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Abstract

We have analysed the well-known BAN modified Andrew Secure RPC authentication protocol
by means of the AVISPA Web tool considering all the availableback-ends and with the basic con-
figurations of sessions. The protocol has been found vulnerable to a replay/mutation attack based on
homomorphism by one of the back-ends. In order to fix it, we integrated into the protocol a common
solution, including a new addition to the original protocoland the solution proposed by Liu, Ma
and Yang, who earlier found a man-in-the-middle attack by means of a different model checker in-
stantiated with different session compositions. When we tested this solution in AVISPA, under both
conditions, we discovered that AVISPA considers it safe, while it can be demonstrated that it suffers
from the same mutation attack as in the original protocol.

1 Introduction

Protocol verification using formal methods tools is a rich area of research [1, 2, 3, 4, 5, 7, 8, 10, 14, 15]
that has contributed a great deal to the understanding and development of security and safety properties
and solutions in critical computing systems in recent years. This paper presents the results of the appli-
cation of a well-known formal analysis tool, namely AVISPA (Automated Validation of Internet Security
Protocols and Applications) to a famous authentication protocol, namely BAN-modified Andrew RPC.
Although seemingly straightforward, the analysis sheds new light into the security of the protocol and
the behaviour of the tool. Infamously, Gavin Lowe found an attack [10] on the Needham-Schroeder
protocol 18 years after the protocol was originally published in [13]. This goes to show how notoriously
error-prone security protocols are and that it is never lateto revisit any such protocol.

The AVISPA tool1 has been developed to enable the automatic validation of security protocols. The
tool is available both as a downloadable standalone package(running on UNIX platforms) and as a web
application and, for the purpose of our experiments, we employed the latter. This choice does not affect
the correctness of the results eventually obtained becauseboth the offered solutions use the same formal
language (HLPSL) to specify the protocol and the same logicsto verify it. More precisely, through
HLPSL each agent is modelled as a finite state machine capableof sending and receiving messages over
an (unsafe) channel, triggering in this way state transitions. All the reachable combinations of states have
to be explored in order to establish if the protocol is safe ornot [11] and AVISPA performs this search
adopting four different approaches correspondent to the four back-ends: OFMC, Cl-AtSe, SATMC and
TA4SP [17]. We shall not delve in this paper into the theoretical workings behind these backends and
focus on an applied approach to the AVISPA toolkit.

1www.avispa-project.org
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The present paper is structured as follows: after a review ofthe related work in Section 2, we will
focus on the BAN modified Andrew Secure RPC protocol analysing its steps and its authentication
properties in Section 3. Then in Section 3.1, we discuss the attack we found against it and the fixing we
devised, showing that the AVISPA tool considers it safe. Subsequently in Section 3.2, we will discuss
the reason why this result is not correct and, finally, we willanalyse the authentication properties of the
BAN modified Andrew Secure protocol in Section 4 in light of this attack, and conclude the paper with
discussion of future work 5.

2 Related Work

The area of protocol security analysis is rich in its literature, therefore we only discuss here the most rel-
evant literature. The Andrew Secure RPC protocol, as shown in Figure 1, was implemented around 1986
at Carnegie Mellon University with the partnership of IBM aspart of the Andrew distributed system2

whose aim was to provide the students with a file sharing environment across the University.

Figure 1: The Andrew RPC Protocol

In particular, the protocol was intended to ensure mutual authentication and secret exchange of fresh
keys to securely execute remote procedure calls between client (called Virtue) and server (called Vice)
components of the system. The author, Mahadev Satyanarayanan, then described it in [16], after it was
already amended by Burrows, Abadi and Needham (BAN) in [6] inorder to protect it from replay attacks
by bounding the fourth message to the session in which the protocol initiator (Virtue) acts by means of
the nonce it produced at the beginning, as shown in Figure 2.

Figure 2: The BAN-modified Andrew RPC Protocol

The handshake described in the BAN modified Andrew Secure protocol is made of four steps. First,
A, playing as initiator, starts the sequence providing B, acting as responder, with its identity and the
nonceNa (on which it will be performing the responder’s authentication) encrypted with the previously

2http://www.cmu.edu/corporate/news/2007/features/andrew/index.shtml
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shared keyKab:
A→ B : A,{Na}Kab

Then, B responds with a fully encrypted message containing the successor ofNa and another nonce,Nb,
on which it will be performing A’s authentication.

B→ A : {Na+1,Nb}Kab

When A receives it, it comparesNa andNa+ 1 and, if coherent, authenticates B because it is the only
agent that could have decrypted the second part of the first message and gained the knowledge ofNa. With
the third message, A simply replies to B with the nonce it received in the previous message increased by
1 so that B, on the other side, can authenticate A comparingNb andNb+1.

