
Modelling and Refinement of Forensic Data Acquisition

Specifications

Benjamin Aziz

School of Computing
University of Portsmouth

Portsmouth PO1 3HE, United Kingdom
Telephone:+4402392842265

Fax:+4402392842525
Email: benjamin.aziz@port.ac.uk

Abstract

This paper defines a model of a special type of digital forensics tools, known
as data acquisition tools, using the formal refinement language Event-B. The
complexity and criticality of many types of computer and Cyber crime nowa-
days combined with improper or incorrect use of digital forensic tools calls for
more robust and reliable specifications of the functionality of digital forensics
applications. As a minimum, the evidence produced by such tools must meet
the minimum admissibility standards the legal system requires, in general im-
plying that it must be generated from reliable and robust tools. Despite the
fact that some research and effort has been spent on the validation of dig-
ital forensics tools by means of testing, the verification of such tools and
the formal specification of their expected behaviour remains largely under-
researched. The goal of this work is to provide a formal specification against
which implementations of data acquisition procedures can be analysed.

Keywords:
Computer Forensics, Disk Data Acquisition, Formal Specifications, Event-B
Method, Formal Refinement

1. Introduction

Digital forensics tools are becoming increasingly of a critical nature due
to the complexity of attacks on digital assets and the sophisticated role that
computer and Cyber systems play in modern day crime. As a result, there is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29587147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

continuous need in the law enforcement community to ensure the high qual-
ity of generated evidence and acceptable reliability levels for forensic tools
used in digital crime investigations, particularly when such investigations are
global and/or carry significant importance Friedberg (2012). As a result, it
is important to understand properties of digital forensic tools, in particular,
where correctness, accuracy and completeness of such tools is vital to the
course of justice and the discovering of facts. This view is supported by re-
search in recent years in the area of digital forensics modelling Carrier and
Spafford (2004); Ciardhuáin (2004); Beebe and Clark (2005); Ieong (2006);
Cohen (2009); Casey and Rose (2010), where the need for the development
of more robust and rigorous scientific methods is highlighted in the area of
digital forensics in Garfinkel et al. (2009).

The National Institute of Standards and Technology (NIST) project on
the Computer Forensic Tool Testing NIST (http://www.cftt.nist.gov/) aims
at raising the assurance of computer forensic tools by providing informal
definitions of the various computer forensic tools and the requirements un-
derlying such tools. These requirements are then used for the development of
functional specifications, test procedures, criteria, sets and hardware. In this
paper, we take this assurance process to another level where the functional
specifications and some of the properties of the computer forensic tools are
formally defined and verified using a well-established framework based on the
Event-B method Abrial (2010). According to Eoghan Casey Casey (2011),
such formalisation “encourages a complete, rigorous investigation, en-sures
proper evidence handling and reduces the chance of mistakes created by pre-
conceived theories, time pressures and other potential pitfalls.”.

The Event-B method facilitates the modelling of system specifications
based on a combination of set-theoretic and action semantics Mosses (1986);
Watt (1987). The top-level abstract model is then refined by adding more
detail and by following the rules of refinement Abrial et al. (2005) until the
desireable level of refinement is reached. In this paper, the abstract model for
a data acquisition tool is first defined and then refined by adding more detail
that distinguishes between accessible and inaccessible data in the acquired
source, and then by including contructs for preserving the integrity of the
acquired data based on hash functions. Throughout this refinement, the focus
of the work is on capturing some of the main requirements on data acquisition
tools as stated by NIST NIST (2004), in particular requirements related to
the accuracy and completeness of such tools. The result that the work shows
is that though completeness is possible to express generally, accuracy is not.

2

As a result, we conclude that any implementations of NIST’s specification of
a data acquisition tool must deal with accuracy in a delicate manner, paying
attention to the accessibility property of the acquired data.

The rest of the paper is structured as follows. In Section 2 we discuss re-
lated work. In Section 3, we give a brief introduction to the Event-B method
and language. In Section 4, we give an overview of NIST’s main require-
ments for a data acquisition tool. In Section 5, we define the first abstract
model of a data acquisition tool along with its completeness property. In
Section 6, this model is refined by distinguishing between accessible, hidden
and inaccessible data in the digital source. We show here that accuracy is
possible to define. In Section 7, we further refine the specification to include
the concept of hash functions and defined based on these the data integrity
requireements of the tool. Finally, we conclude the paper in Section 8 and
discuss future research directions.

2. Related Work

The application of formal modelling and analysis techniques to digital
forensics is by no means a new idea, though it has been under-researched
in many aspects. In Gladyshev and Enbacka (2007), the B method Abrial
(1996) is used for developing incosistency checks and verifying the correctness
of digital evidence. The B method has also been used to formally specify and
refine write blocker systems in Enbacka and Laibinis (2005); Enbacka (2007)
based on NIST’s informal definitions of these systems in NIST (2003) and
provide formal definitions of the properties of these systems. Our work here
follows on the footsteps of Enbacka and Laibinis (2005) by adopting similar
approach for a different type of digital forensic tools.

