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Abstract

In this paper, we consider approximation algorithms for optimizing a generic multivariate
polynomial function in discrete (typically binary) variables. Such models have natural applica-
tions in graph theory, neural networks, error-correcting codes, among many others. In particular,
we focus on three types of optimization models: (1) maximizing a homogeneous polynomial func-
tion in binary variables; (2) maximizing a homogeneous polynomial function in binary variables,
mixed with variables under spherical constraints; (3) maximizing an inhomogeneous polynomial
function in binary variables. We propose polynomial-time randomized approximation algorithm-
s for such polynomial optimization models, and establish the approximation ratios (or relative
approximation ratios whenever appropriate) for the proposed algorithms. Some examples of
applications for these models and algorithms are discussed as well.
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1 Introduction

This paper is concerned with optimizing a (high degree) multivariate polynomial function in (mixed)
binary variables. Our basic model is to maximize a d-th degree polynomial function p(x) where
x = (x1, x2, · · · , xn)T is chosen such that xi ∈ {1,−1} for i = 1, 2, . . . , n. For ease of referencing,
let us call this basic model to be (P ) : maxx∈{1,−1}n p(x). This type of problem can be found
in a great variety of application domains. For example, the following hypergraph max-covering
problem is well studied in the literature, which is precisely (P ). Given a hypergraph H = (V,E)
with V being the set of vertices and E the set of hyperedges (or subsets of V ), and each hyperedge
e ∈ E is associated with a real-valued weight w(e). The problem is to find a subset S of the
vertices set V , such that the total weight of the hyperedges covered by S is maximized. Denoting
xi ∈ {0, 1} (i = 1, 2, . . . , n) to indicate whether or not vertex i is selected in S. The problem thus is
maxx∈{0,1}n

∑
e∈E w(e)

∏
i∈e xi. By a simple variable transformation xi → (xi + 1)/2, the problem

is transformed to (P ), and vice versa.
Note that (P ) is a fundamental problem in integer programming. As such it has received atten-

tion in the literature; see [17, 18]. It is also known as Fourier support graph problem. Mathematical-
ly, a polynomial function p : {−1, 1}n → R has Fourier expansion p(x) =

∑
S⊆{1,2,...,n} p̂(S)

∏
i∈S xi,

which is also called Fourier support graph. Assume that p has only succinct (polynomially many)
non-zero Fourier coefficient p̂(S). The question is: Can we compute the maximum value of p over
the discrete cube {1,−1}n, or alternatively can we find a good approximate solution in polynomial-
time? The latter question actually motivates this paper. Indeed, (P ) has been investigated exten-
sively in the quadratic case, due to its connections to various graph partitioning problems, e.g.,
the maximum cut problem [16]. In general, (P ) is closely related to finding the maximum weighted
independent set in a graph. In particular, let G = (V,E) be a graph with V the set of vertices V and
E the set of edges, and each vertex is assigned a positive weight. We call S to be an independent
set of vertices if and only if S ⊆ V and no two vertices in S share an edge. The problem is to
find an independent set of vertices such that the sum of its weights is maximum over all possible
independent sets.

In fact, any unconstrained binary polynomial maximization problem can be transformed into
the maximum weighted independent set problem, which is also commonly used technique in the
literature for solving (P ) (see e.g., [5, 30]). The transformation uses the concept of a conflict graph
of a 0-1 polynomial function. The idea is illustrated in the following example. Let us consider

f(x) = −2x1 − 2x2 + 5x1x2 − 4x1x2x3, (x1, x2, x3) ∈ {0, 1}3.

Note that f(x) can be transformed to an equivalent polynomial so that all terms (except the
constant term) have positive coefficients. The new polynomial involves both the variables and their
complements, i.e., x̄i := 1− xi for i = 1, 2, 3. In our example, such polynomial can be

f(x) = −4 + 2x̄1 + 2x̄2 + x1x2 + 4x1x2x̄3.

The conflict graph G(f) associated with a polynomial f(x) has vertices corresponding to the terms
of f(x), and each vertex is associated with a term in the polynomial except for the constant term.
Two vertices in G(f) are connected by an edge if and only if one of the corresponding terms
contains a variable and the other corresponding term contains its complement variable. The weight
of a vertex in G(f) is the coefficient of the corresponding term in f . The conflict graph of f(x)
is shown in Figure 1. Maximizing the weighted independent set of the conflict graph also solves
the binary polynomial optimization problem. Beyond its connection to the graph problems, (P )
also has applications in neural networks [21, 8, 4], error-correcting codes [8, 29], etc. For instance,

2



Figure 1: Conflict graph associated with −2x1 − 2x2 + 5x1x2 − 4x1x2x3

recently Khot and Naor [24] show that it has applications in the problem of refutation of random
k-CNF formulas [12, 13].

One important subclass of polynomial function is homogeneous polynomials. Likewise, the ho-
mogeneous quadratic case of (P ) has been studied extensively; see e.g. [16, 27, 28, 2]. Homogeneous
cubic polynomial is also studies by Khot and Naor [24]. Another interesting problem of this class
is the ∞ 7→ 1-norm of a matrix M = (aij)n1×n2 (see e.g., [2]), i.e.,

‖M‖∞7→1 = max
x∈{1,−1}n1 ,y∈{1,−1}n2

xTMy :=
∑

1≤i≤n1,1≤j≤n2

aijxiyj .

It is quite natural to extend the problem of ∞ 7→ 1-norm to higher order tensors. In particular,
the ‖F ‖∞7→1 of a d-th order tensor F = (ai1i2···id) can be defined as

max
xk∈{1,−1}nk , k=1,2,...,d

F (x1,x2, · · · ,xd) :=
∑

1≤i1≤n1,1≤i2≤n2,··· ,1≤id≤nd

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id
.

The other generalization of the matrix∞ 7→ 1-norm is to extend the entry aij of the matrix M
to symmetric matrix Aij , i.e., the problem of

max
x∈{1,−1}n1 ,y∈{1,−1}n2

λmax

 ∑
1≤i≤n1,1≤j≤n2

xiyjAij

 ,

where λmax(·) indicates the largest eigenvalue of a matrix. If the matrix Aij is not restricted to be
symmetric, we may instead maximize the largest singular value, i.e.,

max
x∈{1,−1}n1 ,y∈{1,−1}n2

σmax

 ∑
1≤i≤n1,1≤j≤n2

xiyjAij

 .

These two problems are actually equivalent to

max
x∈{1,−1}n1 ,y∈{1,−1}n2 ,‖z‖2=1

F (x,y, z, z) and max
x∈{1,−1}n1 ,y∈{1,−1}n2 ,‖z‖2=‖w‖2=1

F (x,y, z,w)

respectively, where F is a multilinear function induced by the tensor F , whose (i, j, k, `)-th entry
is (k, `)-th entry of the matrix Aij .

In fact, a very interesting and succinct matrix combinatorial problem is: Given n matrices Ai

(i = 1, 2, . . . , n), find a binary combination of the matrices so as to maximize the spectral norm of
the combined matrix:

max
x∈{1,−1}n

σmax

(
n∑
i=1

xiAi

)
.
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This is indeed equivalent to
max

x∈{1,−1}n,‖y‖2=‖z‖2=1
F (x,y, z).

All the problems studied in this paper are NP-hard in general, and our focus will be polynomial-
time approximation algorithms. In the case that the objective polynomial is quadratic, a well known
example is the semidefinite programming relaxation and randomization approach for the max-cut
problem due to Goemans and Williamson [16], where essentially a 0.878-approximation ratio of the
model maxx∈{1,−1}n x

TMx is shown with M being the Laplacian of a given graph. In the case
M is only known to be positive semidefinite, Nesterov [27] derived a 0.636-approximation bound.

Charikar and Wirth [9] considered a more general model; they proposed an Ω
(

1
logn

)
-approximate

algorithm for diagonal-free M . For the matrix ∞ 7→ 1-norm problem

max
x∈{1,−1}n1 ,y∈{1,−1}n2

xTMy,

Alon and Naor [2] derived a 0.56-approximation bound. Remark that all these approximation
bounds remain hitherto the best available ones. When the degree of the polynomial function is
greater than 2, to the best of our knowledge, the only known approximation result in the literature
is due to Khot and Naor [24], where they showed how to estimate the optimal value of the problem
maxx∈{1,−1}n

∑
1≤i,j,k≤n aijkxixjxk with (aijk)n×n×n being square-free (aijk = 0 whenever two of

the indices are equal). Specifically, they presented a polynomial-time procedure to get an estimated

value that is no less than Ω

(√
lnn
n

)
times the optimal value. No solution, however, can be derived

from the process. Moreover, the process is highly complex and is mainly of theoretical interest.
In this paper we consider the optimization models for a general polynomial function of any

fixed degree d in (mixed) binary variables, and present polynomial-time randomized approximation
algorithms. The algorithms proposed are fairly simple to implement. This study is motivated by
our previous investigations on polynomial optimization under quadratic constraints [19, 20], as well
as recent developments on homogeneous polynomial optimization under spherical constraints, e.g.,
So [31] and Chen et al. [10]. However, the discrete models studied in this paper have novel features,
and the analysis is therefore entirely different from previous works. This paper is organized as
follows. First, we introduce the notations and models in Section 2. In Section 3, we present the
new approximation results, and also sketch the main ideas, while leaving the technical details to
the appendix (Appendix A). In Section 4 we shall discuss a few more specific problems where the
models introduced can be directly applied.

