transformations translate into transformations on Matn,m. For a linear
transformation of the independent variables x = BX, however, basic properties of
exp� are as useful as (36) in proving F admits the following expression in the new
variable X (mind the effect of the first matrix, equal to zero save for block 1,1 which
is equal to Idn, on the second one):

F (X) = Idn
(
exp�MF

) (
exp�B

)
X =

(
JF +M0,0

F

) (
exp�B

)
exp�X. (37)

This will be applied to first integrals of dynamical systems in Section 5.

4. Higher-order variational equations.

4.1. Structure. Let us step back to what was said in §1.2. For each particular
integral curve ψ of a given complex autonomous dynamical system (DS), the vari-

ational system VEkψ for (DS) along ψ is satisfied by partial derivatives ∂k

∂zkϕ (t,ψ).
Case k = 1 being trivial as shown in (VEψ), the situation of interest is k > 1. We
will eschew formulations such as those in [24, eq (14)] in favour of the explicit for-

mulae (38), (44), (LVEψ) and (VEkψ) using Linear Algebra to express multilinear
maps.

Notation 6. K := C (ψ), Ai := X(i)(ψ), Yi := lex
(
∂i

∂ziϕ(t,ψ)
)

and, per Lemma

3.5,

Φ1 = Y1, Φk =


Zk,k
Zk−1,k

... Φk−1
Z1,k

 , k ≥ 2, (38)
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formed by the first k block rows and columns in Φ = exp� Y . Define A, Y ∈ Mat (K)
as in Lemma 3.5 with the above Ai, Yi as blocks. Denote the canonical basis on
Kn (meaning the set of columns of Idn) by {e1, . . . , en}.

Lemma 4.1. In the hypotheses described in Notation 6, let k ≥ 1 and m = 1, . . . , n.
Then,

Yk =

n∑
j=1

∂Yk−1
∂zj

(
eTj � Id�k−1n

)
, (39)

∂

∂zm
Yk = Yk+1

(
em � Id�kn

)
, (40)

∂

∂zm
Zr,k = Zr,k+1

(
em � Id�kn

)
−
(
Y1em � Id�r−1n

)
Zr−1,k, r ≤ k, (41)

∂

∂zm
Ak = Ak+1

(
Y1em � Id�kn

)
. (42)

Proof. We will explicitly prove (40); (39) is an immediate consequence of Lemma
2.5 and (40). We have, for every given ordered multi-index i = (i1, . . . , ik),

∂Yk
∂zm

ei1 � · · · � eik =
∂

∂zm

∂kϕ

∂zi1∂zi2 · · · ∂zik
= Yk+1em � ei1 � · · · � eik .

The right-hand side in (40) is equal to this expression, too, by simple application
of the same principle as in (15). The effect of ∂

∂z on Aj is clear as well: chain rule
implies

∂Ak
∂zm

ei1 � · · · � eik =

n∑
r=1

∂k+1X

∂zi1∂zi2 · · · ∂zik∂zr
∂ϕr
∂zm

=

n∑
r=1

Ak+1

(
er � e�i

) ∂ϕr
∂zm

,

which is equal, again using (15) in order to obtain ∂ϕr
∂zm

er�e�i =
(
∂ϕr
∂zm

er � Id�rn

)
e�i,

to

Ak+1

n∑
r=1

(
er � e�i

) ∂ϕr
∂zm

= Ak+1

n∑
r=1

(
∂ϕr
∂zm

er � e�i

)
= Ak+1

n∑
r=1

(
∂ϕr
∂zm

er � Id�rn

)
e�i,

hence to Ak+1

(
∂ϕ
∂zm
� Id�kn

)
e�i = Ak+1

(
Y1em � Id�kn

)
e�i.

The reader can check (41) and (42). For instance the latter is obtained by
induction over k using derivation of (28), (40) and Leibniz rule (21), as well as
application of (31) with i = 1, t = r− 2, s = k, At = Y1em� Id�r−2n and p = r− 1,
use of (20) and the fact Zr−2,r−2 = Y �r−21 .