In Leigland and Krings (2004), the authors prpose a formal model for
analysing and constructing digital forensic procedures. The model is based
on set theory and incorporates attacks on systems. In Stephenson (2003),
the author uses coloured Petri Nets to model root cause analyses of digital
incidents (i.e. digital post mortems). In Gladyshev (2005), finite state ma-
chines are used as a defense tool to exploit weaknesses in claimed evidence in
computer investigations. The approach is applied to a case of blackmail in-
vestigations, where finite state machines are used to demonstrate alternative
scenarios to the claimed incident. More recently, James et al. (2009) com-
pute the intersection of the various states in a finite automata to reconstruct
events and evidence related to a specific crime incident. Earlier, in Carrier

3

(2006), Carrier defines a model of hypothesis-based digital forensics based on
finite state machines. The model captures the concept of computer history
and consequently, formalises evidence based on this concept.

In Rekhis and Boudriga (2005, 2010), the authors developed a logic-based
model, called S-TLA+, capable of describing complex investigations and gen-
erate evidence under different levels of abstraction. The model is also capable
of expressing anti-forensic attacks and provides the machinery to detect such
attacks based on the analysis of their action traces. Recently, this model
was extended in Rekhis and Boudriga (2012) to include a theory of hierachi-
cal visibility providing better verification framework of anti-forensic attacks.
In Mazza et al. (2011); Métayer et al. (2011), the authors propose a formal
framework for specifying and reasoning about decentralised logs, and define
an analysis that can generate both precise and approximate evidence of past
events.

There are some frameworks and methodologies that propose a testing
approach to the validation of digital forensics tools, including among oth-
ers NIST (http://www.cftt.nist.gov/); Beckett and Slay (2007); Guo et al.
(2009); Shamala and Azizah (2012). Nonetheless, formal verification and
analysis of such tools remains an area of research laregely unexplored, to-
wards which this paper aims to contribute.

3. Event-B

Event-B Abrial (2010) is an extension of Abrial’s B method Abrial (1996)
for modelling distributed systems. This section presents a brief overview of
Event-B. Modularity is central to the Event-B method and this is achieved
by structuring specifications and development into machines. Machines are
essentially abstract data types with states, representing an abstract model
of a system. An Evetn-B machine can be refined and implemented. The
correctness of the machines and the refinements can be validated by proof
obligations. Invariants and other predicates are given in first order predicate
calculus and set theory. The underlying logic is untyped.

In Event-B, machines are defined in a context, which has a unique name
and is identified by the keyword CONTEXT. It includes the following elements:
SETS defines the sets to be used in the model; CONSTANTS declares the con-
stants in the model; and finally, AXIOMS defines some restrictions for the sets
and includes typing constraints for the constants in terms set membership.
When a context is refined, it EXTENDS its related abstract context.

4

An Event-B machine is introduced by the MACHINE keyword, it has a
unique name. A machine SEES a particular context, which means that it is
able to access any sets or constants declared in that context. The machine
also includes the following elements. VARIABLES represents the variables
(state) of the model. INVARIANT describes the invariant properties of the
variables defined in the clause VARIABLES. Typing information and general
properties are described in this clause. These properties shall remain true in
the whole model and in further refinements. Invariants need to be preserved
by the initialisation and events clauses. INITIALISATION allows to give initial
values to the variables of the system.

EVENTS cause the state to change by updating the values of the variables
as defined by the generalised substitution of the event. Events are guarded
by a condition, which when satisfied implies that the event is permitted to
execute by applying its generalised substitution in the current state of the
machine.

Event-B also incorporates a refinement methodology, which can be used
by software architects to incrementally develop a model of a system starting
from the initial most abstract specification and following gradually through
layers of detail until the model is close to the implementation. A machine
REFINES its abstract parent from which it was refined. This means that
some of the events in the refined machine may be refinements of their parent
events, in which case this is indicated by using the keyword extends.

In Event-B, an event is defined by the following syntax:

EVENT e WHEN G THEN S END

where G is the guard, expressed as a first-order logical formula in the state
variables, and S is any number of generalised substitutions, defined as:

S ::= x := E(v) | x := z : |P (z) | S ‖ S ′

The deterministic substitution, x := E(v), assigns to variable x the value of
expression E(v), defined over set of state variables v. In a non-deterministic
substitution, x := z : |P (z), it is possible to choose non-deterministically
local variables, z, that will render the predicate P (z) true. If this is the case,
then the substitution, x := z, can be applied, otherwise nothing happens.
Finally, substitutions can be composed in parallel, S ‖ S ′.

For a comprehensive description of the Event-B language, its semantics

5

and its associated toolkit, Rodin, we refer the reader to other references such
as Abrial (2010); Abrial et al. (2010); Abrial and Hallerstede (2007); Métayer
et al. (2005).

4. Disk Data Acquisition Specifications

Forensic data acquisition is a process that involves the identification of a
digital source, such as a hard disk, a memory card or any other form of media
and data storage, and the copying of the identified data to some accessible
destination object, such as an image file, a clone or a bit-stream duplicate,
performed in a complete and accurate manner. Hence, completeness and
accuracy are the two most important features that any data acquisition tool
must demonstrate, in order for the tool to be considered of a forensic standard
of quality.

In practice, there is an abundance of disk imaging tools such as dd for
Linux and Clonezilla, as well as the more general computer forensic toolkits
that implement disk imaging, for example, the Slueth Kit, Encase and the
FTK Imager. The NIST Digital Data Acquisition Tool Specification NIST
(2004) is a document that outlines the main requirements expected of such
implementations of the data acquisition functionality. These requirements
are highlighted as mandatory and optional features of such tools. Here,
we focus on most of the main mandatory requirements, particularly paying
attention to those that deal with the completeness and accuracy of the tool,
and consider a couple of optional ones that are of interest to the integrity
of the acquired data. NIST also provides a specification of the plans and
assertions for testing digital data acquisition tools NIST (2005), but this is
currently outside the scope of this work.

