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Abstract: EMPIRE is a massively parallel semiempirical (NDDO) molecular-orbital 

program designed to scale well both on single multi-core nodes (using open MP) and 

on large clusters (using a hybrid open MP/MPI model). The program design and 

performance are discussed for single self-consistent-field calculations on up to 76,800 

atoms and on both single- and multi-node machines using either Windows 7 or Linux. 

EMPIRE currently carries out the full SCF calculation with no local approximations or 

other linear-scaling techniques. The single-node version is available free of charge to 

bona fide academic groups. 
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Introduction 

We use the expression “semiempirical molecular-orbital theory” in the following only 

for MNDO-like NDDO-based molecular-orbital (MO) techniques [1] such as MNDO, [2] 

MNDO/c, [3] MNDO/d, [4-7] AM1, [8] AM1*, [9-14] RM1, [15] PM3 [16,17] and PM6. 

[18] These methods represent the currently accepted norm for semiempirical MO 

calculations, although more accurate methods that include orthogonalization 

corrections are also available. [19-21] The major advantage of such techniques is that 

they provide quite accurate one-electron properties [1] at a fraction (generally 

estimated to be at most 10−3) of the computational cost of techniques such as density-

functional theory (DFT) or ab initio calculations. Because of the dominant 

diagonalization of the Fock-matrix, semiempirical MO calculations are generally 

considered to scale with O(N3), where N is the number of atomic orbitals. Linear scaling 

can be approached quite easily by using either divide and conquer (D&C) [22-24] or 

localized molecular orbital (LMO) [25] techniques, although neither is suitable for very 

extensively conjugated systems such as those typically encountered in molecular 

electronic devices. [26] However, the current generation of linear scaling semiempirical 

MO programs is quite adequate for calculating wavefunctions for most protein-sized 

molecules. A practical upper limit on desktop hardware seems to lie around or slightly 

below 20,000 atoms. [27] Because the calculations are fast, relatively little attention 

has been paid to efficient parallel computation and most current programs are 

essentially scalar in nature. A parallel version of MNDO94 was described as long ago 

as 1995. [28] The D&C codes are in principle moderately parallel but parallel 

performance has not until now been an important issue for semiempirical MO 

calculations. More recently, an SCF approach for three-dimensional condensed-phase 

systems has been introduced that has the potential to be able to perform calculations 

on millions of atoms with NDDO. [29] 

Current multi-core processors and modern supercomputers with tens-to-hundreds of 

thousands of cores now require that just about any compute-intensive software 

perform well in parallel. Potential modern applications of semiempirical MO-theory also 

require that very large systems can be calculated on appropriate hardware, for instance 

to simulate the electrical properties of molecular devices or aggregates.[30,31] 

Furthermore, many current programs such as our own VAMP [32] stem from the era 
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of vector computers and therefore pre-calculate many data in order to be able to 

process them in cpu-critical vector loops, so that memory requirements are large and 

memory access frequent. The former limits the sizes of the systems that can be 

calculated and the latter is rapidly becoming performance limiting because the speed 

of memory access has not kept pace with the Moore’s Law increase in cpu-

performance.  

We therefore now report a new, massively parallel implementation of Hartree-Fock 

(RHF) NNDO-based self-consistent field (SCF) calculations in a specifically designed 

program, EMPIRE. Our purpose at this stage was not to write a linear scaling code, 

but rather to provide a reference program that performs full RHF calculations (i.e. with 

no approximations to improve scaling) on very large systems. Two aspects of parallel 

performance were important in designing the code; scalar performance equivalent to 

that of VAMP on one core combined with excellent scaling on single nodes (currently 

up to 16 cores) and effective scaling on larger numbers of processors (here up to 

1,024) for very large calculations. In the second respect, our design goal was to be 

able to perform RHF calculations on up to 50,000 atoms on 1,000 cores. As described 

below, the current version of EMPIRE exceeds these specifications by a large margin. 

The importance of the current reference version of the code is that it provides an 

excellent platform for evaluating and validating future linear scaling versions, both with 

respect to performance and accuracy. However, it also has the advantage that it is 

versatile and performs very well for small molecules of only a few hundred atoms, 

making it a suitable basis for the next generation of workhorse semiempirical MO 

programs. 

