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Abstract

We have analysed the well-known BAN modified Andrew Secur€ RBthentication protocol
by means of the AVISPA Web tool considering all the availdidek-ends and with the basic con-
figurations of sessions. The protocol has been found vubteeta a replay/mutation attack based on
homomorphism by one of the back-ends. In order to fix it, wedrdted into the protocol a common
solution, including a new addition to the original protoewmid the solution proposed by Liu, Ma
and Yang, who earlier found a man-in-the-middle attack bamseof a different model checker in-
stantiated with different session compositions. When wtetkthis solution in AVISPA, under both
conditions, we discovered that AVISPA considers it safeilevihcan be demonstrated that it suffers
from the same mutation attack as in the original protocol.

1 Introduction

Protocol verification using formal methods tools is a ricbeaof research [1) 2] 8| 4,[5,[7,/8/) 10] 14, 15]
that has contributed a great deal to the understanding amrdogenent of security and safety properties
and solutions in critical computing systems in recent ye@hss paper presents the results of the appli-
cation of a well-known formal analysis tool, namely AVISPAutomated Validation of Internet Security
Protocols and Applications) to a famous authenticatioriqual, namely BAN-modified Andrew RPC.
Although seemingly straightforward, the analysis sheds light into the security of the protocol and
the behaviour of the tool. Infamously, Gavin Lowe found ata@k [10] on the Needham-Schroeder
protocol 18 years after the protocol was originally puldidtin [13]. This goes to show how notoriously
error-prone security protocols are and that it is nevert@atevisit any such protocol.

The AVISPA todﬂ has been developed to enable the automatic validation afiseprotocols. The
tool is available both as a downloadable standalone padkageing on UNIX platforms) and as a web
application and, for the purpose of our experiments, we eyag the latter. This choice does not affect
the correctness of the results eventually obtained bedsthehe offered solutions use the same formal
language (HLPSL) to specify the protocol and the same logiogerify it. More precisely, through
HLPSL each agent is modelled as a finite state machine capabdnding and receiving messages over
an (unsafe) channel, triggering in this way state transitid\ll the reachable combinations of states have
to be explored in order to establish if the protocol is safaair[11] and AVISPA performs this search
adopting four different approaches correspondent to thelfack-ends: OFMC, CI-AtSe, SATMC and
TAA4SP [17]. We shall not delve in this paper into the theaedtivorkings behind these backends and
focus on an applied approach to the AVISPA toolkit.

Lwww.avispa-project.org
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The present paper is structured as follows: after a reviethefelated work in Sectidd 2, we will
focus on the BAN modified Andrew Secure RPC protocol anatysia steps and its authentication
properties in Section] 3. Then in Sectlonl3.1, we discusstthekawe found against it and the fixing we
devised, showing that the AVISPA tool considers it safe. segnently in Section_3.2, we will discuss
the reason why this result is not correct and, finally, we anlflyse the authentication properties of the
BAN modified Andrew Secure protocol in Sectioh 4 in light oistiattack, and conclude the paper with
discussion of future worlk|5.

2 Related Work

The area of protocol security analysis is rich in its litarat therefore we only discuss here the most rel-
evant literature. The Andrew Secure RPC protocol, as showdgure 1, was implemented around 1986
at Carnegie Mellon University with the partnership of IBM et of the Andrew distributed systm
whose aim was to provide the students with a file sharing enmient across the University.
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Figure 1: The Andrew RPC Protocol

In particular, the protocol was intended to ensure mututilentication and secret exchange of fresh
keys to securely execute remote procedure calls betweemt ¢tialled Virtue) and server (called Vice)
components of the system. The author, Mahadev Satyananaytren described it in [16], after it was
already amended by Burrows, Abadi and Needham (BAN)lin [@Fder to protect it from replay attacks
by bounding the fourth message to the session in which thegobinitiator (Virtue) acts by means of
the nonce it produced at the beginning, as shown in Figure 2.
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Figure 2: The BAN-modified Andrew RPC Protocol

The handshake described in the BAN modified Andrew Secutegobis made of four steps. First,
A, playing as initiator, starts the sequence providing Bingcas responder, with its identity and the
nonceN, (on which it will be performing the responder’s authentiga} encrypted with the previously

2http://www.cmu.edu/corporate/news/2007/featuresiamtindex.shtml
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shared keKap:

Then, B responds with a fully encrypted message contaitiagticcessor dfi; and another noncéyp,
on which it will be performing A's authentication.