The NIST document mentions a number of mandatory requirements re-
lated to disk data acquisition tools.

• DI-RM-01: The tool shall be able to acquire a digital source using
each access interface visible to the tool.

• DI-RM-02: The tool shall be able to create either a clone of a digital
source, or an image of a digital source, or provide the capability for the
user to select and then create either a clone or an image of a digital
source.

6

• DI-RM-03: The tool shall operate in at least one execution environ-
ment and shall be able to acquire digital sources in each execution
environment.

• DI-RM-04: The tool shall completely acquire all visible data sectors
from the digital source.

• DI-RM-05: The tool shall completely acquire all hidden data sectors
from the digital source.

• DI-RM-06: All data sectors acquired by the tool from the digital
source shall be accurately acquired.

• DI-RM-07: If there are unresolved errors reading from a digital source
then the tool shall notify the user of the error type and the error loca-
tion.

• DI-RM-08: If there are unresolved errors reading from a digital source
then the tool shall use a benign fill in the destination object in place
of the inaccessible data.

Requirement DI-RM-01 states the general functionality of a disk data ac-
quisition tool. Requirement DI-RM-02 relates to the two general methods
of data acquisition; imaging and cloning. In our model, we do not deal with
this distinction, nor with the distinction in the tool’s execution environment
as stated in requirement DI-RM-03. The completeness property of the tool
is demonstrated by requirements DI-RM-04 and DI-RM-05, which also
related to the two types of data the tool is expected to deal with, i.e. hidden
and visible data. Accuracy is expressed in DI-RM-06, and finally, require-
ments DI-RM-07 and DI-RM-08 are related to the case of errors occuring
during the acquisition process. Interestingly, DI-RM-08 hints at a third
type of data that the tool should deal with, namely, inaccessible data. We
consider in our model later only hidden data that are accessible.

In addition to the above features, we also tackle in our model a couple of
interesting optional features:

• DI-RO-16: If the tool offers block hash logging and block hash log-
ging is selected then the tool shall log correct hashes for blocks of the
requested size from the digital source.

7

• DI-RO-18: If the tool offers acquisition of a digital source that is
unprotected by a write block tool or device then an unprotected source
shall not be modified during the acquisition process.

The first requirement is related to the integrity of the acquisition, whereas
the second requirement protects the source against any writing.

5. The Abstract Model: General Definition of Data Acquisition

The abstract model consists of an abstract context and an abstract spec-
ification of the disk data acquisition tool as depicted in Figure 1.

Figure 1: A Representation of the Abstract Context and Machine of the Disk Data Ac-
quisition Tool.

The specification of this model is shown in Figure 2. The context defines
two types; Data representing the set of all of possible data, and Termination,
representing a binary yes/no value to indicate whether or not some process
has terminated. We call the source of acquisition DigitalSource as per the
NIST terminology, and for simplicity we assume it consists of three data
elements, sourceData1, sourceData2 and sourceData3, which can be thought
of as data in the digital source. Finally, null represents a bad data element
that does not belong to the digital source. The context also includes various
axioms on the above two data types and their member elements.

8

CONTEXT AbstractContext
SETS

Data The set of all possible data

Termination A binary set denoting whether acquisition has terminated or not

CONSTANTS

DigitalSource The source of digital data being imaged
yes

no

null

sourceData1

sourceData2

sourceData3

AXIOMS

axm3 : Data 6= ∅
axm1 : DigitalSource ⊆ Data
axm2 : Termination = {yes, no}
axm6 : yes 6= no

axm16 : null ∈ (Data \DigitalSource)
axm17 : sourceData1 ∈ DigitalSource
axm18 : sourceData2 ∈ DigitalSource
axm19 : sourceData3 ∈ DigitalSource
axm20 : sourceData1 6= sourceData2

axm21 : sourceData1 6= sourceData3

axm22 : sourceData3 6= sourceData2

END

MACHINE AbstractAcquisitionToolSpecification

SEES AbstractContext

VARIABLES

DestinationObject The destination object where the data is placed

AcquisitionTerminated Variable denoting the termination of the acquisition process

Acquired Variable to express whether an element in the source has been acquired or not

Figure 2: The Abstract Context and Specification of the Disk Data Acquisition Tool.

9

INVARIANTS

DestinationObjectType : DestinationObject ⊆ Data
AcquisitionTerminatedType : AcquisitionTerminated ∈ Termination
AcquiredType : Acquired ∈ DigitalSource→ Termination

Completeness : ∀x·(x ∈ DigitalSource ∧AcquisitionTerminated = yes)⇒
Acquired(x) = yes

EVENTS

Initialisation

begin

act1 : DestinationObject := ∅
Destination object is empty initially

act3 : AcquisitionTerminated := no
Initially, acquisition process has not terminated

act5 : Acquired : |(dom(Acquired′) = DigitalSource) ∧ (ran(Acquired′) = {no})
Initially, every element in the source object is not acquired yet

end

Event Acquisition =̂

any

sourceDataElement Pick some element in the source object
f

where

grd3 : AcquisitionTerminated = no
Check if acquisition has terminated or not

grd2 : Acquired(sourceDataElement) = no
such that the element has not been acquired yet

grd4 : f ∈ DigitalSource→Data
then

act1 : DestinationObject := DestinationObject ∪ {f(sourceDataElement)}
The source element is added to the destination after applying the f

behaviour function

act2 : Acquired := Acquired C− {(sourceDataElement 7→ yes)}
Mark source element as having been acquired

end

Event Termination =̂

when

grd1 : ∀x·x ∈ DigitalSource⇒Acquired(x) = yes
grd2 : AcquisitionTerminated = no

then

act1 : AcquisitionTerminated := yes
end

END

Figure 2: The Abstract Context and Specification of the Disk Data Acquisition Tool
(continued).

