
Information Technology

A History and Future of Web APIs
--Manuscript Draft--

Manuscript Number: ITIT-13-1035R2

Full Title: A History and Future of Web APIs

Article Type: Special Issue

Keywords: D.1.3 [Programming Techniques: Distributed programming]; D.2.11 [Software
Architectures]; K.2 [History of Computing: Systems]

Corresponding Author: Jacek Kopecky, Ph.D.
University of Portsmouth
UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Portsmouth

Corresponding Author's Secondary
Institution:

First Author: Jacek Kopecky, Ph.D.

First Author Secondary Information:

Order of Authors: Jacek Kopecky, Ph.D.

Paul Fremantle

Rich Boakes, Dr.

Order of Authors Secondary Information:

Abstract: Distributed information systems predominantly have client-server
architectures, as does the Web itself. In this article, we review the
evolution of the interface of client-server distributed systems, from
Messaging and RPC systems that predate the Web, to RESTful Web APIs. We
highlight the often overlooked importance of the client-server interface in
Web applications, and we reference historic and current systems to discuss
the roles of "Web Service" technologies and Service-Oriented Architectures.
Considering the future, we point out four directions in which we can see Web
APIs moving, including the incorporation of hypermedia and semantics.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29586936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information Technology

A History and Future of Web APIs

Dr. Jacek Kopecký: School of Computing, University of Portsmouth, Buckingham Building,
Lion Terrace, PO1 3HE Portsmouth, UK
Tel: +44-23-92846428, E-Mail: jacek.kopecky@port.ac.uk
Jacek Kopecký is a Lecturer in Information Systems at University of Portsmouth, United
Kingdom. He was involved in Web Services and Semantic Web research at the Open University
(UK) and at the University of Innsbruck (Austria), where he received his doctorate for work
on automation supported by lightweight semantic descriptions. Jacek has contributed to Web
services standardization at the W3C, and he chaired the W3C Semantic Annotations for
WSDL (SAWSDL) working group.

Mr. Paul Fremantle: School of Computing, University of Portsmouth, Buckingham Building,
Lion Terrace, PO1 3HE Portsmouth, UK
E-Mail: paul.fremantle@port.ac.uk, paul@wso2.com
Paul Fremantle is CTO and Co-Founder of WSO2, a company providing Open Source
enterprise middleware. Paul is one of the founders and committers on the Apache Synapse
project, as well as participating in a number of other open source initiatives. Paul chaired the
OASIS WS-RX technical committee and was previously a Senior Technical Staff Member at
IBM. Currently, Paul is pursuing a doctoral degree at University of Portsmouth.

Dr. Rich Boakes: School of Computing, University of Portsmouth, Buckingham Building,
Lion Terrace, PO1 3HE Portsmouth, UK
E-Mail: rich.boakes@port.ac.uk
Rich Boakes teaches at University of Portsmouth and is Course leader for BSc (Hons) Web
Technologies. Prior to entering academia he worked at IBM and Netscape in consultancy roles,
helping customers design, deploy and maintain open and web-based systems.

Keywords: D.1.3 [Programming Techniques: Distributed programming]; D.2.11 [Software

Architectures]; K.2 [History of Computing: Systems]

MS-ID: jacek.kopecky@port.ac.uk February 26, 2014

Heft: / ()

Manuscript (-.tex, -.word)
Click here to download Manuscript (-.tex, -.word): cameraready.tex

http://www.editorialmanager.com/itit/download.aspx?id=11266&guid=c7c160d6-3a40-4e27-9136-55594ebfec46&scheme=1

Abstract

Distributed information systems predominantly have client-server architectures, as does the Web itself. In
this article, we review the evolution of the interface of client-server distributed systems, from Messaging
and RPC systems that predate the Web, to RESTful Web APIs. We highlight the often overlooked
importance of the client-server interface in Web applications, and we reference historic and current systems
to discuss the roles of “Web Service” technologies and Service-Oriented Architectures. Considering the
future, we point out four directions in which we can see Web APIs moving, including the incorporation
of hypermedia and semantics.

Zusammenfassung

Ebenso wie das Web besitzen verteilte Informationssysteme vorwiegend Client-Server Architekturen.
In diesem Artikel untersuchen wir die Entwicklung von Schnittstellen verteilter Client-Server Systeme
beginnend mit dem Web vorausgehenden Messaging- und RPC-Systemen, bis hin zu RESTful Web APIs.
Wir beleuchten den oft vernachlässigten Stellenwert der Client-Server-Schnittstelle bei Webanwendungen,
zudem beziehen wir uns auf historische sowie gegenwärtige Systeme, um die Rollen von “Web-Service”-
Technologien und serviceorientierten Architekturen zu diskutieren. In Hinblick auf die Zukunft zeigen wir
vier Richtungen auf, in die sich Web APIs unserer Ansicht nach bewegen können, die Einbindung von
Hypermedia und Semantik eingeschlossen.

