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Abstract

In this paper we numerically simulate flow in a helical tube for physiological condi-

tions using a co-ordinate mapping of the Navier-Stokes equations. Helical geometries

have been proposed for use as bypass grafts, arterial stents and as an idealised model

for the out-of-plane curvature of arteries. Small amplitude helical tubes are also cur-

rently being investigated for possible application as A-V shunts, where preliminary

in vivo tests suggest a possibly lower risk of thrombotic occlusion. In-plane mixing

induced by the geometry is hypothesised to be an important mechanism. In this

work, we focus mainly on a Reynolds number of 250 and investigate both the flow

structure and the in-plane mixing in helical geometries with fixed pitch of 6 tube

diameters (D), and centreline helical radius ranging from 0.1D to 0.5D. High-order

particle tracking, and an information entropy measure is used to analyse the in-plane

mixing. A combination of translational and rotational reference frames are shown

to explain the apparent discrepancy between flow field and particle trajectories,

whereby particle paths display a pattern characteristic of a double vortex, though

the flow field reveals only a single dominant vortex. A radius of 0.25D is found to

provide the best trade-off between mixing and pressure loss, with little increase in

mixing above R = 0.25D, whereas pressure continues to increase linearly.
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1 Introduction

Almost 30,000 coronary artery bypass graft procedures are performed each

year in the UK according to the British Heart Foundation, however over 50%

of CABG fail within 10 years due to the development of neo-intimal hyperpla-

sia (Bryan and Angelini, 1994). Similarly, arterio-venous shunts constructed

from ePTFE are prone to occlusion by thrombosis and intimal hyperplasia. In

the United States alone there are 175,000 ePTFE grafts used for permanent

vascular access, with the 1 and 2-year primary patency rates currently at 50%

and 25% respectively. Consequently, much research has been conducted in the

past few decades to design grafts that will remain patent for far longer, ideally

longer than the life-span of the patient.

A promising avenue of this research, initiated by Caro et al. (Caro, C. G. et al.,

1996) (Sherwin et al., 2000), is to use out-of-plane geometries that induce fully

three-dimensional, physiologically-realistic swirling flows, and produce more

uniform wall shear stress distributions. However, in a clinical environment,

such geometries cannot be guaranteed to be preserved after wound closure.

Greater control of geometry is possible with vascular prostheses, with small

amplitude helical tubes being proposed (Caro et al., 2005). The helical geome-

try induces the necessary swirling flow, whilst also being mechanically robust,

and has undergone preliminary in-vivo trials, and subsequently a preliminary

clinical study Huijbregts et al. (2007). Caro et al. hypothesised that the in-

plane mixing induced by the helical geometry and the more uniform WSS

2



distribution are responsible for preventing graft occlusion from thrombosis

and neo-intimal hyperplasia. Likewise a new design of arterial stent has been

proposed, which when inserted into the host artery and expanded, enforces a

helical tube boundary at the artery wall. This is an alternative procedure to

the helical bypass graft, but the operating conditions, e.g. Reynolds number,

will be comparable to those of a bypass graft.

It is to be emphasized that the benefits of helical geometry in vascular conduits

have yet to be firmly established, although they appear promising. The range

of possible configurations is large, and how the haemodynamics responds to

changes in geometric parameters has not been studied in detail. Systematic

investigation of the effects of helical geometry on the haemodynamics are

needed, not only to inform potential designs of prostheses and surgical vascular

reconstructions, but to improve our understanding of the normal vasculature.

As pointed out by Zabielski and Mestel (1998), a helical pipe serves as an

idealization of many arterial geometries. The mechanisms governing mixing

in such geometries may provide insight into cardiovascular diseases such as

atherosclerosis, which are thought to be linked to wall shear stress and wall

transport. These considerations provide the motivation for the work described

below, in which a range of small amplitude helical geometries, representative

of possible prosthetic vascular configurations or native tortuous arteries are

the subject of studies of flow structure and mixing.
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2 Methods

2.1 Parameters of Study

A helix is a three-dimensional space curve that can be described by the equa-

tions:

x = R cos(z/c) , y = R sin(z/c)

where R is the radius or amplitude of the helix and c is a constant parameter,

such that the wavelength or one pitch of the helix equals 2πc. For a helical

tube the internal radius is an additional parameter D/2, as illustrated in

Figure 1. The Frenet triad, which consists of the normal, N, binormal, B, and

tangent T, vectors, is often used to define a co-ordinate system along a curve.

