
Cosmological phase space analysis of the FðXÞ�Vð�Þ scalar field and bouncing solutions

Josue De-Santiago,1,2,3,* Jorge L. Cervantes-Cota,3,† and David Wands2,‡

1Universidad Nacional Autónoma de México, 04510, D. F., México
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We analyze the dynamical system defined by a universe filled with a barotropic fluid plus a scalar field

with modified kinetic term of the formL ¼ FðXÞ � Vð�Þ. After a suitable choice of variables that allows
us to study the phase space of the system, we obtain the critical points and their stability. We find that

some of them reduce to the ones defined for the canonical case when FðXÞ ¼ X. We also study the field

energy conditions to have a nonsingular bounce.
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I. INTRODUCTION

Scalar fields play an important role in cosmological
models because, due to their simplicity and adaptability,
they can account for different interesting phenomena. They
are some of the most popular choices for modeling cos-
mological scenarios such as inflation [1] and dark energy
[2], and they also have been studied in the context of dark
matter models [3], bounce cosmology [4], and different
unification models of those phenomena [5].

The proposal that the Lagrangian could be a general
function of the kinetic term X ¼ �g��@��@��=2 and the

field � was introduced in cosmology first in [6] in the
context of inflation and then used for dark energy models
in [7]. Different particular forms of the Lagrangian
L ¼ pðX;�Þ have been studied for different reasons [2].

In this paper we study the general class of models with
sum-separable Lagrangian L ¼ FðXÞ � Vð�Þ. Several
aspects of this type of scalar field have been studied in
the literature. Phenomenology of the inflation models aris-
ing from them [8,9], topological defects [10], supersym-
metry extension [11], boson stars [12], unification models
of dark matter and dark energy [5,13], and unification of
dark energy, dark matter, and inflation [14,15]. This model
also offers the possibility of being understood as a vacuum
energy density V coupled with a barotropic fluid [16]. It
reduces to the canonical scalar field when FðXÞ ¼ X.

In Sec. II we study the system of autonomous differen-
tial equations related to this class of scalar fields. This
method is equivalent to the one used for canonical scalar
fields in [17] and allows us to identify the general behavior
of the cosmological solutions associated with the present
Lagrangian. This method has been applied to a wide range
of cosmological models, for example [18–26]. It can be
used to determine the presence and stability of solutions of

cosmological interest, such as those with de Sitter phases
or with scaling behaviors.
One possible application for this type of Lagrangian is

the generation in the early universe of a nonsingular
bounce, in which the state of the Universe goes from
collapsing to expanding for a � 0. The bouncing models
have been proposed as alternatives to inflation [27,28] and
as a way to evade a singular big bang, as in the pre-big bang
scenario [29], in the ekpyrotic universe [30–33], or in other
multifield models [34].
In Sec. III we study how, when the density of this field is

allowed to be negative, it can drive a bounce. As the
variables defined for previous the dynamical system analy-
sis are not suitable to study this phenomenon, we redefine
the system as in Ref. [34] in order to study this case and
obtain the conditions to accomplish a bouncing behavior.
To obtain the bounce, the scalar field has to violate the null
energy condition (NEC) possibly giving rise to instabil-
ities. Some works have been made trying to erase these
instabilities with ghost condensate scalar fields [31,35,36]
(however, see Ref. [37]). Here we will only consider the
dynamics of homogeneous cosmologies.

II. AUTONOMOUS SYSTEM
FOR L¼FðXÞ�Vð�Þ

For a spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) cosmology filled with a scalar field with
a Lagrangian of the form L ¼ FðXÞ � Vð�Þ, where

X ¼ � 1

2
@��@��; (1)

and a matter component with density �m and equation of
state pm ¼ !m�m, the equations of motion are

H2 ¼ 1

3M2
Pl

½2XFX � Fþ V þ �m�; (2)

_H ¼ � 1

2M2
Pl

½2XFX þ ð1þ!mÞ�m�; (3)
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where H is the Hubble factor. These equations can be
combined to imply the conservation of the total energy
momentum tensor. We can suppose additionally the con-
servation of the scalar field and barotropic fluid energy
momentum tensors separately, which is the case when
there is no interchange of energy between the two compo-
nents. In that case the barotropic component satisfies the

equation �m / a�3ð1þ!mÞ for a constant !m, where a is the
scale factor, and the scalar field satisfies

d

dN
ð2XFX � Fþ VÞ þ 6XFX ¼ 0; (4)

where the subindex X means differentiation with respect to
that variable. The time differentiation here has been
changed to dN ¼ d loga, a variable that for an expanding
FLRW model can be used as the independent variable
instead of the cosmological time, with the relation
dN ¼ Hdt.

In order to obtain the autonomous system we define the
variables

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2XFX � F

p
ffiffiffi
3

p
MPlH

; y ¼
ffiffiffiffi
V

p
ffiffiffi
3

p
MPlH

; (5)

where x2 is proportional to the kinetic part of the energy
density

�k ¼ 2XFX � F; (6)

and y2 to the potential part of the energy density �V ¼ V.
They are equivalent to the ones used in the analysis for
canonical scalar fields [17]. We will also need to define the
auxiliary variables

� ¼ �MPlV�

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X

3j2XFX � Fj

s
signð _�Þ; (7)

!k ¼ F

2XFX � F
; (8)

where the former corresponds to the change in time of the
potential, as can be seen if we write it as

� ¼ � MPlffiffiffiffiffiffiffiffiffiffiffi
3j�kj

p d logV

dt
; (9)

and the latter corresponds to the equation of state for the
kinetic part of the Lagrangian, as the kinetic part of the
pressure is Pk ¼ F. In the case of a canonical scalar field
FðXÞ ¼ X and the auxiliary variables turn out to be!k ¼ 1

and � ¼ ffiffiffiffiffiffiffiffi
2=3

p
� for V / e���=MPl as defined in Ref. [17].