Algorithms 

The major bottleneck in most semiempirical MO calculations is the diagonalization of 

the Fock matrix in each SCF cycle. This step is only moderately parallel, even using 

optimized library routines, so that it must ideally be eliminated, or at least minimized if 

high parallel efficiency is to be achieved. The other O(N3) step in the calculation is to 

construct the density matrix, which is also necessary in every SCF cycle. The 

calculation of the core Hamiltonian (once) and the construction of the Fock matrix 

(every cycle) represent the remaining major calculational tasks. In a code designed for 
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very large systems, “infrastructure” routines, such as those designed to improve SCF 

convergence, can also become very important, so that these must also be considered. 

Scheme 1 shows the general flow chart of a conventional NDDO-SCF algorithm.  

 

Scheme 1: Flow diagram for an SCF calculation in a conventional semiempirical molecular orbital 
program. The blue boxes indicate steps only carried out once at the beginning of the calculation. 

Because of the memory-access limitations described above, EMPIRE is a traditional 

direct SCF code in which not only the two-electron integrals (always), but also 

(optionally) the core Hamiltonian are calculated on the fly. The core Hamiltonian can 

also be stored and reused for small enough systems, resulting in a moderate speedup 

compared with the on-the-fly calculations.   

Design Considerations 

The size of molecules/systems that can be calculated is limited by memory 

requirements. The first design consideration for EMPIRE was therefore to minimize the 

number of N×N (N is the number of basis functions) matrices stored. The minimum 

requirement for a restricted SCF calculation is to store the density and Fock matrices 

(both symmetrical) and MO Eigenvalues and Eigenvectors. This gives a minimum 

memory requirement of 22 2N N+ words. Perhaps paradoxically, however, EMPIRE 

works with full (square) versions of the symmetrical matrices, making its memory 
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requirement 23N N+ words, 2N N− more than if triangular storage were used for the 

symmetrical matrices. This apparent waste of storage is accepted as the price for being 

able to perform most matrix-vector and matrix-matrix operations using optimized 

routines form the Intel Math Kernel Library (MKL). [33] It also helps avoid 

communication in the multi-node (MPI) parallel version (see Fock matrix and Density 

matrix below). Using MKL gives us a speedup of approximately a factor of two 

compared to compiled code and contributes significantly to our goal of producing a 

parallel code that is also competitive with the best scalar (or vector) programs 

available. As a measure of the importance of this strategy, approximately 50% of the 

cpu-time needed by a standard EMPIRE single-point RHF calculation on 150 atoms is 

used in MKL library routines and approximately 60% for 750 atoms. 

A further important factor is that many conventional convergence accelerators for SCF 

procedures, such as DIIS (known as Pulay’s procedure in MOPAC), [34,35] require 

that additional copies of past density matrices be stored. Similarly, if the individual 

elements of the density matrix are not calculated strictly one at a time, a copy of the 

previous density matrix is required to calculate the convergence on the density matrix 

between consecutive SCF cycles, which is usually used together with the electronic 

energy to judge whether the SCF has converged or not. As will be described below, it 

was therefore necessary to find an alternative convergence criterion for the density in 

EMPIRE. 

SCF convergence is usually ensured in standard semiempirical MO programs by one 

or more convergence accelerators. In VAMP and MOPAC, a two-point interpolation 

procedure that requires three copies of the density matrix is used as default. The IIS 

procedure [36] that we favor also requires three and DIIS [27,28] up to six as currently 

implemented in semiempirical MO programs. Other techniques such as Saunders and 

Hillier’s level shifting [37] do not need extra copies of the density matrix, but are less 

effective than the interpolation/optimization schemes. However, if the initial guess is 

close enough to the final solution, no convergence technique is needed. We have used 

this approach in EMPIRE although it requires one additional full matrix diagonalization 

(see below). 
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A final design consideration for a program that performs very large calculations is how 

to present the results. Writing out, for instance, tens of thousands of net atomic charges 

or bond orders is clearly not sensible. Similarly, square matrices describing 

characteristics of the wavefunction for such systems are of very limited use. We have 

therefore resorted to lattice-based visual output, as described below. 