A feature of helical flows is that the velocity field is self-similar along the

axis, and therefore the entire field can be represented by a single cross-section

normal to the centreline, which rotates with the Frenet triad along the curve.

This property is illustrated in Figure 2, for a helical geometry with R = 0.25

and pitch length 6D. Contour plots of the axial velocity, w, are shown at 1/4,

1/2 and 3/4 of the pitch, and demonstrate both the self-similarity and rotation

of the flow field. The location of the axis origin (x = 0 = y) is marked by a

cross on each contour plot.

A Reynolds number of 250, defined as wD
ν

is used for the majority of the flow

studies to match representative physiological conditions in a bypass graft, as

used in other studies (Sherwin et al., 2000), and is also appropriate for stent

applications and as a model for flow in larger arteries. For the case of an

A-V shunt, the Reynolds number is several times larger, in the range 900-

4



Fig. 1. Geometric parameters of a helix

Fig. 2. Helical tube geometry and self similar velocity field

1800 (Loth et al., 2008). To provide some indication of the flow dynamics and

mixing behaviour at these Reynolds numbers, some computations were also

performed in the range 500-700.

Caro et al. coin the term, small amplitude helical technology (SMAHT), to

describe the geometries used for clinical applications, which have small helical

radius, but large pitch length. The upper limit of the helical pitch length that

can be used for SMAHT is set by the physical space constraints of the clinical

application, with the lower limit determined by the necessity to preserve the

general morphology of the SMAHT. Within these limits it is expected that
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the flow field will undergo only small changes with respect to varying pitch,

relative to those induced by varying the radius. Therefore in this study, and

taking the geometries used by Caro et al. as a guide, all the helical geometries

will have a pitch of six tube diameters, 6D, with the helical radius varying

from 0.1D to 0.5D in increments of 0.05D.

In the following work we assume blood to be a Newtonian fluid, which is a

reasonable approximation for flow in the larger blood vessels (Friedman, 1993).

Only steady flow is examined at present, which for modelling A-V shunt flow is

acceptable, as relatively low pulsatility has been found in renal dialysis access

shunt flow (Caro et al., 2005). For flow in artery bypass grafts and stents, it

is a poorer approximation, but a significant portion of the pulsatile flow cycle

is quasi-steady, so that the vortical flow structures may be similar, though as

recognised in (Doorly, 1999), unsteadiness can play a large role in vascular

mixing.

2.2 Numerical scheme

Various approaches to solving the flow in a helical tube have been taken in

the literature, starting with Wang’s non-orthogonal co-ordinate system (Wang,

1981), which used the Frenet triad as the co-ordinate axes. This was followed

by Germano’s orthogonal refinement (Germano, 1981) of Wang’s system, to

the more recent and computationally efficient helically symmetric co-ordinate

system introduced by Zabielski and Mestel (1998). The current body of re-

search into helical tube flows can be crudely summarised by remarking that,

at the relatively modest Reynolds numbers we consider, curvature creates a

two-vortex solution, in the manner of a Dean flow, with an asymmetric axial
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velocity profile. The effect of torsion is to rotate this flow profile along the cen-

treline, as shown in Figure 2, and to distort the vortical structure. This leads

to one vortex dominating over the other, and for certain parameter ranges the

second vortex is effectively eliminated.

The approach taken here to obtain the velocity field is different from those

of previous researchers, and is only valid for use on helical tubes with small

radius R. For these geometries a helical tube can be reasonably approximated

by a circular cross-section translated by a helical centreline. Conceptually, re-

versing this approximation implies that a co-ordinate transformation can be

applied to the Navier-Stokes equations in a helical domain, and an existing

spectral/hp element code Nektar (Sherwin and Karnaidakis, 2005) used to

solve modified Navier-Stokes equations in a cylindrical domain. This permits

a Fourier expansion basis in the periodic direction, and therefore a single two-

dimensional computational mesh can be used for all geometries. This removes

the computationally expensive requirement for remeshing different 3-D geome-

tries, in addition to being inherently faster to solve the velocity field than for

a true 3-D mesh. This approach has been successfully used to investigate the

flow around bluff bodies (Newman, 1996), (Evangelinos, 1999), (Darekar and

Sherwin, 2001), and in 3-D channel flows (Koberg, 2008).