Proposition 3 (First explicit version of non-linearised VEkψ). In the above hypothe-
ses,

Ẏ = A exp� Y ; (VEψ)

in other words, for every k ≥ 1,

d

dt
Yk =

k∑
j=1

AjZk,j =

k∑
j=1

Aj
∑

i1+···+ij=k

cki1,...,ijYi1 � Yi2 � · · · � Yij . (VEkψ)

Proof. Assume VEk−1ψ can be expressed as d
dtYk−1 =

∑k−1
j=1 AjZj,k−1. The entries

in Yk−1 are partial derivatives of ϕ (t, z), hence d
dt ≡

∂
∂t on every entry, Schwarz

Lemma applies and derivation of (39) yields d
dtYk ==

∑n
m=1

∂
∂zm
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∂Yk−1

∂t

(
eTm � Id�k−1n

)
; induction hypothesis and Leibniz rule render d

dtYk =
∑n
m=1[∑k−1

p=1
∂Ap
∂zm

Zp,k−1 +Ap
∂Zp,k−1

∂zm

] (
eTm � Id�k−1n

)
; equations (41) and (42) imply this

is equal to S1 + S2 − S3, where

S1 =

n∑
m=1

k−1∑
p=1

Ap+1

(
Y1em � Id�pn

)
Zp,k−1

(
eTm � Id�k−1n

)
,

S2 =

n∑
m=1

k−1∑
p=1

ApZp,k

(
em � Id�k−1n

)(
eTm � Id�k−1n

)
,

S3 =

n∑
m=1

k−1∑
p=1

Ap
(
Y1em � Id�p−1n

)
Zp−1,k−1

(
eTm � Id�k−1n

)
.

Sum swapping in
∑
m

∑
p and Lemma 2.5 (b) imply S2 =

∑k−1
p=1 ApZp,k; (29),

Lemma 2.5 (b) and Proposition 2 (b) render S1 − S3 equal to missing summand
AkZk,k in S2.

Corollary 3 (Second explicit version of non-linearised VEkψ). Let ϕ (t,ψ) = (ϕi)i
be the flow of (DS) along ψ. Given k ≥ 1, N ∈ Nk,r = 1, . . . , k and 0 ≤ m1 ≤
· · · ≤ mr, define:

a) the set Sm of σ ∈ Sk such that σ (1, . . . , k) = (i1, . . . , ir), ij =
(
ij,1, . . . , ij,mj

)
and ij,s < ij,s+1 for every j, s and mj = mj+1 implies ij,1 < ij+1,1;

b) the index-ordered partitions of N in subsets of sizes 0 ≤ m1 ≤ · · · ≤ mr:

ImN :=
{(
Nσ(1), . . . , Nσ(k)

)
= (K1, . . . ,Kr) : Ki ∈ Nmi and σ ∈ Sm

}
; (43)

c) and, using abridged notation
∑
j1,...,jr

to denote
∑n
j1=1

∑n
j2=1 · · ·

∑n
jr=1,

Tm1,...,mr
N1,...,Nk

:=
∑

(K1,...,Kr)∈ImN

∑
j1,...,jr

∂rXi

∂zj1 · · · ∂zjr
∂m1ϕj1
∂zK1

· · · ∂
mrϕjr
∂zKr

.

Then, the order-k variational equation along ψ = {ψ (t)} is summarised in the
following:

d

dt

∂kϕi
∂zN1

∂zN2
· · · ∂zNk

=

k∑
r=1

∑
m1,...,mr

Tm1,...,mr
N1,...,Nk

, i, N1, . . . , Nk ∈ {1, . . . , n} ,

indices in
∑
m1,...,mr

constrained by m1 ≤ · · · ≤ mr and
∑r
i mi = k. �

(VEkψ) in Proposition 3 effectively settles the entries for lower n rows in ALVEkψ

and the first n columns in Φk. Let us now find the rest of the matrices.

Proposition 4 (Explicit version of LVEkψ). Still following Notation 6, the infinite
system

Ẋ = ALVEψX, ALVEψ := A� exp� Idn, (LVEψ)

has Φ := exp� Y as a solution matrix. Hence, for every k ≥ 1,
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a) the lower-triangular recursive Dn,k×Dn,k form for LVEkψ is Ẏ = ALVEkψ
Y , its

system matrix being obtained from the first k row and column blocks of ALVEψ :

ALVEkψ
=


(
k
k−1
)
A1 � Id�k−1n(

k
k−2
)
A2 � Id�k−2n

... ALVEk−1
ψ(

k
0

)
Ak

 , (44)

b) and the principal fundamental matrix for LVEkψ is Φk from exp� Y in Notation
6.

Proof. (34) in 3.6, (VEψ) in Proposition 3, and item (b) in Lemma 3.4 imply

˙
exp� Y = Ẏ � exp� Y =

(
A exp� Y

)
� exp� Y =

(
A� exp� Idn

)
exp� Y.

The rest follows from Lemma 3.5.