2

1 Introduction

The Web was proposed as a hypertext system for shar-
ing data and information among scientists [4], and has
grown into an unparalleled platform on which to develop
distributed information systems. Most new information
systems are now Web applications, and many older sys-
tems (e.g. government, military and enterprise systems)
have been given web-based APIs and interfaces.

Web architecture is predominantly client-server, a
model that is often extended to 3-tier and n-tier ar-
chitectures [8]. Client-server models allow us to isolate
clients and servers to analyse their architectures, and
to separately consider the interfaces between them. We
focus here specifically on these interfaces.

Principled, forward-looking interface design benefits
the distributed applications that use it by: 1) enabling
the independent evolution of systems on either side of
the interface; 2) affording optimal use of the underly-
ing network, and; 3) spurring unforeseen adoption and
growth (e.g. through third-party clients, or the adoption
of the interface itself in wider reaching protocols). This
final aspect leads to the “network effect”, where the ef-
fectiveness of a network of connected systems grows with
each additional connected system.

Therefore, Web application architects should under-
stand the importance of the public-facing programmatic
APIs exposed by their applications. Much has been writ-
ten about good practices for so-called RESTful Web
APIs, esp. [26], along with many online sources.

In this article, we present client-server interfaces in
historical context, highlighting how technologies and ap-
proaches (that are sometimes complementary, divergent
or contradictory) have been embraced and assimilated
in the Web-based systems and applications.

The evolution of distributed systems began with
message-passing primitives that evolved from OS sup-
port for interprocess communication, therefore we start
by looking at Messaging Systems that expose network
communication to programs (Section 2). We further dis-
cuss Remote Procedure Calls (RPC) that hide network
communication behind programming interfaces, but in-
troduce architectural and practical issues (Section 3).
Then we consider Service-Oriented Architectures (SOA)
through their realisation as Web Services which ag-
glomerate loosely-coupled and coarse-grained compo-
nents aligned with business (not IT) needs (Section 4). A
growing understanding of HTTP, along with ubiquitous
JavaScript clients, enabled true emergence of services
on the Web, in the form of Web APIs (discussed in Sec-
tion 5). Finally, we will look at the most recent progress
of Web APIs, adopting further traits of the Web, espe-
cially hypertext and linked data (Section 6).

In the end, in Section 7 we look back at the develop-
ments in this space. We identify a number of character-
istics of Web interfaces that make them highly effective
and reusable; in short, we call such interfaces Webful.

2 Messaging systems

The original communication primitives for distributed
systems came from the operation systems concept of
asynchronous messaging. Extending the principle of di-
rectly sending a message from one process to another,
there are two very common higher-level paradigms
for messaging systems: queueing and publish/subscribe.
Both aim to decouple the client from the server (or in
messaging terms the producer from the consumer).

Queues comprise three useful aspects: firstly, decou-
pling producers and consumers with named queues. Sec-
ondly, queues can enfoce ordered delivery, ensuring that
messages are dealt with in the same order they were
sent. Finally, a queue may feature Qualities of Service
(QoS) such as reliable, exactly-once delivery.

Queues have become particularly popular in cloud
deployments because they support elastically scaled
servers: clients can add messages to a queue, and servers
can take messages from the queue and act upon them.
Each server can thus be maximally loaded, pulling work
when it has capacity to handle it. When the queue is
long, more servers can be started to handle the work.

The publish/subscribe (“pub-sub”) model is another
way of decoupling producers from consumers. Pub-sub
systems differ from queues by (a) defining topic names
that can be subscribed to by multiple consumers, and
(b) enabling topic hierarchies, so a subscription to any
tree node gives an aggregate of child topics.

Messaging systems in general focus their attention
on message transmission, obscuring the intended func-
tionality and behaviors of the clients and servers. As
commented by Nelson in [24], the message-passing ap-
proach “can have several disadvantages from a language
design standpoint. The first is that messages introduce a
control primitive that is quite different from procedure-
oriented mechanisms. This can be a problem for proce-
dural [...] languages where a message-passing operation
is a new communication primitive.”

However, recently a number of programming lan-
guages and paradigms have emerged based on the mes-
saging model, in particular the Erlang language with
the Actor model [31], and derivatives such as the Akka
framework in the Scala language [16].

3 RPC Systems

RPC (Remote Procedure Call) implementations encap-
sulate all communication code making communicating
programs easier to understand. This complexity-hiding
is popular, supporting the original intent of Birrell and
Nelson whose “primary purpose of our RPC project was
to make distributed computation easy” [5].