2.3 Particle tracking

Caro et al.’s preliminary study used labelled particle maps and simple dye

injection experiments to demonstrate that helical tubes can cause rapid in-

plane mixing. Yamamoto et al. allude to mixing in a helical tube, through

their use of experimental flow visualisation, and numerical particle tracking
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(Yamamoto et al., 2002), however neither study comprehensively investigated

the flow from this perspective or attempted to quantify the mixing behaviour.

As a physical process, mixing is a combination of advection and diffusion.

Advection, by stretching and folding the flow, creates large concentration gra-

dients across which species can rapidly diffuse. Previous research has found

that for bypass graft flows it is sufficient to consider advection alone, as adding

a diffusion model makes little difference to the results, except perhaps in ar-

eas of the velocity field where there is recirculating flow (Doorly et al., 2002).

Therefore rather than solving the advection-diffusion equation, we need only

to integrate the advection equations, shown in Equation (1), with respect to

time. Strictly, mixing where only advection is considered should be termed

‘stirring’.

dx

dt
= u(x, t) (1)

The numerical integration of Equation (1) is accomplished by tracking mass-

less computational particles through the velocity field. The algorithm used

is a 4-stage Runge-Kutta time integration scheme, which interpolates directly

from the high-order polynomial representation of the velocity field, and is thus

more accurate than a scheme using a linear interpolation mesh (Coppola et al.,

2001).

2.4 Entropic measure of mixing

Conceptually, mixing is the reduction of non-uniformity, or equivalently, the

increase of disorder. Information entropy was first defined by Shannon (1948),

and can be interpreted as a measure of disorder, naturally leading to its use in
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such diverse fields as mixing in polymer processing (Wang et al., 2003), (Wang

et al., 2005b), (Wang et al., 2005a), chaotic micromixers (Kang and Kwon,

2004) and aerosol mixing in the lung (Butler and Tsuda, 1997). Here the

formulation used is that introduced by Kang and Kwon (2004). They tracked

passive, coloured particles through a chaotic micromixer, taking sections of

the trajectories at areas of interest, and having superimposed a grid onto the

section, applied Equation (2).

S =
Nc∑
i=1

[
wi

Ns∑
k=1

(ni,k log ni,k)

]
(2)

In Equation (2), i is the cell index, k is the species index, wi is the weighting

factor for each cell, Nc the number of cells, Ns the number of species (i.e.

different colours of particles) and ni,k is the particle number fraction of the

kth species in the ith cell. The weighting factor wi is defined so that it is zero if

a cell contains no particles, or only particles of a single species/colour; within

such a cell the particle distribution is uniform, and therefore should contribute

zero to the entropy summation, i.e. disorder can only occur if particles of

different colours are present. The box counting concept is illustrated in Figure

3, using a reduced number of boxes, along with the corresponding terms used

in Equation (3). In Figure 3 particles of only two colours are considered and

this is used throughout this work.

As a value considered in isolation, the entropy calculated in (2) has little

meaning. Again following Kang and Kwon we define a relative entropy measure

κ, which quantifies the increase in entropy of the particle distribution at a

particular cross-section from that of the inlet distribution of particles. This

is then normalised by the maximum possible entropy increase from the inlet
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(a) S0: Initial distri-

bution

(b) S: R = 0.25D at

z = 30D

(c) Smax: Perfect

mixing

Fig. 3. Particle distributions overlaid with illustrative grid used for entropy calcu-

lation

particle distribution, and is defined in Equation (3).

κ =
S − S0

Smax − S0

(3)

From the above it can be appreciated that when κ is equal to zero, no mixing

has occurred, and when kappa equals one, the mixing is maximised.

This method of characterising mixing relies on two levels of statistical sam-

pling. The first is the seeding of the flow with particles, which will deter-

mine the quality of the resolution of the flow features. The second is the

box-counting used to calculate the information entropy. Care must therefore

be taken both with the number of particles, and the number of boxes, specif-

ically, Nparticles/Nspecies � Nboxes � 1.

Even if this condition is satisfied, it should be noted that the entropy of a given

particle distribution will decrease as the number of boxes increases. In fact as

Nboxes → ∞, entropy S will disappear to zero; that is, entropy only exists

by virtue of the coarse-graining process of box-counting. This property means
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that it is not straightforward to compare the entropy values calculated for

different applications unless the number of particles and boxes are identical.