Example 2. For instance, for k = 5 we have

ALVE5
ψ

=


5A1 � Id�4n
10A2 � Id�3n 4A1 � Id�3n
10A3 � Id�2n 6A2 � Id�2n 3A1 � Id�2n
5A4 � Idn 4A3 � Idn 3A2 � Idn 2A1 � Idn

A5 A4 A3 A2 A1

 ,

and, using any of the equivalent (28), (30), the principal fundamental matrix Φ5 is
Y �5
1

10Y �3
1 � Y2 Y �4

1

10Y �2
1 � Y3 + 15Y1 � Y �2

2 6Y �2
1 � Y2 Y �3

1

10Y2 � Y3 + 5Y1 � Y4 4Y1 � Y3 + 3Y2 � Y2 3Y1 � Y2 Y �2
1

Y5 Y4 Y3 Y2 Y1

 , (45)

hence (VEkψ) for k = 5 is the lowest row in ALVE5
ψ

times the leftmost column in Φ5.

4.2. Explicit solution and monodromy matrices for LVEkψ. Let T ⊆ P1
C be

the domain for time variable t in (DS) and γ ⊂ T a closed path based at t0 ∈
T . Assume k = 1. If Y1 is a fundamental matrix of first-order (VEψ), analytic

continuation along γ yields Y1 (t0)
γ−−−→

cont
Y1 (t0) ·M1,γ , M1,γ being the monodromy

matrix ([32]) of (VEψ). Assume Y1 := Φ1 is the principal fundamental matrix for
(VEψ), any other solution matrix Ψ1 recovered from Ψ1 = Y1Ψ1 (t0). The non-
linearised second-order equation, after Proposition 3, is

Ẏ2 = A1Y2 +A2 · Sym2 (Y1) . (VE2
ψ)

Following Proposition 4, linearised completion LVE2
ψ has principal fundamental

matrix

Φ2 =

(
Y �21

Y2 Y1

)
.

A particular solution Y2 = Y1
∫
Y −11 A2Sym2 (Y1) of (VE2

ψ) is found via variation of
constants, which becomes a contour integral whenever time is taken along path γ:

Y2
γ−−−→

cont
Q1,2,γ := M1,γ

∫
γ

Y −11 A2Sym2 (Y1) , (46)
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hence

Idn = Φ2 (t0)
γ−−−→

cont

(
Y �21 (t0)M�21,γ 0
Y1 (t0)Q1,2,γ Y1 (t0)M1,γ

)
= Φ2 (t0)

(
M�21,γ 0
Q1,2,γ M1,γ

)
,

and [γ] 7→Mi,γ is a group morphism π1 (T, t0)→ GLDn,i (C), hence for any funda-
mental matrix

Ψ2 (t0)
γ−−−→

cont
Ψ2 (t0)

(
M�21,γ 0
Q1,2,γ M1,γ

)
;

therefore the monodromy of LVE2
ψ along γ will be

M2,γ :=

(
M�21,γ 0
Q1,2,γ M1,γ

)
=

(
M�21,γ 0

M1,γ

∫
γ
Y −11 A2Y

�2
1 M1,γ

)
. (47)

Assume k = 3. The principal fundamental matrix of LVE3
ψ consists of the lower

right 3× 3-block of (45) and all solution matrices can be expressed Ψ3 = Φ3C. Let
us now find a solution to

Ẏ3 = A1Y3 + 3A2Y1 � Y2 +A3Sym3 (Y1) , (48)

Same as before, variation of constants on (48) yields another contour integral if
τ ∈ γ:

Y3
γ−−−→

cont
Q1,3,γ := M1,γ

∫
γ

Y −11

(
3A2Y1 � Y2 +A3Sym3 (Y1)

)
dτ. (49)

The remaining term of our monodromy matrix is a direct consequence of analytic
continuation:

0 = 3Y1 (t0)� Y2 (t0)
γ−−−→

cont
3M1,γ �Q1,2,γ = 3M1,γ �

(
M1,γ

∫
γ

Y −11 A2Y
�2
1

)
.

Our monodromy matrix is

M3,γ :=

 M�31,γ

3M1,γ �Q1,2,γ M�21,γ

Q1,3,γ Q1,2,γ M1,γ

 =

 M�31,γ

3M1,γ �Q1,2,γ M2,γQ1,3,γ

 . (50)

The pattern is clear now. Assume we have computed solutions Y1, . . . , Yk−1 and
performed continuation up to k − 1:

Φk−1
γ−−−→

cont
Φk−1Mk−1,γ := Φk−1


Qk−1,k−1,γ

Qk−2,k−1,γ Qk−2,k−2,γ

...
...

. . .