A→ B : {Nb+1}Kab

Finally, B sends to A the new shared keyK1ab, a new nonceN1b (for further communications) andNa

(that represents BAN addition to the original Andrew SecureRPC).

B→ A : {K1ab,N1b,Na}Kab

The goals of this protocol are to guarantee a mutual authentication between A and B. Based on this and
on cryptography, this further guarantees a secret exchangeof K1ab andN1b. More formally, the goals are:

• (G.1) Secrecy ofK1ab

• (G.2) Secrecy ofN1b

• (G.3) Authentication of B by A onNa

• (G.4) Authentication of A by B onNb

The level of authentication the protocol can guarantee is the message agreement when A authenticates
B, and the weak agreement when B authenticates A, as it can be proved by positioning Commit and
Running events [15, 12] along the protocol run, as shown in Figure 3.

Figure 3: Commit and Running events in the BAN-modified Andrew RPC Protocol

In fact, in the first case, when A commits:

• B is alive because it has sent the last message (otherwise A would not have committed)

• both A and B have already compared their respective nonces inthe preceding two steps, thus
achieving some level of certainty on the other party’s identity (weak agreement)

• both A and B know the content of the fourth message (message agreement)
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On the other hand, when B commits:

• A is alive becauseCAbyB cannot be reached without passing throughRAbyB

• both B and A knows about each other thanks to the nonces comparison, reachingweak agreement

• B holds more pieces of information than A, so the protocol cannot guaranteemessage agreement

In [9], Liu, Ma and Yang (LMY) found a man-in-the-middle attack to the version amended by BAN
initializing their SAT-based tool with two sessions in which A and B exchange their roles: in the first A
acts as initiator and B as responder, while in the second B acts as initiator and A as responder, as shown
in Figure 4.

Figure 4: Man in the middle attack with A and B exchanging their roles

In this situation, the intruder is able to hide B’s identity substituting B to A in Message 2.1 (this piece
of information is in clear), i.e. the first of session number 2, so that both the instances of A (A1 and A2)
think of being talking with an instance of B (respectively B1and B2). As a consequence, at the end,
A thinks of having authenticated B in both the sessions when,in truth, it authenticated itself two times.
Moreover, A agrees in both the sessions on the same session key (Kab2) that was created by itself and not
by B. It is similar to the situation where the intruder buildshis own session with A1 and A2, without any
of them being aware of that.

The basic reason behind this attack is that the initiator never receives a direct indication on the
responder’s identity. Therefore, LMY suggested adding theresponder’s identity to the second message
of the protocol, as shown in Figure 5 below.

Figure 5: Amended version proposed by Liu, Ma and Yang

This way, Message 2.2 would have looked like:

{Na1+1,Na2,A}Kab (1)

Thus, A in session 1 would have known that it was actually talking with itself, rather than with B.
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3 The BAN modified Andrew Secure RPC protocol in AVISPA

A full HLPSL protocol specification was developed (see Appendix A). In this section, we will focus on
the main modelling issue faced: only one of the AVISPA back-ends (OFMC) natively supports replay
attacks detection. To overcome this shortcoming and following what the AVISPA Team suggest [18], we
modelled two identical parallel sessions A-B, in addition to the ones in which the intruder is specifically
involved and “authorized” to deal with the honest agents (later in this paper we will refer to it as the
“basic configuration of sessions” or “configuration 1”):

session(a,b,kab,succ)∧ session(a,b,kab,succ)∧
session(a,i,kai,succ)∧ session(i,b,kib,succ)

wheresucc represents the function used to computeNa+1 andNb+1, andkab, kai andkib represent
the pre-shared keys that the agents (intruder included) must know before starting the handshake described
in the protocol. However, this is not sufficient and, as againsuggested by the AVISPA team [2], we need
to add a further goal: the strong authentication onK1ab of one agent by the other (who authenticates who
is not important). This way, the key is created in the currentsession and cannot be replayed from another
session without failing to achieve the goal. As a consequence, the protocol goals specified in AVISPA
are the followings:

• (G.1) Secrecy ofK1ab

• (G.2) Secrecy ofN1b

• (G.3) Authentication of B by A onNa

• (G.4) Authentication of A by B onNb

• (G.5) Authentication of B by A onK1ab

For the rest, the protocol has been translated in HLPSL following the original specification literally.

3.1 A New Attack

We submitted our HLPSL protocol specification to all the fourback-ends available in AVISPA and one
of them (CL-AtSe) found it unsafe. The result of the performed test is summarized in Table 1.