The equation of state of the scalar field can be obtained
in terms of the new variables as

!� ¼ p�

��

¼ !kx
2 � y2

x2 þ y2
: (10)

The evolution equations for the first two variables
(x and y) can be written as

dx

dN
¼ 2XFXX þ FX

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2XFX � FÞp

MPlH

dX

dN
� x

_H

H2
; (11)

dy

dN
¼ V�

_�

2
ffiffiffiffiffiffiffi
3V

p
MPlH

2
� y

_H

H2
: (12)

The common _H=H2 factor can be obtained from Eq. (3)
dividing by H2 and replacing the original for the new
variables

_H

H2
¼ � 3

2
½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�; (13)

where we made use of the Eq. (2) in the new variables

x2 þ y2 þ�m ¼ 1: (14)

Now in order to calculate the first term in the evolution
Eq. (12) we only have to substitute the values of the new
variables

V�
_�

2
ffiffiffiffiffiffiffi
3V

p
MPlH

2
¼ � 3

2
�xy: (15)

For the first term in Eq. (11), we use the continuity Eq. (4)
that can be written as

dX

dN
¼ � 3F

ð2XFXX þ FXÞ!k

�
!k þ 1� �y2

x

�
; (16)

so that the evolution Eqs. (11) and (12) become, in terms of
the new variables,

dx

dN
¼ 3

2
½�y2 � xð!k þ 1Þ�

þ 3

2
x½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�; (17)

dy

dN
¼ � 3

2
�yxþ 3

2
y½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�:

(18)

The evolution equations for the variables !k and � can
be obtained using the Eq. (16) and the definition of X. But
we have to define new auxiliary variables that depend on
the second-order derivatives of the Lagrangian potentials.
The evolution equations are

d!k

dN
¼ 3

2�!k þ!k � 1

2�þ 1

�
!k þ 1� �y2

x

�
; (19)

d�

dN
¼ �3�2xð�� 1Þ þ 3�ð2�ð!k þ 1Þ þ!k � 1Þ

2ð2�þ 1Þð!k þ 1Þ
�

�
!k þ 1� �y2

x

�
; (20)

where the auxiliary variables are defined as
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� ¼ XFXX

FX

; (21)

� ¼ VV��

V2
�

: (22)

The new second-order derivative variables �, � will
have evolution equations in terms of the dynamical varia-
bles and new third-order derivative variables, and so on. In
order to truncate this succession of equations we can con-
sider fixing the functions FðXÞ and Vð�Þ.

The first of these assumptions is to choose the potential
related variable � as a constant. For it to happen, we need

Vð�Þ ¼ V0ð���0Þ1=ð1��Þ (23)

for � � 1, or

Vð�Þ ¼ V0e
���=MPl (24)

for � ¼ 1. The second assumption is to consider the case in
which

FðXÞ ¼ AX�; (25)

where A and� are constants, in this case!k ¼ 1=ð2�� 1Þ
and Eq. (19) is trivially satisfied. In the following we will
use these assumptions.

The dynamical system will be reduced to Eq. (17) for the
evolution of x, Eq. (18) for the evolution of y, and an
equation for the evolution of � that due to the choice of
F as a power law becomes

d�

dN
¼ �3�2xð�� 1Þ þ 3�ð1�!kÞ

2ð1þ!kÞ
�
!k þ 1� �y2

x

�
:

(26)

A. Critical points

The autonomous system of equations written above can
be analyzed if we consider its critical points, in which
Eqs. (17) and (18) are equal to zero, corresponding to x
and y constant. In the first instance we will not consider the
evolution Eq. (26), but if the critical points ðx0; y0Þ depend
on � they will not be truly fixed unless we ensure that � is
constant.

The variables x2 and y2 correspond to the fraction of the
energy density contained in kinetic and potential energy of
the scalar field, as can be seen from (14). The condition of
constancy for the critical points implies that these variables
have a constant contribution to the total energy density,
which can happen in three scenarios: (i) if x2 þ y2 is equal
to one, meaning that all the energy density comes from the
scalar field, (ii) if they are zero, meaning no contribution,
or (iii) if they are between zero and one, corresponding to
what is also known as a scaling solution, meaning that the
energy density of the field scales at the same rate as that of
matter. The three behaviors are of cosmological interest

and are present for the critical points of generally defined
parameters x and y if they satisfy Eq. (14).
To present the critical points, we have labeled with Latin

letters those that reduce in the canonical case to the ones
studied in [38], and with Greek letters to the ones with no
correspondence.
For xa ¼ 0 and ya ¼ 0, this corresponds to the scalar

field not contributing to the energy density of the Universe.
If x ¼ 0 and y � 0, the equation of state becomes

!� ¼ �1 that is an interesting case from the cosmological

point of view due to the possibility to describe dark energy
or inflation phenomena. In this case the evolution equation
for x reduces to

dx

dN
¼ 3

2
�y2; (27)

which requires � ¼ 0, a potential that doesn’t change with
time. On the other hand, the evolution equation for y
reduces to

dy

dN
¼ 3

2
yð1þ!mÞð1� y2Þ; (28)

that can be zero for !m ¼ �1 or y ¼ 1. Both cases corre-
spond to a FLRW model filled with fluid with equation of
state �1.
(i) In the first case x� ¼ 0 and y� ¼ 1, the Friedmann

equation in the new variables (14) implies that the
matter field has zero energy density and the only
component of the model is the � field.