Arguably, RPC made distributed computation too
easy, and RPC systems suffered from a number of issues,
both architectural and practical, including the “Fallacies

3

of Networked Computing” [18]. Here, we show five issues
that pertain to the client-server interface:

1. RPC systems tend to be tightly coupled : remote
calls look like calls in the same program, but two
codebases are involved, leading to issues when one
is updated.

2. RPC hides network communication, so develop-
ers may forget or ignore potential network failures
that may lead to systems in inconsistent states.

3. RPC obscures the inherent insecurity of networks,
where multiple parties may observe, manipulate or
inhibit data-flows.

4. As illustrated in [5], RPC systems were designed
to perform close to the speed of native proce-
dure calls. This promotes fine-grained, conver-
sational, and often synchronous procedure in-
terfaces, whereas in distributed systems, coarse
grained, stateless, asynchronous interfaces are
more scalable, more resilient to latency and better
able to exploit inherent parallelism. [12, 2].

5. Finally, RPC enables the deployment of clients
and servers on diverse hardware and software plat-
forms. This creates space for interoperability is-
sues, an inherent weakness of the RPC paradigm.
The similarity with native procedure calls encour-
ages the use of native data types and structures
that do not always map well between platforms.

These issues are avoidable, whether through careful
design and planning, and (for example) by using exten-
sions to RPC (such as using asynchronous calls), how-
ever, RPCs tends to hide these issues, rather than ex-
posing them and promoting good practice. These issues
were not solved in RPC’s successors, such as CORBA.1

4 Web Services

The Web was initially built as a client-server system
for human-oriented hypertext documents [3]. Early on,
Web application interactivity was constrained to follow-
ing links and reading documents. Later, forms were in-
corporated into HTML, and HTTP was extended to in-
clude the ability to send data as well as request it. Sub-
sequently, the W3C developed XML and the potential
of using Web technologies as a platform for distributed
systems, gained recognition.

In 1999, two related technologies were released:
XML-RPC [32] and SOAP 0.9 (ultimately standardized
as SOAP 1.2 in [28]), and a great standardization and
technological push movement was born, under the name
Web Services. The movement was led by major soft-
ware vendors including IBM, Microsoft, Sun, Oracle and

BEA, whose aim was to create a standard interoperable
approach for interconnecting large systems.

A key aspect of Web Services was the description
of services via the Web Services Description Language
(WSDL). WSDL made it very simple to take existing
objects and map them into services, and to take exist-
ing WSDLs and map them into objects on the client
side. The result was a success for ease of use, but it fur-
thered an RPC view of SOAP. The second major edi-
tions of both core Web Services specifications (SOAP 1.2
and WSDL 2.0) made significant changes to promote a
more message-oriented approach, but were finalised too
late, and even today, six years after the final version of
WSDL 2.0, there is almost no adoption of it [23].

One of the biggest challenges to the success of
the Web Services standards stemmed from the po-
litical arguments between vendors. This led to the
creation of multiple alternative standards (e.g. WS-
ReliableMessaging vs WS-Reliability). Even worse,
WSDL 1.1, considered a core part of the standards, ac-
tually captured two completely alternative ways of doing
the same thing due to the influence of two vendors with
different approaches. All of these issues led to additional
complexity and less interoperability.

Despite these issues, SOAP is widely used within or-
ganizations (see e.g. [22]). At the public interface, there
have been major uses, for example eBay uses SOAP to
communicate with apps on PCs. SOAP is also used in
many cases where security and reliability are required,
such as a European public procurement project PEP-
POL.eu. However, while many internal systems continue
to be developed with SOAP andWeb Services, most new
Web APIs are written without those technologies.

We can summarize the reasons for the shift away
from SOAP for Web APIs:

• Complexity of the SOAP stack made it unpopu-
lar with developers. The simplicity of HTTP-based
APIs makes it a preferred approach.

• The rise of mobile apps: Android and iOS devel-
opment tools come with good support for JSON
and HTTP, but little support for SOAP.

• A better understanding of RESTful design princi-
ples (see below) has attracted developers.

5 Web APIs, RESTfulness

As we’ve mentioned in the preceding section, the early
Web only had one type of client program: the browser.
Some early systems tried to “scrape” websites in or-
der to create application-based clients, but the focus on
browsers really changed in 2000, when Salesforce and
eBay both released their Application Program Interfaces

1http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

4

(APIs) [21], which were intended for desktop tools, and
for integration with other existing systems.