Table 1: BAN modified Andrew Secure RPC attack summary
G1 G2 G3 G4 G5

Summary SAFE SAFE SAFE SAFE UNSAFE
Analysed - - - - 422 States
Reachable - - - - 119 States
Translation - - - - 0.02 Seconds
Computation - - - - 0.00 Seconds

Note that, for the purpose of this paper, we are not interested in discussing how many states the
model checker has checked and how long did it take to compute the search of a state that corresponds
to an attack, but these data were reported for completeness.We concentrate, instead, on the fact that the
protocol failed to meet Goal G.5, the one added in order to detect replay attack. The full attack trace is
shown in the Appendix E, where the notationAx or By indicates agents A and B respectively in sessionx
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andy. It describes a replay/mutation attack based on homomorphism in which the intruder stays between
the two A-B sessions we set up and plays a passive role for almost all the two protocol runs: it basically
intercepts all the messages and forwards them to the right receiver without applying any changes. In
particular, it intercepts and remembers messages 1.4 and 2.4:

(1.4) B1 → A1 : {K1ab1,N1b1,Na1}Kab

(2.4) B2 → A2 : {K1ab2,N1b2,Na2}Kab

Note that both 1.4 and 2.4 are encrypted withKab. Finally, the intruder takes an action: combining 1.4
and 2.4, it creates a new message (2.4(I)) and sends it toA2 in place of message 2.4. More precisely, the
new message contains the key and the nonce created for further communications in session 1, i.e. the
onesB1 created forA1, and the nonce created at the beginning byA2 for B2:

(2.4(I))I → A2 : {K1ab1,N1b1,Na2}Kab

WhenA2 receives it, if the protocol implementation does not foreseen a mechanism to check if keys and
nonces where previously used,A2 will accept the message, authenticateB2 on Na2 and, finally, it will be
induced to useK1ab1 andN1b1 with B2 that, however, will be usingK1ab2 andN1b2.

This attack is possible under the assumption that the systemis implemented using a homomorphic
encryption scheme with respect to concatenation. ECB (Electronic Code Book) is an example of this
kind of encryption and works if the keys’ and nonces’ length is a multiple of a fixed length block (e.g.
64 bit). With ECB, both the messages can be seen as the juxtaposition of the encryption (made through
Kab) of their components:

(1.4) {K1ab1,N1b1,Na1}Kab = {K1ab1}Kab,{N1b1}Kab,{Na1}Kab

(2.4) {K1ab2,N1b2,Na2}Kab = {K1ab2}Kab,{N1b2}Kab,{Na2}Kab

Once the intruder has decomposed the messages, it can compose a new message choosing the first two
(encrypted) components of 1.4 and the last from 2.4 and concatenate them. This, for the properties of
homomorphism, is equivalent to message 2.4(I).

(2.4(I)) {K1ab1}Kab,{N1b1}Kab,{Na2}Kab = {K1ab1,N1b1,Na2}Kab

3.2 A False Positive

To fix the protocol and protect it from the attack described above, we thought at first that an effective
solution would be to addNb to the fourth message, as shown in Figure 6. The idea behind this approach

Figure 6: Amendment Version 0

was thatNa andNb form a sort of session identifier that can be recognized by A and then used to “validate”
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the session itself. We will refer to this version as “version0” of our amendment. We added this piece
of information into the HLPSL specification (for the case of two parallel A-B sessions, see Appendix
B) and, when tested in AVISPA with the basic configuration of session defined early in this paper, it
returned a completely safe result. When, instead, we testedour version 0 in the starting condition used
by LMY in their experiments (configuration 2: A-B, B-A, A-Intruder, Intruder-B), AVISPA found it was
vulnerable to the same attack LMY found on the original protocol (see Figure 4): A fails to authenticate
B on Na as in fact it authenticates itself to itself in the session inwhich it plays as responder.

Therefore, we decided to integrate the fixing proposed by LMYin our version 1 amendment: in the
second message of the protocol, B has to communicate its identity, as shown in Figure 7. At this point,

Figure 7: Amendment Version 1

when tested in both configurations 1 and 2 (i.e. for the case oftwo parallel A-B sessions (Appendix C)
and the case of A-B/B-A sessions (Appendix D) with only authentication of B by A), the protocol was
found to be robust. A summary of the tests and their results are shown in Table 2.

