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Abstract  

 

The dorsal raphe nucleus (DRN) provides the major source of serotonin to the central 

nervous system (CNS) and modulates diverse neural functions including mood. 

Furthermore, DRN cellular networks are engaged in the stress-response at the CNS level 

allowing for adaptive behavioural responses, whilst stress-induced dysregulation of DRN 

and serotonin release is implicated in psychiatric disorders. Therefore, identifying the 

molecules regulating DRN activity is fundamental to understanding DRN function in health 

and disease. GABAA receptors (GABAARs) allow for brain region, cell-type and subcellular 

domain specific GABA-mediated inhibitory currents and are thus key regulators of 

neuronal activity. Yet, the GABAAR subtypes expressed within the neurochemically diverse 

cell-types of the mouse DRN are poorly described. In this study, immunohistochemistry 

and confocal microscopy revealed that all serotonergic neurons expressed 

immunoreactivity for the GABAAR alpha2 and 3 subunits, although the respective signals 

were co-localised to varying degrees with inhibitory synaptic marker proteins. Only a 

topographically located sub-population of serotonergic neurons exhibited GABAAR alpha1 

subunit immunoreactivity. However, all GABAergic as well as non-GABAergic, non-

serotonergic neurons within the DRN expressed GABAAR alpha1 subunit 

immunoreactivity. Intriguingly, immunoreactivity for the GABAAR gamma2 subunit was 

enriched on GABAergic rather than serotonergic neurons. Finally, repeated restraint stress 

increased the expression of the GABAAR alpha3 subunit at the mRNA and protein level. 

The study demonstrates the identity and location of distinct GABAAR subunits within the 

cellular networks of the mouse DRN and that stress impacts on the expression levels of 

particular subunits at the gene and protein level. 
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Introduction 

 

The dorsal raphe nucleus (DRN) provides the major source of serotonin to the central 

nervous system (Jacobs and Azmitia 1992) and modulates the activity of distinct brain 

regions, notably those involved in mood-related functions such as the amygdala and 

prefrontal cortex (Petrov et al. 1994; Vertes 1991) . Allied to its role in mental function is 

the contribution of the DRN in determining adaptive behavioural responses to psychosocial 

stressors (Waselus et al. 2011). Engagement of both the serotonergic and non-

serotonergic  neuronal networks comprising the DRN is integral to processing such various 

forms of stress-related information (Roche et al. 2003; Shikanai et al. 2012; Challis et al. 

2013) resulting in the release of serotonin in a brain region and stimulus specific manner 

(Kirby et al. 1995; Kirby et al. 1997; Adell et al. 1997). Since altered DRN function is 

implicated in stress-related mental illnesses (Baumann et al. 2002), identifying the 

neurotransmitter receptors which underpin cellular communication within the DRN is 

fundamental to understanding the changes in DRN neuronal activity and serotonin release 

during different brain-states or disease profiles.  

 

GABAergic inputs onto serotonergic neurons, which arise locally, or from distant sources 

signalling via GABAARs, appear to play a central role in shaping DRN serotonin neuronal 

activity and stress-induced DRN behaviours (Gervasoni et al. 2000; Celada et al. 2001; 

Challis et al. 2013; Crawford et al. 2013; Soiza-Reilly et al. 2013). Therefore, the precise 

location of distinct GABAAR subtypes is likely to be central to cellular communication 

between the functionally distinct cell-types of the DRN and thus coordinated serotonin 

release. GABAARs are composed of five interacting subunit proteins forming an associated 

anion channel. Nineteen GABAAR subunits have been cloned (Olsen and Sieghart 2009) 

with the subunit combinations determining the biophysical (Farrant and Nusser 2005; 

Belelli et al. 2009; Eyre et al. 2012) and pharmacological (Rudolph and Knoflach 2011) 



4 
 

properties of the receptor. As a consequence, the brain-region and cell-type specific 

expression patterns of various GABAAR subunits (Hortnagl et al. 2013; Fritschy and 

Mohler 1995; Wisden et al. 1992) manifest in diverse GABAAR-mediated inhibitory 

currents throughout the brain, the kinetics of which, within the DRN, are influenced by 

psychosocial stressors (Kirby et al. 2008; Crawford et al. 2013).  

 

GABAAR subunit expression patterns have been reported for the rat DRN (Gao et al. 1993; 

Pirker 2000; Fritschy and Mohler 1995), but not the mouse DRN, despite considerable 

inter-species differences in their DRN neurochemistry (Fu et al. 2010). Furthermore, 

although there is a convergence of GABAAR expression (Vithlani et al. 2013) and 

exposure to stress (Binder and Nemeroff 2010) with mental illnesses, it is unclear whether 

stress directly influences GABAAR subtypes expressed within the DRN. Having recently 

shown functional contribution of GABAAR-mediated inhibitory postsynaptic currents to 

DRN serotonergic neuronal excitability (Maguire et al. 2013), this study goes on to 

demonstrate the identity and the location of the GABAAR alpha and gamma2 subunits 

expressed within the cellular networks of the mouse DRN. We also reveal that repeated 

stress results in the selective up-regulation of the GABAAR alpha3 subunit expression at 

both the mRNA and protein level. 
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Materials and methods 

 

All procedures involving experimental animals were performed in accordance with the 

Animals (Scientific Procedures) Act, 1986 (UK) and associated procedures. Every effort 

was made to minimise any pain or discomfort to the animals. 

 

Animals 

Adult C57BL/6J male mice and transgenic mice which expressed green fluorescent protein 

(GFP) as a reporter molecule driven by the promoter of the gene for the GABA 

synthesising enzyme glutamic acid decarboxylase 67 (GAD67), (GAD67-GFP) (Tamamaki 

et al. 2003) were used to determine the native expression patterns of particular GABAAR 

subunits.  

 

Tissue preparation 

Animals were perfusion-fixed as follows: anaesthesia was induced with isofluorane and 

maintained with pentobarbitone (1.25 mg/kg of bodyweight; i.p.). The animals were 

perfused transcardially with 0.9 % saline solution for 1 minute, followed by 12 minutes 

fixation with a fixative consisting of 1% paraformaldehyde, 15% v/v saturated picric acid, in 

0.1 M phosphate buffer (PB), pH 7.4. The brains were kept in the same fixative solution 

overnight at 4°C. Coronal sections of the DRN, 60 µm thick, were prepared on a 

Vibratome and stored in 0.1 M PB containing 0.05% sodium azide. 

 

Immunohistochemical reactions 

Immunohistochemical procedures were according to those used in (Corteen et al. 2011). 

Four C57BL/6J and two GAD67-GFP transgenic animals were used to confirm the native 

patterns of the immunoreactivity. A proteolytic antigen retrieval method was used to 

localise membrane–bound epitopes according to (Watanabe et al. 1998; Lorincz and 
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Nusser 2008). Briefly, the tissue sections were incubated at 37°C for 10 minutes in 0.1 M 

PB followed by 15 minutes in 0.2 M HCl containing 1 mg/ml pepsin (Sigma, UK) after 

which they were washed thoroughly in Tris-buffered saline containing 0.3% triton (TBS-Tx) 

for 30 minutes. Non-specific binding of secondary antibodies was blocked by incubating 

sections with 20% normal horse serum for 2 hours at room temperature. The tissue 

sections were incubated with cocktails of primary antibodies (Table 1), diluted in TBS-Tx, 

overnight at 4°C. After washing with TBS-Tx, sections were incubated in a mixture of 

appropriate secondary antibodies conjugated with either Alexa Fluor 405 (Jackson 

ImmunoReserach) Alexa Fluor 488 (Invitrogen, Eugene, OR), indocarbocyanine (Cy3; 

Jackson ImmunoResearch), and indodicarbocyanine (Cy5; Jackson ImmunoResearch) for 

2 hours at room temperature. Sections were washed in TBS-Tx and mounted in 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA).  

 

Antibody specificity 

Although the specificity of all the antisera against the GABAAR subunits used in this study 

have been reported upon extensively in other publications (see Table 1), tissue from 

GABAAR alpha1 subunit-specific gene deleted mice  (Sur et al. 2001), GABAAR alpha2 

subunit-specific gene deleted mice (Dixon et al. 2008) and GABAAR alpha3 subunit-

specific gene deleted mice (Yee et al. 2005) was used in the current study to confirm the 

specificity of the respective immunoreactivity patterns under current reaction conditions 

and within specific brain regions investigated. Method specificity was also tested by 

omitting the primary antibodies in the incubation sequence. To confirm the absence of 

cross reactivity between IgGs in double and triple immunolabelling experiments, some 

sections were processed through the same immunohistochemical sequence, except that 

only an individual primary antibody was applied with the full complement of secondary 

antibodies.  
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Image acquisition 

Sections were examined with a confocal laser-scanning microscope (LSM710; Zeiss, 

Oberkochen, Germany) using either a Plan Apochromatic 63x DIC oil objective (NA1.4) 

(pixel size 0.13 μm) or a Plan Apochromatic 100x DIC oil objective (NA1.46) (pixel size 

0.08 μm). Z-stacks were used for routine evaluation of the labelling. All images presented 

represent a single optical section. These images were acquired using sequential 

acquisition of the different channels to avoid cross-talk between fluorophores, with the 

pinholes adjusted to one airy unit. Images were processed with the software Zen2008 

Light Edition (Zeiss, Oberkochen, Germany) and exported into Adobe Photoshop. Only 

brightness and contrast were adjusted for the whole frame, and no part of a frame was 

enhanced or modified in any way.  