Q2,k−1,γ Q2,k−2,γ · · · Q2,2,γ

Q1,k−1,γ Q1,k−2,γ · · · Q1,2,γ Q1,1,γ

 ,

where

Qr,s,γ :=
∑

i1+···+ir=s
csi1,...,irQ1,i1,γ �Q1,i2,γ � · · · �Q1,ir,γ , s ≥ r ≥ 2. (51)

Then, the fundamental matrix for
(

LVEkψ

)
will be expressed in the form (38), its

lower left block Yk being computable in terms of the blocks Z2,k, . . . , Zk,k above

it (all of which involve Y1, . . . , Yk−1) in virtue of (VEkψ): Yk = Y1Vk, which is

continued into Q1,k,γ := M1,γ

∫
γ
Vk, where

˙
Vk = Y −11

∑k
j=2AjZj,k. Upper terms

Z2,k, . . . , Zk,k are continued into Q2,k, . . . , Qk,k as in (51), s replaced by k. It is
clear we have proven the following:
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Lemma 4.2. The monodromy matrix Φk of LVEkψ along closed path γ is composed
by the first k row and column blocks in

exp�Qγ := exp�

 · · · 0 0 0
· · · Q1,2,γ Q1,1,γ 0
· · · 0 0 0

 , (52)

where Q1,1,γ := M1,γ , blocks above the bottom row are computed according to (51)
and

Q1,s,γ := M1,γ

∫
γ

Y −11

s∑
j=2

AjZj,s, 2 ≤ s ≤ k. � (53)

Hence it is clear the computation of a monodromy matrix follows a block order
such as the one below, blocks in the bottom row requiring quadratures:

. . .

· · · 7
· · · 8 4
· · · 9 5 2
· · · 10 6 3 1

(54)

Computing the monodromy matrix is concomitant to computing the fundamental
matrix, i.e. said bottom-row quadratures must be both indefinite (yielding terms
Z1,s to be used in the computation of Zj,s in (53)) and contour integrals. See §6
for an example.

We assume there are two generators [γ] , [γ̃] ∈ π1 (T ; t0), yielding two different
matrices:

γ ←→ Qγ , γ̃ ←→ Qγ̃ .

Commutativity of monodromy matrices now admits simple, compact formulation:

Proposition 5. Two monodromy matrices Mk,γ and Mk,γ̃ for LVEkψ commute
if, and only if, their previous blocks Mk−1,γ ,Mk−1,γ̃ commute and the additional
properties hold

k∑
j=r

Qr,j,γQj,k,γ̃ =

k∑
j=r

Qr,j,γ̃Qj,k,γ , for every r = 1, . . . , k − 1,

matrices defined as in (51) and (53). �

Remarks 3.
a) The monodromy group of a linear system is contained in its differential Galois

group (e.g. [29]). The motivation for the above Lemma and Proposition is to
capitalise on this fact. This may in turn be a step towards future construc-
tive incarnations of the Morales-Ramis-Simó Theorem 1.2. The main obstacle
implementing Proposition 5, symbolico-computational issues aside, is the in-
certitude on whether Mk,γ and Mk,γ̃ belong to the Zariski identity component

Gal
(

LVEkψ

)◦
; a sufficient condition for arbitrary order is fulfilment at order 1,

M1,γ ,M1,γ̃ ∈ Gal (VEψ)
◦
, itself an open problem in general.

b) All disquisitions and results on the variational jet in [20, 21] are referred to the
lower n-row strip for commutators of these monodromies. More specifically:
• what is called jet therein is lower strip Y in principal fundamental matrix

Φ = exp� Y for infinite system (LVEψ), and we will use this terminology
in the following Section;
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• morphism properties imply monodromy matrices along path commutators
equal matrix commutators: Mk,γ−1

2 γ−1
1 γ2γ1

= M−1k,γ2M
−1
k,γ1

Mk,γ2Mk,γ1 ;

• hence, “jet commutation” in [20, 21] amounts to lower strip Qk,γ−1
2 γ−1

1 γ2γ1

(that is Y after passage along γ−12 γ−11 γ2γ1) equalling Idn.
Although [20, 21] clearly benefit from the use of automatic differentiation tech-
niques (see also [19]), it may be argued that expressions such as those in (LVEψ)
provide for a fuller control of the general structure of the whole variational com-
plex when it comes to symbolic computations, as well as a further check aid
for the aforementioned techniques. See §6.1 for an example. See also [28] for
a recent application to the Friedmann-Robertson-Walker Hamiltonian arising
from Cosmology.

5. First integrals and higher-order variational equations. Let F : U ⊆
Cn → Cn be a holomorphic function and ψ : I ⊂ C → U . Firstly, the flow ϕ (t, z)
of X admits, at least formally, Taylor expansion (1) along ψ which is expressible as

ϕ (t,ψ + ξ) = ψ + Y1ξ +
1

2
Y2ξ
�2 + · · · = ψ + Jψ exp� ξ, (55)

where Jψ is the jet for flow ϕ (t, ·) along ψ, displayed as Y in (27) and defined in
Notation 6 – that is, the matrix whose �-exponential Φ is a solution matrix for
(LVEψ). Secondly, the Taylor series of F along ψ can be written, cfr. [5, Lemma
2] and Notation 1,

F (y +ψ) = F (ψ) +

∞∑
m=1

1

m!