B— A: {Na+1, Ny Kap

When A receives it, it compardd, andN; + 1 and, if coherent, authenticates B because it is the only
agent that could have decrypted the second part of the fitage and gained the knowledgdgf With

the third message, A simply replies to B with the nonce itirezkin the previous message increased by
1 so that B, on the other side, can authenticate A compa&irendN, + 1.

A—B: {Nb—l— l}Kab

Finally, B sends to A the new shared kisyl,, a new nonceN1, (for further communications) and,
(that represents BAN addition to the original Andrew Sed®IRLC).

B — A: {K1a, N1y, Na}Kap

The goals of this protocol are to guarantee a mutual auttaith between A and B. Based on this and
on cryptography, this further guarantees a secret exchaii€g, andN;,. More formally, the goals are:

e (G.1) Secrecy oKjap
e (G.2) Secrecy oNyp
e (G.3) Authentication of B by A 0N,
e (G.4) Authentication of A by B oM,

The level of authentication the protocol can guaranteedstiessage agreement when A authenticates
B, and the weak agreement when B authenticates A, as it camovedoby positioning Commit and
Running events [1%, 12] along the protocol run, as shownguie[3.
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Figure 3: Commit and Running events in the BAN-modified AmdRPC Protocol

In fact, in the first case, when A commits:
¢ Bisalive because it has sent the last message (otherwise A would vetbenmitted)

e both A and B have already compared their respective noncéiseipreceding two steps, thus
achieving some level of certainty on the other party’s iteritveak agreemeit

¢ both A and B know the content of the fourth messagegsage agreement

3
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On the other hand, when B commits;
o Ais alive becaus&apyg cannot be reached without passing throiRybys

e both B and A knows about each other thanks to the nonces c@uopareachingveak agreement

e B holds more pieces of information than A, so the protocohciguaranteenessage agreement

In [9], Liu, Ma and Yang (LMY) found a man-in-the-middle attato the version amended by BAN
initializing their SAT-based tool with two sessions in whi& and B exchange their roles: in the first A
acts as initiator and B as responder, while in the second Beacinitiator and A as responder, as shown

in Figurel4.
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Figure 4: Man in the middle attack with A and B exchangingthheles

In this situation, the intruder is able to hide B'’s identitibstituting B to A in Message 2.1 (this piece
of information is in clear), i.e. the first of session numbgs@that both the instances of A (Al and A2)
think of being talking with an instance of B (respectively Bdd B2). As a consequence, at the end,
A thinks of having authenticated B in both the sessions whretruth, it authenticated itself two times.
Moreover, A agrees in both the sessions on the same sessidiidsg) that was created by itself and not
by B. It is similar to the situation where the intruder builds own session with A1 and A2, without any
of them being aware of that.

The basic reason behind this attack is that the initiatolenegceives a direct indication on the
responder’s identity. Therefore, LMY suggested addingré&sponder’s identity to the second message
of the protocol, as shown in Figuré 5 below.
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Figure 5: Amended version proposed by Liu, Ma and Yang

This way, Message 2.2 would have looked like:
Thus, A in session 1 would have known that it was actuallyinalkvith itself, rather than with B.
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3 The BAN modified Andrew Secure RPC protocol in AVISPA

A full HLPSL protocol specification was developed (see Agpir@). In this section, we will focus on
the main modelling issue faced: only one of the AVISPA baclse(OFMC) natively supports replay
attacks detection. To overcome this shortcoming and fatigwhat the AVISPA Team suggest [18], we
modelled two identical parallel sessions A-B, in additiorttte ones in which the intruder is specifically
involved and “authorized” to deal with the honest agentie(lén this paper we will refer to it as the
“basic configuration of sessions” or “configuration 1"):

session(a,b,kab,succ) A session(a,b,kab,succ)A
session(a,i,kai,succ)Asession(i,b,kib,succ)

wheresucc represents the function used to comphtet+ 1 andN, + 1, andkab, kai andkib represent
the pre-shared keys that the agents (intruder included) knosv before starting the handshake described
in the protocol. However, this is not sufficient and, as agaiggested by the AVISPA team [2], we need
to add a further goal: the strong authenticatiorkdp, of one agent by the other (who authenticates who
is not important). This way, the key is created in the curssssion and cannot be replayed from another
session without failing to achieve the goal. As a conseqeietie protocol goals specified in AVISPA
are the followings:

e (G.1) Secrecy oK1y,

e (G.2) Secrecy oN1,

e (G.3) Authentication of B by A oM,

e (G.4) Authentication of A by B ofN,

¢ (G.5) Authentication of B by A oK 15

For the rest, the protocol has been translated in HLPSLWitig the original specification literally.