 

Quantification of the density of gephyrin and neuroligin2 as well as their degree of 

colocalisation on TPH-immunopositive somata and dendrites  

Immunoreactivity for molecular markers of inhibitory synapses, namely gephyrin (Essrich 

et al. 1998) and neuroligin2 (NL2) (Varoqueaux et al. 2004) were used to gain a 

perspective of the location of putative GABAergic synapses on serotonergic neurons within 

the DRN. Tryptophan hydroxylase (TPH) immunoreactivity was used to visualise 

serotonergic neurons. The quantitative method used is according to our previous reports 

(Corteen et al. 2011; Gunn et al. 2013; Maguire et al. 2013). A total of 9 tissue sections, 3 

per animal, 3 animals, were used to quantify: 1) the density of individual gephyrin and NL2 

immunoreactive clusters on TPH immunopositive profiles; 2) the density of gephyrin and 

NL2 immunoreactive clusters which colocalised with one another and; 3) the proportion of 

individual gephyrin and NL2 immunoreactive clusters which were located on either TPH-

immunopositive somata or dendrites. Preliminary investigations revealed no discernible 

gradients in the intensity of gephyrin and NL2 signals in the rostro-caudal planes. 

Therefore, tissue sections at the rostral-caudal midline level of the DRN (Bregma ~ -4.60) 
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from each animal were selected for analyses. Two fields of view (FOV) were randomly 

selected within the DRN ventromedial sub-region of each tissue section. A Z-stack 

consisting of three optical sections was acquired for each FOV with a Plan Apochromatic 

x100 (NA1.4) DIC oil immersion objective. The dimensions of the optical sections were 

84.94µm x 84.94µm in the X & Y planes and 1 µm thick in the Z plane. Optical sections 

were spaced 2 µm apart. In all cases, triple immunofluorescence (TPH-neuroligin2-

gephyrin) was acquired using sequential acquisition of the different channels. The number 

of individual clusters (gephyrin or NL2) within an optical section associated with TPH 

immunoreactivity was manually counted using ImageJ software and the density 

determined by dividing the number of clusters by the area of the optical section. Co-

localisation of individual clusters (gephyrin and NL2) from the different channels was 

visually confirmed in the X, Y and orthogonal planes and manually counted using ImageJ 

and the density then calculated. Finally, the proportion of NL2 and gephyrin 

immunoreactive clusters located on either somatic or dendritic compartments was 

determined.  

 

Quantification of the relative proportion of TPH-immunopositive cells expressing GABAAR 

alpha1 subunit immunoreactivity 

A previous study of the rat reported that the GABAAR alpha1 subunit is predominantly 

expressed by GABAergic non-serotonergic neurons and to a lesser extent by serotonergic 

neurons in the DRN (Gao et al. 1993). Preliminary investigations confirmed this similar 

restricted expression pattern of this subunit in the DRN of the mouse. However, it was 

noticeable that the TPH-GABAAR alpha1 subunit immunopositive neurons were not 

randomly distributed throughout the mouse DRN, but were concentrated within specific 

sub-regions of the nucleus. We therefore quantified the ratio of TPH-GABAAR alpha1 

subunit immunopositive cells to total TPH immunopositive cells as well as the location of 

this population of cells, in three animals, nine tissue sections per animal which were 70 
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µm-thick. For a particular animal, three sections representing either the rostral (~ -4.24 mm 

Bregma), midline (~ -4.6 mm Bregma) or caudal (~ -4.96 mm Bregma) (total of nine tissue 

sections per animal) extents of the DRN were used for quantification. This was repeated in 

3 animals. For each tissue section, the proportion of TPH-GABAAR alpha1 subunit 

immunopositive cells to total TPH-immunopositive cells was quantified within the distinct 

sub-regions of the DRN. For the rostral sections, the DRN was subdivided into dorsal 

(dDRN) ventral (vDRN) and medial interfasicular (ifDRN) regions. For the midline sections, 

the DRN was subdivided into dorsal, ventral, medial interfasicular and lateral (lDRN) 

regions. For the caudal sections, the DRN was subdivided into dorsal, ventral regions and 

medial interfasicular regions. To unequivocally confirm that GABAAR alpha1 subunit 

immunoreactive clusters were located on TPH-immunopositive neurons, Z-stacks were 

acquired throughout the full extent of the tissue section using a Plan Apochromatic 63X 

DIC oil objective (NA1.3). The dimensions of the optical sections were 224 µm x 224 µm x 

0.9 µm (X, Y, Z). The optical sections within a Z-stack were spaced 7 µm apart in the Z-

plane with 0.5 µm overlap between optical sections. ImageJ software (NIH) was used to 

manually count the number of TPH-GABAAR alpha1 subunit-immunopositive neurons in 

relation to the total number of TPH-immunopositive cells within the different DRN sub 

regions. The mean ± SEM number of total TPH and TPH-GABAAR alpha1 subunit-

immunopositive cells within the DRN sub-nuclei at rostral, midline and caudal planes of  

three animals are presented as well as the proportion of TPH-GABAAR alpha1 subunit-

immunopositive cells to total TPH immunopositive cells at  the rostral, midline and caudal 

planes. 
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Quantification of the relative proportion of NL2 immunoreactive clusters which co-localise 

with GABAAR alpha2 & 3 subunit immunoreactive clusters on TPH-immunopositive somata 

and dendrites 

The quantitative method used is according to our previous report (Corteen et al. 2011). 

Tissue from five animals (three tissue sections per animal) was used to quantify the 

relative proportion of NL2 immunoreactive clusters which co-localised with GABAAR 

alpha2 and GABAAR alpha3 subunit immunoreactive puncta on TPH-immunopositive 

dendrites and somata with the intention of estimating what proportion of inhibitory 

synapses on such cell surfaces are likely to contain GABAARs composed of these 

subunits. Preliminary investigations revealed no discernible gradients in the intensity for 

signal for either the GABAAR alpha2 or GABAAR alpha3 subunits in the rostro-caudal 

planes. Therefore, tissue sections at the rostral-caudal midline level of the DRN from each 

animal were selected for each of the following immunohistochemical reactions: 1) TPH-

GABAAR alpha2 subunit-NL2 and; 2) TPH-GABAAR alpha3 subunit-NL2.  Two fields of 

view (FOV) were randomly selected within the DRN ventromedial sub-region of each 

tissue section. A Z-stack consisting of three optical sections was acquired for each FOV 

with a Plan Apochromatic x100 (NA1.4) DIC oil immersion objective. The dimensions of 

the optical sections were 84.94µm x 84.94µm in the X & Y planes and 1 µm thick in the Z 

plane. Optical sections were spaced 2 µm apart. In all cases, triple immunofluorescence 

(TPH-NL2-alpha2 or TPH-NL2-alpha3) was acquired using sequential acquisition of the 

different channels. The number of clusters within an optical section associated with TPH 

immunoreactivity was manually counted using ImageJ software. Co-localisation of 

individual clusters from the different channels was visually confirmed in the X, Y and 

orthogonal planes and manually counted using ImageJ. The proportion of NL2 clusters 

which co-localised with either GABAAR alpha2 or alpha3 subunit clusters was computed 

and expressed as the number of puncta per 1000 um2 of DRN.   
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Repeated restraint stress 

The DRN-5HT system is central to integrating  stress-related information within the CNS 

and the adoption of adaptive or maladaptive behavioural responses (Waselus et al. 2011) 

with GABAAR functional plasticity within the cellular networks of the DRN central to such 

processes (Crawford et al. 2013; Kirby et al. 2008; Kirby et al. 2000). However, it is 

currently unclear whether exposure to stress directly impacts on the level of expression of 

particular GABAAR subtypes and the particular cell-types involved. With  a view to 

investigating potential GABAAR plasticity in adaptive, rather than maladaptive responses to 

stressful experiences, we deliberately used a mild restraint stress protocol which does not 

induce a chronic stress phenotype (Buynitsky and Mostofsky 2009) nor anxiogenic-like 

behaviour (Seifi et al. 2014).  However, this protocol has been shown to robustly engage 

the DRN-serotonergic system, amongst other brain regions (Shoji and Mizoguchi 2010; 

Keshavarzy et al. 2014). Animals were divided into stress and control experimental groups 

one week prior to the start of the experiment in order to allow adaptation to the new cage 

environment before commencing the stress, To deliver restraint, mice aged postnatal day 

(PND) 40 were inserted tail first into a Broome rodent restrainer (Harvard Apparatus # 52-

0470) for 30 minutes per day. Mice were restrained within the tube, but not fully 

immobilised. They thus were able to move slightly backwards and forwards in the device. 

During restraint stress, mice were kept individually in standard housing cages containing a 

thin layer of corn cob. After the restraint stress, animals were removed to their home 

cages. The restraint stress was delivered at set times during the day for eight consecutive 

days. The time-period of eight days was chosen empirically as the minimum length of time 

required to reliably induce statistically significant changes in animal behaviour and 

GABAAR subunit expression, based on pilot experiments. To prevent habituation to the 

repeated stressor over the course of the experiment, the duration and the degree of 

restraint was subtly varied between days, as detailed in Table 2. To apply escapable 

restraint, the animal was inserted into the tube and restrained for 1 minute, after which the 
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stopper was removed and the animal was able to emerge from the restrainer and explore 

the novel environment of the cage, with the restrainer left in the cage. Control mice 

remained in their original cages and were left undisturbed in this home environment. On 

day 9 the tissue from control and stress animals was processed for either GABAAR mRNA 

or immunohistochemical analyses.  

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)  

To assess how stress might impact upon the mRNA encoding GABAAR subunits within the 

DRN, one day after the final stress episode (day 9), the mice were euthanized  by cervical 

dislocation and their brains rapidly removed. Fourteen control and fourteen stress animals 

were used for these analyses. Two millimetre thick tissue sections containing the DRN 

were obtained using a brain matrix (Harvard apparatus; #726233). From these sections, a 

tissue punch of 2 mm diameter was used to extract the DRN which was then placed in 

RNAlater® for post hoc RNA extraction. Each tissue punch was removed from the 

RNAlater® and placed in RLT lysis buffer (Qiagen) and was disrupted with a rotor 

homogeniser. Total RNA was extracted from the tissue lysate using RNeasy® RNA 

Purification kit (Qiagen) according to the manufacturer’s instructions. Subsequently, 

purified RNA was reverse transcribed to cDNA at 37 °C using M-MuLV reverse 

transcriptase and Oligo(dT)18 primers.  