〈
F (m) (ψ) , Symmy

〉
. (56)

Basic scrutiny of Example 1(3), Lemma 3.7 and (35) trivially implies (56) can be

expressed as F (y +ψ) = Mψ
F exp� y, where

Mψ
F = JψF + F (0)(ψ) :=

 · · · 0 0 0
· · · F (2)(ψ) F (1)(ψ) F (0)(ψ)
· · · 0 0 0

 ∈ Mat1,n (K) ,

i.e. JψF is the jet or horizontal strip of lex-sifted partial derivatives of F at ψ.

Definition 5.1. We call

Ẋ = ALVE?ψ
X, ALVE?ψ

:= −
(
A� exp� Idn

)T
, (LVE?ψ)

the adjoint or dual variational system of (DS) along ψ. Same as in (LVEψ) and all
throughout 4.1, consideration of finite subsystems, namely the lowest Dn,k ×Dn,k

block, leads to specific notation
(

LVEkψ

)?
.

The following is immediate upon derivation of equation ΦkΦ−1k = IdDn,k :

Lemma 5.2.
(
Φ−1k

)T
is a principal fundamental matrix of

(
LVEkψ

)?
, k ≥ 1.

Hence, limk

(
Φ−1k

)T
, is a solution to (LVE?ψ). �

The following was proven in [24] and recounted in [5, Lemma 7], and may now
be expressed in a simple, compact fashion:

Lemma 5.3. Let F and ψ be a holomorphic first integral and a non-constant
solution of (DS) respectively. Let V := JTF be the transposed jet of F along ψ.
Then, V is a solution of (LVE?ψ).
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Proof. Let us recall formal expansion (55) and F (y) = JψF exp� y for every y ∈ Kn.
Let φ = ϕ (t,ψ + ξ). We have, using Lemma 3.8,

F (φ) = F
(
ψ + Jψ exp� ξ

)
= Mψ

F exp�
(
Jψ exp� ξ

)
=
(
Mψ
F exp� Jψ

)
exp� ξ,

and F (φ) is supposed to be constant, hence applying (LVEψ) and Lemma 3.8

0 =
˙(

Mψ
F exp� Jψ

)
exp� ξ =

(
˙

Mψ
F +Mψ

FALVEψ

)
exp� Jψ exp� ξ

=

(
˙

Mψ
F +Mψ

FALVEψ

)
exp� (φ−ψ) ,

hence
˙

Mψ
F + Mψ

FALVEψ = 0 leading us to the final result after transposing both
sides.

Compound the jet of field X, i.e. A in Notation 6 and Proposition 4, with a 1,0

term A0, equal to X(0) = X (ψ) = ψ̇:

Â :=

 · · · 0 0 0
· · · A2 A1 A0

· · · 0 0 0

 , Ai := X(i)(ψ) ∈ Mat1,in (K) .

It is easy to check, via possibilities offered on i1 and j1 in (25), that the symmetric

product of Â with exp� Idn adds only a relatively minor addendum to ALVEψ ,

namely a superdiagonal of blocks
(
i
i

)
A0�Id�in ∈ Mati+1,i

n , i ≥ 1, effectively rendering
it block-Hessenberg:

ÂLVEψ := Â� exp� Idn = lim
k
ÂLVEkψ

,

where, isolating ALVEkψ
within ÂLVEkψ

by means of a solid line,

ÂLVEk
ψ

:=



A0 � Id�kn(
k
k−1

)
A1 � Id�k−1

n

. . .

...
. . . A0 � Id�2

n(
k
1

)
Ak−1 � Idn · · · 2A1 � Idn A0 � Idn
Ak · · · A2 A1 A0

0 · · · 0 0 0


(57)

=



(
k
k

)
X(0) (ψ)� Id�kn(

k
k−1

)
X(1) (ψ)� Id�k−1

n

Â
LVEk−1

ψ

(
k
k−2

)
X(2) (ψ)� Id�k−2

n

...(
k
0

)
X(k) (ψ)� Id�0

n

 .

Using the Mk–Mk notation in [5], it is immediate to check that

MT
k = Id�k−1n � ψ̇ = Id�k−1n �X (ψ) , ÂLVEkψ

=MT
k−1 for every k ≥ 1.