(ii) In the second case x	 ¼ 0 and y	 is arbitrary, then

there are contributions from the barotropic fluid as
well as from the scalar field.

If y ¼ 0 and x � 0, the potential energy is zero and the
equation of state reduces to !� ¼ !k. The energy density

of the field is stored in the kinetic part. The evolution
equation for y vanishes and the one for x reduces to

dx

dN
¼ 3

2
xð!k �!mÞðx2 � 1Þ; (29)

that can become zero in two cases:
(i) For xb ¼ 1, yb ¼ 0 this corresponds to the density of

the model coming entirely from the kinetic part of
the field �.

(ii) For !m ¼ !�, with y
 ¼ 0 and x
 arbitrary, the

equation of state of the field is the same as the
equation of state of the matter. It corresponds to a
kinetically driven scaling solution. These types of
solutions are important in cosmology, because in the
case of dark energy they have been proposed to
alleviate the coincidence problem [2]. This case,
however, is not completely what in the literature is
called a scaling solution in the sense that it can only
reproduce a constant equation of state of the matter
when the Lagrangian of the field satisfies

COSMOLOGICAL PHASE SPACE ANALYSIS OF THE . . . PHYSICAL REVIEW D 87, 023502 (2013)

023502-3



FðXÞ ¼ AXð1þ!mÞ=2!m: (30)

For example, if the energy density of the matter
satisfies a relativistic equation of state, we need
FðXÞ ¼ AX2 such that !k ¼ 1=3. The latter hap-
pens in the unified dark matter models based in
Scherrer’s Lagrangian FðXÞ ¼ F0 þ FmðX � X0Þ2.
It is known [39] that for high energies in which
X � X0 the model can have a radiation-like behav-
ior and this is because F0 and X0 can be disregarded,
approximating to (30).

The last case is when both x and y are different from
zero. From (17) and (18), we can see that the critical points
satisfy

x ¼ 1

2�
ð!k þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!k þ 1Þ2 � 4�2y2

q
Þ: (31)

In this case there are two different critical points, the first
one has the form

xc ¼ �

!k þ 1
; yc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!k þ 1Þ2 � �2
p

!k þ 1
: (32)

It corresponds to a cosmology filled with the scalar field, as
can be seen from (14) which in this case corresponds to
x2c þ y2c ¼ 1with zero matter density. The equation of state
of the system will be

!� ¼ �2

1þ!k

� 1: (33)

The second nonzero critical point corresponds to

xd¼!mþ1

�
; yd¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!mþ1Þð!k�!mÞ
p

�
; (34)

where the equation of state in this case is !� ¼ !m, in

other words corresponding to a scaling solution. In the
canonical case with exponential potential we will recover
the scaling solution of Ref. [17]. The fraction of the total
energy density stored in the scalar field will be

x2d þ y2d ¼
ð1þ!kÞð1þ!mÞ

�2
: (35)

It is interesting to point out that, except for the canonical
case, the Lagrangians studied here with!k and � constants
cannot be reduced to the case L ¼ XgðXe��Þ, which is
considered in Ref. [40] as the general form for a scalar field
with scaling solutions. The difference from the case
studied there is that we are not considering a coupling
between the field and the barotropic fluid as in their case.

The points defined in (32) and (34) depend explicitly on
�, that in general is an evolving quantity. It means that,
unless the variable � is also fixed, those points won’t be
critical points of the system. Setting the evolution equation
for � equal to zero gives us the condition � ¼ �0 with

�0 ¼ 3þ!k

2ð1þ!kÞ : (36)

This relation between the derivatives of potential and
kinetic terms in the Lagrangian has to be accomplished
in order to have the critical points (32) and (34). For the
canonical case, as !k ¼ 1 then the critical points are fixed
only for � ¼ 1, that from (24) corresponds to the expo-
nential potential, as expected. For the noncanonical case as
!k � 1 then there will be a relation between the exponent
in the kinetic and the one in the potential term of the form
L ¼ AX� � Bð���0Þn with

� ¼ n

2þ n
; (37)

if this relation is not satisfied, the critical points won’t be
truly fixed. In the Appendix we show that when the system
satisfies this relation, it is invariant under a set of symmetry
transformations, which turn allows to reduce the number
of degrees of freedom. The same symmetry invariance
happens for the canonical scalar field with exponential
potential as proved in Ref. [41].
The stability of the critical points can be analyzed by

the matrix of the derivatives of the right-hand side of
Eqs. (17) and (18). Analyzing the eigenvalues of the matrix
we obtain the results of Table I.
The critical point (a) presents a behavior of unstable

node for !k <!m which can drive the scalar field density
towards bigger values even if it starts with small density.
The saddle point behavior that was already obtained in the
canonical case is recovered here when !m <!k. Point (�)
corresponds to slow roll behavior as � ¼ 0 and the poten-
tial dominates, and it can be a saddle point or a stable node
depending on the equation of state of the kinetic part.
Point (b) can be stable, unstable, or a saddle point. In
the canonical case the stable behavior is not obtained.
Points (c) and (d) have the same stability behavior as in
the canonical case except that the conditions get modified
by !k as stated in the table. The lines (	) and (
) are
obtained when the equation of state of matter is the same as
that of the kinetic part or the potential part of the
Lagrangian and can be stable or unstable. The cosmologi-
cal relevance of these solutions is further discussed in the
conclusions.