As noted in [21], “XML APIs were part of Sales-
force.com from day one. Salesforce.com identified that
customers needed to share data across their different
business applications, and APIs were the way to do
this.” For eBay, “the launch of [its] API was a response
to the growing number of applications that were already
relying on its site” [21], for example to make it easier for
sellers to post listings, especially in bulk.

If Salesforce.com and eBay were among the first
of a trickle of Web APIs, a true flood came with the
rise of more dynamic websites. As the browser sup-
port for JavaScript and XMLHttpRequest matured into
Ajax [13], it became practical for the browser to load
parts of a web page on the fly, and submit changes from
the user without triggering a reload of the web page.
This change is often referred to as Web 2.0. The ap-
plication that truly showcased this new capability was
Google Maps, which was soon followed by a Web API
that let other websites embed and customize maps.

As Web 2.0 websites implement interactivity in their
web pages, the JavaScript code in those pages becomes
a program that needs an API to access the server. Once
a website has such an API, it can be a relatively small
step to make the API public for use by other websites,
and indeed by other software as well.

Another factor that contributes to the growing num-
ber of available APIs is mobile computing. With the dra-
matic spread of smartphones and tablets, there is a new
wave of software, almost all of which is supported by
servers online. There are even mobile apps supported
by a server with a Web API that isn’t even used on
their website. A case in point is Instagram.com, a photo-
sharing app for smartphones, which only added a Web
version of its functionality when users called for it, and
when third-party websites gained popularity by using
the Instagram API to give Instagram users Web access
to their photos [21].

5.1 RESTfulness

The core protocol of the Web – HTTP – has a well-
known limited set of operations: GET, POST, PUT,
DELETE, and the newest one PATCH2. In Web ter-
minology, this is called the uniform interface, see [12].
As HTML forms only supported the GET and POST
methods, and the most visible difference between these
methods was in how parameters are passed to the server,
the two methods were easily misunderstood and mis-
used. This led to unexpected behavior and loss of data.

Let us illustrate with a typical such mistake: an API
allows its clients to delete a record (for instance, unsub-

scribe a person from a mailing list) by simply following
a link (making a GET request against, for example,
http://example.com/remove?email=joe@example.com).
This works perfectly in testing, but as soon as the sys-
tem is deployed to the public, a search engine crawler
will try to follow the links and the records are gone. This
is because the search engine relies on the HTTP speci-
fication which says the GET should have no side-effects
and therefore be safe to call.

Eventually, the criticisms of such misuse of HTTP
united under the banner of “RESTfulness”, adopting
the acronym REST invented by Roy Fielding in his PhD
thesis [12], which describes the architecture of the Web.
REST stands for Representational State Transfer, which
alludes to the fact that the HTTP verbs are used to
transfer representations (in a well-defined media type)
of the state of a resource. Many arguments are put for-
ward for why Web APIs should be RESTful, i.e., they
should follow the recommendations of Fielding’s thesis
and the various standards that define the Web.

5.2 RPC and Messaging in Web APIs

Some Web APIs can be described as RPC-like. The
strongest manifestation of an RPC-like Web API is the
presence of procedure names in the API’s URIs. For
instance, Flickr.com API call URIs contain a method

parameter.3 In effect, the resource space of the API is
shaped by the functionalities that Flickr provides, not
by the kinds of data that is being manipulated.

Some proponents of RESTfulness criticize RPC-like
APIs as not being RESTful (e.g. [27]). Indeed, the term
“Resource-oriented Architecture” is being put forward
as alternative to SOA (cf. [6]), emphasizing the princi-
pled structuring of an API URI space, and the full use of
the HTTP uniform interface for resource manipulation,
along with HTTP’s caching and security mechanisms.

Some Web APIs also need to employ messaging,
mainly for updates and push notifications. These have
typically been implemented either as inefficient polling
or as limited streaming (for instance, Comet4 maintains
a one-directional HTTP stream that can be adversely
affected by buffering proxies). The result has been the
creation of the WebSocket standard [10] to allow true
streaming over HTTP. For example, MQTT over Web-
Sockets5 is growing in popularity as a way of providing
pub-sub in compliance with Web architecture.

5.3 Managed Web APIs

A major trend over the past few years has been the in-
troduction of managed Web APIs. The main externally-
visible difference in managed Web APIs is that they re-

2Two further operations are worth mentioning: HEAD and OPTIONS for retrieving representation and resource metadata
3Example full URI: http://api.flickr.com/services/rest/?method=flickr.activity.userPhotos
4http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
5http://www.hivemq.com/mqtt-over-websockets-with-hivemq/

5

quire the client to provide an API Key which must be
passed as part of every request. API Keys are required
by many popular APIs including those provided by or-
ganizations such as Google, Twitter, eBay, Netflix and
Facebook. Research during 2012 found that there were
at least ten API providers that handle more than 1 bil-
lion API calls per day each [7], and need to be managed.