3.1 A New Attack

We submitted our HLPSL protocol specification to all the fback-ends available in AVISPA and one
of them (CL-AtSe) found it unsafe. The result of the perfodnbest is summarized in Talle 1.

Table 1: BAN modified Andrew Secure RPC attack summary
Gl G2 G3 G4 G5
Summary SAFE SAFE SAFE SAFE UNSAFE

Analysed - - - - 422 States
Reachable - - - - 119 States
Translation - - - - 0.02 Seconds
Computation - - - - 0.00 Seconds

Note that, for the purpose of this paper, we are not intedlestediscussing how many states the
model checker has checked and how long did it take to competsdarch of a state that corresponds
to an attack, but these data were reported for completeMéssoncentrate, instead, on the fact that the
protocol failed to meet Goal G.5, the one added in order teadeeplay attack. The full attack trace is
shown in the Appendik]E, where the notatidpor By indicates agents A and B respectively in session
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andy. It describes a replay/mutation attack based on homonsnphi which the intruder stays between
the two A-B sessions we set up and plays a passive role forsalatidhe two protocol runs: it basically

intercepts all the messages and forwards them to the righiver without applying any changes. In
particular, it intercepts and remembers messages 1.4 4nd 2.

(1.4) Bl — Al . {KlabL Nlbl, Nal}Kab
(2.4) BZ — A2 . {Klab27 Nlbz, NaZ}Kab

Note that both 1.4 and 2.4 are encrypted Witl. Finally, the intruder takes an action: combining 1.4
and 2.4, it creates a new message (2.4(1)) and sendajtitoplace of message 2.4. More precisely, the
new message contains the key and the nonce created forrfadghenunications in session 1, i.e. the
onesB; created forA;, and the nonce created at the beginningdbyor B;:

(2.4(1)1 — Az 1 {K2ap1,N1p1, Na2 } Kap

WhenA; receives it, if the protocol implementation does not foessa mechanism to check if keys and
nonces where previously uset will accept the message, authenticBteon N, and, finally, it will be
induced to us& 15y andN1y; with B, that, however, will be using 15, andN1p;.

This attack is possible under the assumption that the syistémplemented using a homomorphic
encryption scheme with respect to concatenation. ECB {iBleic Code Book) is an example of this
kind of encryption and works if the keys’ and nonces’ lengttaimultiple of a fixed length block (e.g.
64 bit). With ECB, both the messages can be seen as the jsidiapoof the encryption (made through
Kap) of their components:

(1.4) {KZap, N1y, Nat }Kap = {K1ap }Kab, {N1b1 }Kap, {Na1 }Kab
(2.4) {KZap,N1p2, Nao}Kap = {KLan }Kab, {N1p2 }Kab, {Na2 } Kap

Once the intruder has decomposed the messages, it can ecompesy message choosing the first two
(encrypted) components of 1.4 and the last from 2.4 and ¢enate them. This, for the properties of
homomorphism, is equivalent to message 2.4(1).

(2.4(1)) {K21ap }Kab, {N1p1 } Kan, {Naz2 } Kap = {K1ap1, N1p1, Na2 } Kap

3.2 A False Positive

To fix the protocol and protect it from the attack describedvah we thought at first that an effective
solution would be to addll, to the fourth message, as shown in Figure 6. The idea behimdpproach

A B

AINIK,,

INHTNJK,,
N+ 1K,
(K1 N NN

a0

Figure 6: Amendment Version 0

was thaitN; andNy, form a sort of session identifier that can be recognized byditlaen used to “validate”
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the session itself. We will refer to this version as “vers@rof our amendment. We added this piece
of information into the HLPSL specification (for the case wbtparallel A-B sessions, see Appendix
B) and, when tested in AVISPA with the basic configuration @sson defined early in this paper, it
returned a completely safe result. When, instead, we testedersion O in the starting condition used
by LMY in their experiments (configuration 2: A-B, B-A, A-Intder, Intruder-B), AVISPA found it was
vulnerable to the same attack LMY found on the original pcotqsee Figurél4): A fails to authenticate
B onN; as in fact it authenticates itself to itself in the sessiowimch it plays as responder.