B. Critical points at infinity

The former critical points a, b, c, �, 	, and 
 correspond
to the situation in which the dynamical variables are finite.
This is always the case for x and y as Eq. (14) requires both
variables to be smaller or equal than one. However, for �
we can see from the definition (7) that it can become
infinity as �k the kinetic energy density or V the potential
tend to zero. To study this case, we make a change of the
variable � to � ¼ 1=� and study the possibility of it
becoming zero.
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Considering !k and � constants, the evolution
Eqs. (17), (18), and (26) become

dx

dN
¼ 3

2

�
y2

�
� xð!k þ 1Þ

�

þ 3

2
x½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�; (38)

dy

dN
¼ � 3xy

2�
þ 3

2
y½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�;

(39)

d�

dN
¼ 3xð�� 1Þ � 3ð1�!kÞ

2ð1þ!kÞ
�
ð!k þ 1Þ�� y2

x

�
: (40)

In order to have a critical point at � ¼ 0 it’s required that
the terms y2=� and xy=� each vanish. These factors can be
computed considering that as !k and � are constants the
kinetic term is a power-law F ¼ AX�, and the potential
term is either a power-law V ¼ B�n or an exponential

V ¼ Ce���=MPl . For the power-law potential, the variable
� has the expression

�¼� 1

nMPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2��1ÞA

2

s
signð _�Þ�Xð��1Þ=2; (41)

and the factors

y2

�
¼� nB

3MPlH
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3ð2��1ÞA

s
signð _�Þ�n�1Xð1��Þ=2; (42)

xy

�
¼ � n

3MPlH
2

ffiffiffiffiffiffi
2B

3

s
signð _�Þ�ðn�2Þ=2X1=2: (43)

In order to have these two terms equal to zero at the same
time as � ! 0, we require � ¼ 0 and n > 2. With these
conditions, the variable y becomes zero, too, and the
evolution equations for x and y get reduced to

dx

dN
¼ 3

2
xðx2 � 1Þð!k �!mÞ; (44)

dy

dN
¼ 0; (45)

which implies that the critical points occur when x ¼ 0,
x ¼ 1, or !k ¼ !m. These three cases correspond to
the already studied critical points (a), (b), and (
),
respectively.
The second case happens when the potential is an expo-

nential V ¼ Be���=MPl . In this case, however, y ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
V=�c

p
cannot become zero, except for the trivial case in which
B ¼ 0. This means that y2=� diverges as � ! 0, which
implies that (39) cannot be zero and there is no critical
point at infinity.

C. Analysis of the phase space

In this subsection we plot the phase space defined by the
Eq. (17), (18), and (26) for several potentials. An important
case happens when the potential satisfies Eq. (36). For
example, this occurs for a Lagrangian of the form
L ¼ AX2 þ B=�4. In this case the extra parameters have

TABLE I. Stability and existence of the critical points assuming �1 � !m � 1. The points labeled with Latin letters reduce in the
canonical case to the ones already studied in the literature [38], the points with Greek letters are new.

x y Existence Stability �� !�

(a) 0 0 Always Unstable node for !k < !m 0 -

Saddle point for !m <!k

(�) 0 1 � ¼ 0 Saddle point for !k <�1 1 �1
Stable node for !k >�1

(b) 1 0 Always Unstable node for !k > f!m;�� 1g 1 !k

Stable node for !k < f!m;�� 1g
Otherwise saddle point

(c) �
1þ!k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ!kÞ2��2

ð1þ!kÞ2
r

� ¼ �0 Saddle point for �2 > ð1þ!kÞð1þ!mÞ 1 �2

1þ!k
� 1

�ð1þ!kÞ> 0 Otherwise stable node

�2 > ð1þ!kÞ2

(d) 1þ!m

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!k�!mÞð1þ!mÞ

p
� � ¼ �0 Stable node for �2ð8�!kþ9!mÞ

8ð1þ!kÞð1þ!mÞ2 < 1 ð1þ!kÞð1þ!mÞ
�2 !m

!m <!k Stable spiral otherwise

�>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ!kÞð1þ!mÞ

p
(	) 0 Arbitrary � ¼ 0 and !m ¼ �1 Stable line for !k >�1 y2 �1

Unstable otherwise

(
) Arbitrary 0 !k ¼ !m Stable line for x� > 1þ!k x2 !m

Unstable otherwise
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values of !k ¼ 1=3 and � ¼ 5=4. In Figs. 1–3 we plotted
the two-dimensional projections of this system for!m ¼ 0
for an initial condition of � ¼ 1:5. We can see how the
solutions approach to the critical points (c) and (d) from
Table I depending on the values of �. The critical points lie

on a curve in the three-dimensional phase space, and due to
the evolution of �, the solutions tend to different points in
those curves.
As we have stated, for the canonical scalar field the

condition (36) implies an exponential potential. In that
case � is a constant determined by the exponent in the

potential, as V / e�
ffiffi
3

p
��=ð ffiffi

2
p

MPlÞ. The phase space in that

FIG. 3 (color online). Projection of the phase space along the
ðx; �Þ plane for a Lagrangian of the form L ¼ AX2 þ B=�4.
The system is the same as in Figs. 1 and 2. The solutions where
chosen to start in � ¼ 1:5 and they evolve towards different
directions depending on the values of x and y. See the explana-
tion in Fig. 1.