A result in [5] using said notation is easier to prove in this setting. Indeed, the same

reasoning underlying (40) applies to row F (k) and ∂
∂zm

F (k) = F (k+1)
(
em � Id�kn

)
;
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following Lemma 2.5,

˙
F (k) = F (k+1)

n∑
m=1

(
em � Id�kn

)
˙ψm = F (k+1)

(
ψ̇ � Id�kn

)
= F (k+1)

(
A0 � Id�kn

)
,

implying
˙(

F (k)
)T

=
(
A0 � Id�kn

)T (
F (k+1)

)T
; placing all terms on one side, and

observing Lemma 5.3 and the transpose of expression (57), we obtain:

Proposition 6 ([5, Th. 12]). Let F , ψ, V as in Lemma 5.3. Then ÂTLVEψ
V =

0.

Hence, blocks in V 1, (V 2,V 1)
T
, (V 3,V 2,V 1)

T
, . . . having all entries in the

base field K and satisfying both equations in Proposition 6 and 5.3 are candidates
for jet blocks F (1), F (2), . . . of a formal first integral. These blocks belonging to

the intersection of ker ÂT
LVEkψ

and the solution subspace SolK

(
LVEkψ

)?
were called

admissible solutions of the order-k adjoint system in [5].
This takes us back to the end of Section 3.2. Consider gauge transformation

([2, 5, 6, 22]) x = PX transforming linear system ξ̇ = A1ξ into equivalent

Ξ̇ = P [A1] Ξ :=
(
P−1A1P − P−1Ṗ

)
Ξ.

Using notation Yi = PXi, Jψ = PX and item (e) in Lemma 3.5, we recover the
result already seen in previous references, summarised in the extension of gauge
transformations to higher dimensions via P�k:

exp� (X) = exp�
(
P−1Jψ

)
= exp� P

−1 exp� Jψ = diag
(
· · · ,

(
P−1)�2

, P−1, 1
)

exp� Jψ,

and very simple application of properties seen so far extends the general structure
of the gauge transformation to Ψ = exp� P

−1 exp� Jψ:

Ψ̇ = P
[
ALVEψ

]
Ψ :=

(
exp� P

−1ALVEψ exp� P +

(
˙

P−1 � exp� P
−1

)
exp� P

)
Ψ. (58)

Second summand

(
˙

P−1 � exp� P
−1
)

exp� P can be simplified into:

diag

(
. . . , k

[
˙

P−1 �
(
P−1)�k−1

]
P�k, . . . , 2

(
˙

P−1 � P−1

)
P�2,−P−1Ṗ , 0

)
, (59)

with
˙

P−1 = −P−1ṖP−1. The above gauge transformation can be seen as the effect
of transformation z = PZ on the jet of (DS). Given a first integral F of the latter,

we may always assume F (ψ) = 0, which implies M1,0
F = 0 and, as seen in (37) or

in Lemma 3.4,

FP (Z) = JF
(
exp� P

)
exp�Z.

The jet of this formal series is

JFP = JF
(
exp� P

)
=

(
· · · F (0)(ψ)P�3 F (2)(ψ)P�2 F (1)(ψ)P

· · · 0 0 0

)
∈ Mat1,n,

and applying (58), Lemmae 5.3 and 6, and identity
(
P−1

)�k
Ṗ�k = −

˙(
P−1

)�k
P�k,

we have just proven the following:



LINEARISED HIGHER VARIATIONAL EQUATIONS 23

Proposition 7. The transposed jet VP := JTFP in the new variables must satisfy

V̇P = −P
[
ALVEψ

]T
VP , ÂTLVEψ

(
exp� P

−1)T VP = 0. � (60)

The key importance in practical examples resides in the choice of the particular
solution ψ and the reduction matrix P , in order to render (60) easier (or more
convenient) to solve than its unreduced counterparts, Lemma 5.3 and Proposition
6: see also [3, 4].

6. Example. The dynamics of the Swinging Atwood Machine (SAM), summarised
in the diagram below,

R

q2

q1

m

M

are governed by Hamiltonian

H =
1

2

[
p21
Mt

+
(p2 +Rp1)2

mq21

]
+ gq1(M −m cos q2)− gR(Mq2 −m sin q2),

where Mt = M + m + 2Ip/R
2 and Ip is the pulley inertial momentum. We know

the following:

Theorem 6.1 ([26, Th. 7.5]). For every physically consistent value of the param-
eters, regardless of Ip and R, H is meromorphically non-integrable.

Consider SAM without massive pulleys, i.e. the limit case Ip = R = 0 and
Mt = M +m:

ż = XHw (z) := J∇Hw (z) , Hw =
1

2

(
p21

M +m
+

p22
mq21

)
+ gq1 (M −m cos q2) . (61)

Theorem 6.2. Define µ := M
m and µp := p(p+1)

p(p+1)−4 , p ∈ Z.

1. ([15, Th. 1]) If M > m and µ 6= µp for every p ≥ 2, then XHw is non-
integrable.