Therefore, we decided to integrate the fixing proposed by LiM%ur version 1 amendment: in the
second message of the protocol, B has to communicate ittitiders shown in Figurgl7. At this point,

A B

A‘ { NQ}K:'-!H

{Na+1'Nt.B}K:m
IN,+1K,,
(KT NT N N JK

40

Figure 7: Amendment Version 1

when tested in both configurations 1 and 2 (i.e. for the case@parallel A-B sessions (AppendiX C)
and the case of A-B/B-A sessions (Appendix D) with only antleation of B by A), the protocol was
found to be robust. A summary of the tests and their resuttslaown in Tablgl2.

Table 2: Test results summary
Amendment Session

version configuration OFMC CL-AtSe SATMC TA4SP
0 1 SAFE SAFE SAFE SAFE

0 2 UNSAFE (G.3) UNSAFE (G.3) UNSAFE (G.3) SAFE
1 1 SAFE SAFE SAFE SAFE

1 2 SAFE SAFE SAFE SAFE

4 Discussion

Despite the apparently incontrovertible result given byy@WA, it can be demonstrated that the homo-
morphic attack is still possible. In fact, addig to the fourth message (and B to the second) still allows
the intruder to use homomorphism to decompose messaged 214n

(1.4) {K2ap1,N21p1,Naz, Np1 }Kap =
{K a1 }Kab, {N1p1 } Kab, {Na1 } Kab, { No1 } Kab
(2.4) {K1ape,N1p2, Nag, Np2 }Kap =
{K1ap2 }Kab, {N1p2 } Kap, {Naz } Kab, { N2} Kab

Then, as before, it can compose a new message choosing tingpten) new key and nonce from session
1 and the (encrypted) nonces exchanged during sessiors2fahithe properties of homomorphism, is

7
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equivalent to creating an encrypted message starting fnerndnsidered components in clear:

(2.4(1)) {K21ap }Kab, {N1p1 }Kab, {Na2 } Kap, {No2 } Kap =
{K2ap1,N1p1, Nag, Np2 } Kap

In light of this attack, the protocol can only guarantee tleakagreement to the participating agents. It
loses the message agreement property while A authentiBabesause the attack demonstrates that A
and B do not always agree on the data they respectively hblid.cCEn also be seen through the Commit
and Running events, as shown in Figure 8, an extract of thekattace.

A, B
AN K,
= =
] {N+1,N K,
2.2 =< = B
R,aABN_N )¢ {N,+11K,,
el =15 3 < =
A (K1, N1 NIK - {K1_ o N1, NIK O R i (BAN N KT, NT)
24 |< S <
CoABN, N K N1 Cus(BAN, N, K1, N1,)

Figure 8: Commit and Running events when the attack occurs

When A authenticates B (yellow dots), the protocol guamsitérst of all, the aliveness of B because
there is no way to arrive tGgpya Without passing througRapya secondly, it guarantees weak agreement
because A and B have already mutually authenticated in mes2a2 and 2.3; finally, it cannot guarantee
the message agreement because of the attack we descrikad $bd other authentication direction is
not affected by the attack and, thus, preserves its wealeagnet as previously shown.

5 Conclusion and Future Work

We have analysed the BAN modified Andrew Secure RPC autlaioticprotocol by means of AVISPA
with two identical parallel sessions (A-B,A-B) and the mal has been found vulnerable to a replay/-
mutation attack based on homomorphism. The fixing devisathdr integrated with the enhancement
proposed by LMY, seemed to be effective because AVISPA densd it safe, but we finally demonstrate
that, in theory, the attack is still possible. This leadsathtee main conclusions.

First, adopting homomorphic encryption schemes, esggdfalith respect to concatenation (like
ECB), is not compatible with implementing the BAN-modifiechdrew Secure RPC protocol to estab-
lish authentication and secure fresh key exchange in arsydtore generally, any protocol should be
checked against the effects of homomorphic cryptograpkgofd, AVISPA is an easy-to-use tool as it
permits newbies to quickly analyse security protocols andkven their reasoning, however false posi-
tives are possible as with any automated tool. Thereforepestocol modifications need to be carefully
and critically analysed to ensure they do not introducesfalssitives or false negatives. Finally, gener-
ally speaking, it is always a good practice to test protogoisiore than one initial set-up condition in
order to consider the various possible permutations of thpol instances.