API Keys are typically used to authenticate the user
and/or identify the client system thereby enabling nu-
merous management functions, including:

• authorization, access control, and monitoring of
API use,

• throttling access per client, or per application (for
example, preventing a bug in a one client applica-
tion from causing an outage of the API through an
inadvertent distributed denial of service attack),

• enforcing remote applications to upgrade to a new
version of an API through deprecation of the key,

• routing API requests to different servers (e.g. pro-
duction vs sandbox, or high- vs low-priority),

• and the ability to monetise the API.

Recently the OAuth2 specification [9] has been used
to provide a standard approach for issuing and checking
API Keys. In this model, the API Key is an OAuth2
Bearer Token. This supports two models: i) two-legged,
where only the calling application is identified; and
ii) three-legged, where both the calling application and
the calling user are identified by the key.

API Key issuance depends upon a client applica-
tion subscribing to an API. Early API Key initiatives
adopted manual web-based processes to approve sub-
scriptions, however, widespread use of Web APIs has
meant that providers of popular services may have many
thousands of subscribers, so API Portals (where an orga-
nization may advertise its APIs, provide documentation
& examples, handle billing, etc.) have become necessary.

API Portals are designed to enable developers to use
APIs effectively with minimum direct help from the API
creators, instead relying on web-based documentation.
Some API Portals also provide statistics or monitoring,
especially if there are commercial limits on API use.

While API Keys have been deployed primarily on
the public Web, managed APIs can bring many of the
same benefits within large organizations.

5.4 Security

The topic of web security is beyond the scope of this ar-
ticle; however, one important aspect is highly relevant.
Web security has evolved considerably from the early
days of SSL and Basic authentication – the current Web

architecture for security now supports a number of fed-
erated identity models with API access.

A typical example is the social network Facebook.
Social networks aim to connect users, and one way to
do that is to look at the users’ email contact lists. Pre-
viously, the system would ask the user to enter their
Gmail or Hotmail account details, including password,
and would “web scrape” the contact list from there.
However, this gives access to the whole account and is
highly insecure. From this requirement emerged a new
standard OAuth which aimed to allow API access.

Interestingly, OAuth is now being used the other
way round – as a single-sign-on mechanism, using Face-
book identities in lieu of accounts on other websites. A
newly developed specification, OpenId Connect6 defines
an API-friendly identity layer built over OAuth 2.0.

The pleasing aspect about this is that these stan-
dards are themselves Web APIs. The result is that they
are synergistic to the success of Web APIs, and become
part of the linked set of APIs that work together.

6 Web APIs in the (near) future

Having reviewed the current landscape in Web APIs and
their degrees of embrace for the Web, we will highlight
four directions in which Web APIs will be moving. We
start from an observation that Web APIs are increas-
ingly the basis for websites; then we look at a part of
REST that isn’t commonly implemented in APIs – us-
ing hypertext to control the application state; next we
discuss whether and how Web APIs could be described
in a machine-readable form; and finally we look at con-
nections to Linked Data and semantic interoperability.

6.1 APIs as the basis of User Interfaces

An interesting development that we have noticed
amongst many newly built websites is that the web-
sites are built on the Web APIs. This is a reversal of
the early days where parts of the website were treated
as APIs by enterprising developers. Instead, the team
builds the functionality as a set of APIs, and then cre-
ates the website as a client to those APIs.

This often comes from a “mobile-first” approach
where the mobile client is built first (such as the afore-
mentioned case of Instagram.com). It can be described
as API-first, and it puts a premium on development of
an excellent set of APIs, especially as the first users of
those APIs are part of the same organisation.

6.2 Hypertext State Control

Today, Web APIs are moving towards RESTfulness, es-
pecially by considering the aforementioned Resource-
oriented Architecture, with full use of HTTP. There is,

6http://openid.net/connect/

6

however, one part of REST [12] that is not commonly
reflected in Web APIs: hypertext as the engine of appli-
cation state (often abbreviated as HATEOAS).

HATEOAS is an indispensable part of the human
Web. People follow links; each link points to a resource
that is viewable, and links that are not valid in the given
situation are not included and hence the client does not
interact with them. The client only sees the valid opera-
tions. In contrast, programming interfaces traditionally
offer a fixed set of operations, and the client must be pro-
grammed with the knowledge of which operations make
sense in any given application state.

The hypertext model translates well into APIs [30,
11, 1]. For example, a document retrieved for a shopping
transaction might contain links to parcel tracking infor-
mation. Retrieving that resource may lead to further
links, for example geographic URIs, and so forth.