In Equation (2), the definition of entropy is such that only boxes that contain

particles of different colours contribute to the entropy summation. This im-

plies that if a sufficient number of boxes are used, a box containing more than

one colour will only do so along the boundary of the interface that divides

the colours. In other words, with appropriate resolution, the entropy calcu-

lation is analogous to determining the length of the interface that separates

the particle species. This point was made in relation to the intensity of seg-

regation measure by Khakhar (1986), but holds equally well for information

entropy, as both measures utilise box-counting. This suggests that one way

to validate the entropic measure is to use particle distributions with known,

or easily determined, interface lengths, and compare the entropy value with

the interface length. Unfortunately, as Krasnopolskaya et al. (1999) notes, the

measure cannot, in general, be validated this way for an arbitrary number of

boxes. However, it is certainly possible to validate the measure for a limited

range of particle distributions, which is the approach taken here.

Tests were performed with progressively increasing numbers of concentric rings

of particles of different colours. The total interface length of the rings increases

linearly with the number of rings. The test cases showed that for roughly

60000 particles, 10000 boxes are needed for the entropy calculation, so that the

variation in entropy is also linear. Calculations were performed for several cases

using 61527 particles, to validate the data generated using 15371 particles.
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3 Results and discussion

3.1 Variation of Velocity Field with Helical Geometry

Before examining the results for the velocity field, it should be noted that,

contrary to the case of curved tubes, the curvature of all the geometries con-

sidered here increases with helical radius. The curvature of a helix is defined

as:

κ =
R

R2 + c2
(4)

This function is such that for all cases where R < c, the curvature will in-

crease with radius. The maximum curvature occurs for R = c, beyond which

curvature decreases with radius.

As stated earlier, nine different geometries are examined, with helical radius

increasing from 0.1D to 0.5D in increments of 0.05D, however since the pat-

terns of velocity are similar we only show plots of the velocity field for the

cases R = 0.1D, R = 0.3D and R = 0.5D.

As outlined earlier, there a several different coordinate systems that can be

used to describe the flow in a helical tube. If a helical coordinate system is

used, either that of Wang, Germano or Mestel & Zabielski, then the velocity

field in a cross-section is symmetric throughout the tube, that is, a single cross-

section will represent the flow in the whole tube. We choose to display both

the velocity field and mixing data in a Cartesian co-ordinate system, as this

is more convenient for investigating the relationship between the flow and the

resultant mixing behaviour. Nonetheless processing the results using Wang’s
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(a) R = 0.1D (b) R = 0.3D (c) R = 0.5D

(d) R = 0.1D (e) R = 0.3D (f) R = 0.5D

Fig. 4. Axial velocity (upper) and axial vorticity (lower) contours at z = 6D. The

zero contour of vorticity is shaded white.

convention allows comparison with results in the literature, and indeed our

data is consistent with this work.

Figures 4(a) - 4(c) show contour plots of the axial velocity, where the axial

direction is the z-axis in the Cartesian frame. For R = 0.1D the axial velocity

profile is close to that of Poiseuille flow, with only a small displacement of the

peak velocity. As the radius, and hence curvature increases, the location of the

peak velocity moves closer to the tube wall. The radial distance of the peak

velocity, measured from the tube centre is plotted in Figure 5. The radial offset

of the peak velocity increases rapidly with helical radius upto R = 0.25D,

above this the rate of change of the offset is much smaller. Indeed, the data

suggests that the value is reaching an asymptotic limit by R = 0.5D.
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Fig. 5. Radial offset of peak axial velocity vs. helical radius in Cartesian co-ordinate

system

Fig. 6. Circulation, Γ, of dominant vortex vs. helical radius
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Figures 4(d) - 4(f) show the corresponding contour plots of the axial vorticity,

ωz. A white contour line at ωz = 0, highlights the regions of positive and

negative vorticity, showing more clearly the vortical structure. For all cases

there is a large region of positive vorticity, indicating that a single vortex

dominates the flow, with a slight counter rotation near the wall. The existence

of solutions of this nature has been reported previously by other researchers

(Zabielski and Mestel, 1998) (Yamamoto et al., 2002). The contiguous region

of positive vorticity is then integrated over the area to obtain the circulation

Γ. The variation of Γ with helical radius, shown in Figure 6, is similar in

manner to that of the radial offset of peak axial velocity, upto a helical radius

of 0.25D. For values of helical radius greater than this, the rate of increase

in Γ is reduced, although the peak axial velocity offset appears to asymptote.