 

Implementation 

In the following, we describe the implementation of the individual calculational tasks in 

EMPIRE. The modified workflow for an SCF calculation in EMPIRE is shown in 

Scheme 2. 

 

Scheme 2: Flow diagram for an SCF calculation in EMPIRE. The blue boxes indicate steps only carried 
out once at the beginning of the calculation and the green ones those that have been introduced for 
EMPIRE. 

Core Hamiltonian 

The core Hamiltonian can be calculated on the fly or stored, depending on the size of 

the system. The core Hamiltonian is generally only calculated on the fly for very large 
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systems, for which the extra N2 storage requirement may become important. The core 

Hamiltonian is stored in horizontal stripes on the calculating nodes. 

Two-electron integrals 

The two-electron integrals are calculated on the fly as needed using the standard 

rotation method introduced for MNDO for the multipole-multipole interactions. [2]  

Fock-matrix 

The Fock-matrix is stored as horizontal stripes on the calculating nodes. On small 

single-node jobs, only half of the symmetric Fock matrix is calculated and then copied 

to the other half. On larger multi-node jobs, the complete stripes are calculated on each 

node. This doubles the amount of work done but avoids communication between the 

nodes. This approach is justified as the calculation of the Fock-matrix including the on-

the-fly calculation of the two-electron integrals scales with N2. Therefore, it only 

accounts for a minor portion of the computation time for larger calculations.   

Density-matrix 

The density matrix is calculated by a matrix multiplication of the occupied MO block of 

the Eigenvectors matrix with its transpose and by multiplying the result by a factor of 

two in the RHF case. By doing a full matrix multiplication we can use the MKL, which 

gives us a speedup of approximately a factor of two, but effectively doubles the amount 

of work that is done in this step. For larger calculations that are performed on multiple 

nodes smaller blocks of the density matrix are calculated at a time. The off-diagonal 

blocks are then transposed and copied to the position of their symmetric counterparts. 

By doing so, much of the doubling of the work is avoided. 

Initial guess 

The initial guess is critical for the performance of the program, especially as our options 

for convergence accelerators are very limited, as outlined above. The most usual initial 

guess used by semiempirical MO programs is to construct a diagonal density matrix in 

which the electrons are distributed evenly over the atomic orbitals. This is very primitive 

but also extremely fast to construct. Because we ideally want to rely on the standard 

SCF iteration scheme without an additional convergence accelerator, an initial guess 
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as close to the converged wavefunction as possible is required. Such guesses can be 

obtained from extended Hückel theory or from diagonalizing the core Hamiltonian 

matrix. This is not ideal for a massively parallel program as it introduces an extra full 

diagonalization step into the calculations. However, we have discovered that for most 

“normal” systems, the iterative SCF scheme converges unusually quickly if we 

diagonalize a matrix constructed from the two-atom blocks of the NDDO one-electron 

matrix combined with diagonal one-atom blocks that consist of the orbital ionization 

energies taken from INDO/S. [38,39] This matrix is essentially an extended Hückel 

matrix that uses the NDDO overlap terms and leads to MOs that are close to the final 

solution in almost all cases. We have therefore in the initial EMPIRE version accepted 

the disadvantage of an extra matrix diagonalization in order to obtain a robust and 

reliable SCF procedure.  

Diagonalization/Pseudodiagonalization 

As outlined above, the full diagonalization of the Fock matrix in every SCF-cycle 

represents the major bottleneck in conventional semiempirical MO calculations. 

Because this step scales with N3 and because it accounts for more than half of the cpu-

requirements in a conventional NDDO-SCF, it must be the major design target for a 

massively parallel NDDO-SCF program. Modern serial NDDO programs do not 

generally use full diagonalizations in every SCF-iteration, but rather switch to the so-

called pseudodiagonalization procedure, in which only the Eigenvectors, but not the 

Eigenvalues, are updated. [40] The principles behind pseudodiagonalization have 

been described in detail recently, [41] but a brief description will be given here because 

pseudodiagonalization is essential for the EMPIRE SCF algorithm. 

Pseudodiagonalization attempts to eliminate elements of the occupied-virtual block of 

the Fock matrix in the MO basis,ℑ , which is given by: 

o vc Fc+ℑ =        (1) 

where c indicates the Eigenvector coefficients, the subscripts o and v the occupied and 

virtual MO blocks, respectively, and F the Fock matrix in the atomic-orbital (AO) basis. 