 

Multiplex qPCR 

Multiplex qPCR was used to simultaneously analyse the expression of both the 

housekeeping gene (Gapdh) and a second gene of interest. The genes investigated were: 

Gabra1 (the GABAAR alpha1 subunit); Gabra2 (the GABAAR alpha2 subunit); Gabra3 (the 

GABAAR alpha3 subunit), and Gabrg2 (the GABAAR gamma2 subunit). qPCR was 

performed according to Carter et al. (2013); for each sample 2 µl cDNA was mixed with 

nuclease free water, mastermix (Roche) and the primers and probes of housekeeping 
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gene and gene of interest, tagged with VIC (primer limited) and FAM respectively, to yield 

a 10 µl total reaction volume. The primers and probes used in this study are displayed in 

Table 3.  The qPCR was performed under the following cycling conditions: 95°C for 10 

minutes and 55 cycles of 95°C for 10 sec and 60°C for 30 sec. 

  

Analysis of RNA expression levels 

The relative standard curve method was used for quantitative determination of the amount 

of the gene of interest in relation to the amount of the housekeeping gene (Gapdh). 

Standard curves were generated for Gabra1, Gabra2, Gabra3, and Gabrg2 using serial 

dilutions of cDNA from whole mouse brain. Each measurement was performed in triplicate 

and each Ct value was then converted into ng RNA using linear regression analysis of the 

standard curve (Microsoft Excel). Each ng RNA value was normalised against the ng 

housekeeping gene level within the same sample. Mean ng RNA levels were computed 

from the normalised measurements and compared across stress and control experimental 

groups. qRT-PCR data is presented as relative change in gene expression above or below 

control. 

 

Quantification of the relative proportion of GABAAR alpha3 subunit and gephyrin 

immunoreactive clusters on TPH immunopositive somata and dendrites in tissue from 

repeated restraint stress and control mice 

One day after the final stress episode (day 9), tissue was prepared for 

immunohistochemical analyses as above using three control and three stress animals. The 

quantitative method used to identify how stress influences GABAAR subunit expression in 

the DRN is according to Lorenzo et al. (2007). Tissue from six animals, three stress and 

three control, were used to quantify the relative proportion and degree of co-localisation of 

GABAAR alpha3 subunit and gephyrin immunoreactive puncta on TPH-immunopositive 

dendrites and somata. Tissue sections at the rostra-caudal midline level of the DRN 
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(approximately -4.60 Bregma) from each animal were selected for the following 

immunohistochemical reaction: TPH-GABAAR alpha3 subunit-gephyrin. Two fields of view 

(FOV) were randomly selected within the ventromedial sub-region of each tissue section. 

The ventromedial sub-region was selected because of data within this study showing that 

inhibitory innervation is enriched on the dendritic domains of TPH-immunopositive neurons 

and TPH dendrites are densest within the ventromedial sub-region. A Z-stack consisting of 

three optical sections was acquired for each FOV with a Plan Apochromat x100 (NA1.4) 

DIC oil immersion objective. The dimensions of the optical sections were 84.94 µm x 84.94 

µm in the X & Y planes and 1 µm thick in the Z plane. Optical sections were spaced 2 µm 

apart. Triple immunofluorescence was acquired using sequential acquisition of the 

different channels. The number of GABAAR alpha3 subunit, gephyrin and co-localised 

GABAAR alpha3 subunit-gephyrin clusters within an optical section associated with TPH 

immunoreactivity was manually counted using ImageJ (NIH) software. The numbers of 

clusters for each optical section within a field of view were combined and the means ± SD 

for all FOV within and between sections were pooled within either control or stress groups. 

Quantitative data are reported as density of clusters per 1000 um2.  

 

Statistical analysis 

All quantitative data are presented as the mean ± SEM unless otherwise stated. The data 

were tested for normality using a Shapiro-Wilk test.  An Independent Student’s T-test or 

Mann-Whitney test was used for normally and non-normally distributed data, respectively. 

In all cases, SPSS was used for statistical analyses. GraphPad was used for graphical 

presentation of the data.  
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Results 

Inhibitory synaptic marker proteins are preferentially located on dendritic compartments of 

DRN serotonergic neurons  

 

Molecular markers of inhibitory synapses were used to initially gain a perspective of the 

location of putative GABAergic synapses on the somatic and dendritic domains of 

serotonin neurons within the DRN. Immunolabelling for gephyrin, a protein enriched in 

inhibitory synapses due to its role in clustering GABAARs and strychnine-sensitive glycine 

receptors (Essrich et al. 1998), was widely associated with TPH-immunopositive profiles, 

although immunoreactive clusters appeared to be preferentially located on dendritic rather 

than their somatic compartments (Fig. 1a1). Immunoreactivity for NL2 (Fig. 1a2), a protein 

exclusively expressed at inhibitory synapses (Varoqueaux et al. 2004) (Poulopoulos et al. 

2009) closely matched the pattern of gephyrin. Both gephyrin and NL2 immunoreactivity 

displayed significant co-localisation throughout the rostral-caudal and dorsal-ventral 

extents of the DRN (Fig. 1a3). Quantification of gephyrin immunoreactivity revealed that 

(mean ± SEM) 37.7 ± 2.7 clusters per 1000 µm2 were located on TPH immunopositive 

profiles, of which, 7% were located on somata and 93% on dendrites. Furthermore, 

quantification of NL2 immunoreactivity revealed that (mean ± SEM) 55.4 ± 4.9 clusters per 

1000 µm2 were located on TPH immunopositive profiles of which, 7% were located on 

somata and 93% on dendrites. Finally, the density of colocalised gephyrin-NL2 

immunopositive clusters was (mean ± SEM) 29 ± 3  clusters per 1000 µm2 which 

computes to 76% of gephyrin immunoreactive clusters being colocalised with those 

immunoreactive for NL2 whereas 53% of NL2 immunoreactive clusters colocalised with 

those immunoreactive for gephyrin (Fig. 1b).  

 

Data on only the GABAAR alphas 1, 2, 3 and gamma2 subunits are presented since we 

found no evidence for the expression of the GABAAR alpha 4, 5 and delta subunits in the 
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DRN, whilst the expression of all other subunits (beta; gamma1, 3; epsilon; pi) was not 

investigated. The specificity of the antibodies against either the GABAAR alpha1, alpha2 or 

alpha3 subunits was confirmed in tissue from wild-type (WT) mice and tissue from either 

GABAAR alpha1 (Fig. 2a, b), alpha2 (Fig. 2c, d) or alpha3 (Fig. 2e, f) subunit-specific 

gene-deleted mice respectively. There were no discernible differences in the intensity of 

TPH immunoreactivity in the DRN of WT and GABAAR alpha1, alpha2 or alpha3 subunit-

specific gene-deleted mice suggesting that the absence of these subunits did not impact 

on the expression of this enzyme within the DRN (Fig. 2). 

 

The GABAAR alpha1 subunit is expressed by a minority of serotonin neurons and all 

GABAergic neurons within the DRN 

GABAAR alpha1 subunit immunoreactivity was evident throughout the DRN in both rostral-

caudal and dorso-ventral extents although it appeared to be enriched particularly in the 

lateral wing sub-regions (Fig. 2a2). Numerous GABAAR alpha1 subunit immunoreactive 

profiles were interspersed between those immunopositive for TPH, demonstrating the 

multitude of cells which expressed this subunit within the DRN (Fig. 3a1). The GABAAR 

alpha1 subunit signal was equally enriched on somatic as well as dendritic compartments 

of cells as demonstrated by its high degree of co-localisation with the dendritic marker 

protein microtubule associated protein (MAP-2) (Fig. 3a2, 3). This location of the GABAAR 

alpha1 subunit signal on neuronal somata is in stark contrast to the signal for the GABAAR 

alphas 2 and 3 subunits which was preferentially restricted to dendritic domains (see 

below). A previous study in the DRN of the rat reported that the GABAAR alpha1 subunit is 

mainly expressed by non-serotonergic, GABAergic neurons of the DRN (Gao et al. 1993). 

GABAAR alpha1 subunit immunoreactive signal was localised to three neurochemically 

diverse cell types within the DRN (Fig. 3b,c); i) a sub-population of TPH-immunopositive 

neurons which displayed GABAAR alpha1 subunit signal on their somata (Fig. 3b1); ii) all 
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GFP-GAD67 immunopositive neurons (Fig. 3B2) and; iii) a population of DRN neurons 

which were immunonegative for both TPH and GAD67-GFP (Fig. 3b3).  

 

Double labelling with gephyrin revealed extensive co-localisation between gephyrin and 

GABAAR alpha1 subunit immunoreactivity (Fig. 3b3). The gephyrin signal was 

predominantly enriched on dendritic domains, apart from a subpopulation of GAD67-GFP 

immunolabelled neurons situated within the ventral DRN, which, qualitatively, exhibited 

uncharacteristically intense somatic gephyrin signal. Qualitative observations revealed that 

these ventral GAD67-GFP neurons were also much larger than dorsal GAD67-GFP 

neurons (Fig. 3c3). This distribution and diverse morphology could suggest the presence 

of at least two sub-populations of GABAergic neurons within the DRN; i) one population 

which possesses lower levels of synaptically localised alpha1 subunit containing GABAARs 

(alpha1-GABAARs) on their somata and; ii) a second sub-population, which possess 

higher levels of synaptically localised alpha1-GABAARs on their somata. The 

predominance of GABAAR alpha1 subunit signal on most of the non-TPH immunopositive 

neurons suggests that GABAARs containing this subunit will have a major influence on the 

excitability and function of these neurons, which are thought to provide local circuit 

inhibition onto the principal serotonergic neurons of the DRN. Therefore, while  alpha1-

GABAARs are not widely expressed on serotonin neurons, their modulation in vivo, for 

example with subunit-specific ligands such as zolpidem, could have a profound impact 

upon brain serotonin levels, by altering the levels of GABA released onto serotonergic 

neurons. 