2. ([30, (16)]) For µ = µ2 = 3, (61) is integrable with additional first integral:

I = q21 q̇2

(
q̇1c−

q1q̇2
2
s

)
+ gq21sc

2 = gq21c
2s+ p2

p1q1c− 2p2s

4m2q1
. (62)

3. ([20, Theorem 4]) Degenerate cases µp, p ≥ 2 in item 1 are non-integrable. �

Canonical transformation (q1, q2, p1, p2) =
(
Q1, arccosQ2, P1,−P2

√
1−Q2

2

)
onHw

yields

H = gQ1 (M −mQ2) +
1

2

(
P 2
1

M +m
−
P 2
2

(
Q2

2 − 1
)

mQ2
1

)
. (63)



24 SERGI SIMON

Let us apply our formulation to the variational systems forH. The non-meromorphic
nature of the canonical transformation, along with other related issues, precludes
us from extending the conclusions of §6.1 to Hamiltonian (61). This will be the
subject of further upcoming work.

6.1. Monodromy matrices and integrability. Consider the particular solution
ψ = (Q1, Q2, P1, P2) defined by

ψ (t) =

(
−g (t− 1) t

2
,−1,−g (m+M) (2t− 1)

2
,
g2m (t− 1) t

(
C1 − 2C1t+ t2

)
4 (C1 − t)

)
. (64)

In the forthcoming calculations, any value of C1 different from 0 or 1 will ensure
the presence of logarithms in the fundamental matrix, and any value of C1 different
from 1/2 will avoid division by zero. Choose, for instance, C1 = 1/3. Gauge
transformation x = PX,

P :=
1√

M +m


−1 0 0 0

0 2(M+m)(1−3t)2

9gm(t−1)2t2 0 0

0 (M+m)(1+t)(3t−1)
9(t−1)2t2 −M −m 0

− gm(1+t)
2(3t−1) − gF (t)

90(1−3t)2(t−1)t 0 9gm(t−1)2t2

2(1−3t)2

 ,

and F = 15m(t− 1)t(3t− 1)3 +M(1 + t(16 + 15t(−9 + t(37 + 27(−2 + t)t)))) transforms
(VEψ) into

Ẋ = P [A1]X :=


0 − 1

9

(
4

(t−1)2 −
1
t2

)
1 0

0 0 0 0
0 0 0 0

0 8M(1−3t)
405m(t−1)4t4

1
9

(
4

(t−1)2 −
1
t2

)
0

X. (65)

Defining

G (t) =
2

3
(2t− 1) [1 + 5 (t− 1) t (6 (t− 1) t− 1)]

+ t [3 + 5t(3− 2t(11 + 3t(2t− 5)))]− 20 (t− 1)
3
t3 ln

t− 1

t
,

the principal fundamental matrix for (65) is Ψ (t) := Ψ̃ (t) ·
(

Ψ̃ (1/2)
)−1

, where

Ψ̃ := e
∫
P [A1] =


1 1+3t

9(t−1)t t 0

0 1 0 0
0 0 1 0

0 − 4MG(t)

405m(t−1)3t3 − 1+3t
9(t−1)t 1

 ,

because P [A1] commutes with
∫
P [A1] – an interesting topic for further study is

the possible relationship between said commutation and the level of reduction of the
matrix in the sense of [3], but this is not central to our present work. Our intention
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is to perform analytical continuation along paths homotopic to γ1, γ2 shown below:

− 1
2

1
2

3
2
3
2

i

−i

γ1γ2

Along γi, all terms outside of the diagonal in Ψ vanish except for term (M1,γi)4,2
which can be obtained from (65) by assuming X2 = 1, X3 = 0, which yields

8M(3t−1)
405m(t−1)4t4 + Ẋ4 = 0 and thus

(M1,γ1)4,2 = −
∫
γ1

8M(3t− 1)

405m (t− 1)4 t4
=

32iMπ

81m
, (M1,γ2)4,2 = −32iMπ

81m
. (66)

Order-2, 3 monodromies are given by (46), (49) respectively. The only change
therein is replacing A1, A2, A3 by their gauge transforms given by (58), (59) i.e.

the lower row block in P
[
ALVE3

ψ

]
, equal to

3
[
Q�3

(
A1 � Id�2

n

)
+ Q̇�Q�2

]
P�3

3Q�2 (A2 � Idn)P�3 2
[
Q�2 (A1 � Idn) + Q̇�Q

]
P�2

P−1A3P
�3 P−1A2P

�2 P [A1]

 ,

where Q := P−1. Let Y1 = Ψ. Following order (54), we compute (46), (49) and
M3,γ1 ,M3,γ2 . Let us check whether our third-order monodromy matrices commute.
We have C := M3,γ1M3,γ2−M3,γ2M3,γ1 equal to zero except for the following terms:

C34,5 = −
(
25600
85293 −

8960
85293 i

)
M2π2

g2m2(M +m)
, C34,11 =

6815744M3π3i

2187g2m3(M +m)
. (67)

This, coupled with the fact that Mk,γi ∈ Gal
(

LVEkψ

)◦
for every k (since M1,γi ,

being unipotent, belong to Gal (VEψ)
◦

and fundamental matrices Ψk are obtained
from quadratures), allows us to complement the non-integrability proof in [20] using
linearised variational equations on (63).