2 Notations and Model Descriptions

In this paper we shall use the boldface letters to denote vectors, matrices, and tensors in general
(e.g., the decision variable x, the data matrix Q, and the tensor form F ), while the usual lowercase
letters are reserved for scalars (e.g., x1 being the first component of the vector x).

2.1 Objective Functions

The objective functions of the optimization models studied in this paper are all multivariate poly-
nomial functions. The following multilinear tensor function plays a major role in our discussion:

Function T F (x1,x2, · · · ,xd) =
∑

1≤i1≤n1,1≤i2≤n2,··· ,1≤id≤nd

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id
,
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where xk ∈ Rnk for k = 1, 2, . . . , d; and the letter ‘T’ signifies the notion of tensor. In the
shorthand notation we shall denote F = (ai1i2···id) ∈ Rn1×n2×···×nd to be a d-th order tensor, and
F to be its corresponding multilinear form. Closely related with the tensor F is a general d-th
degree homogeneous polynomial function f(x), where x ∈ Rn. We call the tensor F = (ai1i2···id)
super-symmetric (see [25]) if ai1i2···id is invariant under all permutations of {i1, i2, · · · , id}. As
any homogeneous quadratic function uniquely determines a symmetric matrix, a given d-th degree
homogeneous polynomial function f(x) also uniquely determines a super-symmetric tensor. In
particular, if we denote a d-th degree homogeneous polynomial function:

Function H f(x) =
∑

1≤i1≤i2≤···≤id≤n
ai1i2···idxi1xi2 · · ·xid ,

then its corresponding super-symmetric tensor form can be written as F = (bi1i2···id) ∈ Rnd , with
bi1i2···id ≡ ai1i2···id/|Π(i1, i2, · · · , id)|, where |Π(i1, i2, · · · , id)| is the number of distinctive permuta-
tions of the indices {i1, i2, · · · , id}. This super-symmetric tensor representation is indeed unique.
Let F be its corresponding multilinear function defined by the super-symmetric tensor F , then we
have f(x) = F (x,x, · · · ,x︸ ︷︷ ︸

d

). The letter ‘H’ here is used to emphasize that the polynomial function

in question is homogeneous.
We shall also consider in this paper the following:

Function M F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

) := f(x1,x2, · · · ,xs),

where xk ∈ Rnk for k = 1, 2, . . . , s, d1 + d2 + · · · + ds = d, and d-th order tensor form F ∈
Rn

d1
1 ×n

d2
2 ×···×n

ds
s ; the letter ‘M’ signifies the notion of mixed polynomial forms. We may without loss

of generality assume that F has partial symmetric property, namely for any fixed (x2,x3, · · · ,xs),
F (·, ·, · · · , ·︸ ︷︷ ︸

d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

) is a super-symmetric d1-th order tensor, and so on.

Beyond the homogeneous polynomial functions described above, a generic multivariate inho-
mogeneous polynomial function of degree d, p(x), can be explicitly written as a summation of
homogenous polynomial functions in decreasing degrees, namely

Function P p(x) :=
d∑

k=1

Fk(x,x, · · · ,x︸ ︷︷ ︸
k

) + f0 =
d∑

k=1

fk(x) + f0,

where x ∈ Rn, f0 ∈ R, and fk(x) = Fk(x,x, · · · ,x︸ ︷︷ ︸
k

) is a homogenous polynomial function of degree

k for k = 1, 2, . . . , d; the letter ‘P’ signifies the notion of polynomial.
Throughout we shall adhere to the notation F for a multilinear form defined by a tensor form

F , and f for a homogenous polynomial function, and p for an inhomogeneous polynomial function.
Without loss of generality we assume that n1 ≤ n2 ≤ · · · ≤ nd in the tensor form F ∈ Rn1×n2×···×nd ,

and n1 ≤ n2 ≤ · · · ≤ ns in the tensor form F ∈ Rn
d1
1 ×n

d2
2 ×···×n

ds
s . We also assume at lease one

component of the tensor form, F in Functions T, H, M, and F d in Function P is nonzero to avoid
triviality. Finally, without loss of generality we assume the inhomogeneous polynomial function
p(x) has no constant term, i.e., f0 = 0 in Function P.

5



2.2 Decision Variables

This paper is focused on integer and mixed integer programming with polynomial functions. In
particular, two types of decision variables are considered in this paper: discrete binary variables

x ∈ Bn :=
{
z ∈ Rn| zi2 = 1, i = 1, 2, . . . , n

}
,

and continuous variables on the unit sphere:

y ∈ Sm :=
{
z ∈ Rm

∣∣∣ ‖z‖ :=
(
z1

2 + z2
2 + · · ·+ zm

2
)1/2

= 1
}
.

Note that in this paper we shall by default use the Euclidean norm for vectors, matrices and
tensors. The decision variables in our models range from the pure binary vector x, to a mixed one
including both x (∈ Bn) and y (∈ Sm) .

2.3 Model Descriptions

In this paper we consider the following binary integer optimization models with objection functions
as specified in Section 2.1:

(T ) max F (x1,x2, · · · ,xd)
s.t. xk ∈ Bnk , k = 1, 2, . . . , d;

(H) max f(x) = F (x,x, · · · ,x︸ ︷︷ ︸
d

)

s.t. x ∈ Bn;

(M) max f(x1,x2, · · · ,xs) = F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

)

s.t. xk ∈ Bnk , k = 1, 2, . . . , s;

(P ) max p(x) =
∑d

k=1 Fk(x,x, · · · ,x︸ ︷︷ ︸
k

) + f0

s.t. x ∈ Bn;

and their mixed models:

(T )′ max F (x1,x2, · · · ,xd,y1,y2, . . . ,yd
′
)

s.t. xk ∈ Bnk , k = 1, 2, . . . , d,
y` ∈ Sm` , ` = 1, 2, . . . , d′;

(H)′ max f(x,y) = F (x,x, · · · ,x︸ ︷︷ ︸
d

,y,y, · · · ,y︸ ︷︷ ︸
d′

)

s.t. x ∈ Bn,
y ∈ Sm;

(M)′ max f(x1,x2, · · · ,xs,y1,y2, · · · ,yt)
= F (x1,x1, · · · ,x1︸ ︷︷ ︸

d1

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

,y1,y1, · · · ,y1︸ ︷︷ ︸
d′1

, · · · ,yt,yt, · · · ,yt︸ ︷︷ ︸
d′t

)

s.t. xk ∈ Bnk , k = 1, 2, . . . , s,
y` ∈ Sm` , ` = 1, 2, . . . , t.
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Let d1 + d2 + · · · + ds = d and d′1 + d′2 + · · · + d′t = d′ in the above mentioned models. The
degrees of the polynomial functions in these models, d for the pure binary models and d+d′ for the
mixed models, are understood as fixed constants in our subsequent discussions. As before, we also
assume that the tensor forms of the objective functions in (H)′ and (M)′ to have partial symmetric
property, m1 ≤ m2 ≤ · · · ≤ md′ in (T )′, and m1 ≤ m2 ≤ · · · ≤ mt in (M)′.

2.4 Approximation Ratios

All the optimization problems mentioned in the previous subsection are in general NP-hard when
the degree of the objective polynomial function is larger than or equal to 2. This is because each
one includes computing the matrix ∞ 7→ 1-norm as a subclass, i.e.,

‖Q‖∞7→1 = max (x1)TQx2

s.t. x1 ∈ Bn1 ,
x2 ∈ Bn2 .

Thus, in this paper we shall focus on polynomial-time approximation algorithms with provable
worst-case performance ratios. For any maximization problem (P ) defined as maxx∈S f(x), we use
vmax(P ) to denote its optimal value, and vmin(P ) to denote the optimal value of its minimization
counterpart, i.e.,

vmax(P ) := max
x∈S

f(x) and vmin(P ) := min
x∈S

f(x).

Definition 2.1 We call the maximization model (P ) to admit a polynomial-time approximation
algorithm with approximation ratio τ ∈ (0, 1], if vmax(P ) ≥ 0 and a feasible solution z ∈ S can be
found in polynomial-time such that f(z) ≥ τ vmax(P ).

Definition 2.2 We call the maximization model (P ) to admit a polynomial-time approximation
algorithm with relative approximation ratio τ ∈ (0, 1], if a feasible solution z ∈ S can be found in
polynomial-time such that f(z)− vmin(P ) ≥ τ (vmax(P )− vmin(P )).

Regarding to the relative approximation ratios (Definition 2.2), in some cases it is convenient to
use the equivalent form: vmax(P )− f(z) ≤ (1− τ) (vmax(P )− vmin(P )).

3 Bounds on the Approximation Ratios

In this section we shall present our main results, viz. the approximation ratios for the discrete
polynomial optimization models considered in this paper. In order not to distract reading the main
results, the proofs will be postponed and placed in the appendix (Appendix A). To simplify, we
use the notion Ω (f(n)) to signify that there are positive universal constants α and n0 such that
Ω (f(n)) ≥ αf(n) for all n ≥ n0. Throughout our discussion, we shall fix the degree of the objective
polynomial function (denoted by d or d+ d′ in the paper) to be a constant.