 

The ratio of TPH-GABAAR alpha1 subunit immunopositive cells to those TPH 

immunopositive cells which did not express this subunit was quantified throughout the 

rostro-caudal axis of the DRN (Fig. 4a-c). TPH-GABAAR alpha1 subunit immunopositive 

cells were enriched at the rostral extent of the DRN (Bregma ~ -4.24) (Fig. 4a1), with ~ 
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21% of TPH labelled cells in rostral DRN also displaying the GABAAR alpha1 subunit 

signal (mean ± SEM, total number of TPH immunopositive cells, 220 ± 35 versus TPH-

GABAAR alpha1 subunit immunopositive cells, 46 ± 6, N = 3 animals) (Fig. 4a3). Of the 

cells counted at this rostral location the following numbers (mean ± SEM) were located 

within these specific DRN sub-nuclei; a) dDRN, total number of TPH immunopositive cells, 

66 ± 14 versus TPH-GABAAR alpha1 subunit immunopositive cells, 18 ± 4; b) vDRN, total 

number of TPH immunopositive cells, 77 ± 33 versus TPH-GABAAR alpha1 subunit 

immunopositive cells, 13 ± 6; c) ifDRN, total number of TPH immunopositive cells, 85 ± 17 

versus TPH-GABAAR alpha1 subunit immunopositive cells, 15 ± 2 (Fig. 4 a2).  

 

The proportion of TPH labelled cells which co-expressed the GABAAR alpha1 subunit 

signal decreased considerably from the rostral to caudal planes. Although the midline DRN 

(Bregma ~ -4.60) (Fig. b1) has the majority of TPH immunopositive cells, only ~ 7% of 

TPH labelled cells co-labelled for the GABAAR alpha1 subunit (mean ± SEM, total number 

of TPH immunopositive cells, 728 ± 54 versus TPH-GABAAR alpha1 subunit 

immunopositive cells, 50 ± 4, N = 3 animals) (Fig. 4b3). Of the cells counted at this DRN 

midline location the following numbers (mean ± SEM) were located within these specific 

DRN sub-nuclei; a) dDRN, total number of TPH immunopositive cells, 172 ± 32 versus 

TPH-GABAAR alpha1 subunit immunopositive cells, 19 ± 6; b) vDRN, total number of TPH 

immunopositive cells, 246 ± 47 versus TPH-GABAAR alpha1 subunit immunopositive cells, 

13 ± 4; c) ifDRN, total number of TPH immunopositive cells, 109 ± 11 versus TPH-

GABAAR alpha1 subunit immunopositive cells, 3 ± 2; d) lDRN,  total number of TPH 

immunopositive cells, 219 ± 24 versus TPH-GABAAR alpha1 subunit immunopositive cells, 

17 ± 5 (Fig. 4 b2). 

 

TPH and GABAAR alpha1 subunit immunopositive cells were least abundant in caudal 

DRN (Bregma ~ -4,96) (Fig. 4c1), with only ~ 5% of TPH labelled cells also displaying 
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immunoreactivity for the GABAAR alpha1 subunit (mean ± SEM, total number of TPH 

immunopositive cells, 244 ± 46 versus TPH-GABAAR alpha1 subunit immunopositive cells, 

11 ± 4, N = 3 animals) (Fig. 4c3). Of the cells counted at this DRN caudal location the 

following numbers (mean ± SEM) were located within these specific DRN sub-nuclei; a) 

dDRN, total number of TPH immunopositive cells, 174 ± 35 versus TPH-GABAAR alpha1 

subunit immunopositive cells, 7 ± 4; b) vDRN, total number of TPH immunopositive cells, 

122 ± 34 versus TPH-GABAAR alpha1 subunit immunopositive cells, 10 ± 2; c) ifDRN, total 

number of TPH immunopositive cells, 90 ± 10 versus TPH-GABAAR alpha1 subunit 

immunopositive cells, 4 ± 1 (Fig. 4 c2). Considering the extensive topographical 

organisation of the DRN serotonergic neurons in terms of their efferent outputs, with 

neurons located in different sub-divisions providing serotonergic supply to disparate brain 

regions (Vertes 1991; Lee et al. 2003; Xu and Hokfelt 1997), the distribution pattern of the 

GABAAR alpha1 subunit signal on TPH immunopositive neurons could have a highly 

specific influence over DRN-serotonin mediated regulation of distinct brain regions. 

 

GABAAR alpha2 subunit immunoreactivity is predominantly located on the dendrites of 

serotonergic neurons  

Whilst the immunoreactivity pattern of the GABAAR alpha1 subunit appeared continuous, 

or clustered along somatic and dendritic plasma membranes (Fig. 3), immunoreactivity for 

the GABAAR alpha2 subunit was wholly clustered and located predominantly on TPH 

immunolabelled dendrites, with fewer clusters located on cell bodies (Fig. 5a2). 

Immunoreactivity of the GABAAR alpha2 subunit exhibited the highest degree of co-

localisation with the inhibitory synaptic marker protein NL2 out of all subunits examined 

(Fig. 5b). The density (mean ± SEM number of clusters per 1000 µm2) of NL2 

immunoreactive clusters located on TPH immunopositive profiles was 57.5 ± 2.4 of which 

26.3 ± 1.6 were co-localised with GABAAR alpha2 subunit immunoreactive puncta which 
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suggests that within the DRN, alpha2-subunit containing GABAARs (alpha2-GABAARs) are 

located in ~ 45% of putative inhibitory synapses located on serotonergic neurons.  

 

The GABAAR alpha3 subunit is expressed on serotonergic and GABAergic neurons of the 

DRN 

An overview of the midbrain region containing the DRN revealed that GABAAR alpha3 

subunit immunoreactivity was closely associated with that of TPH illustrating the significant 

expression of this subunit on serotonergic neurons (Fig. 2e2). GABAAR alpha3 subunit 

signal appeared clustered (Fig. 6a2). However, in contrast to the relatively uniformly sized 

clusters of the GABAAR alpha2 subunit, qualitative observations revealed the GABAAR 

alpha3 subunit immunopositive clusters to be notably more variable in both size and 

shape. Compared with the GABAAR alpha2 signal, fewer NL2 immunoreactive clusters 

(Fig. 6a1) co-localised with those of the GABAAR alpha3 subunit (Fig. 6a3): the density 

(mean ± SEM number of clusters per 1000 µm2) of NL2 immunoreactive clusters located 

on TPH immunopositive profiles was 47.7 ± 0.3 of which 13 ± 2 were co-localised with 

GABAAR alpha3 subunit immunoreactive puncta which suggests that within the DRN, 

alpha3-GABAARs are located in ~ 27% of putative inhibitory synapses located on 

serotonergic neurons. The antibodies against the GABAAR alpha2 & 3 subunits were both 

raised in the same species thus precluding double labelling experiments to ascertain the 

degree, if any, of co-localisation between clusters immunoreactive for these subunits. 

Such data would provide a perspective as to whether these subunits are targeted to 

overlapping or distinct populations of synapses on serotonergic neurons, as is the case for 

noradrenergic neurons in the locus coeruleus (Corteen et al. 2011).   

 

A considerable proportion of GABAAR alpha3 subunit immunopositive clusters did not 

appear to co-localise with clusters immunoreactive for NL2. This finding could denote 

either the presence of extrasynaptically located alpha3-GABAAR subtypes on the 
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serotonergic neurons of the DRN, similar to other brain regions (Marowsky et al. 2012), or 

the reaction conditions employed did not optimally allow for the detection of the 

synaptically located GABAAR alpha3 subunit signal. To examine the latter, we performed 

parallel reactions using tissue containing the thalamic reticular nucleus (nRT), since this 

brain region, in adulthood, exclusively expresses the GABAAR alpha3 subunit within 

inhibitory synapses (Fritschy 1998; Browne et al. 2001; Studer et al. 2006) (Fig. 6b). 

Predictably, parvalbumin immunopositive profiles of the nRT (Fig. 6b1) were decorated by 

GABAAR alpha3 subunit immunoreactive clusters (Fig. 6b2) which displayed complete co-

localisation with NL2 (Fig. 6b3). This disparate immunolocalisation pattern of the GABAAR 

alpha3 subunit across different brain regions provides evidence for a brain region and cell-

type specific expression profile of the GABAAR alpha3 subunit.  

 

Within the DRN, we also observed a proportion of GABAAR alpha3 subunit clusters which 

was not associated with TPH immunopositive profiles. In order to identify which non-

serotonergic cell types express the GABAAR alpha3 subunit in the DRN, quadruple 

immunofluorescence for TPH, the GABAAR alpha1 subunit, the GABAAR alpha3 subunit 

and GFP was performed using tissue from the GAD67-GFP mouse model (Fig. 6c). 

Relatively sparse GABAAR alpha3 subunit puncta co-localised with GABAAR alpha1 

subunit puncta on non-TPH profiles in the DRN (Fig. 6c1, 2). This GABAAR alpha3 subunit 

immunoreactivity was localised to GAD67-GFP immunopositive somata and GABAAR 

alpha1 subunit labelled dendrites (Fig 6c3, 4). At least a proportion of GABAAR alpha3 

subunit immunopositive non-serotonergic neurons were GABAergic. However, because 

GAD67-GFP immunoreactivity did not label distal dendrites of GABAergic neurons of the 

DRN, we cannot rule out the possibility that a third, non-serotonergic, non-GABAergic, cell 

type in the DRN also expresses the GABAAR alpha3 subunit.  
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Compensatory changes in the levels of co-expressed GABAAR subunits in various brain 

regions have been reported following the constitutive deletion of a particular subunit (Peng 

et al. 2002; Schneider Gasser et al. 2007; Kralic et al. 2006).  In order to assess whether 

such changes occur in the DRN, the level of GABAAR alpha3 subunit immunoreactivity 

was compared in tissue from WT and alpha1-/- (Fig.7a) or alpha2-/- (Fig. 7b) mice. There 

was a striking increase in the intensity of GABAAR alpha3 subunit immunoreactivity in the 

DRN, on both TPH immunopositive and immunonegative profiles of alpha1-/- mice (Fig. 