For future work, we plan to suggest a new version of the paitand to apply the AVISPA tool to

other, well-known protocols. We also plan to study the falgsitive and false negative ratios of the tool,
in order to provide better idea of its accuracy.
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A BAN-modified Andrew Secure RPC protocol HLPSL specificatian (two
parallel A-B sessions)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by A def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)
2. State = 2 /\ RCV({Succ(Na).Nb’}_Kab) =|>
State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)
3. State = 4 /\ RCV({Klab’.Nib’.Na}_Kab) =|>
State’ := 6 /\ request(A,B,alice_bob_na,Na) /\
request (A,B,alice_bob_klab,Klab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by B def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’}_Kab)
2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ Klab’ := new() /\ Nib’ := new() /\

SND({Klab’.N1b’.Na}_Kab) /\

secret(Klab’,klab,{A,B}) /\ secret(Nib’,nib,{A,B}) /\
request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\
witness(B,A,alice_bob_klab,Klab’)

end role

role session (A,B: agent,Kab: symmetric_key,Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)
end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,klab,nlb: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition
session(a,b,kab,succ) /\ session(a,b,kab,succ) /\
session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of klab, nlb

authentication_on alice_bob_na, bob_alice_nb, alice_bob_klab
end goal

environment ()

10
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B First amended version of BAN-modified Andrew Secure RPC préocol
HLPSL specification (version 0, two parallel A-B sessions)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by A def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)
2. State = 2 /\ RCV({Succ(Na).Nb’}_Kab) =|>
State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)
3. State = 4 /\ RCV({Klab’.N1b’.Na.Nb}_Kab) =|>
State’ := 6 /\ request(A,B,alice_bob_na,Na) /\
request(A,B,alice_bob_klab,Klab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by B def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’}_Kab)
2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ Klab’ := new() /\ Nib’ := new() /\

SND({K1lab’.N1b’.Na.Nb}_Kab) /\

secret(Klab’,klab,{A,B}) /\ secret(Nib’,nib,{A,B}) /\
request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\
witness(B,A,alice_bob_klab,Klab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)
end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,klab,nlb: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition
session(a,b,kab,succ) /\ session(a,b,kab,succ) /\
session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of klab, nlb

authentication_on alice_bob_na, bob_alice_nb, alice_bob_klab
end goal

environment ()

11
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C Second amended version of BAN-modified Andrew Secure RPC pto-
col HLPSL specification (version 1, two parallel A-B sessics)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by A def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)
2. State = 2 /\ RCV({Succ(Na).Nb’.B}_Kab) =|>
State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)
3. State = 4 /\ RCV({Klab’.Nib’.Na.Nb}_Kab) =[>
State’ := 6 /\ request(A,B,alice_bob_na,Na) /\
request(A,B,alice_bob_klab,Klab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by B def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’.B}_Kab)
2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ Klab’ := new() /\ Nib’ := new() /\

SND({K1lab’.N1b’.Na.Nb}_Kab) /\

secret(Klab’,klab,{A,B}) /\ secret(Nib’,nib,{A,B}) /\
request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\
witness(B,A,alice_bob_klab,Kiab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)
end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,klab,nlb: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition
session(a,b,kab,succ) /\ session(a,b,kab,succ) /\
session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of klab, nlb

authentication_on alice_bob_na, bob_alice_nb, alice_bob_klab
end goal

environment ()
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D Second amended version of BAN-modified Andrew Secure RPC pto-
col HLPSL specification (version 1, A-B/B-A sessions and oplauthen-
tication of B by A (as per LMY)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func) played_by A def=
local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)
2. State = 2 /\ RCV({Succ(Na).Nb’.B}_Kab) =|>
State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)
3. State = 4 /\ RCV({Klab’.N1b’.Na.Nb}_Kab) =|>
State’ := 6 /\ request(A,B,alice_bob_na,Na) /\
request(A,B,alice_bob_klab,Klab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func
) played_by B def=

local

Na,Nb,N1b: text,

Klab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’.B}_Kab)
2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ Klab’ := new() /\ Nib’ := new() /\

SND({K1ab’.N1b’.Na.Nb}_Kab) /\

secret(Klab’,klab,{A,B}) /\ secret(Nib’,nib,{A,B}) /\
request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\
witness(B,A,alice_bob_klab,Klab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)
end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,klab,nlb: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition
session(a,b,kab,succ) /\ session(b,a,kab,succ) /\ session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of klab, nlb

authentication_on alice_bob_na, alice_bob_klab
end goal

environment ()
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E Attack trace found through the AVISPA Web tool to the BAN-modified
Andrew Secure RPC protocol modelling the following sessian A-B,
A-B, A-l, I-B
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