FIG. 2 (color online). Projection of the phase space along the
ðx; �Þ plane for a Lagrangian of the form L ¼ AX2 þ B=�4.
The system is the same as in Figs. 1 and 3. The solutions where
chosen to start in � ¼ 1:5 and for a constant x they evolve in
different directions due to the different values in y. See the
explanation in Fig. 1.

FIG. 1 (color online). Projection of the phase space along the
ðx; yÞ plane for a Lagrangian of the form L ¼ AX2 þ B=�4,
with initial condition � ¼ 1:5. The solutions tend to the critical
points (c) and (d) studied in Table I. As � changes, the critical
points lie on the light green line for the (c) and the red segment
of circle for (d). This behavior can be better seen in Figs. 2 and 3
corresponding to different projections of the same system. The
critical point curves are plotted with the same colors.

FIG. 4 (color online). Phase space for the canonical scalar field
with exponential potential and � ¼ 1:5. The phase space for this
system is two-dimensional, unlike in the case of nonexponential
potentials or noncanonical kinetic terms with three dimensional
phase spaces. The solutions tend to the critical point (d), scaling
solution.
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case is effectively two-dimensional. In Fig. 4 we can see
the behavior for � ¼ 1:5 with !m ¼ 0. In this case the
solutions approach only to one point, as there is not
evolution in �.

When the condition (36) is not satisfied, we do not have
the critical points (c) and (d), but we can still plot the
system. For example, for the LagrangianL ¼ AX2 þ B�2

in which case the values of the auxiliary parameters are
!k ¼ 1=3 and � ¼ 1=2. In Fig. 5 we plotted the three-
dimensional phase space system for solutions that start
with � ¼ 1:5. We can see that the system evolves towards
big values of�, this happens because� / 1=� in this case,
and the system goes towards small values of �. In fact, it
crosses � ¼ 0 in a finite time, in which the variable � is
not useful to describe the system. We can see that the
solutions do not tend to any critical point.

III. BOUNCE COSMOLOGY

In this section we consider a nonsingular bounce
(a � 0) in a FLRW cosmology filled with the scalar field
L ¼ FðXÞ � Vð�Þ and a barotropic fluid with constant
equation of state !m. For a bounce to happen, we need
the evolution of the scale factor to go from decreasing to
increasing as a function of time. In terms of the derivative
of the scale factor this implies that at the bounce it has to
satisfy _aðtbÞ ¼ 0 and €aðtbÞ> 0. The first condition can be
translated in terms of the Hubble parameter asHb ¼ 0, but
this means that the dynamical variables defined in Eq. (5)
in the last section will diverge. Besides that, the indepen-
dent variable N that we have used to parametrize the
evolution of the system is no longer well defined at the
bounce, as d=dN ¼ H�1d=dt. Those complications arise
from the fact that our choice of dynamical variables
was adjusted to study a cosmology with increasing a.
Accordingly, in order to study a bouncing FLRW metric,

we need to define new variables adapted to the current
problem.
Also we have to note that the total energy density of

the model is zero at the bounce, which can be seen from
the Friedmann equation (2). If we suppose that the
energy density of the barotropic component is positive

� / a�3ð1þ!mÞ then the energy density of the field has to
be negative, something that will be considered in the
definition of the dynamical variables below.
Now let us define the new set of variables

~x ¼
ffiffiffi
3

p
MPlHffiffiffiffiffiffiffiffiffij�kj

p ; ~y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
V

�k

��������sign
s

ðVÞ; (46)

where �k is given in Eq. (6) and the absolute values come
from the fact that we are interested in the behavior of both,
positive and negative energy densities. The new indepen-
dent variable defined in analogy to N is

d ~N ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�kj
3M2

Pl

s
dt: (47)

The evolution equations for the above variables can be then
written as

d~x

d ~N
¼ � 3

2
½ð!k �!mÞsign ð�kÞ þ ð1þ!mÞð~x2 � ~yj~yjÞ�

þ 3

2
~x½ð!k þ 1Þ~x� �~yj~yjsign ð�kÞ�;

d~y

d ~N
¼ 3

2
~y½��þ ð!k þ 1Þ~x� �~yj~yjsign ð�kÞ�: (48)

In general we also need to evolve �, its evolution equation
can be obtained from Eq. (20), transforming to the new
variables as

d�

d ~N
¼ �3�2ð�� 1Þ þ 3�ð2�ð!k þ 1Þ þ!k � 1Þ

2ð2�þ 1Þð!k þ 1Þ
� ðð!k þ 1Þ~x� �~y2Þ: (49)

The above variables are well behaved only for �k � 0,
so neither of the possible cases of purely potential
bounce, nor a change in sign for �k after the bounce will
be studied here.

A. Conditions for a bounce

In the following we work with the phase space defined
by the set of equations (48). Due to the relation between the
dynamical variables ð~x; ~yÞ and ðx; yÞ from the previous
section, the critical points of both systems coincide. It is
easy to check that the points of Table I are also critical
points of the new system with the transformation ~x ¼ 1=x
and ~y ¼ y=x, except for those with x ¼ 0 in which the new
variables diverge.
In this subsection we will use Eq. (48) to study the

evolution of the systems near the bounce. In general we
have to consider also Eq. (50) to make a representation of

FIG. 5 (color online). Phase space for the Lagrangian
L ¼ AX2 þ B�2. The solutions don’t tend to any critical point.
They evolve towards high values of � because this parameter is
proportional to ��1 for this Lagrangian.
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the three-dimensional phase space as in Fig. 5 of the
previous section; however, we will not consider this equa-
tion because we are interested in the behavior only close to
the bounce and the variable � won’t evolve much during
this short time. For this reason, the plots of the phase
spaces of Figs. 6 and 7, which will be studied with more
detail in this section, correspond only to schematic repre-
sentations of the phase space near the bounce. For Figs. 8
and 9, the representation corresponds to the actual phase
space because for those Lagrangians � is a constant.