Table 2: Test results summary
Amendment Session
version configuration OFMC CL-AtSe SATMC TA4SP
0 1 SAFE SAFE SAFE SAFE
0 2 UNSAFE (G.3) UNSAFE (G.3) UNSAFE (G.3) SAFE
1 1 SAFE SAFE SAFE SAFE
1 2 SAFE SAFE SAFE SAFE

4 Discussion

Despite the apparently incontrovertible result given by AVISPA, it can be demonstrated that the homo-
morphic attack is still possible. In fact, addingNb to the fourth message (and B to the second) still allows
the intruder to use homomorphism to decompose message 1.4 and 2.4:

(1.4) {K1ab1,N1b1,Na1,Nb1}Kab =

{K1ab1}Kab,{N1b1}Kab,{Na1}Kab,{Nb1}Kab

(2.4) {K1ab2,N1b2,Na2,Nb2}Kab =

{K1ab2}Kab,{N1b2}Kab,{Na2}Kab,{Nb2}Kab

Then, as before, it can compose a new message choosing the (encrypted) new key and nonce from session
1 and the (encrypted) nonces exchanged during session 2; this, for the properties of homomorphism, is

7
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equivalent to creating an encrypted message starting from the considered components in clear:

(2.4(I)) {K1ab1}Kab,{N1b1}Kab,{Na2}Kab,{Nb2}Kab =

{K1ab1,N1b1,Na2,Nb2}Kab

In light of this attack, the protocol can only guarantee the weak agreement to the participating agents. It
loses the message agreement property while A authenticatesB because the attack demonstrates that A
and B do not always agree on the data they respectively hold. This can also be seen through the Commit
and Running events, as shown in Figure 8, an extract of the attack trace.

Figure 8: Commit and Running events when the attack occurs

When A authenticates B (yellow dots), the protocol guarantees, first of all, the aliveness of B because
there is no way to arrive toCBbyAwithout passing throughRBbyA; secondly, it guarantees weak agreement
because A and B have already mutually authenticated in messages 2.2 and 2.3; finally, it cannot guarantee
the message agreement because of the attack we described so far. The other authentication direction is
not affected by the attack and, thus, preserves its weak agreement as previously shown.

5 Conclusion and Future Work

We have analysed the BAN modified Andrew Secure RPC authentication protocol by means of AVISPA
with two identical parallel sessions (A-B,A-B) and the protocol has been found vulnerable to a replay/-
mutation attack based on homomorphism. The fixing devised, further integrated with the enhancement
proposed by LMY, seemed to be effective because AVISPA considered it safe, but we finally demonstrate
that, in theory, the attack is still possible. This leads us to three main conclusions.

First, adopting homomorphic encryption schemes, especially if with respect to concatenation (like
ECB), is not compatible with implementing the BAN-modified Andrew Secure RPC protocol to estab-
lish authentication and secure fresh key exchange in a system. More generally, any protocol should be
checked against the effects of homomorphic cryptography. Second, AVISPA is an easy-to-use tool as it
permits newbies to quickly analyse security protocols and work on their reasoning, however false posi-
tives are possible as with any automated tool. Therefore, any protocol modifications need to be carefully
and critically analysed to ensure they do not introduce false positives or false negatives. Finally, gener-
ally speaking, it is always a good practice to test protocolsin more than one initial set-up condition in
order to consider the various possible permutations of the protocol instances.

For future work, we plan to suggest a new version of the protocol and to apply the AVISPA tool to
other, well-known protocols. We also plan to study the falsepositive and false negative ratios of the tool,
in order to provide better idea of its accuracy.
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A BAN-modified Andrew Secure RPC protocol HLPSL specification (two
parallel A-B sessions)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by A def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)

2. State = 2 /\ RCV({Succ(Na).Nb’}_Kab) =|>

State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)

3. State = 4 /\ RCV({K1ab’.N1b’.Na}_Kab) =|>

State’ := 6 /\ request(A,B,alice_bob_na,Na) /\

request(A,B,alice_bob_k1ab,K1ab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by B def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’}_Kab)

2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ K1ab’ := new() /\ N1b’ := new() /\

SND({K1ab’.N1b’.Na}_Kab) /\

secret(K1ab’,k1ab,{A,B}) /\ secret(N1b’,n1b,{A,B}) /\

request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\

witness(B,A,alice_bob_k1ab,K1ab’)

end role

role session (A,B: agent,Kab: symmetric_key,Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)

end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,k1ab,n1b: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition

session(a,b,kab,succ) /\ session(a,b,kab,succ) /\

session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of k1ab, n1b

authentication_on alice_bob_na, bob_alice_nb, alice_bob_k1ab

end goal

environment()

10



Revisiting the BAN-Modified Andrew Secure RPC Protocol Gugel, Aziz and Hamilton

B First amended version of BAN-modified Andrew Secure RPC protocol
HLPSL specification (version 0, two parallel A-B sessions)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by A def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)