10

The machine AbstractAcquisitionToolSpecification represents the first most
abstract specification of a disk data acquisition tool, as per NIST’s defini-
tion. The machine “sees” the above defined context. In addition to the
initialisation event, the specification machine introduces two events express-
ing the main functionality of a disk acquisition tool: an Acquisition and a
Termination event. Additionally, the machine defines three variables; Des-
tinaitonObject representing the destination object to which the disk data
will be copied, a binary-valued counter AcquisitionTerminated to indicate
whether the acquisition process has terminated or not, and Acquired, which
is an overloaded function expressing whether a data element in the digital
source has been acquired or not.

The acquisition event will update the destination object with a value
corresponding to a new data element, sourceDataElement, selected from the
digital source. The value to which it is mapped depends on an abstract
function f , which is used to model “how” the source element is copied to
the destination. At this level, f is kept abstract and hence can express
any possible behaviour, as long as it is deterministic behaviour (i.e., f is
a function and not a relation). This is necessary since this behaviour will
differ in the case of copying accessible versus copying inaccessible data as we
shall explain in more detail in the first refinement of this specification later.
Therefore, at this level, the acquisition is denoted as the function application
f(sourceDataElement), where the type of f is chosen non-deterministicly.
This implies that it is possible here to give any clear definition of what accu-
racy means as per NIST’s definition of accuracy. More specifically, the model
is abstract enough to include both DI-RM-06 and DI-RM-08, therefore,
not permitting accuracy to be expressed here.

On the other hand, since we log all the acquisition steps using the Acquired
variable, it is possible to state the completeness property of the model as
follows as per requirements DI-RM-04 and DI-RM-05:

∀x·(x ∈ DigitalSource ∧ AcquisitionTerminated = yes)⇒
(Acquired(x) = yes)

which means that when the acquisition process has terminated, “every” el-
ement x in the digital source will have a yes value in Acquired (i.e. will
have been acquired). This result indicates that while it is possible to have a
general definition of completeness, accuracy cannot be defined generally due
to the conflicting requirements of DI-RM-06 and DI-RM-08 and therefore

11

must have a definition that is customised for both accessible and inaccessible
data, as we show next in the first refinement of this abstract model.

6. First Refinement: Data Visibility and Accessibility

The first refinement represents the addition of more detail to the initial
abstract context and machine of the previous section. The refined context, as
shown in Figure 3, is now able to distinguish between the hidden, visible and
inaccessible visible data on a digital source. It also introduces a “benign”
data element necessary for expressing the requirements of DI-RM-08, when
acquisition fails in copying data to the destination. Associated with this
benign element is a benignfill function, which is used to express such failure
behaviour. The specification of this refinement is shown in Figure 4.

Figure 3: A Representation of the First Extended Context and Refined Machine of the
Disk Data Acquisition Tool.

On the other hand, the first refinement machine introduces an additional
event called InaccessibleAcquisition, which is an extension of the Acquisition
abstract event. This event picks an inaccessible data element and fills its
destination with a benign data value, using the benignfill function. This
translation is logged and it is done for every inaccessible data element in the
digital source.

12

CONTEXT FirstExtendedContext

EXTENDS AbstractContext

CONSTANTS

InaccessibleV isibleData

V isibleData

HiddenData

benignData

benignfill

AXIOMS

axm3 : InaccessibleV isibleData ⊆ DigitalSource
axm4 : V isibleData ⊆ DigitalSource
axm5 : HiddenData ⊆ DigitalSource
axm6 : InaccessibleV isibleData ∩ V isibleData = ∅
axm7 : HiddenData ∩ V isibleData = ∅
axm8 : InaccessibleV isibleData ∩ HiddenData = ∅
axm9 : DigitalSource = HiddenData ∪ V isibleData ∪ InaccessibleV isibleData
axm14 : V isibleData 6= ∅
axm15 : InaccessibleV isibleData 6= ∅
axm16 : HiddenData 6= ∅
axm10 : benignData ⊆ Data
axm11 : benignData ∩ DigitalSource = ∅
axm12 : benignfill ∈ DigitalSource→ benignData

axm17 : null /∈ benignData
END

MACHINE FirstRefinedAcquisitionToolSpecification

REFINES AbstractAcquisitionToolSpecification

SEES FirstExtendedContext

VARIABLES

DestinationObject The destination object where the data is placed

AcquisitionTerminated Variable denoting the termination of the acquisition process

Acquired Variable to express whether an element in the source has been acquired or not

WhatAcquired Variable denoting what value the source element has been mapped
to in the destination

INVARIANTS

Accuracy : ∀x·(x ∈ DigitalSource ∧AcquisitionTerminated = yes)⇒
(WhatAcquired(x) = (λy ·y ∈ DigitalSource|y)(x)) ∨
(x ∈ InaccessibleV isibleData ∧ (WhatAcquired(x) = benignfill(x)))

Figure 4: The First Refinement of the Context and Specification of the Disk Data Acqui-
sition Tool.