Clearly the radial location of the peak axial velocity is limited by the wall and

its no-slip boundary condition. The circulation of the vortex, by contrast, is

expected to increase with radius, since the curvature also increases, and with

it the centrifugal force acting on the fluid.

3.2 Mixing/Stirring

In examining the mixing characteristics of these helical geometries we will

first look at the qualitative behaviour of fluid particles, before quantifying

the mixing using the entropy measure introduced in Section 2.4. An initial

distribution of 15371 particles are seeded on a uniform grid, truncated by the

circular cross-sectional boundary. The particles are tracked through the helical

geometries for a total of five pitch lengths, a distance of 30D, a reasonable

limit in terms of probable length constraints of clinical applications of a bypass
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graft. The inlet particle distribution is coloured by radius such that there

are an equal number of grey and black particles. Besides their use in the

entropy calculation, particle colouring indicates the degree of exchange of near

wall particles with the core fluid. This is thought to be relevant to biological

applications, where wall-transfer processes are implicated in disease initiation

and progression (Nielsen, 1996).

Figure 7 shows the particle trajectory slices for the geometry R = 0.25D,

starting with the initial distribution and then each subsequent integer pitch

length. Comparing the particle distributions at successive downstream loca-

tions, the initial concentric colour distribution is seen to become increasingly

mixed. Closer examination of the individual plots reveal common features of

the particle distribution, such as the location of the dividing line between the

two vortex-like regions. Although visible in all the plots, the finer structures

within each of the two regions become better illuminated with each additional

pitch length, since the particle colours are more uniformly distributed within

the domain.

In Figure 8(a), comparison of the the mixing at a fixed downstream location

of 30D is shown for helical radii ranging from 0.1D to 0.5D. From Figure 8(a)

it is clear that very little mixing is occurring for the geometry R = 0.1D. In

fact, the section of black particles is merely rotated, with only a small amount

of distortion, and crucially none of the near wall particles move to the core

of the flow, even after five pitch lengths. This is in contrast to R = 0.25D,

Figure 7(b) where even after one pitch length, the majority of particles initially

seeded near the wall have moved to the core.

Viewing the individual plots of Figure 8 in sequence reveals the gradual tran-
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(a) Initial distribu-

tion

(b) z = 6D

(one pitch)

(c) z = 12D

(two pitches)

(d) z = 18D

(three pitches)

(e) z = 24D

(four pitches)

(f) z = 30D

(five pitches)

Fig. 7. Particle trajectory slices for R = 0.25D at integer multiples of the pitch

length

sition of the particle trajectories from a single vortex to a double vortex struc-

ture, despite Figures 4(d) - 4(f) indicating that there is only a single dom-

inant vortical structure for all the radii investigated. This counter-intuitive

phenomenon has also been reported by Yamamoto et al. (2002) in both their

computational particle tracking and smoke visualisation results. They suggest

that this feature occurs due to a combination of the secondary and axial veloc-

ities. This is essentially correct, and we provide a more complete explanation

in the following.
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(a) R = 0.1D (b) R = 0.2D (c) R = 0.3D

(d) R = 0.4D (e) R = 0.5D

Fig. 8. Particle trajectory slices at z = 30D (five pitches) for varying helical radius

3.3 In-plane particle trajectory

Attempting to relate the in-plane mixing/stirring to the flowfield is compli-

cated by the fact that the planar cross-section is both translating and rotating.

Therefore to interpret the motion of particles we must remove the effects of

the plane’s translation and rotation. Note that the following arguments are

only kinematic in nature, and are not concerned with the dynamics.

The velocity in the planar cross-section can be calculated by:

Vin−plane = Vcartesian −Vtranslation −Vrotation (5)
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and illustrated in Figure 9 for the case R = 0.25D. The translation and rota-

tion velocities will now be considered in turn. For any particle convected by

the flow with axial velocity w, the translational velocity of the cross-sectional

plane can be derived by differentiating the helical centreline equations with re-

spect to time. Writing w = dz/dt, the corresponding rate of change of position

of the helix centreline is given by:

ẋtranslation = −(wR/c) sin(z/c) (6)

ẏtranslation = (wR/c) cos(z/c) (7)

For example, at z = 6, ẋtranslation = 0, and ẏtranslation = wR/c.

Figure 9(b) shows the streamtraces for the in-plane velocities in the Cartesian

frame, overlaid on a contour plot showing the magnitude of these velocity

components for comparison with the axial velocity. The streamtraces show

that the flow is not confined to the plane, due to the movement of the cross-

section along the helix, and are thus sensible in the context of a 3−D geometry.