2. State = 2 /\ RCV({Succ(Na).Nb’}_Kab) =|>

State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)

3. State = 4 /\ RCV({K1ab’.N1b’.Na.Nb}_Kab) =|>

State’ := 6 /\ request(A,B,alice_bob_na,Na) /\

request(A,B,alice_bob_k1ab,K1ab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by B def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’}_Kab)

2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ K1ab’ := new() /\ N1b’ := new() /\

SND({K1ab’.N1b’.Na.Nb}_Kab) /\

secret(K1ab’,k1ab,{A,B}) /\ secret(N1b’,n1b,{A,B}) /\

request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\

witness(B,A,alice_bob_k1ab,K1ab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)

end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,k1ab,n1b: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition

session(a,b,kab,succ) /\ session(a,b,kab,succ) /\

session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of k1ab, n1b

authentication_on alice_bob_na, bob_alice_nb, alice_bob_k1ab

end goal

environment()
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C Second amended version of BAN-modified Andrew Secure RPC proto-
col HLPSL specification (version 1, two parallel A-B sessions)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by A def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)

2. State = 2 /\ RCV({Succ(Na).Nb’.B}_Kab) =|>

State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)

3. State = 4 /\ RCV({K1ab’.N1b’.Na.Nb}_Kab) =|>

State’ := 6 /\ request(A,B,alice_bob_na,Na) /\

request(A,B,alice_bob_k1ab,K1ab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by B def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’.B}_Kab)

2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ K1ab’ := new() /\ N1b’ := new() /\

SND({K1ab’.N1b’.Na.Nb}_Kab) /\

secret(K1ab’,k1ab,{A,B}) /\ secret(N1b’,n1b,{A,B}) /\

request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\

witness(B,A,alice_bob_k1ab,K1ab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)

end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,k1ab,n1b: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition

session(a,b,kab,succ) /\ session(a,b,kab,succ) /\

session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of k1ab, n1b

authentication_on alice_bob_na, bob_alice_nb, alice_bob_k1ab

end goal

environment()
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D Second amended version of BAN-modified Andrew Secure RPC proto-
col HLPSL specification (version 1, A-B/B-A sessions and only authen-
tication of B by A (as per LMY)

role alice (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func) played_by A def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’ := 2 /\ Na’ := new() /\ SND(A.{Na’}_Kab)

2. State = 2 /\ RCV({Succ(Na).Nb’.B}_Kab) =|>

State’ := 4 /\ SND({Succ(Nb’)}_Kab) /\ witness(A,B,bob_alice_nb,Nb’)

3. State = 4 /\ RCV({K1ab’.N1b’.Na.Nb}_Kab) =|>

State’ := 6 /\ request(A,B,alice_bob_na,Na) /\

request(A,B,alice_bob_k1ab,K1ab’)

end role

role bob (A,B: agent, SND,RCV: channel(dy), Kab: symmetric_key, Succ: hash_func

) played_by B def=

local

Na,Nb,N1b: text,

K1ab: symmetric_key,

State: nat

init

State := 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ := 3 /\ Nb’ := new() /\ SND({Succ(Na’).Nb’.B}_Kab)

2. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ := 5 /\ K1ab’ := new() /\ N1b’ := new() /\

SND({K1ab’.N1b’.Na.Nb}_Kab) /\

secret(K1ab’,k1ab,{A,B}) /\ secret(N1b’,n1b,{A,B}) /\

request(B,A,bob_alice_nb,Nb) /\ witness(B,A,alice_bob_na,Na) /\

witness(B,A,alice_bob_k1ab,K1ab’)

end role

role session (A,B: agent, Kab: symmetric_key, Succ: hash_func

) def=

local

SND_A,RCV_A,SND_B,RCV_B: channel(dy)

composition

alice(A,B,SND_A,RCV_A,Kab,Succ) /\ bob(A,B,SND_B,RCV_B,Kab,Succ)

end role

role environment() def=

const

a,b: agent,

kab: symmetric_key,

succ: hash_func,

alice_bob_na,bob_alice_nb,k1ab,n1b: protocol_id

intruder_knowledge = {a,b,kai,kib,succ}

composition

session(a,b,kab,succ) /\ session(b,a,kab,succ) /\ session(a,i,kai,succ) /\ session(i,b,kib,succ)

end role

goal

secrecy_of k1ab, n1b

authentication_on alice_bob_na, alice_bob_k1ab

end goal

environment()
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E Attack trace found through the AVISPA Web tool to the BAN-modified
Andrew Secure RPC protocol modelling the following sessions: A-B,
A-B, A-I, I-B
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