A further important aspect of HATEOAS is that the
links between resources mirror the relationships between
objects in the real world, and between the state rep-
resentations of those objects. Since those linkages are
browseable both by application clients and humans, this
makes the semantics of the application evident through
exploration of the data and links.

There are three main benefits to this approach:

• reliability is improved by blocking invalid state
transiton calls (because a client cannot attempt a
state transition for which it does not have a link),
and by the server controlling the links rather than
having the clients construct URIs.

• evolution is simplified because the server may re-
move no-longer-supported state transitions and
they won’t be attempted by clients any more, and
if any new transitions are added, existing clients
will ignore them. These benefits are illustrated by
existing hypertext-driven Web APIs.7

• re-use is encouraged through the ability to embed
links into third-party websites or APIs. This is ex-
emplified by the re-use of APIs such as Facebook
Connect and Google Maps.

6.3 Web API Descriptions

Despite the aforementioned issues with WSDL,
machine-readable standard API/interface description is
one of the best aspects of the Web Services approach.
However, in the RESTful space, there has been push-
back against description languages because, in theory,
the Web already has mechanisms for description. For
example, a client can make an OPTIONS request on
any resource to list the content-types available there.

In practice this is not effective because the content-
type is usually application/json or application/xml, nei-
ther of which gives enough information to proceed. XML
may have a namespace, but it seldom resolves to the cor-
rect schema. The result is that the available RESTful
mechanisms for self-description are not used in practice.

An early comprehensive attempt at a WSDL-like
language for RESTful services, the Web Application De-
scription Language [15], has not seen significant uptake.
We have observed wider interest in a more recent in-
formal specification for RESTful description known as
Swagger.8 Its success can be tied to its focus on creat-
ing both human and machine-readable documentation
incorporated into the Web API, as well as tools for in-
tegration with popular development frameworks.

Another attempt to provide description for REST-
ful services is the OData specification9 which offers ex-
tensive metadata about accessible data sources. Despite
some success for Swagger and OData, there is no con-
sensus on a generic description approach for RESTful
services. We expect to see both theoretical and prag-
matic progress in this area.

6.4 Automation

The Web can be seen as the largest information system
ever created. Increasingly, it is also becoming a large
repository of open data, available for rich exploratory
querying, for machine processing such as generating vi-
sualizations (esp. putting data on the map), and for
combining multiple data sources. For example, a per-
son moving to a new city can now use a map that shows
houses for sale along with schools, public transport, and
crime statistics.10

Some of this open data is being published as Linked
Data (http://linkeddata.org/): “using the Web to
connect related data that wasn’t previously linked, or
using the Web to lower the barriers to linking data cur-
rently linked using other methods.” Linked Data builds
on the Semantic Web standard RDF, which is a graph
data model that uses Web URIs to capture pieces of
data. Originally, the Semantic Web was a vision of
the Web being machine-understandable (so that ma-
chines could intelligently answer complicated structured
queries), and from the start, this vision also included
machine-driven interoperability between services [17].
Linked Data is the first true sign of the work on the
Semantic Web bringing fruit.

Service descriptions, inputs and outputs can be seen
as data, therefore it is natural to consider the connec-
tion of Linked Data with Web APIs. Various efforts
under the umbrella term Linked Services11 have been

7E.g. https://kenai.com/projects/suncloudapis/pages/Home, http://developer.netflix.com/docs/REST_API_Conventions, and [20]
8https://github.com/wordnik/swagger-core/wiki
9http://en.wikipedia.org/wiki/Open_Data_Protocol

10http://data.gov.uk/apps/soa4all-real-estate-finder
11See http://linkedservices.org/wiki/Main_Page and http://people.kmi.open.ac.uk/carlos/research/linked-services

7

looking at how to represent service descriptions in RDF
while working with the lightweight service description
approaches common with Web APIs (e.g. [19]); and how
to deal with APIs that themselves can produce and pro-
cess linked data: e.g. [29] sees APIs as data sources and
uses the RDF query language SPARQL to automatically
decide which APIs to call, and [20] proposes a resource-
oriented structure and a self-description schema for cus-
tom APIs to Linked Data sources.

One of the main goals of research in Semantic Web
Services (and more recently in Linked Services) has al-
ways been to support automatic composition of services
and APIs based on client requirements. This has proven
to be an elusive goal, but efforts like [19, 29] show poten-
tial for design-time composition – while implementing
a Web application, the developer may seek recommen-
dations for existing data sources and processing APIs,
given the kinds of data or functionality that is desired.
Helping the developer lowers the bar on automation –
the developer is able to evaluate the suitability of recom-
mended APIs for a given problem, and to map incom-
patible data formats when needed. This is in contrast
to trying automated composition of Web APIs at run-
time, directly for a user who cannot be expected to be
technologically skilled.