13

EVENTS

Initialisation
extended

begin

act1 : DestinationObject := ∅
Destination object is empty initially

act3 : AcquisitionTerminated := no
Initially, acquisition process has not terminated

act5 : Acquired : |(dom(Acquired′) = DigitalSource) ∧ (ran(Acquired′) = {no})
Initially, every element in the source object is not acquired yet

act6 : WhatAcquired : |(dom(WhatAcquired′) = DigitalSource) ∧
(ran(WhatAcquired′) = {null})
Initially, source elements have no acquired values in the destination

end

Event Acquisition =̂

extends Acquisition

any

sourceDataElement Pick some element in the source object
f

where

grd3 : AcquisitionTerminated = no
Check if acquisition has terminated or not

grd2 : Acquired(sourceDataElement) = no
such that the element has not been acquired yet

grd4 : f ∈ DigitalSource→Data
grd5 : sourceDataElement /∈ InaccessibleV isibleData
grd6 : f = (λx·x ∈ DigitalSource|x)

then

act1 : DestinationObject := DestinationObject ∪ {f(sourceDataElement)}
The source element is added to the destination after applying
the f behaviour function

act2 : Acquired := Acquired C− {(sourceDataElement 7→ yes)}
Mark source element as having been acquired

act3 : WhatAcquired := WhatAcquired C− {(sourceDataElement
7→ f(sourceDataElement))}

Log the mapped value
end

Event Termination =̂

extends Termination

when

grd1 : ∀x·x ∈ DigitalSource⇒Acquired(x) = yes
grd2 : AcquisitionTerminated = no

then

act1 : AcquisitionTerminated := yes
end

Figure 4: The First Refinement of the Context and Specification of the Disk Data Acqui-
sition Tool (Continued).

14

Event InaccessibleAcquisition =̂

extends Acquisition

any

sourceDataElement Pick some element in the source object
f

where

grd3 : AcquisitionTerminated = no
Check if acquisition has terminated or not

grd2 : Acquired(sourceDataElement) = no
such that the element has not been acquired yet

grd4 : f ∈ DigitalSource→Data
grd1 : sourceDataElement ∈ InaccessibleV isibleData
grd5 : f = benignfill

then

act1 : DestinationObject := DestinationObject ∪ {f(sourceDataElement)}
The source element is added to the destination after
applying the f behaviour function

act2 : Acquired := Acquired C− {(sourceDataElement 7→ yes)}
Mark source element as having been acquired

act3 : WhatAcquired := WhatAcquired C− {(sourceDataElement
7→ f(sourceDataElement))}

Log the mapped value
end

END

Figure 4: The First Refinement of the Context and Specification of the Disk Data Acqui-
sition Tool (Continued).

15

By contrast, the original Acquisition event is now refined to be able to
deal with all the other types of accessible data on the source. These include
both visible and hidden data. We now arrive at the interesting part of this
model, which is the definition of accuracy:

∀x·(x ∈ DigitalSource ∧ AcquisitionTerminated = yes)⇒
(WhatAcquired(x) = (λy ·y ∈ DigitalSource|y)(x))∨
(x ∈ InaccessibleVisibleData ∧ (WhatAcquired(x) = benignfill(x)))

This definition states that once acquisition has terminated, then what has
been acquired, in terms of data elements in the digital source, is either the
same data obtained by applying the identity function (first part of the right-
side of the logical implication), or a benign representation of that data ob-
tained by applying the benignfill function (second part of the right-side of
the implication). This definition is suitable for both cases of accessible and
inaccessible data, this is thanks to the presence of suffecient detail in the
refined model. It does also highlight the need to treat accuracy more del-
icately than one would expect due to this differntiation between accessible
and inaccessible data in NIST’s requirements.

Our model above considers the visibility and accessibility aspects of the
acquired data, which is a common property of most digital storage media
with configurable sectors. Hidden sectors are abstractions of Device Con-
figuration Overlays (DCOs) and Host Protected Area (HPAs) on a digital
source. Data resident in such areas are not visible to an application and
cannot be read (therefore cannot be acquired). In the case of logical block
addressing on a hard disk for example, the presence of hidden sectors on the
disk will result in the setting of the MAX LBA ADDRESS variable to a value
less than that of the ACTUAL MAX LBA variable. The difference between
the two is the hidden area. Ideally, a data acquisition tool should reconfigure
the digital source drive such that the drive allows access to the hidden sectors
by resetting the MAX LBA ADDRESS to the ACTUAL MAX LBA. This
will allow access to the entire drive and remove any existing hidden areas.
Nonetheless, this introduces a (legal) side issue about as to what to do after
the acquisition: whether to reset the MAX LBA ADDRESS variable to its
original value (i.e. re-introduce the hidden sectors) or not, since this recon-
figuration may be considered as an alteration of evidence. Therefore, in our
model above, we consider the general case where hidden areas are allowed
to exist to avoid such legal issues and assume that the specific case where

16

no hidden areas exist to be simply equivalent to a machine with no axiom
HiddenData 6= ∅.

As mentioned in the introduction, the model only considers accessible
hidden data. A further refinement of this machine would be to consider the
case where hidden data has also an inaccessible part. This can easily be
included by adding an additional data set InAccessibleHiddenData to refer
to the inaccessible element of the hidden sectors.