7b1-3) compared to WT mice (Fig. 7a1-3). Such changes need to be borne in mind when 

assessing alterations in DRN function from alpha1-/- mice. In contrast, no difference was 

detected in the intensity of GABAAR alpha3 subunit immunoreactivity in the DRN of 

alpha2-/- mice (data not shown).   

 

The GABAAR gamma2 subunit is enriched on non-serotonergic neurons 

Within the DRN, GAD67-GFP immunopositive neurons exhibited the highest levels of 

GABAAR gamma2 subunit immunoreactivity (Fig. 8a2) with the signal being localised to 

somatic and dendritic compartments on these putative GABAergic neurons (Fig. 8a1). 

Furthermore, widespread co-localisation between the GABAAR alpha1 and gamma2 

subunit signal on GAD67-GFP immunopositive neurons was evident (Fig. 8a3, 4) as well 

as on TPH-immunopositive profiles which co-localised with GABAAR alpha2 and alpha3 

subunit signals (Fig. 8b, c).  

 

CRH immunoreactive puncta are associated with GABAAR molecular machinery on 

serotonergic and non-serotonergic neurons of the DRN 

DRN neuronal activity is influenced by stress and the effect of stress on serotonin release 

in DRN projection regions is both stressor and brain region specific (Adell et al. 1997). 

Within the DRN, information related to stressful stimuli is conveyed predominantly by the 

stress neuropeptide corticotrophin releasing hormone (CRH) which, in the rat, is contained 
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in axon terminals and cell bodies (Valentino et al. 2001; Waselus et al. 2005). The bath 

application of CRH to acute brain slices containing the DRN decreases serotonergic 

neuronal activity by enhancing both the local release of GABA as well as the postsynaptic 

GABA receptor sensitivity (Kirby et al. 2008). Furthermore, the intracerebroventricular 

administration of CRH directly influences DRN neuronal excitability and serotonin release 

in DRN target fields (Price et al. 1998; Price and Lucki 2001; Kirby et al. 2000). We 

therefore investigated a possible anatomical basis for an interaction between mouse DRN 

GABAAR and CRH systems by examining the association of the GABAAR molecular 

machinery, with that of CRH on the cell types of the DRN. CRH immunoreactive profiles 

were closely opposed to a sub-population of gephyrin-immunoreactive puncta located on 

TPH immunopositive profiles (Fig. 9a1-3), as well as being closely opposed to GABAAR 

alpha1 subunit immunoreactivity which outlined the membrane of a non-TPH neuron (Fig. 

9b). This suggests that within the DRN, CRH is released into a sub-population of GABAAR-

containing synapses on both principal and non-principal neurons.  

 

Repeated stress alters GABAAR expression at the mRNA level in a subunit specific 

manner 

Since stress has been shown to influence DRN neuronal activity (Lemos et al. 2011; Wood 

et al. 2013) this raises the question as to whether stress has a direct effect on DRN 

GABAAR expression. If so, identifying the GABAAR subtypes which underlies such stress-

induced plasticity of the DRN will be vital in devising therapeutic strategies against stress-

related mental illnesses. We therefore investigated whether stress directly influences the 

expression profile of specific GABAAR subunits within the DRN. Repeated stress 

significantly increased the level of expression of the mRNA encoding for the GABAAR 

alpha2 subunit by 13% (N=14 animals; p = 0.007; Student’s T test) and that of the 

GABAAR alpha3 subunit by 27% (N=14 animals; p = 0.011; Student’s T test). However, 

exposure to stress had no significant effect on the level of the mRNA encoding for the 
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GABAAR alpha1 subunit (N=14 animals; p = 0.365; Student’s T test) and the GABAAR 

gamma2 subunit (N=14 animals; p = 0.386; Student’s T test) (Fig. 10a). We then 

investigated whether this stress-induced increase in the GABAAR alpha3 subunit encoding 

mRNA translated to a change in GABAAR alpha3 subunit expression at the protein level on 

TPH immunopositive profiles of the DRN. Exposure to stress significantly increased the 

density of GABAAR alpha3 subunit immunoreactive clusters located on TPH-

immunopositive profiles (mean ± SEM; control, 32 ± 0.5 clusters per 1000um2 versus 57 ± 

0.7 clusters per 1000um2; p <0.001, Mann Whitney; N = 3 control animals, 3 stress 

animals) (Fig. 10b, c). Thus, this stress paradigm increased the expression of the GABAAR 

alpha3 subunit within the DRN at both the mRNA and protein level.  

 

To speculate on the functional contribution of such a stress-induced increase in GABAAR 

alpha3 subunit expression on serotonergic neuronal activity, we quantified the changes in 

the degree of co-localisation between GABAAR alpha3 subunit-immunoreactive clusters 

and gephyrin, a synaptic anchoring protein. Gephyrin directly interacts with the GABAAR 

alpha3 subunit (Tretter et al. 2011) and can therefore be used to infer potential changes in 

synaptic/extrasynaptic density ratios. Stress did not produce a change in the mean ± SEM 

density (number of cluster per 1000 µm2) of gephyrin immunoreactive clusters localised to 

TPH immunolabelled profiles (control, 28 ± 0.6 versus stress, 29 ± 0.3; p = 0.480 , Mann 

Whitney; N = 3 control animals and 3 stress animals). However, stress increased the mean 

density ± SEM (number of clusters per 1000 µm2) of GABAAR alpha3 subunit 

immunoreactive clusters which were co-localised with those immunoreactive for gephyrin 

on TPH immunopositive profiles (control, 6 ± 0.4 versus stress, 10 ± 0.2; p = 0.019, Mann 

Whitney; N = 3 control and 3 stress animals). A proportion of GABAAR alpha3 subunit 

immunoreactive clusters were not co-localised with those immunoreactive for gephyrin and 

probably represent an extrasynaptic pool of alpha3 subunit containing GABAAR subtypes. 

Repeated stress significantly increased the mean density ± SEM (number of clusters per 
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1000um2) of these GABAAR alpha3 subunit immunoreactive clusters which did not co-

localise with gephyrin (control, 27 ± 0.4 versus stress, 46 ± 0.6; p < 0.001, Mann Whitney; 

N = 3 control and 3 stress animals) (Fig. 10d). Collectively, these data suggest that stress 

increases both the putative synaptic and extrasynaptic pools of alpha3-GABAAR subtypes 

on the serotonin neurons of the DRN.  
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Discussion 

 

The study demonstrates the diversity in the regional, cell-type and domain specific 

expression patterns of four GABAAR subunits within the mouse DRN and that the repeated 

stress paradigm used in this study directly influences the level of expression of specific 

GABAAR subunits at the mRNA and protein levels, on individual, identified cell-types. 

Collectively, these data demonstrate the rich molecular repertoire of the GABAAR 

apparatus within the neurochemically and functionally diverse cell-types of the DRN and 

that the expression levels of specific GABAAR subtypes can be shaped by the 

environment. We recently reported on the relative contributions of GABAAR-mediated 

phasic and tonic inhibitory postsynaptic currents to serotonergic neuronal excitability at the 

single cell level (Maguire et al. 2013). Therefore, this expression analysis provides a 

platform for investigating and interpreting the eventual influence of these specific GABAAR 

subtypes on the DRN-serotonin system in the context of intact DRN cellular networks in 

the behaving animal.  

 

The potential role GABAAR alpha1 subunit in the DRN networks  

 

GABAAR alpha1 subunit immunoreactivity within the DRN was confined to all cells which 

expressed the molecular signature of GABA, namely GAD67, as well as a population of 

TPH-immunopositive neurons located preferentially in rostral regions of the DRN. The 

prediction arising from this expression pattern is that the activation of alpha1-GABAARs on 

these different cell-types, the subsequent dampening of excitability and the consequent 

reduced quantal release of GABA, will have contrasting effects on serotonin release from 

the DRN due to the divergent projection patterns of these alpha1-GABAAR immunopositive 

cell-types. Different populations of GABAergic neurons within the DRN project to either 

local serotonin-expressing neurons (Challis et al. 2013), or to other brain regions such as 
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the prefrontal cortex, nucleus accumbens, and lateral hypothalamus (Bang and Commons 

2012). Local circuit GABAergic neurons mono-synaptically contact DRN serotonergic 

neurons and inhibit their activity, impacting on DRN-associated behaviours (Challis et al. 

2013; Soiza-Reilly et al. 2013). Thus, the activation of alpha1-GABAARs on DRN 

GABAergic interneurons is likely to decrease excitability of these interneurons and result in 

a disinhibition of the principal cells with a consequent increase in serotonin release. 

Conversely, activation of alpha1-GABAARs on the select population of rostrally-located 

serotonergic neurons should decrease their neuronal activity leading to decreased 

serotonin release. Alpha1 subunit expressing serotonergic neurons were enriched 

dorsally, in rostral DRN, such anatomically located DRN serotonin neurons project to the 

caudate putamen, amygdala, thalamus, nucleus accumbens and the neocortex (O'Hearn 

and Molliver 1984; Waselus et al. 2011). It is tempting to speculate that DRN serotonin 

release within these brain regions must be under the strict temporal control of somatically 

located, fast synaptic GABAAR neurotransmission mediated by alpha1 containing GABAAR 

subtypes, rather than dendritic, slower synaptic GABAAR neurotransmission mediated by 

alpha2 and alpha3 containing GABAARs. The functional significance of alpha1 subunit 

containing GABAAR-mediated inhibition of specific, topographically organised DRN 

serotonin neurons remains to be determined. However, it may shape DRN serotonin 

release in a brain region specific manner and contribute to the involvement of the DRN in a 

vast array of behaviours  

 

The GABAAR alpha2 and 3 subunits in the DRN  

The overall appearance of the GABAAR alpha2/3 subunit immunoreactivity differed greatly 

to that of the alpha1 subunit. GABAAR alpha2/3 subunit labelling was clustered and 

enriched on the dendritic domains of DRN serotonergic neurons. The quantitative data 

revealed that 45% and 36% of NL2 clusters located on TPH-immunopositive profiles co-

localised with alpha2 and alpha3 subunit clusters, respectively, indicating that the majority 
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of GABAergic postsynaptic inhibitory currents on DRN principal neurons are mediated by 

alpha2/3-GABAARs. A further point of note was the proportion of GABAAR alpha3 

immunoreactive clusters which did not co-localise with NL2. This pattern of expression, 

which did not appear to be restricted to particular serotonergic neurons, suggests a 

component of non-synaptically located alpha3-GABAAR subtypes, which predictably might 

mediate tonic GABAergic inhibition in the DRN. Indeed, in our recent functional study 

using somatic whole-cell patch clamp recordings of acute DRN slices (Maguire et al. 