7 Summary

We have covered a great deal of ground, from the use of
messaging and RPC approaches through to the RESTful
design of Web APIs, HATEOAS, and Linked Data. It is
noticeable looking at these approaches that designs that
further the ecosystem of the Web (for example REST-
ful design, OAuth Security) are much more successful at
Web API reuse than designs which do not. We attribute
this to the network-effect and Metcalfe’s Law [14]. These
designs exhibit properties that include RESTfulness but
also extend upon it, to what we call Webfulness. These
properties include:

• RESTful – including use of the uniform in-
terface, HATEOAS and proper use of links
and Linked Data, well-defined content-types, and
cache-ability.

• API-first – providing a first-class Web API that
is sufficient to build any browser-based Web sites
and applications ensures that the application is
fully available to the wider ecosystem.

• Managed – Managed APIs ensure that the API
is well documented, accessible to third-parties,
throttled and available under an SLA, and ver-
sioned.

• Federated Identity – the use of federated identity
models such as OAuth and OpenID Connect al-
lows users and applications to utilize existing iden-
tities rather than re-create them for each new Web
site. This promotes the network effect.

• Automatable – Linked Data and Linked Services
enable services and APIs to be combined into new
services and/or APIs. This recursive nature adds
to the ecosystem of APIs in a consistent way.

Corporations and Lean startups [25] (a new type of
organizations that outsource all business functions to
Web-based services and APIs) can maximise the return
on their systems investment by using and developing
systems with Webful properties, because they encour-
age wider ecosystems where multiple connected systems
collaborate.

References

[1] Rosa Alarcon, Erik Wilde, and Jesus Bellido.
Hypermedia-driven restful service composition. In
Service-Oriented Computing, volume 6568 of Lec-
ture Notes in Computer Science, pages 111–120.
Springer Berlin Heidelberg, 2011.

[2] Akkihebbal L Ananda, BH Tay, and Eng-Kiat
Koh. A survey of asynchronous remote procedure
calls. ACM SIGOPS Operating Systems Review,
26(2):92–109, 1992.

[3] Tim Berners-Lee. Information Management:
A Proposal. CERN, W3C. Available at http:

//www.w3.org/History/1989/proposal.html,
March 1989.

[4] Tim J Berners-Lee. The world-wide web. Computer
Networks and ISDN Systems, 25(4):454–459, 1992.

[5] Andrew D. Birrell and Bruce Jay Nelson. Imple-
menting remote procedure calls. ACM Transactions
on Computer Systems, 2(1):39–59, February 1984.

[6] Dominic Duggan. Resource-Oriented Architecture,
pages 359–415. John Wiley & Sons, Inc., 2012.

[7] Adam DuVander. Which APIs Are Handling Bil-
lions of Request Per Day? ProgrammableWeb
blog12, May 2012.

[8] Wayne W Eckerson. Three tier client/server ar-
chitectures: Achieving scalability, performance, and
efficiency in client/server applications. Open Infor-
mation Systems, 3(20):46–50, 1995.

[9] D. Hardt (ed). The OAuth 2.0 Authorization
Framework. RFC 6749, IETF, October 2012.
Available at http://www.rfc-editor.org/rfc/

rfc6749.txt.

12http://blog.programmableweb.com/2012/05/23/which-apis-are-handling-billions-of-requests-per-day/

8

[10] I. Fette and A. Melnikov. The WebSocket Proto-
col. RFC 6455, IETF, December 2011. Available at
http://www.rfc-editor.org/rfc/rfc6455.txt.

[11] Roy T. Fielding. REST APIs must be
hypertext-driven. Blog article, available
at http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven, Octo-
ber 2008.

[12] Roy Thomas Fielding. Architectural styles and
the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000.
Chair: Richard N. Taylor.

[13] Jesse James Garrett. Ajax: A New Ap-
proach to Web Applications. Blog article, avail-
able at http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications, Febru-
ary 2005.

[14] George Gilder. Metcalf’s law and legacy. Forbes
ASAP, 27, 1993.

[15] Marc J. Hadley. Web Application Description Lan-
guage (WADL). Technical report, Sun Microsys-
tems, November 2006. Available at https://wadl.
dev.java.net/.

[16] Philipp Haller. On the integration of the actor
model into mainstream technologies. In Proceed-
ings of 2nd International Workshop on Program-
ming based on Actors, Agents, and Decentralized
Control, colocated with the SPLASH Conference,
Tucson, Arizona, October 2012.