7. Second Refinement: Additional Features

The second and final refinement of the data acquisition model is aimed
at expressing the optional requirements of DI-RO-16 and DI-RO-18 in
NIST’s specification. This refinement introduces a new context, as shown
in Figure 5, which includes the definition of a hash function as well as an
axiom (axm2) on its uniqueness property. This is then captured in the refined
machine by a BlockHash, which maps every subset of the source data to its
hash value.

Figure 5: A Representation of the Second Extended Context and Refined Machine of the
Disk Data Acquisition Tool.

17

Specification of this second refined machine and context is shown in Fig-
ure 6. A new event is introduced, ComputeBlockHash, which is run before
the acquisition takes place. This is necessary in order to preserve the integrity
of the source data before even the acquisition has commenced. Once this is
done, the rest of the second refinement machine behaves similarly to the pre-
vious first refinement machine. The inclusion of the hashing functionality
so far implements DI-RO-16 of NIST’s optional requirements. It is worth
pointing out here that the current level of abstraction of this machine adopts
the idealistic definition of hash functions, i.e. that they should be collision
free. However, in a different refinement path where different machines geared
towards error-prone implementations of hashing (with some probabilistic es-
timates of their collision rates), one would be able to further express other
qualitative aspects of data acquisition tools that would be based on the qual-
ity of the hashing algorithm implemented by the tool. Again, we consider
this level of detail to be out of the scope of the paper but an interesting
direction for future research.

Finally, DI-RO-18 is maintained by declaring the DigitalSource being
acquired throughout the three refinement levels as a constant in the context
of the machine. This implies that any correct implementation of the tool
based on the model set out here (at any level of abstraction) will not be able
to (and should not) modify the DigitalSource constant, thereby enforcing
DI-RO-18. Another alternative for ensuring that the source is not mod-
ified during the acquisition process is comparing the block hash value (i.e.
BlockHash(x)) computed at the beginning of the process with the actual hash
value of the source (i.e. hashFun(x)). This can be expressed as the following
invariant:

∀x·x ∈ P(DigitalSource)⇒
((StartAcquisition = yes)⇒ (hashFun(x) = BlockHash(x))

Note that this invariant holds from the point in time when the acquisition pro-
cess starts onward. The fact that BlockHash(x) remains unchanged through-
out the machine lifecycle is reflected in its equality with its value computed
by the event ComputeBlockHash, otherwise, any such changes would violate
the equality hashFun(x) = BlockHash(x). This requirement is interesting in
that it implements the comparison of the value of the digital source pre- and
post-acquisition using hash functions. Another choice would be to copy the
pre-acquisition value to a reference copy and then compare this to the post-

18

CONTEXT SecondExtendedContext

EXTENDS FirstExtendedContext

CONSTANTS

hashFun
AXIOMS

axm1 : hashFun ∈ P(DigitalSource)→ N1

axm2 : ∀x, y ·(x ∈ dom(hashFun) ∧ y ∈ dom(hashFun))⇒
(hashFun(x) = hashFun(y)⇒ (x = y))

END

MACHINE SecondRefinedAcquisitionToolSpecification

REFINES FirstRefinedAcquisitionToolSpecification

SEES SecondExtendedContext

VARIABLES

DestinationObject The destination object where the data is placed

AcquisitionTerminated Variable denoting the termination of the acquisition process

Acquired Variable to express whether an element in the source has been acquired or not

WhatAcquired Variable denoting what value the source element has been mapped to

StartAcquisition Variable to control the start of the acquisition process

BlockHash Variable that maps every subset of the Digital Source data to its hash value

INVARIANTS

StartAcquisitionType : StartAcquisition ∈ Termination
BlockHashType : BlockHash ∈ P(DigitalSource)→ N

EVENTS

Initialisation
extended

begin

act1 : DestinationObject := ∅
Destination object is empty initially

act3 : AcquisitionTerminated := no
Initially, acquisition process has not terminated

act5 : Acquired : |(dom(Acquired′) = DigitalSource) ∧ (ran(Acquired′) = {no})
Initially, every element in the source object is not acquired yet

act6 : WhatAcquired : |(dom(WhatAcquired′) = DigitalSource) ∧
(ran(WhatAcquired′) = {null})

Initially, source elements have no acquired values in the destination
act7 : BlockHash : |∀x·x ∈ P(DigitalSource)⇒BlockHash′(x) = 0
act8 : StartAcquisition := no

end

Figure 6: The Second Refinement of the Context and Specification of the Disk Data
Acquisition Tool.

19

Event ComputeBlockHash =̂

when

grd1 : StartAcquisition = no
grd2 : AcquisitionTerminated = no

then

act2 : BlockHash := {x 7→ y|x ∈ P(DigitalSource) ∧ y = hashFun(x)}
act1 : StartAcquisition := yes

end

Event Acquisition =̂

extends Acquisition

any

sourceDataElement Pick some element in the source object
f

where

grd3 : AcquisitionTerminated = no
Check if acquisition has terminated or not

grd2 : Acquired(sourceDataElement) = no
such that the element has not been acquired yet

grd4 : f ∈ DigitalSource→Data
grd5 : sourceDataElement /∈ InaccessibleV isibleData
grd6 : f = (λx·x ∈ DigitalSource|x)
grd7 : StartAcquisition = yes

then

act1 : DestinationObject := DestinationObject ∪ {f(sourceDataElement)}
The source element is added to the destination after applying
the f behaviour function

act2 : Acquired := Acquired C− {(sourceDataElement 7→ yes)}
Mark source element as having been acquired

act3 : WhatAcquired := WhatAcquired C−
{(sourceDataElement 7→ f(sourceDataElement))}

Log the mapped value
end

Event Termination =̂

extends Termination

when

grd1 : ∀x·x ∈ DigitalSource⇒Acquired(x) = yes
grd2 : AcquisitionTerminated = no
grd3 : StartAcquisition = yes

then

act1 : AcquisitionTerminated := yes
end

Figure 6: The Second Refinement of the Context and Specification of the Disk Data
Acquisition Tool (Continued).