3.1 Homogeneous Polynomials in Binary Variables

Theorem 3.1 (T ) : maxxk∈Bnk F (x1,x2, · · · ,xd) admits a polynomial-time approximation algo-
rithm with approximation ratio τT , where

τT := (n1n2 · · ·nd−2)−
1
2 (2/π)d−1 ln(1 +

√
2) = Ω

(
(n1n2 · · ·nd−2)−

1
2

)
.
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We remark that when d = 2, (T ) is to compute ‖F ‖∞7→1. The current best polynomial-time

approximation ratio for that problem is 2 ln(1+
√

2)
π ≈ 0.56 due to Alon and Naor [2]. Huang and

Zhang [22] considered similar problems for the complex variables and derived constant approxima-
tion ratios.

When d = 3, (T ) is a slight generalization of the model considered by Khot and Naor [24],
where F was assumed to be super-symmetric (implying n1 = n2 = n3) and square-free (i.e.,
aijk = 0 whenever two of the three indices are equal). In our case, we discard the assumptions on
the symmetry and the square-free property altogether. The approximation bound of the optimal

value given in [24] is Ω
(√

lnn1
n1

)
; however, no polynomial-time procedure is provided to find a

corresponding approximate solution.
Our approximation algorithm works for general degree d based on recursion, and is fairly simple.

We may take any approximation algorithm for the d = 2 case, say the algorithm by Alon and
Naor [2], as a basis. When d = 3, noticing that any n1 × n2 × n3 third order tensor can be written
as an (n1n2)× n3 matrix by combining its first and second modes, (T ) can be relaxed to

max F (X,x3) :=
∑

1≤i≤n1,1≤j≤n2,1≤k≤n3
aijkXijx

3
k

s.t. X ∈ Bn1n2 ,x3 ∈ Bn3 .

This problem is the exact form of (T ) when d = 2, which can be solved approximately with

approximation ratio 2 ln(1+
√

2)
π . Denote its approximate solution to be (X̂, x̂3). The next key step

is to recover (x̂1, x̂2) from X̂. For this purpose, we introduce the following decomposition routine,
which plays a fundamental role in our algorithms.

DR (Decomposition Routine) 3.1

• Input: matrices M ∈ Rn1×n2 and X̂ ∈ Bn1×n2.

• Construct

X̃ =

[
In1×n1 X̂/

√
n1

X̂
T
/
√
n1 X̂

T
X̂/n1

]
� 0.

• Randomly generate (
ξ

η

)
∼ N (0n1+n2 , X̃)

and compute
x̂1 = sign (ξ), x̂2 = sign (η);

repeat if necessary, until (x̂1)TMx̂2 ≥ 2
π
√
n1
M • X̂.

• Output: binary vectors (x̂1, x̂2).

If we let M = F (·, ·, x̂3) and apply DR 3.1, then we can prove the output (x̂1, x̂2) satisfies

E[F (x̂1, x̂2, x̂3)] = E[(x̂1)TMx̂2] ≥ 2

π
√
n1
M • X̂ =

2

π
√
n1

F (X̂, x̂3) ≥ 4 ln(1 +
√

2)

π2√n1
vmax(T ),

which yields an approximation ratio for d = 3. By a recursive procedure, the approximation
algorithm is readily extended to solve (T ) with any fixed degree d.
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Theorem 3.2 If F (x,x, · · · ,x︸ ︷︷ ︸
d

) is square-free and d is odd, then (H) : maxx∈Bn f(x) admits a

polynomial-time approximation algorithm with approximation ratio τH , where

τH := d!d−dn−
d−2

2 (2/π)d−1 ln(1 +
√

2) = Ω
(
n−

d−2
2

)
.

Theorem 3.3 If F (x,x, · · · ,x︸ ︷︷ ︸
d

) is square-free and d is even, then (H) : maxx∈Bn f(x) admits a

polynomial-time approximation algorithm with relative approximation ratio τH .

The key linkage from multilinear tensor function F (x1,x2, · · · ,xd) to the homogeneous poly-
nomial function f(x) is the following lemma. Essentially it makes the tensor relaxation method
applicable for (H).

Lemma 3.4 (He, Li, and Zhang [19]) Suppose x1,x2, · · · ,xd ∈ Rn, and ξ1, ξ2, · · · , ξd are i.i.d.
random variables, each taking values 1 and −1 with equal probability. For any super-symmetric
d-th order tensor form F and function f(x) = F (x,x, · · · ,x), it holds that

E

[
d∏
i=1

ξif

(
d∑

k=1

ξkx
k

)]
= d!F (x1,x2, · · · ,xd).

Remark that the approximation ratios for (H) hold under the square-free condition. This is
because in this case the decision variables are actually in the multilinear form. Hence, one can
replace any point in the box ([−1, 1]n) by one of its vertices ({−1, 1}n) without decreasing its
objective function value, due to the linearity. Besides, in the case when d is odd, one may first
relax (H) to maxx∈[−1,1]n f(x), and then directly apply the approximation result for homogeneous
polynomial maximization over intersection of n co-centered ellipsoids (see [19]). Under the square-
free condition, this procedure is able to generate a feasible solution for (H) with approximation

ratio Ω
(
n−

d−2
2 log−(d−1) n

)
, which is worse than τH in Theorem 3.2. Therefore, we may treat

Theorem 3.2 an improvement of the approximation ratio.
We move on to consider the mixed form of discrete polynomial optimization model (M). It is a

generalization of (T ) and (H), making the model applicable to a wider range of practical problems.

Theorem 3.5 If F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

) is square-free in each xk (k =

1, 2, . . . , s), and one of dk (k = 1, 2, . . . , s) is odd, then (M) : maxxk∈Bnk f(x1,x2, · · · ,xs) admits
a polynomial-time approximation algorithm with approximation ratio τM , where

τM :=



(
2

π

)d−1

ln
(

1 +
√

2
) s∏
k=1

dk!dk
−dk

(
n1

d1n2
d2 · · ·ns−2

ds−2ns−1
ds−1−1

)− 1
2

ds = 1,

(
2

π

)d−1

ln
(

1 +
√

2
) s∏
k=1

dk!dk
−dk

(
n1

d1n2
d2 · · ·ns−1

ds−1ns
ds−2

)− 1
2

ds ≥ 2.

Theorem 3.6 If F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

) is square-free in each xk (k =

1, 2, . . . , s), and all dk (k = 1, 2, . . . , s) are even, then (M) : maxxk∈Bnk f(x1,x2, · · · ,xs) admits a
polynomial-time approximation algorithm with relative approximation ratio τM .

The main idea in the proof is tensor relaxation (to relax its objective function f(x1,x2, · · · ,xs)
to a multilinear tensor function), which leads to (T ). After solving (T ) approximately by Theo-
rem 3.1, we are able to adjust the solutions one by one, using Lemma 3.4.
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3.2 Homogeneous Polynomials in Mixed Variables

Proposition 3.7 When d = d′ = 1, (T )′ : maxx1∈Bn1 ,y1∈Sm1 F (x1,y1) admits a polynomial-time

approximation algorithm with approximation ratio
√

2/π.

Proposition 3.7 serves as the basis for (T )′ of general d and d′. In this particular case, (T )′

can be equivalently transformed into maxx∈Bn1 xTQx with Q � 0. The later problem admits a
polynomial-time approximation algorithm (SDP relaxation and randomization) with approximation
ratio 2/π by Nesterov [27].

Recursion is again the tool to handle the high degree case. For the recursion on d, with discrete
variables xk, DR 3.1 is applied in each recursive step. For the recursion on d′, with continuous
variables yk, two decomposition routines in He, Li, and Zhang [19] are readily available, namely
the eigenvalue decomposition approach (DR 2 of [19]) and the randomized decomposition approach
(DR 1 of [19]), either one of them serves the purpose here.

Theorem 3.8 (T )′ : maxxk∈Bnk ,y`∈Sm` F (x1,x2, · · · ,xd,y1,y2, . . . ,yd
′
) admits a polynomial-time

approximation algorithm with approximation ratio τ ′T , where

τ ′T := (2/π)
2d−1

2 (n1n2 · · ·nd−1m1m2 · · ·md′−1)−
1
2 = Ω

(
(n1n2 · · ·nd−1m1m2 · · ·md′−1)−

1
2

)
.

From Theorem 3.8, by applying Lemma 3.4 as a linkage, together with the square-free property,
we are led to the following two theorems regarding (H)′.

Theorem 3.9 If F (x,x, · · · ,x︸ ︷︷ ︸
d

,y,y, · · · ,y︸ ︷︷ ︸
d′

) is square-free in x, and either d or d′ is odd, then

(H)′ : maxx∈Bn,y∈Sm f(x,y) admits a polynomial-time approximation algorithm with approximation
ratio τ ′H , where

τ ′H := d!d−dd′!d′−d
′
(2/π)

2d−1
2 n−

d−1
2 m−

d′−1
2 = Ω

(
n−

d−1
2 m−

d′−1
2

)
.

Theorem 3.10 If F (x,x, · · · ,x︸ ︷︷ ︸
d

,y,y, · · · ,y︸ ︷︷ ︸
d′

) is square-free in x, and both d and d′ are even, then

(H)′ : maxx∈Bn,y∈Sm f(x,y) admits a polynomial-time approximation algorithm with relative ap-
proximation ratio τ ′H .