Removing the translation velocity produces the velocity field in Figure 9(c).

This in-plane flow is now confined to the cross-section, forming one large

vortex, and a small counter rotating vortex near the wall.

As we have already observed, the flow profile in a helical tube also rotates in

a self similar method along the length of the helix. Given a pitch length of c,

the apparent rate of rotation of a point at a distance r from the tube centre,

travelling at an axial velocity w is given by:

θ̇rotation = w/c (8)
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(a) Vcartesian, w (b) Vcartesian (c) Vcartesian −

Vtranslation

(d) Vrotation (e) Vin−plane (f) Vin−plane

Fig. 9. In-plane velocity transformations to obtain particle trajectories

and therefore the tangential velocity is:

Vrotation = wr/c (9)

The sign of rotation of this velocity is the same as that of the Cartesian vortex

in the flow. Therefore when the rotating reference frame velocity is subtracted

from the Cartesian in-plane flow, the resulting in-plane flow field depends

on the relative strengths of these two contributions, and their distribution of

velocity magnitude within the plane.

Figure 9(d) shows the vortical structure induced by the rotation of the cross

section. Although its core is at the centre of the tube, the highest velocities

occur near the peak of the axial velocity, as comparison with Figure 9(a)

20



indicates. Figure 9(e) shows the velocity streamtraces for the in-plane reference

frame, overlaid on contours of the velocity magnitude. The average magnitude

of the in-plane velocity is roughly half of that in the Cartesian frame, and

almost seven times smaller than the mean axial velocity, which means that

an average particle will move from one side of the plane, to the other, as it

travels one pitch length of the helix. Figure 9(f) shows these same velocity

streamtraces, overlaid on the particle trajectory slice for the same case. The

correspondence between the two is excellent; the location of the vortex cores

coincide, as does the angle of the dividing line between the vortical structures,

and clearly supports the reference frame explanation of the particle mixing.

3.4 Relationship between velocity field and mixing

We now outline how the changes in location of peak axial velocity and circu-

lation affect the in-plane stream-trace plots for different values of R. In the

case R = 0.1D the vortex in the flow is weak, and due to the small curvature

of the tube, the axial velocity profile resembles a slightly perturbed Poiseuille

flow. Therefore, when the axial velocity is multiplied by radial position, the

rotational velocity produced will be relatively uniformly distributed. When

subtracted from the physical vortex the resulting flow is a vortex in the oppo-

site direction to the Cartesian one, and hence the particles are merely rotated

with almost no mixing occurring.

For the case R = 0.3D the circulation of the Cartesian vortex is almost 6

times larger than for R = 0.1D. Therefore in the positive x and y quadrant

this vortex dominates the one from the rotational reference frame, but due

to the large radial shift of the peak axial velocity towards the lower-left wall,
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the peak velocities in this vortex are larger than previously, and therefore this

vortex dominates the negative x and y quadrant. In this way two vortices of

opposite rotation are created in the in-plane reference frame. The situation is

similar for R = 0.5 except that the Cartesian vortex is slightly stronger and

therefore the second in-plane vortex is itself stronger, and consequently the

stream-traces occupy more of the cross-section.

Although the structure of the apparent vortex which arises from the rotation

of the reference frame is the same for all of the geometries considered, the

distribution of the velocity changes, due to the change in axial velocity profile.

This means that the summation of both vortices also changes with helical

radius.

To quantify the mixing behaviour, we now employ the concept of information

entropy. Figure 10 shows the normalised entropy increase, κ, plotted against

helical radius. It is clear that entropy increases, and therefore mixing, for

all cases, apart from R = 0.1D. Furthermore, Figure 10 shows that there

is a sharp increase in mixing upto and including R = 0.25D, beyond which

there is only a small increase in κ with increasing helical radius at five pitch

lengths. The trend exhibited by this data is very similar to that for Γ and the

location of peak axial velocity. The particle distributions and the reference

frame explanation suggests that mixing increases with the size of the apparent

second vortex structure in the particle trajectories. Indeed it is this apparent

structure that generates the particle mixing, as it increases the length of the

interface between the particles within the plane.

With increasing radius, Γ increases, and hence the strength second apparent

vortex in the in-plane reference frame increases, at the expense of the first
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apparent vortex. This explains why the gradient of κ for R > 0.25D is smaller

compared to the gradient for R < 0.25D, than is the case for Γ.