Rotation angles xov between occupied MO o and virtual one v can be estimated by 

simple perturbation theory to be: 
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o v
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ε ε
ℑ

=
−       (2) 

where ε indicates the Eigenvalue of MO o or v. This expression reveals the reason for 

the fact that the pseudodiagonalization is usually turned on after a series iterations with 

full diagonalization of the Fock matrix: the Eigenvalues must be fairly converged 

because they are not updated in pseudodiagonalization iterations. 

The rotation angles xov are then used for Givens (Jacobi) rotations between the 

occupied and virtual MO Eigenvectors: 

( ) ( )2 21 , 1o ov o ov v v ov v ov oc x c x c c x c x c= − − = − −     (3) 

The Givens rotation is a standard BLAS operation and is included in the MKL library. 

Although rotations over the entire MO Eigenvectors cannot be performed in parallel 

because of the recurrence of individual Eigenvectors in many rotations, the 

Eigenvectors themselves can be split into sections and these sections subjected to 

parallel rotations (i.e. each thread treats only a given subsection of the Eigenvectors). 

If the Eigenvectors are long enough, the rotations become efficiently parallel. 

The potential bottleneck in this procedure if the “CFC” operation (Equation 1), which, 

however, can be implemented efficiently using stripes of the Fock matrix. 

The missing component of a complete SCF-algorithm based on the 

pseudodiagonalization procedure is the calculation of the Eigenvalues ε (Equation 2), 

which must be carried out for those SCF iterations in which the conventional algorithm 

would use full diagonalization. The Eigenvalues can be calculated efficiently in parallel 

from the Fock matrix and the Eigenvectors. Timings for the above steps will be given 

below. 

Convergence tests 

Conventional serial semiempirical MO programs test the electronic energy and the 

density matrix elements for convergence as the stopping criterion in the SCF-iteration 

process. The latter option becomes expensive inn terms of both storage requirements 
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and cpu-time as the size of the calculation increases. As outlined in the introduction, 

storing past density matrices can be every expensive for very large calculations, so 

that we need an alternative to the density-matrix test for standard EMPIRE 

calculations. The pseudodiagonalization procedure offers a useful alternative: the 

closer to convergence, the smaller the elements ovℑ of the occupied-virtual block of the 

Fock matrix in the MO basis (Equation 1). Figure 1(a) shows that the maximum element 

of the matrix ovℑ correlates linearly with that of the density matrix, P, so that it can be 

used as an equivalent measure of convergence. As ℑ is calculated in any case, it offers 

an excellent convergence measure in addition to the electronic energy. The 

relationship between ( )max o v−ℑ and ( )ijStdErr P depends on the number of orbitals in 

the species being calculated, as shown in Figure 1(b). Purely empirically, the RMSE of 

the density-matrix elements between cycles is related to the maximum element of ovℑ

by: 

( ) ( )max
4.5

ov

orbs

StdErr P
N
ℑ

≈       (4) 

, as shown in Figure 1(b). 
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Figure1: (a) log/log plot of the standard error between density matrices in consecutive cycles against 

the maximum element of ovℑ for SCF calculations on four test molecules (one point per SCF cycle); (b) 

Comparison of the observed standard error between consecutive density matrices and those predicted 
by equation (4). 

However, we have neglected the weak dependence on orbsN in the EMPIRE code in 

order to ensure that large molecules are well converged. Quite generally, the SCF-

convergence criteria in EMPIRE are somewhat stricter than those in comparable 

programs. 

Results and Discussion 

SCF convergence 

EMPIRE differs from traditional NDDO programs in its use of the extended-Hückel-like 

initial guess without convergence accelerators. Its only convergence accelerator is a 

dynamic level-shifting scheme, [30] which turns on automatically as required. We have 

therefore tested its SCF-convergence behavior extensively in order to assess the 

effectiveness of the initial guess. Quite generally, EMPIRE converges for “normal” 
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molecules within 50 SCF-cycles or less. This includes extensive cluster models for 

semiconductor particles, which might be expected to converge slowly. Difficulties are 

encountered as the band gap approaches zero, although compounds with a band gap 

down to 0.5 eV converge in less than 1,000 cycles. The model graphene compound 

(1800 carbon atoms, 7,326 orbitals and electrons, approximately 10×6 nm) shown in 

Figure 2, for instance, converges in 3,079 cycles with AM1 without dynamic level 

shifting. The convergence of such low band-gap materials depends, however, very 

strongly on the geometry and topology of the molecules. 