By relaxing (M)′ to the multilinear tensor function optimization (T )′ and solving it approxi-
mately using Theorem 3.8, we may further adjust its solution one by one using Lemma 3.4, leading
to the following general result.

Theorem 3.11 If F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

,y1,y1, · · · ,y1︸ ︷︷ ︸
d′1

, · · · ,yt,yt, · · · ,yt︸ ︷︷ ︸
d′t

) is square-

free in each xk (k = 1, 2, . . . , s), and one of dk (k = 1, 2, . . . , s) or one of d′` (` = 1, 2, . . . , t) is odd,
then (M)′ : maxxk∈Bnk ,y`∈Sm` f(x1,x2, · · · ,xs,y1,y2, · · · ,yt) admits a polynomial-time approxi-
mation algorithm with approximation ratio τ ′M , where

τ ′M :=
(

2
π

) 2d−1
2
∏s
k=1 dk!dk

−dk∏ t
`=1 d

′
`!d
′
`
−d′`
(
n1

d1 · · ·ns−1
ds−1ns

ds−1m1
d′1 · · ·mt−1

d′t−1mt
d′t−1

)− 1
2

= Ω

((
n1

d1 · · ·ns−1
ds−1ns

ds−1m1
d′1 · · ·mt−1

d′t−1mt
d′t−1

)− 1
2

)
.
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Theorem 3.12 If F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

,y1,y1, · · · ,y1︸ ︷︷ ︸
d′1

, · · · ,yt,yt, · · · ,yt︸ ︷︷ ︸
d′t

) is square-

free in each xk (k = 1, 2, . . . , s), and all dk (k = 1, 2, . . . , s) and all d′` (` = 1, 2, . . . , t) are even, then
(M)′ : maxxk∈Bnk ,y`∈Sm` f(x1,x2, · · · ,xs,y1,y2, · · · ,yt) admits a polynomial-time approximation
algorithm with relative approximation ratio τ ′M .

3.3 Inhomogeneous Polynomials in Binary Variables

Extending the approximation algorithms and the corresponding analysis for homogeneous polyno-
mial optimization to the general inhomogeneous polynomials is not straightforward. Technically it
is also a way to get around the square-free property, which is a requirement for all the homoge-
neous polynomials mentioned in the previous subsections. The analysis here, like the analysis in
our previous paper [20], is to directly deal with homogenization.

It is quite natural to introduce a new variable, say xh, which is actually set to be 1, to yield a
homogeneous form for Function P:

p(x) =
d∑

k=1

Fk(x,x, · · · ,x︸ ︷︷ ︸
k

)xd−kh + f0x
d
h := F

((
x

xh

)
,

(
x

xh

)
, · · · ,

(
x

xh

)
︸ ︷︷ ︸

d

)
= F (x̄, x̄, · · · , x̄︸ ︷︷ ︸

d

) = f(x̄),

where f(x̄) is an (n+ 1)-dimensional homogeneous polynomial function of degree d, with variable

x̄, i.e., F ∈ R(n+1)d and x̄ ∈ Rn+1. Optimization of this homogeneous form can be done due to our
previous results, but in general we do not have any control on the solution of xh, which has to be 1
as required by the feasibility. The following lemma ensures that construction of a feasible solution
is possible.

Lemma 3.13 (He, Li, and Zhang [20]) Suppose x̄k =

(
xk

xkh

)
∈ Rn+1 with |xkh| ≤ 1 for k =

1, 2, . . . , d. Let η1, η2, · · · , ηd be independent random variables, each taking values 1 and −1 with
E[ηk] = xkh for k = 1, 2, . . . , d, and let ξ1, ξ2, · · · , ξd be i.i.d. random variables, each taking values
1 and −1 with equal probability (thus the mean is 0). If the last component of the tensor F is 0,
then we have

E

[
d∏

k=1

ηkF

((
η1x

1

1

)
,

(
η2x

2

1

)
, · · · ,

(
ηdx

d

1

))]
= F (x̄1, x̄2, · · · , x̄d),

and

E

[
F

((
ξ1x

1

1

)
,

(
ξ2x

2

1

)
, · · · ,

(
ξdx

d

1

))]
= 0.

Our last result is the following theorem.

Theorem 3.14 (P ) admits a polynomial-time approximation algorithm with relative approxima-
tion ratio τP , where

τP :=
ln(1 +

√
2)

2(1 + e)πd−1
(d+ 1)! d−2d(n+ 1)−

d−2
2 = Ω

(
n−

d−2
2

)
.
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We remark that (P ) is indeed a very general discrete optimization model. For example, it can
be used to model the following general polynomial optimization problem in discrete values:

(D) max p(x)
s.t. xi ∈ {ai1, ai2, · · · , aimi}, i = 1, 2, . . . , n.

To see this, we observe that by adopting the Lagrange interpolation technique and letting

xi =

mi∑
j=1

aij
∏

1≤k≤mi, k 6=j

ui − k
j − k

, i = 1, 2, . . . , n,

the original decision variables can be equivalently transformed into

ui = j =⇒ xi = aij , i = 1, 2, . . . , n, j = 1, 2, . . . ,mi,

where ui ∈ {1, 2, . . . ,mi}, which can be further represented by dlog2mie independent binary vari-
ables. Combining these two steps of substitution, (D) is then reformulated as (P ), with the degree
of its objective polynomial function no larger than max1≤i≤n{d(mi − 1)}, and the dimension of its
decision variables being

∑n
i=1dlog2mie.

In many real world applications, the data {ai1, ai2, · · · , aimi} (i = 1, 2, . . . , n) in (D) are arithmetic
sequences. Then it is much easier to transform (D) to (P ), without going through the Lagrange
interpolation. It keeps the same degree of the objective polynomial function, and the dimension of
its decision variables is

∑n
i=1dlog2mie.

The proofs of all the theorems presented in this section are delegated to Appendix A.

4 Examples of Application

As we discussed in Section 1, the models studied in this paper have versatile applications. Given the
generic nature of the discrete polynomial optimization models (viz. (T ), (H), (M), (P ), (T )′, (H)′

and (M)′), this point is perhaps self-evident. However, we believe it is helpful to present a few
examples at this point with more details, to illustrate the potential modeling opportunities with
the new optimization models. We present four problems in this section and show that they are
readily formulated by the discrete polynomial optimization models in this paper.

4.1 The Tensor Cut-Norm Problem

The concept of cut-norm is initially defined on a real matrix A = (aij) ∈ Rn1×n2 , denoted by ‖A‖C ,
the maximum over all I ⊆ {1, 2, . . . , n1} and J ⊆ {1, 2, . . . , n2}, of the quantity |

∑
i∈I,j∈J aij |.

This concept plays a major role in the design of efficient approximation algorithms for dense graph
and matrix problems (see e.g., [14, 3]). Alon and Naor [2] proposed a randomized polynomial-
time approximation algorithm that approximates the cut-norm with a factor at least 0.56, which
is currently the best available approximation ratio. Since a matrix is a second order tensor, it is
natural to extend the cut-norm to general higher order tensors, e.g., a recent paper by Kannan [23].
Specifically, given a d-th order tensor F = (ai1i2···id) ∈ Rn1×n2×···×nd , its cut-norm is defined by

‖F ‖C := max
Ik⊆{1,2,...,nk}, k=1,2,...,d

∣∣∣∣∣∣
∑

ik∈Ik, k=1,2,...,d

ai1i2···id

∣∣∣∣∣∣ .
In fact, the cut-norm ‖F ‖C is closely related to ‖F ‖∞7→1, which is exactly in the form of (T ).

By Theorem 3.1, there is a polynomial-time approximation algorithm which computes ‖F ‖∞7→1
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with a factor at least Ω
(

(n1n2 · · ·nd−2)−
1
2

)
. The following result, asserts that the cut-norm of a

general d-th order tensor can also be approximated by a factor of Ω
(

(n1n2 · · ·nd−2)−
1
2

)
.

Proposition 4.1 For any d-th order tensor F ∈ Rn1×n2×···×nd, ‖F ‖C ≤ ‖F ‖∞7→1 ≤ 2d‖F ‖C .