[17] James Hendler, Tim Berners-Lee, and Eric Miller.
Integrating Applications on the Semantic Web.
Journal of the Institute of Electrical Engineers
of Japan, 122(10):676–680, October 2002. In
Japanese; English reprint available at http://www.
w3.org/2002/07/swint.

[18] Ingrid Van Den Hoogen. Deutsch’s Fallacies, 10
Years After. JAVA Developer’s Journal, online
publication at http://java.sys-con.com/node/

38665, January 2004.

[19] Jacek Kopecký, Karthik Gomadam, and Tomas
Vitvar. hRESTS: an HTML Microformat for De-
scribing RESTful Web Services. In Proceedings of
the 2008 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI-08), Sydney, Aus-
tralia, December 2008.

[20] Jacek Kopecký, Carlos Pedrinaci, and Alistair
Duke. RESTful Write-oriented API for Hyperdata

in Custom RDF Knowledge Bases. In Proceedings
of the International Conference on Next Genera-
tion Web Service Practices (NWeSP), Salamanca,
Spain, November 2011.

[21] Kin Lane. History of APIs. Available at http:

//history.apievangelist.com/, June 2013.

[22] Ole Lensmar. Is REST losing its flair – REST API
Alternatives. ProgrammableWeb blog13, December
2013.

[23] Maria Maleshkova, Carlos Pedrinaci, and John
Domingue. Investigating Web APIs on the World
Wide Web. In Proceedings of he 8th IEEE European
Conference on Web Services (ECOWS 2010), 2010.
Available at http://oro.open.ac.uk/24320/.

[24] Bruce Jay Nelson. Remote Procedure Call. PhD
thesis, Carnegie-Mellon University, May 1981. Pub-
lished as CMU Technical Report CMU-CS-81-119,
XEROX PARC Technical Report CSL-81-9.

[25] Eric Reis. The lean startup: How today’s en-
trepreneurs use continuous innovation to create
radically successful businesses, 2011.

[26] Leonard Richardson and Sam Ruby. RESTful Web
Services. O’Reilly Media, May 2007.

[27] Gareth Rushgrove. Sorry, but the Flickr
API Isn’t REST. Blog entry available at
http://www.morethanseven.net/2008/02/

21/sorry-but-the-flickr-api-isnt-rest/,
February 2008.

[28] SOAP Version 1.2 Part 1: Messaging Frame-
work. Recommendation, W3C, June 2003.
Available at http://www.w3.org/TR/2003/

REC-soap12-part1-20030624/.

[29] Sebastian Speiser and Andreas Harth. Integrating
linked data and services with linked data services.
In The Semantic Web: Research and Applications,
volume 6643 of Lecture Notes in Computer Science,
pages 170–184. Springer Berlin Heidelberg, 2011.

[30] Joshua Thijssen. What is HATEOAS and why is it
important for my REST API? The RESTful Cook-
Book, available online at http://restcookbook.

com/Basics/hateoas/, 2012.

[31] Steve Vinoski. Concurrency with erlang. IEEE In-
ternet Computing, 11(5):90–93, 2007.

[32] Dave Winer. XML-RPC Specification. Techni-
cal report, June 1999. Available at http://www.

xmlrpc.com/spec.

13http://blog.programmableweb.com/2013/12/19/is-rest-losing-its-flair-rest-api-alternatives-2/

9

Thank you again for the latest comments - as always, they help us make the
article better. Herein are responses to the comments that weren't
straightforwardly fixed:

* More question than an advice: why do you state "a history" in the title.
Isn't it "the history" or just "history"?

"A history" is a common expression, because a text is seldom the complete and
final history of something; rather it is an excerpt focused on a given point.

* Section 6.1 => a cite or at least an example should be provided here

The example was actually already mentioned earlier in the article, but we
made sure to point back to it in 6.1 - the reviewer was right that it was
missing there.

* Footnote 11/12: something went wrong here. There is a footnote 12 on the
page that references footnote 11, but a reference to 12 cannot be found.
Footnote 11 is on the previous page which makes it hard to find.

Footnote 12 is used by reference [7]. Footnote 11 is now on the page where it
is used. Thank you for spotting this.

* It's sad, that you don't consider Web Intents worth mentioning, as you are
also describing other technologies that are not used

I would very much like to see WebIntents, or similar technologies, to
succeed. However, as the technology was abandoned by Google in Chrome in
November 2012, with no clear successor, we may need to wait for online
services to be ready for this kind of composition. We (the authors) couldn't
convincingly yet concisely write about WebIntents as something that has
a clear value going forward, while in the other parts we can stand behind our
analysis of the value of the presented future directions. If I ever have the
honor of meeting you, I'll be very happy and willing to discuss this.

Antwort an Gutachter