20

Event InaccessibleAcquisition =̂

extends InaccessibleAcquisition

any

sourceDataElement Pick some element in the source object
f

where

grd3 : AcquisitionTerminated = no
Check if acquisition has terminated or not

grd2 : Acquired(sourceDataElement) = no
such that the element has not been acquired yet

grd4 : f ∈ DigitalSource→Data
grd1 : sourceDataElement ∈ InaccessibleV isibleData
grd5 : f = benignfill
grd6 : StartAcquisition = yes

then

act1 : DestinationObject := DestinationObject ∪ {f(sourceDataElement)}

The source element is added to the destination after applying
the f behaviour function

act2 : Acquired := Acquired C− {(sourceDataElement 7→ yes)}
Mark source element as having been acquired

act3 : WhatAcquired := WhatAcquired C−
{(sourceDataElement 7→ f(sourceDataElement))}

Log the mapped value
end

END

Figure 6: The Second Refinement of the Context and Specification of the Disk Data
Acquisition Tool (Continued).

21

acquisition value of the source. However, this choice renders the definition of
the invariant (and consequently the requirement) cyclic. Instead, the current
definition simply reduces the correctness of the requirement to the correct-
ness of the hash function adopted. The invariant, however, is based on the
ideal view that hash functions (in this case hashFun) are collision-free.

8. Conclusion and Future Work

This paper presented a formal specification based on Event-B of the data
acquisition functionality of digital forensics tools. The specification defined
three levels of abstraction; the first level is the most abstract and does not
distinguish in the accessibility of acquired data, the second includes a clear
distinction between accessible, non-accessible and hidden data. The third
level includes detail about the integrity of the acquisition process.

One of the advantages of using formal methods techniques is the ability to
express good properties of the specification as proof obligations. Discharging
proof obligations guarantees model consistency throughout the refinement
process. In our case, the successful discharging of the proof obligations per-
formed with the help of the Rodin tool, for the accuracy and completeness
properties, revealed that accuracy, unlike completeness, is not a general prop-
erty that can be specified, reasoned on and talked about in a uniform manner.
The validity of the accuracy property is closely coupled with the accessibility
property of the acquired data, and can hold a different meaning depending
on whether the acquired data is accessible or not.

The refinement methodology (where Event-B is an example of) allows
detail to be included in the model to as much precision as needed by the
system and its context. Therefore the above three levels of abstraction are
by no means an exhaustive definition of how data acquisition is performed
with real tools. For example, one important aspect of this acquisition that
we do not consider here is the type of the interface access used by the digital
source, such as whether this is BIOS or Direct. This differece in the interface
type may cause different data acquisition tools to interpret the number of
sectors in the digital source differently, hence impacting the definition of the
machine variable DigitalSource in our model. Further refinement machines
could take this additional detail into consideration.

There are several other directions for future research based on the results
of this paper. First, it is important to extend the existing model to deal
with the rest of the NIST requirements on data acquisition NIST (2004), as

22

this may reveal further interesting results. For example, additional detail
related to the types of digital source interfaces and the presence or not of
hidden sectors and their accessibility have all the potential for studying other
interesting aspects and properties of data acquisition tools by introducing
specialised refinements that will deal with this level of detail. For the scope
of this paper, we consider these as interesting areas of future work.

Similar to NIST’s testing plans NIST (2005), one of the main other ad-
vantages of adopting an automated formal framework such as Event-B is that
it is also possible to generate test cases based on the specifications describing
the modelled system (see for example Malk et al. (2009)). This will provide
the possibility in the future for generating test cases for digital forensics tools
based on robust methods. Rodin also provides a plug-in called MBT (Model-
Based Testing) for the generation of execution paths, counter paths and test
suites for the model. This means that the testing methodology can be more
rigorous than for example the testing plan of NIST NIST (2005). The test
suite generation provides automatic algorithms for different strategies in-
cluding minimum size of test suite, minimum number of executed events,
minimum length of longest execution path, maximum distribution quality
and balanced cases between other path lengths and minimum longest path’s
length. The MBT tool can also provide a counter example involving any
number of the events specified in the model.

Finally, we plan to consider other digital forensics tools covered by the
NIST testing project, such as deleted file recovery and storage media prepa-
ration.

9. Acknowledgements

The author would like to thank the anonymous reviewers for their time
and effort in providing valuable feedback and constructive comments to the
initial versions of this paper. Many thanks to Geoff Hamilton for early com-
ments on this work.

References

Abrial JR. The B Book. Cambridge University Press, 1996.

Abrial JR. Modeling in Event-B: System and Software Design. Cambridge
University Press, 2010.

23

Abrial JR, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT
2010;12(6):447–66.

Abrial JR, Cansell D, Méry D. Refinement and reachability in eventb. In:
ZB. Springer; volume 3455 of Lecture Notes in Computer Science; 2005.
p. 222–41.