Besides Eq. (48), the system has to satisfy the
Friedmann constraint (2), which translates into

~x 2 � ~yj~yj � ~�m ¼ 1� sign ð�kÞ; (50)

where ~�m ¼ �m=j�kj corresponds to a dimensionless den-

sity parameter for the barotropic fluid component. As ~�m

is assumed to be nonnegative, we obtain the expression

~x 2 � ~yj~yj � 1� sign ð�kÞ; (51)

which defines the allowed regions of the phase space. For
the nonphantom case �k > 0, the Friedmann constraint
becomes

~x 2 � signðVÞ~y2 � 1; (52)

FIG. 6 (color online). Schematic projection of the phase space
for a noncanonical nonphantom system with �k > 0 and

!k ¼ �5 and �� ffiffiffiffiffiffiffiffi
2=3

p
. The bounce occurs when the solutions

cross the vertical (thick, red) line.

FIG. 7 (color online). Schematic projection of the phase space

for a field with �k < 0, !k ¼ 1=6, ��� ffiffiffiffiffiffiffiffi
2=3

p
and !m ¼ 1=3.

The bounce occurs when the solutions cross the vertical (thick,
red) line. There is no purely kinetic (�V ¼ 0) bounce.

FIG. 8 (color online). Phase space ð~x; ~yÞ for the special case of
a phantom system FðXÞ ¼ �X and V / e���=MPl (such that � is
constant) plus a barotropic radiation component !m ¼ 1=3. The
bounce occurs when the solutions cross the vertical (thick, red)
line. The spiral in the graph corresponds to the critical point (d)
studied in the previous section.

FIG. 9 (color online). Phase space for the special case of a
canonical scalar field with potential V / e���=MPl (such that � is
constant) plus a barotropic radiation component !m ¼ 1=3. All
the solutions that cross ~x ¼ 0 have negative d~x=d ~N which
corresponds to recollapse. The bounce is not possible.
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which for ~y positive corresponds to the region inside the
branches of the hyperbola ~x2 � ~y2 ¼ 1, and for ~y negative
to the region outside the circle defined by ~x2 þ ~y2 ¼ 1, as
seen in Fig. 6. In the �k < 0 case the condition (51) trans-
lates into

~x 2 � signðVÞ~y2 � �1; (53)

which for ~y > 0 corresponds to the region below the
hyperbola ~y2 � ~x2 ¼ 1. For ~y < 0, this condition is satis-
fied for all the values, as we can see in Fig. 8.

From the definitions (46), we can see that
(i) ~x > 0 corresponds to the regime of an expanding

cosmology,
(ii) ~x < 0 corresponds to a contracting cosmology,
(iii) ~x ¼ 0 corresponds either to a bounce, a recollapse,

or a static cosmology.

For the case of ~x ¼ 0, we can use the information con-
tained in the derivative to study whether we are dealing
with a bounce or a recollapse:

(i) d~x
d ~N

> 0 corresponds to a bounce,

(ii) d~x
d ~N

< 0 corresponds to a recollapse,

(iii) d~x
d ~N

¼ 0 gives not enough information and one has to

consider higher derivatives or analyze the neigh-
boring phase space.

To see which of the above cases occurs in the phase
space of our system, we use ~x ¼ 0 in the evolution
equations (48). In particular, for the evolution of ~x,
we obtain

d~x

d ~N
¼ � 3

2
½ð!k �!mÞsignð�kÞ � ð1þ!mÞ~yj~yj�: (54)

As we stated above this expression has to be positive for a
bounce, which implies a condition in the parameter ~y as

~y >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
!k �!m

1þ!m

��������
s

signð�kð!k �!mÞÞ: (55)

In addition, we also have the condition (51) for the
case ~x ¼ 0

~y � �1� signð�kÞ: (56)

To analyze the above conditions, we first suppose
�k > 0. In this case the inequality (56) transforms to
~y � �1 and (55) to ~y2 < ð!m �!kÞ=ð1þ!mÞ. For the
two conditions to be satisfied, in an interval of ~y is neces-
sary to have !k <�1. For example, in the case of a
canonical scalar field, one has FðXÞ ¼ X and consequently
�k > 0, but as !k ¼ 1 the system of a barotropic compo-
nent and a canonical scalar field cannot give rise to a
bounce, as already shown in [42]. This can be seen in the
phase space of Fig. 9 in which all the solutions that cross
the~y axis move from positive to negative values of ~x,
corresponding to recollapse.