Proof. Let F = (ai1i2···id) ∈ Rn1×n2×···×nd . Recall that ‖F ‖∞7→1 = maxxk∈Bnk , k=1,2,...,d F (x1,x2, · · · ,xd).
Given any xk ∈ Bnk for k = 1, 2, . . . , d, it follows that

F (x1,x2, · · · ,xd) =
∑

1≤ik≤nk, k=1,2,...,d

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id

=
∑
β∈Bd

∑
ik∈{j|xkj=βk,1≤j≤nk}, k=1,2,...,d

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id

=
∑
β∈Bd

 ∏
1≤k≤d

βk
∑

ik∈{j|xkj=βk,1≤j≤nk}, k=1,2,...,d

ai1i2···id


≤
∑
β∈Bd

∣∣∣∣∣∣∣
∑

ik∈{j|xkj=βk,1≤j≤nk}, k=1,2,...,d

ai1i2···id

∣∣∣∣∣∣∣
≤
∑
β∈Bd

‖F ‖C = 2d‖F ‖C ,

which implies ‖F ‖∞7→1 ≤ 2d‖F ‖C .
Observe that ‖F ‖C = maxzk∈{0,1}nk , k=1,2,...,d |F (z1, z2, · · · , zd)|. Given any zk ∈ {0, 1}nk for

k = 1, 2, . . . , d, let zk = (e+xk)/2, where e is the all one vector. Clearly xk ∈ Bnk for k = 1, 2, . . . , d,
and thus

F (z1, z2, · · · , zd) = F

(
e+ x1

2
,
e+ x2

2
, · · · , e+ xd

2

)
=
F (e, e, · · · , e) + F (x1, e, · · · , e) + · · ·+ F (x1,x2, · · · ,xd)

2d

≤ 1

2d
· ‖F ‖∞7→1 · 2d = ‖F ‖∞7→1,

which implies ‖F ‖C ≤ ‖F ‖∞7→1. �

4.2 The Vector-Valued Maximum Cut Problem

Consider an undirected graph G = (V,E) where V = {v1, v2, · · · , vn} is the set of the vertices, and
E ⊆ V × V is the set of the edges. On each edge e ∈ E there is an associated weight, which is a
nonnegative vector in this case, we ∈ Rm+ . The problem now is to find a cut in such a way that the
total sum of the weights, which is a vector in this case, has a maximum norm. More formally, this
problem can be formulated as

max
C is a cut of G

∥∥∥∥∥∑
e∈C

we

∥∥∥∥∥ .
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Note that the usual max-cut problem is a special case of the above model where each weight we ≥ 0
is a scalar. Similar to the scalar case (see [16]), we may reformulate the above problem in binary
variables as

max
∥∥∥∑1≤i,j≤n xixjw

′
ij

∥∥∥
s.t. x ∈ Bn,

where

w′ij =

{
−wij i 6= j,∑

1≤k≤n,k 6=iwik i = j.
(1)

Observing the Cauchy-Schwartz inequality, we further formulate the above problem as

max
(∑

1≤i,j≤n xixjw
′
ij

)T
y = F (x,x,y)

s.t. x ∈ Bn, y ∈ Sm.

This is the exact form of (H)′ with d = 2 and d′ = 1. Although the square-free property in terms
of x does not hold in this model (which is a condition of Theorem 3.9), one can still replace any
point in the box ([−1, 1]n) by one of its vertices ({−1, 1}n) without decreasing its objective function

value, since the matrix F (·, ·, ek) =
(

(w′ij)k

)
n×n

is diagonal dominant for k = 1, 2, . . . ,m. Thus, the

vector-valued max-cut problem admits an approximation ratio of 1
2

(
2
π

)3/2
n−1/2 by Theorem 3.9.

If the weights on edges are positive semidefinite matrices (i.e., W ij ∈ Rm×m, W ij � 0), then
the matrix-valued max-cut problem can also be formulated as

max λmax

(∑
1≤i,j≤n xixjW

′
ij

)
s.t. x ∈ Bn,

where W ′
ij is defined similarly to (1); or equivalently,

max yT
(∑

1≤i,j≤n xixjW
′
ij

)
y

s.t. x ∈ Bn, y ∈ Sm.

Similar to the vector-valued case, by the diagonal dominant property and Theorem 3.10, the above

problem admits an approximation ratio of 1
4

(
2
π

)3/2
(mn)−1/2. Notice that Theorem 3.10 only as-

serts a relative approximation ratio; however for this problem the optimal value of its minimization
counterpart is obviously nonnegative, and thus a relative approximation ratio implies a usual ap-
proximation ratio.

4.3 The Maximum Complete Satisfiability Problem

The usual maximum satisfiability problem (see e.g., [15]) is to find the boolean values of the literals,
so as to maximize the total weighted sum of the satisfied clauses. The key point of the problem is
that each clause is in the disjunctive form, namely if one of the literals is assigned the ture value,
then the clause is called satisfied. If the literals are also conjunctive, then this form of satisfiability
problem is easy to solve. However, if not all the clauses can be satisfied, and we alternatively
look for an assignment that maximizes the weighted sum of the satisfied clauses, then the problem
is quite different. To make a distinction from the usual Max-SAT problem, let us call the new
problem to be maximum complete satisfiability problem, to be abbreviated as Max-C-SAT. It is
immediately clear that Max-C-SAT is NP-hard, since we can easily reduce the max-cut problem to
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it. The reduction can be done as follows. For each edge (vi, vj) we consider two clauses {xi, x̄j} and
{x̄i, xj}, both having weight wij . Then a Max-C-SAT solution leads to a solution to the max-cut
problem.

Now consider an instance of the Max-C-SAT problem with m clauses, each clause containing
no more than d literals. Suppose that clause k (k = 1, 2, . . . ,m) has the following form

{xk1 , xk2 , · · · , xksk , x̄k̄1
, x̄k̄2

, . . . , x̄k̄tk
},

where sk + tk ≤ d, associated with a weight wk ≥ 0 for k = 1, 2, . . . ,m. Then, the Max-C-SAT
problem can be formulated in the form of (P ) as

max
∑m

k=1wk
∏sk
i=1

1+xki
2 ·

∏tk
j=1

1−xk̄j
2

s.t. x ∈ Bn.

According to Theorem 3.14 and the nonnegativity of the objective function, the above problem

admits a polynomial-time approximation algorithm with approximation ratio Ω
(
n−

d−2
2

)
, which is

independent of the number of clauses m.

4.4 The Box Constrained Diophantine Equation

Solving a system of linear equations where the variables are integers and constrained to a box
is an important problem in discrete optimization and linear algebra. Examples of application
include the classical Frobenius problem (see e.g., [6]), and a “market split problem” [11], other
from engineering applications in integrated circuits design and video signal processing. For more
details, one is referred to Aardal et al. [1]. Essentially, the problem is to find an integer-valued
x ∈ Zn and 0 ≤ x ≤ u, such that Ax = b. The problem can be formulated by the least square
method as

(L) max −(Ax− b)T(Ax− b)
s.t. x ∈ Zn, 0 ≤ x ≤ u.

According to the discussion at the end of Section 3.3, the above problem can be reformulated as
a form of (P ), whose objective function is quadratic polynomial and number of decision variables
is
∑n

i=1dlog2(ui + 1)e. By applying Theorem 3.14, (L) admits a polynomial-time approximation
algorithm with a constant relative approximation ratio.

In general, the Diophantine equations are polynomial equations. The box constrained polyno-
mial equations can also be formulated by the least square method as of (L). Suppose the highest
degree of the polynomial equations is d. Then, this least square problem can be reformulated as
a form of (P ), with the degree of the objective polynomial being 2d and number of decision vari-
ables being

∑n
i=1dlog2(ui+1)e. By applying Theorem 3.14, this problem admits a polynomial-time

approximation algorithm with a relative approximation ratio Ω
(

(
∑n

i=1 log ui)
−(d−1)

)
.

We have tested extensively the numerical performance of the algorithms proposed in this paper,
based on simulated data. In general the results show that the algorithms are not only efficient in
the theoretical sense as we prove in this paper, but also effective in practice. The numerical results
and the discussion of these results under various circumstances, however, are too lengthy to be
included in the current paper. Instead, we refer the interested readers to the recent Ph.D. thesis
of one of the authors, Li [26].
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A Proofs of the Theorems

A.1 Proof of Theorem 3.1

Proof. The proof is based on mathematical induction on the degree d. For the case of d = 2, it is

exactly the algorithm by Alon and Naor [2]. For general d ≥ 3, let X = x1(xd)
T

and (T ) is then
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relaxed to
(T̂ ) max F (X,x2,x3 · · · ,xd−1)

s.t. X ∈ Bn1nd ,
xk ∈ Bnk , k = 2, 3, . . . , d− 1,

where we treat X as an n1nd-dimensional vector, and F ∈ Rn1nd×n2×···×nd−1 as a (d− 1)-th order
tensor. Observe that (T̂ ) is the exact form of (T ) in degree d− 1, and so by induction we can find
X̂ ∈ Bn1nd and x̂k ∈ Bnk (k = 2, 3, . . . , d− 1) in polynomial-time, such that

F
(
X̂, x̂2, x̂3, . . . , x̂d−1

)
≥ (2/π)d−2 ln(1 +

√
2) (n2n3 · · ·nd−2)−

1
2 vmax(T̂ )

≥ (2/π)d−2 ln(1 +
√

2) (n2n3 · · ·nd−2)−
1
2 vmax(T ).

Rewrite X̂ as an n1 × nd matrix, and construct

X̃ =

[
In1×n1 X̂/

√
n1

X̂
T
/
√
n1 X̂

T
X̂/n1

]
� 0 (2)

as in DR 3.1, and then randomly generate(
ξ

η

)
∼ N (0n1+nd , X̃).