If the radius of the helix were increased far beyond R = 0.5D, forming a

toroidal-like configuration, the in-plane velocity field would be two vortices,

as reported in previous studies. For these geometries, where our Cartesian

formulation of the problem is no longer appropriate, the strength of the vortex

induced by the rotation of the reference frame reduces with helical radius, due

to the increased arc length. Therefore, after substraction from the in-plane

velocity field, it is likely that the two vortices will remain, although with

altered strengths. Therefore, the mixing pattern of the flow will be similar

to that reported here. However, the smaller centrifugal forces implies weaker

vortices, and therefore mixing will likely decrease with radius for these cases.

Fig. 10. Relative entropy, κ, vs. helical radius
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3.5 Mixing at higher Reynolds number

In order to provide some indication of the mixing expected for operating con-

ditions appropriate for an A-V shunt, flow solutions have been obtained for a

selection of geometries at higher Reynolds numbers. Figure 11 shows stream-

traces of Vin−plane for the cases R = 0.1D, 0.25D & 0.4D, at Reynolds numbers

of approximately 250 and 500. It is clear that there is only a slight difference

in structure between the two Reynolds numbers, although the magnitudes are

obviously different. The second (upper) vortex which forms with increasing R,

occupies slightly more of the cross-section at Re = 500, the difference being

smaller for R = 0.4D. Extrapolating these results to Re ≈ 900 − 1000, it is

predicted that the helical radius at which ”sufficient” mixing is generated will

be slightly smaller than for Re = 250, but likely no smaller than R = 0.2D.

These results come with the caveat that the precise Reynolds number at which

flow transitions to turbulence within helical geometries is not properly char-

acterised as a function of geometric parameters. One study that attempted

to understand this phenomenon (Yamamoto et al., 1998) investigated geome-

tries similar to those considered in this study, with comparative pitch lengths,

though not for values of R as small as here. The results suggest that transition

occurs at values of Re smaller than for a straight pipe O(2000), possibly as low

as Re = 800, depending on the geometry. An interesting property of the flow

is that torsion is initially destabilising, but beyond a certain point, increasing

torsion will increase the critical transition Reynolds number. If the flow does

transition to turbulence then we concede that the results presented here will

no longer apply. It is clear that a careful analysis of the stability of such flows

is needed, but this is beyond the scope of the present investigation.
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(a) R = 0.1D, Re =

250

(b) R = 0.25D, Re =

250

(c) R = 0.4D, Re =

250

(d) R = 0.1D, Re =

500

(e) R = 0.25D, Re =

500

(f) R = 0.4D, Re =

500

Fig. 11. Streamtraces of Vin−plane for Re = 250 and 500 for several helical geometries

3.6 Particle residence times

Thus far we have examined only the in-plane mixing, however dispersion of

the particles in the axial direction is also of relevance. For the particles tracked

in Section 3.2 the time taken to travel through one pitch length was recorded.

The mean and standard deviation of the residence times are shown in Figure

12. It is clear that both quantities vary in a similar fashion, and since a lower

mean residence time is desirable, the trend is the same as for κ in Figure 10.

The lower average residence time with increasing radius is due to the greater

in-plane mixing, which means that more of the particles are brought into the

core of the flow, and thus experience the high axial velocities there. The smaller
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standard deviation, by definition, means that the residence times are closer to

the mean value, and hence the residence time distribution is more uniform for

the larger radii. In the preliminary study by Caro et al simple dye injection

experiments were performed for two U-bend configurations; one constructed

using conventional cylindrical tube, and the other a helical tube with radius

0.5D (Caro et al., 2005). The axial dispersion was lower for the helical tube,

as was the retention of dye near the inner wall of the bend. Though we have

only considered a straight section, those results are in accordance with our

findings.
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Fig. 12. Statistics of the particle residence times distributions for varying helical

radius

It is suspected that the effect of fluid mixing on residence time distributions

provides the link to reduced thrombus formation. Consider the activation pa-

rameter defined by Ramstack et al. (1979), which is the product of shear rate

and exposure time. They show that if this parameter exceeds 1000, proco-
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agulant platelet factor 3 (FP3) is released, thus enabling the formation of a

thrombus. In a Poiseuille flow the shortest axial distances sufficient to cause

FP3 release occur in the near wall region, creating the ideal conditions for

a thrombus to form on the tube’s surface. In the helical geometry, the more

uniform residence time distribution implies that extremes of shear exposure

time are reduced, likely reducing the number of activated platelets. Addition-

ally, the mixing of particle between the near wall region and core of the flow,

facilitated by the double-vortex structure, helps prevent activated platelets

from residing near the wall and ultimately accumulating.