For �k < 0, the conditions for the bounce become

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
!k �!m

1þ!m

��������
s

signð!m �!kÞ< ~y � 1; (57)

which can be satisfied for an interval of ~y as long as
!k >�1. The original phantom field with FðXÞ ¼ �X
satisfies!k ¼ 1 and, as shown in Fig. 8, can have a bounce
behavior.
In order to have a purely kinetic bounce, in other words

one with ~y ¼ 0 the conditions above state that the density
of the scalar field �k has to be negative and !k >!m.
Figure 7 shows a case in which the later is not accom-
plished and then there is no purely kinetic bounce.
The two conditions in the previous paragraph can be

generalized. First, to obtain a bounce, one needs the total
energy density of the field to be negative in order to
compensate for the positive barotropic energy density in
the Friedmann equation

H2 ¼ 1

3M2
Pl

ð�� þ �mÞ ¼ 0; (58)

where �� ¼ �V þ �k is the total energy density in the

field. Moreover, the total equation of state of the field !�

has to be bigger than that of the barotropic fluid in order to
have a positive energy density for a > abounce, as seen in
Fig. 10. Otherwise, we will be dealing with a system that
exhibits positive energy density only for a < abounce cor-
responding to a recollapse.
The above two conditions are in fact the same as those in

the expressions (55) and (56) in terms of the dynamical
variables. For the first one, the negativity of the energy
density �k þ �V can be translated as 1� signð�kÞ þ
�v=j�kj< 0 or from the definitions of the variables (46) as

~y <�1� signð�kÞ; (59)

FIG. 10 (color online). The densities of the barotropic fluid
(blue, dashed-dotted line), the scalar field (red, dotted line), and
the total density of the Universe (green, continuous line), re-
spectively, as a function of the scale factor. The total energy
density tends to zero at the bounce and for smaller values of a is
negative, which is forbidden.
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which corresponds to expression (56). The condition on the
total equation of state of the field, in terms of the dynamical
variables can be written as

!k � ~yj~yjsignð�kÞ
1þ ~yj~yjsignð�kÞ

>!m; (60)

which can be transformed into (55) after some algebra and
using the expression (59).

The conditions on the field to have a negative energy
density and an equation of state greater than that of matter
implies a violation of the NEC that states that �� þ p� be

positive, as seen in Fig. 11. In the last years extensive
literature has been produced studying fields that violate
the NEC. The main reason for that interest is because the
current measurements of the dark energy equation of state
slightly favor models with !de <�1 [2]. However, fields
violating the NEC might have several types of instabilities,
for example, imaginary sound speed which results in an
increase of inhomogeneities in small periods of time
[43,44], or decay of the vacuum into negative energy
particles of the field plus positive energy particles
[45–47]. The inclusion of higher order terms in the
Lagrangian has been proposed as a method to obtain
particles with positive energy in the so-called Ghost con-
densate models [31,35,36,48]; however, usually these extra
terms add new stability problems to the models, and it is
not clear if there is a well behaved high energy theory to
account for them [49]. Due to those problems, a recent

series of works has been published studying fields in which
the introduction of certain symmetries can ensure the
stability of the model in spite of breaking the NEC
[50–52]. However, those models, so-called Galileons,
have dynamics which was not studied in this paper.

IV. CONCLUSIONS

As we have seen, the system of equations (2) and (3) for
the Lagrangian L ¼ FðXÞ � Vð�Þ can be rewritten in
terms of the dynamical variables (5) as (17) and (18).
This system allows us to understand the dynamical behav-
ior of the Universe under different initial conditions. The
critical points and their stability are summarized in Table I.
This system is naturally adapted to study Lagrangians
with kinetic terms of the type FðXÞ / X� and potentials

Vð�Þ / �1=ð��1Þ or Vð�Þ / e��� such as those studied for
k inflation in [9]. The canonical case and its critical points
are recovered for FðXÞ ¼ X.
In general, the critical points (�), (	), (
), (c), and (d)

are present only for particular choices of the Lagrangian
L ¼ FðXÞ � Vð�Þ, which happens for the canonical scalar
field in which the points (c) and (d) are only present for
exponential potentials. The conditions for their existence
are summarized in Table I.
The point (�) corresponds to the slow roll scenario in

which the potential dominates (y ¼ 1) and its derivative is
zero (� ¼ 0). The case with !k <�1 is interesting for
inflationary models as it corresponds to a saddle point,
offering an explanation of how the Universe could enter
in the slow roll regime and exit eventually. For that case, it
is also necessary to study the dynamical behavior of � to
understand the conditions for it to evolve towards zero,
something that was not analyzed in this paper.
The potential dominated line (	) has the cosmologically

interesting behavior of an equation of state of �1; how-
ever, it requires that the barotropic fluid has the same
behavior, something that is very restrictive.
The kinetic dominated line (
) corresponds to critical

points of the system only when !k ¼ !m, for example, if
FðXÞ / X2 when the barotropic fluid is radiation. It can
happen for example in the purely kinetic unified model
studied in Ref. [39], in which the proposed Lagrangian
behaves as a radiation fluid for high energies. An interest-
ing extension to this purely kinetic model is the addition of
a potential term to the Lagrangian, which could leave the
kinetic dominated line stable at early times, setting the
initial conditions necessary for a later evolution as dark
matter plus dark energy if the potential becomes flat at late
times; see also Ref. [15].
The scalar field dominated solution (c) and the scaling

solution (d) are not in general critical points of the system
except for the case in which the potentials in the
Lagrangian satisfy the particular relation (36). This rela-
tion for the canonical scalar field means that the potential
has to be exponential, and for the noncanonical field means

FIG. 11 (color online). The bottom left region corresponds in
the �-p plane to the part which can drive a bounce, with � < 0
and !� >!m with !m ¼ 1=3. The upper right region is the one

that satisfies the null energy condition. The dashed-dotted lines
cannot be crossed by k-essence Lagrangians like the ones
considered here [43].
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that the Lagrangian has to satisfy (37). As in the canonical
case, the scaling solution corresponds to a stable node or a
stable spiral, and the scalar field dominated solution
behaves as a stable node or saddle point. If condition
(36) is not satisfied, even if dx=dN ¼ 0 and dy=dN ¼ 0
for a particular time, the variables will evolve because
the time dependence on � will drive x0 � 0 and y0 � 0
as time passes. However, in the cases in which (36)
is satisfied we can obtain scaling solutions despite the
fact that the Lagrangian cannot be reduced to the form
L ¼ XgðXe��Þ, which is studied in Ref. [40] as the gen-
eral form of scalar fields with scaling solutions; but we
are not considering here an interaction with the matter
component as in that case.