2013), GABAAR-mediated tonic inhibitory currents were detectable, but only in ~30% of 

serotonergic neurons. The apparent discrepancy between the proportion of serotonergic 

neurons exhibiting a GABA-mediated tonic conductance and the immunohistochemistry 

may result from the preferential location of GABAAR alpha3 subunit immunoreactive 

clusters on TPH-immunopositive dendrites (Fig. 8) precluding their detection with somatic 

recordings. Indeed, cell-types, such as the principal neurons of the basolateral amygdala, 

in which robust alpha3-GABAARs mediated tonic currents are detectable, have GABAAR 

alpha3 subunit immunoreactivity enriched on their somata; see Fig. 3G of (Marowsky et al. 

2012). Alternatively, the levels of ambient GABA experienced by some neurons may not 

be sufficient (greater than 10 µM- see Maguire et al., 2013) to activate such extrasynaptic 

alpha3-GABAARs.  

 

The importance of such persistent patterns of inhibition in particular neurons is likely to 

indicate the requirement for sustained modulation of neuronal activity compared to brief 

periods of phasic inhibition. This pattern of persistent inhibitory regulation of neuronal 

activity could be particularly important for diffuse modulatory systems such as serotonergic 

pathways which provide brain-wide release of their neurotransmitters during the 

processing of on-going sensory stimuli, or a specific behavioural state. In turn, alterations 

in the levels of expression of such extrasynaptically located GABAAR subtypes might 

dynamically regulate serotonin release resulting in altered behaviours or even DRN-
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serotonin associated disorders. Behavioural inflexibility, the inability to thrive in a 

constantly changing environment is a feature of mood disorders. Therefore, in terms of 

regulating mood for example, the balance between slow persistent and fast, brief pulses of 

inhibition may provide the neuron with the flexibility to seamlessly adapt its firing pattern in 

response to external inputs such as various stressors. Thus, the changes in 

synaptic:extrasynaptic expression ratios of particular GABAAR subunits and the 

accompanying changes in phasic and tonic currents in the context of animal models of 

mental illnesses could provide novel insights to the changes in neuronal activity which 

underlie such behaviour.  

 

The GABAAR gamma2 subunit in the DRN 

GABAAR gamma2 subunit heterozygous knockout mice display reduced GABAAR 

clustering and exhibit an anxiogenic-like behavioural phenotype (Crestani et al. 1999) 

which infers a role for gamma2-GABAARs mediated inhibition in such disorders. Indeed, 

classical benzodiazepine agents with anxiolytic activity potentiate GABAergic 

neurotransmission preferentially at gamma2-alpha2/3-beta-GABAAR subtypes (Rudolph 

and Knoflach 2011). The evidence for the involvement of alpha2-GABAARs in anxiety and 

anxiolytic drug effects is clear (Low et al. 2000; Smith et al. 2012; Engin et al. 2012; 

Koester et al. 2013). It is thus surprising that in this study, immunoreactivity for the 

GABAAR gamma2 subunit was enriched on DRN non-serotonergic cells which co-

expressed the GABAAR alpha1 and 3 subunits with noticeably lower levels of GABAAR 

gamma2 signal associated with GABAAR alpha2/3 subunit immunoreactivity on 

serotonergic neurons, suggesting a lesser role for alpha2-GABAARs in DRN-

benzodiazepine mediated anxiolysis. The use of mutant mouse models in which specific 

GABAAR alpha subunits are either rendered insensitive to benzodiazepines (Wieland et al. 

1992; Benson et al. 1998; Rudolph and Knoflach 2011) or deleted, in a cell-specific 

manner (Wisden 2010; Kos 2004) will be invaluable in determining the precise cell-types 
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which mediate the behavioural effects of ingested GABAAR-specific ligands or possibly 

underlie associated disorders. 

 

Stress and GABAAR expression in the DRN 

Overwhelming evidence indicates that GABAARs are integral to DRN stress circuitry, 

although their precise roles are difficult to unequivocally define. Acute swim stress in rats 

results in an increase in the frequency of GABAergic miniature inhibitory postsynaptic 

currents on serotonergic neurons (Lamy and Beck 2010), while five days of social defeat 

attenuates inhibitory synaptic input onto serotonergic neurons (Crawford et al. 2013). 

Furthermore, the application of the stress neuropeptide CRH to acute slices of the DRN 

has both direct and indirect effects on GABAergic currents onto serotonergic neurons 

(Kirby et al. 2008). The current data build on these studies by providing a high resolution 

analysis of the changes in the expression of specific GABAAR subunits within identified 

cell-types of the DRN.  

 

Multiple and distinct mechanisms are likely in place to modulate this stress-induced 

GABAAR alpha3 subunit expression. Glucocorticoids, as a result of the HPA activation, are 

central molecular players of the stress response and signal both peripherally and centrally 

to engage metabolic and neural process required for dealing with adversity. As such, the 

signal transduction cascades initiated by such steroid hormones and their derivatives are 

well placed to dynamically regulate gene transcription in response to an external stimulus. 

Chronic exposure to glucocorticoids has been shown to elevate GABAAR subunit mRNA 

expression within the hippocampus (Orchinik et al. 1995). As the DRN expresses high 

levels of glucocorticoid receptor (Aronsson et al. 1988), glucocorticoid mediated regulation 

of transcription may mediate the stress induced increases in GABAAR subunit mRNA in 

the DRN shown here. Interestingly, GABAAR subunit mRNA expression within the LC, a 

region of enriched glucocorticoid receptor expression, was not significantly affected by this 
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stress protocol. The obvious caveat is that stress might affect GABAAR subunit expression 

within the LC at the protein level. Nevertheless, this suggests that multiple mechanisms 

are in place to regulate GABAAR mRNA expression in a brain region specific manner. 

Other potential mechanisms may include epigenetic influences such as dinucleotide 

methylation of cytosine-phosphodiester bond-guanine (CpG) islands (Weaver et al. 2006) 

and histone modification (Renthal et al. 2007; Uchida et al. 2011). Both mechanisms have 

received considerable attention recently in mediating the effects of environmental factors 

on brain function, behaviours and psychiatric diseases (Tsankova et al. 2007). 

Bioinformatic analysis of the Gabra3 gene revealed the absence of a CpG island within or 

near the Gabra3 promotor sequence; this suggests that if epigenetic mechanisms do 

contribute to the regulation of Gabra3 gene transcription, it is unlikely to be mediated by 

changes in the methylation status of CpG dinucleotides. Several different types of post 

translational histone modifications exist. However, acetylation and methylation are the 

most widely studied. Histone deacetylase inhibitors have been shown to influence 

GABAAR subunit mRNA expression in the nucleus accumbens (Kennedy et al. 2013). 

Therefore, it is possible that post translational histone modifications may also contribute to 

stress induced alterations in GABAAR subunit mRNA plasticity within the DRN. Evaluation 

of epigenetic changes in GABAAR subunit expression could represent new avenues for 

investigating how environmental factors shape brain function and behaviour. 

 

In addition to increased GABAAR alpha3 mRNA levels, we also show that stress increases 

the expression of the GABAAR alpha3 subunit at the protein level. Through extensive 

intracellular signalling cascades, encompassing a vast array of proteins, trafficking 

pathways dynamically regulate the distribution and number of diverse GABAAR subtypes 

within the cell membrane (Luscher et al. 2011). Due to the complexity of GABAAR 

trafficking, multiple points along the secretory or endocytotic pathway may be targeted to 

influence GABAAR expression and in turn neuronal activity. Clathrin-mediated endocytosis 
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is an important factor in regulating GABAAR expression (Kittler et al. 2000). The 

phosphorylation status of beta subunits of GABAARs has a major role in regulating the 

clathrin mediated endocytosis of such receptors. When specific residues of the GABAAR 

beta subunits are phosphorylated, the affinity between the GABAAR beta subunit and 

clathrin adaptor protein (AP2) is reduced thereby attenuating receptor endocytosis (Kittler 

et al. 2005). A number of proteins contribute to the phosphorylation of GABAAR subunits 

including protein kinase A, C and B (PKA, PKC, PKB) as well as calmodulin dependent 

kinase II (CaMKII). Furthermore, neurosteroids have recently been implicated in the 

phosphorylation and membrane insertion of GABAARs (Abramian et al. 2014). A potential 

trigger of such secondary messenger cascades is likely to the endogenous stress 

hormone CRH. Receptors for CRH are coupled to diverse intracellular signalling pathways 

which activate kinase pathways including PKA and PKC (Hauger et al. 2009). Since CRH 

together with both receptors for CRH, CRH-R1 and R2 are expressed and mediate the 

effects of stress on DRN neuronal activity (Kirby et al. 2000), CRH is the likely candidate 

through which stress can dynamically regulate the expression of GABAAR subtypes via 

PKA or PKC mediated phosphorylation of GABAAR beta subunits. 