Let x̂1 := sign (ξ) and x̂d := sign (η). Noticing that the diagonal components of X̃ are all ones, it
follows from Bertsimas and Ye [7] that for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ nd,

E
[
x̂1
i x̂
d
j

]
=

2

π
arcsin

X̂ij√
n1

=
2

π
X̂ij arcsin

1
√
n1
,

where the last equality is due to |X̂ij | = 1. Denote matrix Q̂ = F (·, x̂2, x̂3, · · · , x̂d−1, ·), then

E
[
F
(
x̂1, x̂2, · · · , x̂d

)]
= E

 ∑
1≤i≤n1,1≤j≤nd

x̂1
i Q̂ij x̂

d
j


=

∑
1≤i≤n1,1≤j≤nd

Q̂ij E
[
x̂1
i x̂
d
j

]
=

∑
1≤i≤n1,1≤j≤nd

Q̂ij
2

π
X̂ij arcsin

1
√
n1

=
2

π
arcsin

1
√
n1

∑
1≤i≤n1,1≤j≤nd

Q̂ijX̂ij

=
2

π
arcsin

1
√
n1

F
(
X̂, x̂2, x̂3, · · · , x̂d−1

)
(3)

≥ 2

π
√
n1

(2/π)d−2 ln(1 +
√

2) (n2n3 · · ·nd−2)−
1
2 vmax(T )

= (2/π)d−1 ln(1 +
√

2) (n1n2 · · ·nd−2)−
1
2 vmax(T ).

Therefore x̂1 and x̂d can be found by randomization, which concludes the induction step. �
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Lemma A.1 If a polynomial function p(x) is square-free and z ∈ [−1, 1]n, then x′ ∈ Bn and
x′′ ∈ Bn can be found in polynomial-time, such that p(x′) ≤ p(z) ≤ p(x′′).

Proof. Since p(x) is square-free, by fixing x2, x3, · · · , xn as constants and taking x1 as the variable,
we may rewrite

p(x) = g1(x2, x3, · · · , xn) + x1g2(x2, x3, · · · , xn).

Let

x′1 =

{
−1 g2(z2, z3, · · · , zn) ≥ 0,
1 g2(z2, z3, · · · , zn) < 0.

Then
p
(
(x′1, z2, z3, · · · , zn)T

)
≤ p(z).

Repeat the same procedures for z2, z3, · · · , zn, and let them be replaced by x′2, x
′
3, · · · , x′n respec-

tively. Then x′ = (x′1, x
′
2, · · · , x′n)T ∈ Bn satisfies p(x′) ≤ p(z). Using a similar argument, we may

find x′′ ∈ Bn with p(x′′) ≥ p(z). �

A.2 Proof of Theorem 3.2

Proof. Let f(x) = F (x,x, · · · ,x︸ ︷︷ ︸
d

) with F being super-symmetric. (H) can be relaxed to

(T̃ ) max F (x1,x2, · · · ,xd)
s.t. xk ∈ Bn, k = 1, 2, . . . , d.

By Theorem 3.1 we are able to find a set of binary vectors (x̂1, x̂2, · · · , x̂d) in polynomial-time,
such that

F (x̂1, x̂2, · · · , x̂d) ≥ (2/π)d−1 ln(1 +
√

2)n−
d−2

2 vmax(T̃ ) ≥ (2/π)d−1 ln(1 +
√

2)n−
d−2

2 vmax(H).

When d is odd, let ξ1, ξ2, · · · , ξd be i.i.d. random variables, each taking values 1 and −1 with equal
probability. Then by Lemma 3.4 it follows that

d!F (x̂1, x̂2, · · · , x̂d) = E

[
d∏
i=1

ξif

(
d∑

k=1

ξkx̂
k

)]
= E

f
 d∑
k=1

∏
i 6=k

ξi

 x̂k
 .

Thus we may find a binary vector β = (β1, β2, · · · , βd)T ∈ Bd, such that

f

 d∑
k=1

∏
i 6=k

βi

 x̂k
 ≥ d!F (x̂1, x̂2, . . . , x̂d) ≥ d!(2/π)d−1 ln(1 +

√
2)n−

d−2
2 vmax(H).

Now we notice that 1
d

∑d
k=1

(∏
i 6=k βi

)
x̂k ∈ [−1, 1]n, because for all 1 ≤ j ≤ n,∣∣∣∣∣∣

1

d

d∑
k=1

∏
i 6=k

βi

 x̂k

j

∣∣∣∣∣∣ =
1

d

∣∣∣∣∣∣
d∑

k=1

∏
i 6=k

βi

 x̂kj

∣∣∣∣∣∣ ≤ 1

d

d∑
k=1

∣∣∣∣∣∣
∏
i 6=k

βi

 x̂kj

∣∣∣∣∣∣ = 1. (4)

Since f(x) is square-free, by Lemma A.1 we are able to find x̃ ∈ Bn in polynomial-time, such that

f(x̃) ≥ f

1

d

d∑
k=1

∏
i 6=k

βi

 x̂k
 ≥ d−dd!(2/π)d−1 ln(1 +

√
2)n−

d−2
2 vmax(H).

�
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Lemma A.2 Suppose in (P ): maxx∈Bn p(x), the objective polynomial function p(x) is square-free
and has no constant term. Then vmin(P ) ≤ 0 ≤ vmax(P ), and a binary vector x′ ∈ Bn can be found
in polynomial-time with p(x′) ≥ 0.

Proof. Let ξ = (ξ1, ξ2, · · · , ξn)T, whose components are i.i.d. random variables and take values 1
and −1 with equal probability. Then for any term ai1i2...ikxi1xi2 · · ·xik with degree k (1 ≤ k ≤ d)
of p(x), by the square-free property, it follows

E[ai1i2...ikξi1ξi2 · · · ξik ] = ai1i2···ikE[ξi1 ]E[ξi2 ] · · ·E[ξik ] = 0.

This implies E[p(ξ)] = 0, and consequently vmin(P ) ≤ 0 ≤ vmax(P ). By a randomization process, a
binary vector x′ ∈ Bn can be found in polynomial-time with p(x′) ≥ 0. �

We remark that the second part of Lemma A.2 can also be proven by conducting the procedure
in Lemma A.1 with the input vector 0 ∈ [−1, 1]n, since p(0) = 0. Therefore, finding a binary vector
x′ ∈ Bn with p(x′) ≥ 0 can be done by either a randomized process (Lemma A.2) or a deterministic
process (Lemma A.1).

A.3 Proof of Theorem 3.3

Proof. Like in the proof of Theorem 3.2, by relaxing (H) to (T̃ ), we are able to find a set of binary
vectors (x̂1, x̂2, · · · , x̂d) with

F (x̂1, x̂2, · · · , x̂d) ≥ (2/π)d−1 ln(1 +
√

2)n−
d−2

2 vmax(T̃ ).

Besides, we observe that vmax(H) ≤ vmax(T̃ ) and vmin(H) ≥ vmin(T̃ ) = −vmax(T̃ ). Therefore

2 vmax(T̃ ) ≥ vmax(H)− vmin(H).

Let ξ1, ξ2, · · · , ξd be i.i.d. random variables, each taking values 1 and −1 with equal probability.
Use a similar argument of (4), we have 1

d

∑d
k=1 ξkx̂

k ∈ [−1, 1]n. Then by Lemma A.1, there exists
x̂ ∈ Bn such that

f

(
1

d

d∑
k=1

ξkx̂
k

)
≥ f(x̂) ≥ vmin(H).

Applying Lemma 3.4 and we have

1

2
E

[
f

(
1

d

d∑
k=1

ξkx̂
k

)
− vmin(H)

∣∣∣∣∣
d∏
i=1

ξi = 1

]

≥ 1

2
E

[
f

(
1

d

d∑
k=1

ξkx̂
k

)
− vmin(H)

∣∣∣∣∣
d∏
i=1

ξi = 1

]
− 1

2
E

[
f

(
1

d

d∑
k=1

ξkx̂
k

)
− vmin(H)

∣∣∣∣∣
d∏
i=1

ξi = −1

]

= E

[
d∏
i=1

ξi

(
f

(
1

d

d∑
k=1

ξkx̂
k

)
− vmin(H)

)]

= d−dE

[
d∏
i=1

ξif

(
d∑

k=1

ξkx̂
k

)]
− vmin(H)E

[
d∏
i=1

ξi

]
= d−dd!F (x̂1, x̂2, . . . , x̂d) ≥ τH vmax(T̃ ) ≥ (τH/2) (vmax(H)− vmin(H)) ,
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where the last inequality is due to 2 vmax(T̃ ) ≥ vmax(H) − vmin(H). Thus we may find a binary
vector β = (β1, β2, · · · , βd)T ∈ Bd with

∏d
i=1 βi = 1, such that

f

(
1

d

d∑
k=1

βkx̂
k

)
− vmin(H) ≥ τH (vmax(H)− vmin(H)) .

Noticing 1
d

∑d
k=1 βkx̂

k ∈ [−1, 1]n and applying Lemma A.1, by the square-free property of f(x),
we are able to find x̃ ∈ Bn with

f(x̃)− vmin(H) ≥ f

(
1

d

d∑
k=1

βkx̂
k

)
− vmin(H) ≥ τH (vmax(H)− vmin(H)) .

�

A.4 Proof of Theorem 3.5

Proof. Like in the proof of Theorem 3.2, by relaxing model (M) to (T ), we are able to find a set of
binary vectors (x̂1, x̂2, · · · , x̂d) with

F (x̂1, x̂2, · · · , x̂d) ≥ τM

(
s∏

k=1

dk
dk

dk!

)
vmax(M).