 

Figure 2: Model planar graphene sheet consisting of 1,800 carbon atoms saturated with terminal 
hydrogens. 

As outlined in a separate study, EMPIRE converges very slowly for gas-phase proteins 
because of very slow inductive charge transfer across the molecule during the SCF 
iterations. [42] 

Scalar performance and accuracy 

EMPIRE has been implemented with consistent and up-to-date physical constants and 

conversion factors throughout. The exception are those constants used for the original 

parameterizations of the Hamiltonians, which are used as parameterized. However, 

the marginally different constants used in EMPIRE and the fact that other 

semiempirical programs may use cutoffs for some variables can lead to very small 

differences in calculated energies. Note also that in very specific circumstances, the 

localized MO SCF technique [18] used in Mopac [43] may not converge to the 
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variational wavefunction, so that EMPIRE also (correctly) gives lower total energies 

(Heats of Formation) in such cases. [35]  

Figure 3: The melanine oligomers used form the benchmark calculations reported in Tables 1 and 2. 

Table 1 shows the results of single-point AM1 calculations on the series of linear 

melanine oligomers shown in Figure 3. The results are summarized graphically in 

Figure 4. 

Table 1: Results and cpu times for the test melanine oligomers using strictly serial versions of EMPIRE 
and VAMP on a single core (2.9 GHz Intel Xeon E5-2690, 64-bit Windows 7 Enterprise). The test 
molecules are shown in Figure 3. The timings are for single-point calculations with standard 
convergence criteria using the AM1 Hamiltonian. No convergence aids were used with EMPIRE. VAMP 
used the Badziag and Solms converger. [36] The default initial guesses for each program were used. 
The VAMP version used is the internal development version, which differs considerably from the 
commercially available version.  

# 
atoms 

# 
orbitals 

# 
electrons 

EMPIRE VAMP 
cpu 

seconds 
SCF 

cycles 
∆H°f  

(kcal mol−1) 

cpu 
seconds 

SCF 
cycles 

∆H°f  

(kcal mol−1) 

258 786 866 4.4 24 -442.215 3.9 20 -442.219 
514 1570 1720 26.1 25 -873.743 22.1 22 -873.751 
770 2354 2594 76.1 24 -1302.547 65.8 23 -1302.558 

1026 3138 3458 215.6 34 -1439.638 674.4 79 -1439.640 
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Figure 4: Total (taken from Table 1) cpu times and times per SCF cycle for the test single-point 
calculations defined in Table 1.   

The scalar performance of the new program is surprisingly good. This is largely the 

result of the consequent use of MKL wherever possible and the heavily reduced 

memory requirement compared to VAMP, which is a classical vector program. We can 

conclude from the results that EMPIRE is only 10 to 20% slower than VAMP. The poor 

performance of VAMP for the largest test job is due to the large number of SCF cycles 

required with full diagonalization in order to achieve initial convergence. The more 

sophisticated initial guess used in EMPIRE eliminates this difficulty, so that the 

program performs correspondingly better. The large time per cycle found for this test 

with VAMP is the result of the large number of full diagonalizations. 

The memory requirements are modest. Under Windows 7, EMPIRE uses a maximum 

of 430 MB memory for the largest melanine oligomer (1,026 atoms, 3,138 orbitals, 

3,458 electrons). 

Scaling 
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Single-node open MP 

Table 2 shows the performance on a single node for the melanine test molecules 

shown in Figure 3. The benchmarks were conducted twice, once with Turbo Boost 

activated and once using a constant frequency for all runs. Turbo Boost causes runs 

with fewer cores to run at a higher frequency than those with more, so that it results in 

apparently worse scaling. 

Table 2: Results and cpu times (2.8 GHz Intel Xeon E5-2680) for the test melanine oligomers using the 
single-node OMP version of EMPIRE as a function of the number of cores used. The test molecules are 
shown in Figure 3. The timings are for single-point calculations with standard convergence criteria using 
the AM1 Hamiltonian. No convergence aids were used.  