Remarks 4.
1. Same reasoning can be applied to pre-gauge monodromies, although calcula-

tions are more cumbersome; defining Pk := diag
(
P�k, . . . , P

)
, we have

Ψk
γi−−−→

cont
ΨkMk,γi ⇒ Ψ̃k := PkΨk (PkΨk)

−1
t=1/2

γi−−−→
cont

PkΨkMk,γi (PkΨk)
−1
t=1/2 ,

thereby rendering monodromy M̃k,γi = (PkΨk)t=1/2Mk,γi (PkΨk)
−1
t=1/2. The

reader may check that M̃1,γi have the same structure as M1,γi , albeit with

± ig2mMπ
2(M+m) in lieu of (66), and the non-zero terms in C̃ := M̃3,γ1M̃3,γ2 −

M̃3,γ2M̃3,γ1 share the same indices as (67):

C̃34,5 =

(
50
117 −

35i
234

)
gmM2π2

(M +m)2
, C̃34,11 =

4992g2mM3π3i

(m+M)3
. (68)
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2. Although we used monodromies, we can also use the presence of ln (3t− 1) in Y3
and Picard-Vessiot extension C (t) (ln t, ln (t− 1) , ln (3t− 1)) | C (t) (ln t, ln (t− 1))

to glean the structure of a generic Galois group matrix on the fundamental
matrix Ψ3 or its pre-gauge counterpart P3Ψ3; see e.g. [25].

We therefore have the following result:

Theorem 6.3. H in (63) is not meromorphically integrable for any M,m > 0. �

6.2. Formal first integrals and admissible solutions. Let us now try to apply
gauge transforms to the adjoint system for the same Hamiltonian. We have a

particular solution ψ =
(
− g2 (t− 1) t,−1,− g2 (M +m) (2t− 1) ,− g

2m
4 (t− 1) t2

)
,

which corresponds to special case C1 = 0 in (64), and gauge transformation x = PX
with

P :=


1−t√
M+m

0 0 0

0
√
M+m

gm(t−1)2
0 0

−
√
M +m

√
M+m

(t−1)2

√
M+m
1−t 0

gm(1−t)√
M+m

g(3m−M)

12(t−1)
√
M+m

− gt
4

√
M +m 0 gm(t−1)2√

M+m

 ,

transforms (VEψ) into the parameter-free, simplified system Ẋ = P [A1]X where

P [A1] =


0 − 1

(t−1)3
1

(t−1)2 0

0 0 0 0
0 0 0 0
0 0 1

(t−1)3 0

 .

The principal fundamental matrix for this system is

Ψ :=


1 1

2

(
1

(t−1)2 − 1
)

t
(1−t) 0

0 1 0 0
0 0 1 0

0 0 (t−2)t
2(t−1)2 1

 ,

and P
[
ALVE3

ψ

]
is computed as in §6.1. In the following table, the first two columns

correspond to order k and total solution space dimension D4,k. The latter two
display the dimension of the subspace of rational solutions (i.e. those having their
entries in the base field K = C (t)), and the subspace of those among the former
satisfying (60), respectively:

k dimC SolP
[
LVEkψ

]?
dimC SolKP

[
LVEkψ

]?
dimC Soladm

(
P
[
LVEkψ

]?)
1 4 4 3
2 14 14 9
3 34 32 17

Using solution (64) in §6.1 and the other P given in (65), however, dimC SolK

P
[
LVEkψ

]?
is considerably reduced and we obtain the following table, displaying
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lower bounds on the amount of admissible solutions:

k dimC SolP
[
LVEkψ

]?
dimC SolKP

[
LVEkψ

]?
dimC Soladm

(
P
[
LVEkψ

]?)
1 4 3 2
2 14 9 5
3 34 19 9
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2008.
[18] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New

York, 2002.
[19] K. Makino and M. Berz, Suppression of the wrapping effect by Taylor model-based veri-

fied integrators: Long-term stabilization by preconditioning, Int. J. Differ. Equ. Appl., 10
(2005), 353–384 (2006).
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