Let ξ = (ξ1, ξ2, · · · , ξd)T, whose components are i.i.d. random variables taking values 1 and −1
with equal probability. Denote

x̂1
ξ :=

d1∑
k=1

ξkx̂
k, x̂2

ξ :=

d1+d2∑
k=d1+1

ξkx̂
k, · · · , x̂sξ :=

d∑
k=d1+d2+···+ds−1+1

ξkx̂
k. (5)

Without loss of generality, we assume d1 to be odd. By applying Lemma 3.4 d times, it is easy to
verify that

d1!d2! · · · ds!F (x̂1, x̂2, · · · , x̂d) = E

[
d∏
i=1

ξif
(
x̂1
ξ , x̂

2
ξ , · · · , x̂sξ

)]
= E

[
f

(
d∏
i=1

ξix̂
1
ξ , x̂

2
ξ , · · · , x̂sξ

)]
.

Thus we are able to find β = (β1, β2, · · · , βd)T ∈ Bd, such that

f

(
d∏
i=1

βi
x̂1
β

d1
,
x̂2
β

d2
, · · · ,

x̂sβ
ds

)
≥

s∏
k=1

dk!dk
−dkF (x̂1, x̂2, · · · , x̂d) ≥ τM vmax(M).

It is easy to verify that
∏d
i=1 βix̂

1
β/d1 ∈ [−1, 1]n, and x̂kβ/dk ∈ [−1, 1]n for k = 2, 3, . . . s. By the

square-free property of the function f and applying Lemma A.1, we are able to find a set of binary
vectors (x̃1, x̃2, · · · , x̃s) in polynomial-time, such that

f(x̃1, x̃2, · · · , x̃s) ≥ f

(
d∏
i=1

βi
x̂1
β

d1
,
x̂2
β

d2
, · · · ,

x̂sβ
ds

)
≥ τM vmax(M).

�
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A.5 Proof of Theorem 3.6

Proof. The proof is analogous to the proof of Theorem 3.3. The main differences are: (i) we use

d1!d2! · · · ds!F (x̂1, x̂2, · · · , x̂d) = E

[
d∏
i=1

ξif
(
x̂1
ξ , x̂

2
ξ , · · · , x̂sξ

)]

instead of invoking Lemma 3.4 directly, where x̂kξ (k = 1, 2, . . . , s) is defined by (5); and (ii) we use

f
(

1
d1
x̂1
ξ ,

1
d2
x̂2
ξ , · · · , 1

ds
x̂sξ

)
instead of f

(
1
d

∑d
k=1 ξkx̂

k
)

during the randomization process. �

A.6 Proof of Proposition 3.7

Proof. When d = d′ = 1, (T )′ can be written as

max xTQy
s.t. x ∈ Bn1 , y ∈ Sm1 .

For any fixed x, the corresponding optimal y must be QTx/‖QTx‖ due to the Cauchy-Schwartz
inequality, and accordingly,

xTQy = xTQ
QTx

‖QTx‖
= ‖QTx‖ =

√
xTQQTx.

Thus the problem is equivalent to maxx∈Bn1 xTQQTx. Noticing that QQT is positive semidefinite,
by the result of Nesterov [27], it admits an approximation ratio 2/π. Thus the original problem
admits a polynomial-time approximation algorithm with approximation ratio

√
2/π. �

Proposition A.3 (He, Li, and Zhang [19]) (S) : maxy1∈Sm1 ,y2∈Sm2 (y1)TQy2 can be solved in
polynomial-time, with vmax(S) ≥ ‖Q‖/√m1.

A.7 Proof of Theorem 3.8

Proof. The proof is based on mathematical induction on the degree d+ d′. Proposition 3.7 can be
used as the base for the induction process when d+ d′ = 2.

For general d + d′ ≥ 3, if d′ ≥ 2, let Y = y1(yd
′
)T. Noticing that ‖Y ‖2 = ‖y1‖2‖yd′‖2 = 1,

(T )′ can be relaxed to a case with degree d+ d′ − 1, i.e.,

max F (x1,x2, · · · ,xd,Y ,y2,y3, · · · ,yd′−1)
s.t. xk ∈ Bnk , k = 1, 2, . . . , d,

Y ∈ Sm1md′ , y` ∈ Sm` , ` = 2, 3, . . . , d′ − 1.

By induction, a feasible solution (x̂1, x̂2, · · · , x̂d, Ŷ , ŷ2, ŷ3, · · · , ŷd′−1) can be found in polynomial-
time, such that

F (x̂1, x̂2, · · · , x̂d, Ŷ , ŷ2, ŷ3, · · · , ŷd′−1) ≥ (2/π)
2d−1

2 (n1n2 · · ·nd−1m2m3 · · ·md′−1)−
1
2 vmax(T ′).

Let us denote Q = F (x̂1, x̂2, · · · , x̂d, ·, ŷ2, ŷ3, · · · , ŷd′−1, ·) ∈ Rm1×md′ . Then by Proposition A.3
(used in DR 2 of [19]), the problem maxy1∈Sm1 ,yd′∈Smd′ (y

1)TQyd
′
can be solved in polynomial-time,

with its optimal solution (ŷ1, ŷd
′
) satisfying

F (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′) = (ŷ1)TQŷd
′ ≥ ‖Q‖/

√
m1.
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By the Cauchy-Schwartz inequality, it follows that

‖Q‖ = max
Y ∈ Sm1md′

Q • Y ≥ Q • Ŷ = F (x̂1, x̂2, · · · , x̂d, Ŷ , ŷ2, ŷ3, · · · , ŷd′−1).

Thus we concludes that

F (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′) ≥ ‖Q‖/
√
m1

≥ F (x̂1, x̂2, · · · , x̂d, Ŷ , ŷ2, ŷ3, . . . , ŷd
′−1)/

√
m1

≥ τ ′T vmax(T ′).

For d+ d′ ≥ 3 and d′ = 1, let X = x1(xd)T. (T )′ can be relaxed to the other case with degree
d− 1 + d′, i.e.,

max F (X,x2,x3, · · · ,xd−1,y1,y2, · · · ,yd′)
s.t. X ∈ Bn1nd , xk ∈ Bnk , k = 2, 3, . . . , d− 1,

y` ∈ Sm` , ` = 1, 2, . . . , d′.

By induction, the problem admits a polynomial-time approximation algorithm with approximation

ratio (2/π)
2d−3

2 (n2n3 · · ·nd−1m1m2 · · ·md′−1)−
1
2 . In order to decompose X into x1 and xd, we shall

first conduct the randomization procedure as (2) (DR 3.1) in the proof of Theorem 3.1, which will
further deteriorate by an additional factor of 2

π
√
n1

as shown in (3). Combining these two factors,

we are led to the ratio τ ′T . �

A.8 Proof of Theorem 3.9

Proof. Like in the proof of Theorem 3.2, by relaxing model (H)′ to (T )′, we are able to find
(x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′) with x̂k ∈ Bn for all 1 ≤ k ≤ d and ŷ` ∈ Sm for all 1 ≤ ` ≤ d′, such
that

F (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′) ≥ (2/π)
2d−1

2 n−
d−1

2 m−
d′−1

2 vmax(H ′).

Let ξ1, ξ2, · · · , ξd, η1, η2, · · · , ηd′ be i.i.d. random variables, each taking values 1 and −1 with equal
probability. By applying Lemma 3.4 twice, we have

E

 d∏
i=1

ξi

d′∏
j=1

ηj f

(
d∑

k=1

ξkx̂
k,

d′∑
`=1

η`ŷ
`

) = d!d′!F (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′). (6)

Thus we are able to find β ∈ Bd and β′ ∈ Bd′ , such that

d∏
i=1

βi

d′∏
j=1

β′j f

(
d∑

k=1

βkx̂
k,

d′∑
`=1

β′` ŷ
`

)
≥ d!d′!F (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′).

If d is odd, let x̂ =
∏d
i=1 βi

∏d′

j=1 β
′
j

∑d
k=1 βkx̂

k and ŷ =
∑d′

`=1 β
′
` ŷ

`; otherwise let x̂ =
∑d

k=1 βkx̂
k

and ŷ =
∏d
i=1 βi

∏d′

j=1 β
′
j

∑d′

`=1 β
′
` ŷ

`. Noticing ‖ŷ‖ ≤ d′ and combining the previous two inequali-
ties, it follows that

f

(
x̂

d
,
ŷ

‖ŷ‖

)
≥ d−dd′−d′

d∏
i=1

βi

d′∏
j=1

β′jf

(
d∑

k=1

βkx̂
k,

d′∑
`=1

β′` ŷ
`

)
≥ τ ′H vmax(H ′).

Denote ỹ = ŷ/‖ŷ‖ ∈ Sm. Since x̂/d ∈ [−1, 1]n and f(x,y) is square-free in x, by applying
Lemma A.1, x̃ ∈ Bn can be found in polynomial-time, with

f (x̃, ỹ) ≥ f (x̂/d, ỹ) ≥ τ ′H vmax(H ′).

�
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A.9 Proof of Theorem 3.10

Proof. Following the same argument as in the proof of Theorem 3.9, we shall get (6), which implies

E

 d∏
i=1

ξi

d′∏
j=1

ηj f

(
d∑

k=1

ξkx̂
k,

d′∑
`=1

η`ŷ
`

) ≥ d!d′!(2/π)
2d−1

2 n−
d−1

2 m−
d′−1

2 vmax(H ′).

Denote x̂ξ := 1
d

∑d
k=1 ξkx̂

k and ŷη := 1
d′
∑d′

`=1 η`ŷ
`. Clearly we have

E

 d∏
i=1

ξi

d′∏
j=1

ηj f
(
x̂ξ, ŷη

) ≥ τ ′H vmax(H ′).