# 
atoms 

# 
AOs 

# 
electrons Systema 

time (seconds) for N cores 
N=1 N=2 N=3 N=4 N=6 N=8 N=10 

Without Turbo Boost 

258 786 866 
Windows 7 5.4 2.9 2.1 1.7 1.3 1.1 1.0 

Linux 5.1 2.7 1.9 1.5 1.2 1.0 1.0 

514 1570 1720 
Windows 7 33.7 18.0 12.4 10.3 7.0 6.5 5.5 

Linux 33.2 17.8 12.3 9.3 7.0 5.4 5.0 

770 2354 2594 
Windows 7 96.9 50.5 35.1 27.0 19.4 15.5 14.0 

Linux 95.9 49.5 34.2 27.1 19.5 15.8 13.5 

1026 3138 3458 
Windows 7 272.1 139.7 96.6 74.0 52.4 41.8 37.2 

Linux 268.0 137.6 93.9 72.9 51.1 40.6 35.3 
With Turbo Boost 

258 786 866 
Windows 7 4.2 2.4 1.8 1.5 1.2 1.0 1.0 

Linux 4.0 2.2 1.6 1.4 1.1 0.9 0.8 

514 1570 1720 
Windows 7 26.9 14.5 10.4 8.3 6.4 5.3 5.1 

Linux 25.9 14.6 10.7 8.7 6.9 5.4 4.6 

770 2354 2594 
Windows 7 76.8 41.3 29.4 23.4 17.6 14.1 12.7 

Linux 74.3 39.8 29.3 23.1 17.1 13.7 11.7 

1026 3138 3458 
Windows 7 216.2 115.4 81.1 64.2 47.6 37.9 33.9 

Linux 209.3 113.9 78.7 62.1 46.1 37.1 32.0 
a  Windows 7:  64-bit Windows 7 Enterprise 
    Linux:  openSUSE 12.3 (x86_64) 
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Figure 5: Scaling factors for the calculations defined in Table 2 (without Turbo Boost). The solid lines 
and diamonds refer to the Windows 7 calculations, circles and dashed lines to Linux.   

Figures 5 and 6 show the scaling graphically, Figure 5 without Turbo boost to indicate 
the true scaling of the calculations, and Figure 6 with Turbo Boost, which corresponds 
to the normal operating conditions. The performance of the program under Windows 7 
and Linux is essentially the same except that small jobs fall off faster for ten cores 
under Windows than Linux. The smallest test job runs at approximately 52% parallel 
efficiency on ten cores. This increases to 71-76% for the two largest jobs. Using Turbo 
Boost, the parallel efficiency on ten cores for the smallest and largest melanine 
oligomers is 44-48% and 60-66%, respectively. Thus, even on machines that feature 
Turbo Boost (which favors single-core calculations), calculation of more than 2,000 
orbitals or more are 6-7× faster on ten cores than on one. As expected, the scaling for 
small calculations falls of gradually, so that lower numbers of cores are optimal. Even 
for the smallest calculation, however, the scaling up to four cores is impressive.    
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Figure 6: Scaling factors for the same calculations as shown in Figure 5, but with Turbo Boost. The 
solid lines and diamonds refer to the Windows 7 calculations, circles and dashed lines to Linux.   

 

Multi node hybrid OMP/MPI 

In order to test the scaling for single-point calculations on a multi-node cluster, 

adamantane crystals of different sizes were built with Materials Studio 6.1 [44] and 

used for single-point AM1 calculations on the LiMa cluster of the Regionales 

Rechenzentrum Erlangen. [45] The results are shown in Table 3. The scaling behavior 

is analogous to that found for the single-node version. Smaller jobs scale up to a critical 

number of nodes, after which the performance tends towards a plateau. If we use 75% 

parallel efficiency as a lower limit, the smallest calculation (11,232 atoms) can be 

carried out efficiently on up to 8 nodes (192 cores), increasing to 64 nodes (1,536 

cores) for 37,908 atoms. The trend is approximately quadratic and reflects the fact that 

the calculation load per node must be adequate to offset the communication overhead.  