A key result from quantifying the degree of mixing, is that there is a relatively

small difference in the mixing performance between the cases R = 0.25D and

R = 0.5D. Therefore if enhanced in-plane mixing, as we have defined and mea-

sured it, is responsible for the apparent improved performance of the SMAHT

A-V shunts used by Caro et al. (2005), it would appear that a helical geom-

etry with R = 0.25D should be just as effective at preventing thrombogenic

occlusion, as the R = 0.5D geometry. A further consideration when selecting

a geometry for medical applications, is the magnitude of the pressure drop

across one pitch length of the helix. As the helical radius increases, pressure

losses will arise from both the greater total arc length of the helix, and the

energy required to drive the vortical structure. Figure 13 shows the variation

of this pressure drop with helical radius, indicating that the pressure loss for

R = 0.5D is approximately 1.6 times larger than for R = 0.25, but without a

corresponding increase in the degree of mixing.

27



Helical Radius (D)

!
P H

el
ix
/!
P P

oi
se
ui
lle

0 0.1 0.2 0.3 0.4 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 13. Pressure drop along one pitch vs. helical radius

3.7 Implications of in vivo conditions for helical prostheses

The focus of this study has been to understand the fundamental process of

mixing in helical geometries, hitherto a problem not fully resolved in the fluid

mechanics literature. When used as a prosthetic device, several in vivo condi-

tions may have an effect on the flow structures, and hence the mixing. Here we

comment on the likely significance of these additional factors, and their im-

plications for the conclusions drawn regarding optimal geometries for medical

applications.

The first effect, and the most significant, is the presence of an additional curva-

ture in part, or all, of the shunt geometry, arising due to the loop configuration

commonly used to connect the artery to the vein. To a first approximation,

the flow in a helical tube formed on a curved centreline, can be taken as the

superposition of symmetric counter-rotating Dean vortices, and the single-
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vortex swirling flow of a helical tube. Since, the velocity field in the helical

pipe varies only slightly with increasing radius for R > 0.25, this means the

resultant flow in a curved helical tube will not vary significantly in this pa-

rameter range. Therefore, despite the precise mixing behaviour differing from

the straight helical case, the ranking of geometries from a mixing perspective

should not be altered by the presence of additional curvature.

Whilst the additional curvature is relevant to the A-V shunt application, for

the cases of a bypass graft and arterial stent, the additional curvature will be

small, and negligible in its effect. Related to this point, an interesting struc-

tural property of helical tubes is their improved resistance to kinking when

subjected to bending moments, compared to conventional straight cylindrical

tubes. This property helps to guarantee the geometry of the graft in vivo, and

prevents extreme curvatures, due to a kink, that would more easily cause the

flow to separate. Related to this, a recent study by Coppola and Caro (2008)

that investigated a helical geometry formed on a curved centreline showed that

even at Re = 600 the flow remained attached throughout the bend, so that

even though the mixing behaviour may be altered, the additional curvature is

unlikely to have a pathological effect.

The second point to consider is the possibility of pressure-compliance mis-

matches at the junctions of the shunt. This is a problem associated with grafts

in general, and it has been hypothesised that this mismatch might play a role

in the development of intimal hyperplasia near the suture line (Leuprecht

et al., 2002). Whilst the cross-plane pressure gradient that exists in the helical

pipe means this may be slightly different to the straight pipe case, it is not

thought to be significant, and nor would it have such a direct bearing on the

rate of development of thrombosis within the graft itself.
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4 Conclusions

The results presented here promote an explanation of the mechanics of scalar

particle mixing in helical tubes. The dependence of mixing effectiveness on the

radial offset of peak axial velocity and strength of the vortical structures are

determined. If further studies of mixing in helical tubes are to be performed,

then a good estimate of the mixing can be made using these quantities, without

the need for 3−D particle tracking analysis; a large saving in computational

effort, enabling a larger parameter space to be examined. Quantifying this

mixing using an information entropy method, and particle residence times

shows that beyond R = 0.25D only a small increase in mixing occurs with

increasing helical radius, which may be important for clinical applications.
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