In order to study a bouncing cosmology we had to
redefine the dynamical variables to some more suited to
the problem as (46). We obtained the conditions (55) and
(56) necessary for a bounce. In the phase space it is seen as
the possibility to have a crossing of the ~y axis from the
negative to the positive ~x region.

The dynamical variables ð~x; ~yÞ and ðx; yÞ are related by
the transformation ~x ¼ 1=x and ~y ¼ y=x which means that
the critical points of both dynamical systems coincide
when both are valid. This happens when �k and �V are
positive; otherwise, the variables x, y are not defined, and
when x � 0. It can be seen that the points of Table I are
also critical points of the new system except for those
with x ¼ 0.

We split the analysis of the bouncing system in two
cases, �k negative (phantom scalar field) and �k positive,
and obtained that in order to have a bounce we need
!k >�1 for the first case and !k <�1 for the second
one.

For a canonical scalar field, we know that a negative
potential can lead to a crossing of the ~x axis (H ¼ 0) only
for recollapse, and not for a bounce. Here we showed that
for certain values of !k a bounce is possible even for �k

positive, giving the possibility of a potentially driven
bounce. We also showed that the conditions (55) and (56)
obtained in terms of the dynamical variables can be ulti-
mately understood as �� < 0 and !� >!m, better seen

from Fig. 10 as the conditions to have zero energy density
at the bounce and positive energy density immediately
after and immediately before it.

We showed that the field has to violate the null energy
condition in order to account for the bounce, as seen in
Fig. 11. This is a well-known result that can have impli-
cations concerning the stability of the field. It this paper we
did not deal with the inhomogeneous perturbations; how-
ever, it has been argued that this type of Lagrangians have
both classical and quantum stability problems when they
violate the NEC [37,43]. All the former arguments make us
conclude that possibly fields as simple as F-V are not good
candidates to violate NEC and therefore to produce a
bounce. The study of other types of fields might be in

order, but it escapes the purpose of the present paper where
only the homogeneous dynamics of the fields was
considered.
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APPENDIX: SYMMETRY FOR
PARTICULAR LAGRANGIANS

The critical points (b) and (d) from Table I exist only for
canonical scalar fields with exponential potential or for
scalar fields whose Lagrangians are of the form

L ¼ AX� � Bð���0Þn (A1)

with

� ¼ n

2þ n
: (A2)

In these cases the system presents a symmetry that allows
the number of degrees of freedom to be reduced to two, and
the dynamical system to be described only by x and y.
For the canonical scalar field with exponential potential,
this symmetry was described in [41].
The equations of motion (2)–(4) plus the continuity

equation for the barotropic component can be written for
a Lagrangian of the form (A1) as

H2 ¼ 1

3M2
Pl

½ð2�� 1ÞAX� þ B�n þ �m�; (A3)

H
dH

dN
¼ � 1

2M2
Pl

½2�AX� þ ð1þ!mÞ�m�; (A4)

d�m

dN
¼ �3ð1þ!mÞ�m; (A5)

d

dN
ðð2�� 1ÞAX� þ B�nÞ ¼ �6�AX�; (A6)

where, for simplicity, we considered �0 ¼ 0. Here
�, X, and �m are the independent variables and the
transformation

� ! �2��; X ! �2nX; �m ! �2n��m (A7)

will leave invariant the equations of motion as long as the
Hubble parameter also transforms as H ! �n�H, but its
transformation is already determined by the relation

X ¼ 1

2

�
H
d�

dN

�
2
; (A8)
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which implies that H transforms as �n�2�H. In order to
have the correct transformation relation for the Hubble
parameter then it is needed that n� ¼ n� 2� which is
equivalent to the relation (A2), only in that case the trans-
formation (A7) will represent a symmetry of the system
leaving invariant the equations of motion.

The presence of the symmetry transformation (A7)
when (A2) holds means that the number of degrees of
freedom in the equations of motion can be reduced by
one. For this, a set of variables invariant under the trans-
formation needs to be defined, in this case x and y are
already invariant. Any dynamical variable can be written in
terms of those two variables, for example, � satisfies the
relation

� ¼ s

�
x

y

�
2=n

; (A9)

where s is a constant defined by the parameters in the
Lagrangian as

s 	 �
ffiffiffi
2

3

s
MPlnB

1=nðAð2�� 1ÞÞ�1=2�: (A10)

From this relation, the dynamical system can be rewrit-
ten as

dx

dN
¼ 3

2

�
sxy

�
y

x

�
2=ð!kþ1Þ � xð!k þ 1Þ

�

þ 3

2
x½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�; (A11)

dy

dN
¼ � 3

2
sx2

�
y

x

�
2=ð!kþ1Þ

þ 3

2
y½ð1þ!mÞð1� y2Þ þ x2ð!k �!mÞ�; (A12)

corresponding to only two equations for two variables.
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