 

One particularly intriguing finding of this study was that repeated stress impacts upon 

GABAAR alpha3 subunit expression at both mRNA and protein levels. This is surprising as 

the constitutive activity of endoplasmic reticulum (ER) degradation enzyme results in it 

being more efficient for a cell to recycle endocytosed GABAARs rather than transporting 

newly assembled receptors from the ER to the cell membrane. Thus, the reach of 

environmental stimuli to both the gene and protein levels suggests that even this mild 

stress paradigm exerted a significant demand on the alpha3-GABAAR machinery of the 

cell necessitating the engagement of a variety of intracellular signalling cascades including 

those likely to be less energy efficient. These processes are likely to serve the cell well 

during short-term bouts of stress, as is the case in this paradigm. Indeed, since we 
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deliberately used a mild stress protocol which numerous studies have shown does not 

manifest in a chronic stress phenotype, it is speculative that such stress-induced increases 

in the levels of GABAAR alpha3 subunit expression parallels or contributes to adaptive, 

rather than maladaptive responses  to stressful life experiences. In turn, during severe 

chronic periods of stress, especially episodes which trigger mental disorders, such 

molecular pathways could be exhausted. Thus, the expectation is that longer periods of 

stress will eventually manifest in lower levels of GABAAR expression within the DRN. If so, 

this could lead to, for example, an anxiogenic profile which might be ameliorated by 

benzodiazepine treatment which augments the activity of the ensuing lower levels of 

GABAARs. Such data could provide a wholly novel avenue on the biological mechanisms 

which underpin adaptive or maladaptive stress pathways and may contribute to the 

identification of newer and more effective drug targets for the treatment of stress-related 

psychiatric disorders. 

  
In conclusion, the study demonstrates the molecular identity and the location of the 

GABAAR subunits which are likely to determine some of the most salient effects of GABA 

within the DRN-serotonin system, which are known to influence the excitability of the DRN 

and consequently behaviour. Furthermore, the evidence that stress directly impacts on the 

level of expression of the GABAAR alpha3 subunit provides a distinct molecular target for 

future studies investigating the mal/adaptive consequences of stress-induced alterations in 

the function of the DRN-serotonin system. 
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Legends 

Fig. 1 

Immunohistochemical localisation of inhibitory synaptic marker proteins on serotonergic 

neurons of the DRN 

(a1) shows gephyrin immunoreactive clusters enriched on dendritic compartments of 

putative serotonergic neurons identified with tryptophan hydroxylase (TPH) 

immunoreactivity, with notably fewer gephyrin clusters present on somatic domains. (a2) 

shows that neuroligin2 (NL2) immunoreactive clusters displayed a similar distribution 

pattern to that of gephyrin, with NL2 immunoreactivity being enriched on TPH-

immunopositive dendrites. (a3) numerous NL2 clusters co-localise with gephyrin. (b) 

quantification of the density of individual and colocalised gephyrin and NL2 

immunoreactive clusters. Scale bars 5 μm. 

 

Fig. 2 

Confirmation of the specificity of the immunoreactivity patterns produced by antibodies 

against the GABAAR alpha1, alpha2 or alpha3 subunits in the DRN using tissue from WT 

and GABAAR subunit-specific gene-deleted mice processed and imaged under identical 

conditions 

(a1) shows an overview of TPH immunoreactivity in tissue from WT (alpha1+/+) mouse. 

(a2) shows an overview of the pattern of GABAAR alpha1 subunit immunoreactivity in the 

DRN of WT tissue with extensive signal evident throughout most of the DRN although the 

signal is particularly enriched in the lateral wing sub-regions. (b1) shows an overview of 

TPH immunoreactivity in tissue from the DRN of a GABAAR alpha1 subunit-specific gene-

deleted mouse (alpha1-/-). No differences in the levels of TPH signal in the DRN of WT and 

alpha1-/-mice were detectable (b2) shows that no specific GABAAR alpha1 subunit 

immunoreactivity was detectable in tissue from an alpha1-/- mouse. (c1) shows the 
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localisation of NL2 on tryptophan hydroxylase (TPH) immunoreactive profiles of the DRN 

indicating the distribution of putative inhibitory synapses on serotonergic processes within 

the DRN of WT mouse. (c2) shows the pattern of GABAAR alpha2 subunit 

immunoreactivity in the same field of view. (d1) shows the distribution and intensity of TPH 

and NL2 immunoreactivity in the DRN of an alpha2-/-mouse. (d2) shows that no specific 

GABAAR alpha2 subunit immunoreactivity was detectable in tissue from alpha2-/- mice.  

(e1) shows TPH immunoreactivity in the DRN of WT mouse. (e2) shows the pattern of 

GABAAR alpha3 subunit immunoreactivity in the same field of view. Note how GABAAR 

alpha3 subunit immunoreactivity closely follows the pattern of TPH immunoreactivity. (f1) 

an overview of the pattern of TPH and (f2) GABAAR alpha3 subunit immunoreactivity in the 

DRN of an alpha3-/- mouse showing the absence of  any specific signal for this subunit. 

Scale bars (a, b, e, f) 50 μm; (c, d) 10 μm. 

 

Fig. 3 

Immunolocalisation of the GABAAR alpha1 subunit in neurochemically diverse cell-types of 

the DRN   

(a1 – a3) the GABAAR alpha1 subunit immunoreactive profiles are widely distributed 

throughout the DRN. (A1) an overview, taken from the ventromedial sub-region of the DRN 

showing an overlay of the immunoreactive signals for the GABAAR alpha1 subunit, the 

dendritic marker protein microtubule associated protein 2 (MAP2) and TPH indicating that 

such GABAAR alpha1 subunit immunopositive cells comprise a significant proportion of the 

neurons composing the DRN. (a2) is a magnified view of the inner boxed area in (a1) 

showing GABAAR alpha1 subunit immunoreactivity which is closely associated with 

numerous MAP2 immunolabelled dendrites as well as being on a soma (asterisk) which in 

(a3) is TPH-immunonegative. (a3) shows TPH immunoreactivity associated with somatic 

as well as dendritic (arrowheads) profiles. Images from (b) and (c) were acquired from the 

dorsal and ventral regions of the DRN respectively and demonstrate GABAAR alpha1 
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subunit immunoreactivity in neurochemically distinct cell-types and its varying association 

with gephyrin immunoreactivity across these sub-regions of the DRN. Immunoreactivity for 

the GABAAR alpha1 subunit was evident in cells which were (b1) TPH immunopositive (#), 

(b2, c1, 2) TPH immunonegative, GAD67-GFP immunopositive (*) and (b1 & 2) a discrete 

population of cells not labelled by either TPH or GAD67-GFP (+). (b3) shows the strong 

association of gephyrin with GABAAR alpha1 subunit immunoreactive dendrites apart from 

(c3) which shows that the GAD67-GFP GABAAR alpha1 subunit immunolabelled neurons 

shown in (b,c2) exhibit a relative enrichment of gephyrin immunoreactivity on their somata 

and proximal dendrites. In panel (b), the inserts shows magnified views of the boxed 

areas. (b4) and (c4) are overlays of all the individual (b) and (c) panels respectively. Scale 

bar 10 μm. 

 

Fig. 4 

GABAAR alpha1 subunit-immunopositive TPH labelled cells are differentially distributed 

throughout the rostra-caudal and ventro-medial extents of the DRN.  

(a1, b1, c1) schematics of the anatomical coordinates  and the DRN sub-nuclei whereby 

the number of total TPH and TPH-GABAAR alpha1 subunit-immunopositive cells  at the 

rostral, midline and caudal planes were quantified respectively according to (Paxinos and 

Franklin 2004). (a2, b2, c2) graphical representation of the number of total TPH and TPH-

GABAAR alpha1 subunit-immunopositive cells within the different DRN sub-nuclei at the 

rostral, midline and caudal planes respectively. Bars represent means with lines indicating 

SEM. N = 3 animals. (a3, b3, c3) shows the proportion of TPH-GABAAR alpha1 subunit-

immunopositive cells relative to the total number of TPH immunopositive cells at the 

rostral, midline and caudal planes respectively. lDRN, lateral region of the DRN; ifDRN, 

interfasicular region of the DRN; vDRN, ventral region of the DRN.  
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Fig. 5 

Immunolocalisation of the GABAAR alpha2 subunit in the DRN  

(a1) shows an overview of NL2 immunoreactivity in the DRN indicating the distribution of 

putative inhibitory synapses. (a2) shows an overview of GABAAR alpha2 subunit 

immunoreactivity. Note that the immunoreactive clusters are largely uniformly sized and 

associated with TPH immunopositive dendrites with only dispersed clusters evident on 

TPH immunopositive somata (asterisks).  (a3) an overlay of (a1) and (a2) indicating the 

extensive co-localisation of GABAAR alpha2 subunit clusters with those of NL2. (b) 

magnified views of the boxed regions in (a). The arrowheads point to (b1) NL2 

immunopositive clusters and (b2) GABAAR alpha2 subunit immunopositive clusters which 

in (b3) co-localise. Note that some NL2 immunopositive clusters do not co-localise with 

GABAAR alpha2-immunoreactive clusters (arrows). Scale bar (a) 10 μm, (b) 5 μm. 

 

Fig. 6 

Immunolocalisation of the GABAAR alpha3 subunit in the DRN  

 (a1) shows that NL2 immunoreactivity preferentially located on TPH immunopositive 

dendrites. (a2) GABAAR alpha3 subunit-immunoreactive clusters were preferentially 

localised to TPH immunopositive dendrites rather than somata and appeared more 

variable in both size and shape when compared with those of the GABAAR alpha2 subunit 

(Figure 5). (a3) a subpopulation of NL2 immunoreactive clusters present on TPH 

immunopositive profiles co-localised with the notably larger sized GABAAR alpha3 subunit 

clusters (arrowheads). In contrast, the smaller sized GABAAR alpha3 subunit clusters 

together with the diffuse signal did not co-localise with NL2-immunoreactive signal 

(arrows).  The inserts in (a1-3) are magnified views of the boxed areas in the respective 

panels. (b) shows the distribution of GABAAR alpha3 subunit immunoreactivity in the 

thalamic reticular nucleus (nRT), a brain region known to express only this GABAAR alpha 
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subunit and specifically in inhibitory synapses. (b1) NL2 immunoreactive puncta decorated 

parvalbumin labelled processes within the nRT. (b2) GABAAR alpha3 subunit 

immunoreactivity presented as large distinct clusters associated with parvalbumin 

immunopositive positive profiles. (b3) shows that the majority GABAAR alpha3 subunit 

immunoreactivity colocalise with NL2 immunoreactivity within the nRT indicating that the 

association of this subunit with inhibitory synaptic markers is cell-type specific. (c) Sparse, 

discrete GABAAR alpha3 subunit immunopositive clusters decorated non-serotonergic, 

GABAAR alpha1 subunit, GAD67-GFP immunopositive profiles in the DRN. (c1) shows 

GABAAR alpha3 subunit immunoreactive clusters on TPH-immunopositive profiles 

(arrowheads) whilst a proportion of GABAAR alpha3 immunoreactive clusters were not 

associated with TPH immunopositive profiles (arrows). (c2) shows GABAAR alpha3 

subunit clusters not associated with TPH-immunopositive profiles co-localised with 

GABAAR alpha1 immunopositive signal. (c3) some of these GABAAR alpha3 subunit-

immunopositive, TPH-immunonegative neurons were immunopositive for GFP-GAD67 

signal. Scale bar 10μm. 