Abrial JR, Hallerstede S. Refinement, Decomposition, and Instantiation
of Discrete Models: Application to Event-B. Fundamenta Informaticae
2007;77(1-2):1–28.

Beckett J, Slay J. Digital forensics: Validation and verification in a dynamic
work environment. In: Proceedings of the 40th Annual Hawaii Interna-
tional Conference on System Sciences. IEEE Computer Society; HICSS
’07; 2007. p. 266a–.

Beebe N, Clark JG. A hierarchical, objectives-based framework for the digital
investigations process. Digital Investigation 2005;2(2):147–67.

Carrier B. A Hypothesis-Based Approach to Digital Forensic. Ph.D. thesis;
Purdue University; 2006.

Carrier BD, Spafford EH. An event-based digital forensic investigation frame-
work. In: Proceedings of the 4th Digital Forensic Research Workshop.
DFRWS’04; 2004. .

Casey E. Digital Evidence and Computer Crime Forensic Science, Comput-
ers and the Internet 3rd Ed. Elsevier, 2011.

Casey E, Rose C. Forensic Discovery: Handbook of Digital Forensics and
Investigation. Academic Press, 2010.

Ciardhuáin SO. An extended model of cybercrime investigations. IJDE
2004;3(1).

Cohen F. Digital Forensic Evidence Examination. Fred Cohen & Associates,
2009.

Enbacka A. Formal methods based approaches to digital forensics. Master’s
thesis; Åbo Akademi University; 2007.

24

Enbacka A, Laibinis L. Formal specification and refinement of a write blocker
system for digital forensics. 2005.

Friedberg S. Report of digital forensic analysis in: Paul d. ceglia v. mark
elliot zuckerberg, individually, and facebook, inc. 2012.

Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing science to digital foren-
sics with standardized forensic corpora. Digital Investigation 2009;6:2–11.

Gladyshev P. Finite state machine analysis of a blackmail investigation.
IJDE 2005;4(1).

Gladyshev P, Enbacka A. Rigorous development of automated inconsistency
checks for digital evidence using the b method. IJDE 2007;6(2).

Guo Y, Slay J, Beckett J. Validation and verification of computer forensic
software tools-searching function. Digit Investig 2009;6:S12–22.

Ieong RSC. Forza - digital forensics investigation framework that incorporate
legal issues. Digital Investigation 2006;3(Supplement-1):29–36.

James J, Gladyshev P, Abdullah MT, Zhu Y. Analysis of evidence using
formal event reconstruction. In: ICDF2C. Springer; volume 31 of Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering ; 2009. p. 85–98.

Leigland R, Krings AW. A formalization of digital forensics. IJDE 2004;3(2).

Malk QA, Lilius J, Laibinis L. Scenario-based test case generation using
event-b models. In: Proceedings of the 2009 First International Conference
on Advances in System Testing and Validation Lifecycle. Washington, DC,
USA: IEEE Computer Society; VALID ’09; 2009. p. 31–7.

Mazza E, Potet ML, Le Métayer D. A formal framework for specifying
and analyzing logs as electronic evidence. In: Proceedings of the 13th
Brazilian conference on Formal methods: foundations and applications.
Berlin, Heidelberg: Springer-Verlag; SBMF’10; 2011. p. 194–209.

Métayer C, Abrial JR, Voisin L. Event-B Language. Rodin Deliverable D3.2;
2005.

25

Métayer DL, Maarek M, Mazza E, Potet ML, Frénot S, Tong VVT, Craipeau
N, Hardouin R. Liability issues in software engineering: the use of formal
methods to reduce legal uncertainties. Commun ACM 2011;54(4):99–106.

Mosses PD. Action semantics. In: ADT. 1986. .

NIST . Software Write Block Tool Specification and Test Plan (v3.0). Tech-
nical Report; NIST; 2003.

NIST . Digital Data Acquisition Tool Specification (v4.0). Technical Report;
NIST; 2004.

NIST . Digital Data Acquisition Tool Test Assertions and Test Plan (v1.0).
Technical Report; NIST; 2005.

NIST . Computer forensics tool testing (cftt) project web site.
http://www.cftt.nist.gov/.

Rekhis S, Boudriga N. A formal logic-based language and an automated
verification tool for computer forensic investigation. In: Proceedings of
the 2005 ACM symposium on Applied computing. New York, NY, USA:
ACM; SAC ’05; 2005. p. 287–91.

Rekhis S, Boudriga N. Formal digital investigation of anti-forensic attacks.
In: Proceedings of the 2010 Fifth IEEE International Workshop on System-
atic Approaches to Digital Forensic Engineering. Washington, DC, USA:
IEEE Computer Society; SADFE ’10; 2010. p. 33–44.

Rekhis S, Boudriga N. A hierarchical visibility theory for formal digital inves-
tigation of anti-forensic attacks. Computers & Security 2012;31(8):967–82.

Shamala P, Azizah AM. Digital Computer Forensic: Validation and Veri-
fication for Disk Imaging: A Comprehensive Validation and Verification
(V&V) Disk Imaging Model for Court of Law Admissibility. LAP LAM-
BERT Academic Publishing, 2012.

Stephenson P. Modeling of post-incident root cause analysis. IJDE 2003;2(2).

Watt DA. An action semantics of standard ml. In: MFPS. Springer; volume
298 of Lecture Notes in Computer Science; 1987. p. 572–98.

26