Larger calculations than those reported in Table 3 (up to 100,000) atoms have been 

performed successfully with development versions of the program on larger clusters. 

One pleasing aspect of the calculations is that the number of SCF cycles required for 

convergence only rises from 23 for 11,232 atoms to 34 for 37,908, so that the initial 

guess is clearly also effective for large calculations.  
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Table 3: Results and lapsed times (2.66 GHz Intel Xeon 5650, 12 MB shared cash per chip, 24 GB 
RAM, Infiniband interconnect with 40 GBit/s bandwith) for adamantane crystals using the multi-node 
OMP/MPI version of EMPIRE as a function of the number of nodes used. The timings are for single-
point calculations with standard convergence criteria using the AM1 Hamiltonian. No convergence aids 
were used. The crystals were built with Materials Studio 6.1 [44] and the geometries used unchanged. 

# 
atoms 

# 
electrons 

time (seconds) for N nodes@2×12 cores # Nodes for 
>75% efficiency N=1 N=2 N=4 N=8 N=16 N=32 N=64 

11,232 24,192 15,052 8,760 4,707 2,658 1,537 1,044 989 8 

17,836 38,416    11,385 5,835 3,640 2,930 16 

26,624 57,344     19,113 11,182 8,298 32 

37,908 81,648      29,490 19,658 64 

52,000 112,000       47,300 >64 

 

 

Figure 7: Scaling for adamantane crystals on the cluster defined in Table 3 using the hybrid OMP/MPI 

version of EMPIRE. The calculations are those described in Table 3. 

Output considerations 

Very large semiempirical MO calculations are now possible, but traditional output 

formats for quantum mechanical calculations (MOs, net atomic charges, bond orders, 

etc.) rapidly become too complex for molecules consisting of tens of thousands of 

atoms. The standard output from EMPIRE is therefore kept short and concise and 

emphasis is placed on extracting relevant properties from a binary file in HDF5 format 
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[46] that contains all the details necessary to analyze the results of the calculation a 

posteori as required. The most effective way to analyze the results for very large 

systems is to visualize volumetric data for local properties such as the electron density, 

molecular orbitals, local ionization energy, [47] local electron affinity, polarizability, 

electronegativity or hardness. [48,49] Such analyses are particularly useful, for 

instance, for characterizing the electronic properties of cluster models for crystals [50] 

or self-assembled monolayers (SAMs). [51] As the size of 3D property maps scales 

with the molecular volume, rather than the number of atoms, and the resolution can be 

varied to suit the application, volumetric data is usually more compact for very large 

systems. Apart from diagnostic information about the course of the SCF convergence, 

only data such as the Koopmans theorem ionization potential and electron affinity and 

the molecular dipole moment are provided in the output file; all other relevant properties 

(population analyses, electron-density maps, molecular orbitals, local property maps 

etc.) can be derived by post-processing the output HDF5 file, which is compact 

compared to a normal ASCII output file. 

Figure 8, for instance, shows the molecular electrostatic potential mapped onto the 

0.001 a.u. isodensity surface of the hydrogen-terminated graphene shown in Figure 2. 

The dominant effect of the edge structures can clearly be seen. Such maps combined 

with those for the local ionization energy and electron affinity provide valuable 

information in a compact and understandable form. 
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Figure 8: Molecular electrostatic potential projected onto the 0.001 a.u. isodensity surface of the 
hydrogen-terminated graphene shown in Figure 2. The color scale (in kcal mol−1) is given on the right. 
The structure was built with Materials Studio 6.1 [44] and used unchanged. 

 

Summary and conclusions 

EMPIRE has proven to be very effective on both multi-core desktop machines and 

highly parallel clusters. The largest calculation performed so far was for 100,000 atoms 

on 1,024 processors (calculation not described here), but the size of systems to be 

calculated is only limited by the available hardware, the software is unlimited. If the 

core Hamiltonian is calculated on the fly, EMPIRE only requires three permanent N2 

matrices and therefore makes very economical use of memory. The program is 

competitive with conventional highly optimized serial programs, even on a single core, 

and scales well both on single nodes and on clusters of many nodes.  

The single-node version of the program is available free to bona fide academic groups 

[52] and the program manual is available online. [53] 
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