 

Fig. 7 

The constitutive brain-wide deletion of the GABAAR alpha1 subunit increases GABAAR 

alpha3 subunit immunoreactivity the DRN  

(a1, b1) no discernible differences were evident in the intensity of gephyrin and TPH 

immunoreactivity in the DRN of WT (alpha1+/+) and GABAAR alpha1 subunit-specific gene-

deleted (alpha1-/-) mouse. This also serves to confirm that the comparative images were 

taken at identical focal planes (a2, b2) the deletion of the alpha1 subunit results in a 

dramatic increase in the intensity of GABAAR alpha3 subunit immunoreactivity. Note that 

WT and alpha1+/+ mouse tissue was processed, reacted and imaged under identical 

conditions. (a3, b3) An overlay shows an apparent increase in the extent of co-localisation 

between gephyrin and GABAAR alpha3 subunit immunoreactive clusters similar to the 



46 
 

degree of GABAAR alpha1 subunit-gephyrin co-localisation in Figure 3b. The insert in (B3) 

shows dense GABAAR alpha3 subunit immunoreactivity which is co-localised with that of 

gephyrin and outlines the somato-dendritic plasma membrane of a non-TPH labelled cell 

in the DRN, reminiscent of GABAAR alpha1 subunit-immunopositive neurons shown in 

Figure 3b. There was no evidence of such GABAAR alpha3 subunit-enriched cells in DRN 

tissue from WT mice. Scale bars 10μm. 

 

Fig. 8 

The association between GABAAR gamma2 subunit immunoreactivity with 

immunoreactivity for the GABAAR alpha1, 2 and 3 subunits in the DRN  

(a) shows that the majority of the GABAAR gamma2 subunit immunoreactivity in the DRN 

is contained on GABAAR alpha1 subunit GAD67-GFP-immunopositive neurons. (a1) 

shows immunoreactivity for non-TPH expressing cells which are immunopositive for GFP-

GAD67 and likely represent local-circuit GABAergic interneurons. (a2) these GAD67-GFP-

immunopositive neurons exhibited strong immunoreactivity for the GABAAR gamma2 

subunit which was localised to their somatic and dendritic compartments. (a3) GABAAR 

alpha1 subunit immunoreactivity patterns closely followed that of the GABAAR gamma2 

subunit being localised to the somatic and dendritic domains of these GAD67-GFP-

immunopositive neurons. (a4) shows widespread co-localisation between GABAAR 

gamma2 subunit and GABAAR alpha1 subunit immunoreactive clusters within the DRN. 

The insert is a magnified view of a GAD67-GFP immunopositive neuron (*). (b-c) a 

proportion of GABAAR gamma2 subunit immunopositive puncta co-localised with GABAAR 

alpha2 subunit and GABAAR alpha3 subunit clusters on TPH immunopositive profiles. 

Arrows highlight GABAAR gamma2 immunoreactive puncta not co-localised with 

alpha2/alpha3 puncta, whereas arrowheads highlight GABAAR gamma2 puncta co-

localised with alpha2/alpha3 puncta. (b1) and (c1) show GABAAR gamma2 subunit 

immunoreactive clusters on the somatic and dendritic compartments, but enriched on the 
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dendritic domains of TPH immunopositive and TPH immunonegative profiles (arrows). (b2, 

c2) shows GABAAR alpha2 and alpha3 subunit immunoreactivity decorating the dendritic 

and somatic domains of TPH immunopositive profiles. (b3, c3) GABAAR gamma2 subunit 

immunoreactive clusters displayed minimal co-localisation with GABAAR alpha2 and 

alpha3 subunit immunoreactive clusters. A magnified view of the boxed area highlights the 

sparse co-localisation of GABAAR gamma2 subunit immunoreactive clusters with GABAAR 

alpha2 and with alpha3 immunoreactive clusters (arrowheads). Scale bars 10 μm. 

 

Fig. 9 

Corticotrophin releasing hormone (CRH) immunoreactive puncta are associated with 

gephyrin and GABAAR alpha1 subunit immunoreactive clusters on TPH and non-TPH 

profiles within the DRN 

(a) shows isolated CRH immunoreactive puncta closely opposed to gephyrin 

immunoreactive clusters on TPH immunopositive profiles which are likely to represent  

GABAAR alpha2-3 subunit immunopositive synapses (arrowheads). (b) shows intense 

CRH immunoreactive signal closely opposed to GABAAR alpha1 subunit immunoreactivity 

which outlines the membrane of a non-TPH cell within the DRN (arrowheads). Scale bar 5 

μm 

 

Fig. 10 

Repeated restraint stress alters the mRNA and protein levels of specific GABAAR subunits 

within the DRN 

(a) the relative expression levels of mRNA encoding for GABAAR subunits above or below 

control. In the DRN, the influence of stress on levels of mRNA expression of GABAAR 

subunits was subunit specific, with the alpha2 and alpha3 subunit encoding mRNA levels 

significantly increased above control. In contrast, no significant differences in the GABAAR 

alpha1 and gamma2 subunit encoding mRNA levels were observed. (N = 14 animals per 
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group). (b) and (c) are representative images of the levels of GABAAR alpha3 subunit 

immunoreactivity on TPH immunopositive profiles within the DRN in tissue from control 

and stress animals respectively, processed and imaged under identical conditions (d) 

graphical representation of the quantification of the stress-induced changes in GABAAR 

alpha3 subunit and gephyrin immunoreactivity on TPH immunopositive profiles within the 

DRN. Bars represent means with lines indicating SEM. N = 3 animals per group, *p <0.05, 

***p <0.001; Mann Whitney. Scale bar 5 μm. 
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Table 1 
Details and characterisation of antibodies used in this study 
 

Primary 
antibodies 

Species 
(raised in) 

Source/code Dilution Specificity 
reference 

GABAAR alpha1 
subunit  
 

Rabbit Werner Sieghart,  
Antigen sequence -α1N 

amino acids 1-9 
Rabbit # 21/7,  
bleed # 04/10/1999 

1:5000 (Pirker et al. 2000; 
Poltl et al. 2003; 
Corteen et al. 2011) 
Knockout mouse, 
this study 

GABAAR alpha2 
subunit 
 

Guinea pig Jean-Marc Fritschy, 
University of Zurich, 
Zurich, Switzerland 
Antigen sequence α 2N.  

amino acids 1-9  

1:1000 (Fritschy and 
Mohler 1995; 
Corteen et al. 2011) 
Knockout mouse, 
this study 

GABAAR alpha3 
Subunit 

Guinea pig Jean-Marc Fritschy, 
University of Zurich, 
Zurich, Switzerland 
Antigen sequence α 3N.  

amino acids 1-15  

1: 5000 (Corteen et al. 
2011; Fritschy and 
Mohler 1995) 
Knockout mouse, 
this study 

GABAAR gamma2 
subunit 

Guinea pig Jean-Marc Fritschy, 
University of Zurich, 
Zurich, Switzerland 
Antigen sequence  
Antigen sequence α 3N.  

amino acids 1-29 

1: 3000 (Fritschy and 
Mohler 1995) 

GABAAR gamma2 
subunit 

Rabbit Synaptic systems 
#224 003 

1: 1000 Labelling pattern as 
published with 
other antibodies. 
Antibody 
extensively used in 
the literature 
(Essrich et al. 1998; 
Eyre et al. 2012; 
Fan et al. 2012) 

Tryptophan 
hydroxylase 

Sheep Millipore 
#AB1541 

1: 3000 Raised to rabbit 
recombinant 
TPH. Labelling 
pattern as 
published with 
other antibodies 

Gephyrin Mouse Synaptic Systems 
#147 021 

1: 500 (Pfeiffer et al. 1984) 

Neuroligin2 Rabbit Synaptic Systems 
#129 203 

1: 1000 Labelling pattern as 
published with 
other antibodies.  

GFP Chicken Aves Labs Inc. 
#GFP-1020 

1: 5000  

Parvalbumin Mouse Swant 
#253 

1: 2000 Labelling pattern as 
published with 
other antibodies. 

Corticorticotrophin 
releasing hormone  

Guinea Pig Peninsula Laboratories  
#T-5007 

1: 3000 Labelling as 
published with 
other antibodies 
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Table 2 

Schedule of the repeated restraint stress protocol 

 
 

Day 1 2pm: restraint 

Day 2 10am: restraint 

Day 3 2pm: animal placed in cage with restrainer but not restrained 

Day 4 10am: ‘escapable’ restraint  

Day 5 2 pm: restraint 

Day 6 10am: ‘escapable’ restraint 

Day 7 10am: restraint 

Day 8 2pm: restraint 

 
 
Table 3 
 
Primers and probes used for qRT-PCR 
 
 
Gene Primers and Probes (Life Technologies™) 

gabra1 Mm00439046_m1 

gabra2 Mm00433435_m1 

gabra3 Mm01294271_m1 

gabrg2 Mm00433489_m1 

gapdh Mm99999915_g1 
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