Pick any fixed y′ ∈ Sm and consider the following problem

(Ĥ) max f(x,y′)
s.t. x ∈ Bn.

Since f(x,y′) is square-free in x and has no constant term, by Lemma A.2, a binary vector x′ ∈ Bn
can be found in polynomial-time with f(x′,y′) ≥ 0 ≥ vmin(Ĥ) ≥ vmin(H ′).

Next we shall argue f
(
x̂ξ, ŷη

)
≥ vmin(H ′). If this were not the case, then f

(
x̂ξ, ŷη

)
<

vmin(H ′) ≤ 0. By noticing ‖ŷη‖ ≤ 1, this leads to

f
(
x̂ξ, ŷη/‖ŷη‖

)
= ‖ŷη‖−d

′
f
(
x̂ξ, ŷη

)
≤ f

(
x̂ξ, ŷη

)
< vmin(H ′).

Also noticing x̂ξ ∈ [−1, 1]n, by applying Lemma A.1, a binary vector x̂ ∈ Bn can be found with

vmin(H ′) ≤ f(x̂, ŷη/‖ŷη‖) ≤ f
(
x̂ξ, ŷη/‖ŷη‖

)
< vmin(H ′),

resulting in a contradiction.
By that f

(
x̂ξ, ŷη

)
− vmin(H ′) ≥ 0, it follows

1

2
E

f (x̂ξ, ŷη)− vmin(H ′)

∣∣∣∣∣
d∏
i=1

ξi

d′∏
j=1

ηj = 1


≥ 1

2
E

f (x̂ξ, ŷη)− vmin(H ′)

∣∣∣∣∣
d∏
i=1

ξi

d′∏
j=1

ηj = 1

− 1

2
E

f (x̂ξ, ŷη)− vmin(H ′)

∣∣∣∣∣
d∏
i=1

ξi

d′∏
j=1

ηj = −1


= E

 d∏
i=1

ξi

d′∏
j=1

ηj
(
f
(
x̂ξ, ŷη

)
− vmin(H ′)

)
= E

 d∏
i=1

ξi

d′∏
j=1

ηj f
(
x̂ξ, ŷη

) ≥ τ ′H vmax(H ′).

Thus we are able to find β ∈ Bd and β′ ∈ Bd′ with
∏d
i=1 βi

∏d′

j=1 β
′
j = 1, such that

f
(
x̂β, ŷβ′

)
− vmin(H ′) ≥ 2 τ ′H vmax(H ′).

24



Denote y′′ = ŷβ′/‖ŷβ′‖ ∈ Sm. Since x̂β ∈ [−1, 1]n, by Lemma A.1, a binary vector x′′ ∈ Bn can
be found in polynomial-time with f(x′′,y′′) ≥ f (x̂β,y

′′). Below we shall prove either (x′,y′) or
(x′′,y′′) will satisfy

f(x,y)− vmin(H ′) ≥ τ ′H
(
vmax(H ′)− vmin(H ′)

)
. (7)

Indeed, if −vmin(H ′) ≥ τ ′H (vmax(H ′)− vmin(H ′)), then (x′,y′) satisfies (7) in this case since
f(x′,y′) ≥ 0. Otherwise, if −vmin(H ′) < τ ′H (vmax(H ′)− vmin(H ′)), then

vmax(H ′) >
(
1− τ ′H

) (
vmax(H ′)− vmin(H ′)

)
≥
(
vmax(H ′)− vmin(H ′)

)
/2,

which implies

f
(
x̂β, ŷβ′

)
− vmin(H ′) ≥ 2 τ ′H vmax(H ′) ≥ τ ′H

(
vmax(H ′)− vmin(H ′)

)
.

The above inequality also implies that f
(
x̂β, ŷβ′

)
> 0. Therefore, we have

f(x′′,y′′) ≥ f
(
x̂β,y

′′) = ‖ŷβ′‖−d
′
f
(
x̂β, ŷβ′

)
≥ f

(
x̂β, ŷβ′

)
,

implying (x′′,y′′) satisfies (7). Finally, arg max{f(x′,y′), f(x′′,y′′)} satisfies (7) in both cases. �

A.10 Proof of Theorem 3.11

Proof. The proof is analogous to the proof of Theorem 3.9. We first relax (M)′ to (T )′ and get an
approximate solution (x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′) using Theorem 3.8. By applying Lemma 3.4
s+ t times, we have

E

 d∏
i=1

ξi

d′∏
j=1

ηjf
(
x̂1
ξ , x̂

2
ξ , · · · , x̂sξ, ŷ1

η, ŷ
2
η, · · · , ŷtη

) =
s∏

k=1

dk!
t∏

`=1

d′`!F
(
x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′

)
,

where

x̂1
ξ :=

d1∑
k=1

ξkx̂
k, x̂2

ξ :=

d1+d2∑
k=d1+1

ξkx̂
k, · · · , x̂sξ :=

d∑
k=d1+d2+···+ds−1+1

ξkx̂
k,

and

ŷ1
η :=

d′1∑
`=1

η` ŷ
`, ŷ2

η :=

d′1+d′2∑
`=d′1+1

η` ŷ
`, · · · , ŷtη :=

d′∑
`=d′1+d′2+···+d′t−1+1

η`ŷ
`.

In the above identity, as one of dk (k = 1, 2, . . . , s) or one of d′` (` = 1, 2, . . . , t) is odd, we are able

to move
∏d
i=1 ξi

∏d′

j=1 ηj into the coefficient of the corresponding vector (x̂kξ or ŷ`η whenever appro-
priate) in the function f . Other derivations are essentially the same as the proof of Theorem 3.9.
�

A.11 Proof of Theorem 3.12

Proof. The proof is analogous to that of Theorem 3.10. The main differences are: (i) we use

E

 d∏
i=1

ξi

d′∏
j=1

ηjf
(
x̂1
ξ , x̂

2
ξ , · · · , x̂sξ, ŷ1

η, ŷ
2
η, · · · , ŷtη

) =
s∏

k=1

dk!
t∏

`=1

d′`!F
(
x̂1, x̂2, · · · , x̂d, ŷ1, ŷ2, · · · , ŷd′

)

instead of (6); and (ii) we use f

(
x̂1
ξ

d1
,
x̂2
ξ

d2
, · · · , x̂

s
ξ

ds
,
ŷ1
η

d′1
,
ŷ2
η

d′2
, · · · , ŷ

t
η

d′t

)
instead of f

(
x̂ξ, ŷη

)
. �
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A.12 Proof of Theorem 3.14

Proof. We may without loss of generality assume p(x) is square-free since we have (xi)
2 = 1 for

i = 1, 2, . . . , n, which allows us to reduce the power of xi to 0 or 1. We may further assume p(x)
to have no constant term. Thus by homogenization

p(x) =
d∑

k=1

Fk(x,x, · · · ,x︸ ︷︷ ︸
k

)xd−kh := F

((
x

xh

)
,

(
x

xh

)
, · · · ,

(
x

xh

)
︸ ︷︷ ︸

d

)
= F (x̄, x̄, · · · , x̄︸ ︷︷ ︸

d

) = f(x̄), (8)

where f(x̄) = p(x) if xh = 1, and f(x̄) is an (n+ 1)-dimensional homogeneous polynomial function
of degree d. During this proof, the ‘bar’ notation, e.g., x̄, is reserved for an (n + 1)-dimensional
vector, with the underlying letter x referring to the vector of its first n components, and the
subscript ‘h’ (the subscript of xh) referring to its last component.

Two immediate observations are in order here. First, f(x̄) is square-free with respect to all the
variables x1, x2, · · · , xn, but is not square-free with respect to xh. Second, the last component of
the tensor form F is 0, since there is no constant term in the polynomial p(x).

(P ) is then equivalent to

max f(x̄)
s.t. x̄ =

(
x
xh

)
,x ∈ Bn, xh = 1,

which can be relaxed to an instance of (T ) as follows

(T̄ ) max F (x̄1, x̄2, · · · , x̄d)
s.t. x̄k ∈ Bn+1, k = 1, 2, . . . , d.

Let (ū1, ū2, · · · , ūd) be the feasible solution of (T̄ ) found by Theorem 3.1 with

F (ū1, ū2, · · · , ūd) ≥ (n+ 1)−
d−2

2 (2/π)d−1 ln(1 +
√

2) vmax(T̄ )

≥ (n+ 1)−
d−2

2 (2/π)d−1 ln(1 +
√

2) vmax(P ).

Denote v̄k := ūk/d for all 1 ≤ k ≤ d, and consequently

F (v̄1, v̄2, · · · , v̄d) = d−dF (ū1, ū2, · · · , ūd) ≥ d−d(2/π)d−1 ln(1 +
√

2) (n+ 1)−
d−2

2 vmax(P ).

Notice that for all 1 ≤ k ≤ d, |vkh| = |ukh/d| = 1/d ≤ 1 and the last component of tensor F is 0. By
applying Lemma 3.13, it follows that

E

[
d∏

k=1

ηkF

((
η1v

1

1

)
,

(
η2v

2

1

)
, · · · ,

(
ηdv

d

1

))]
= F (v̄1, v̄2, · · · , v̄d),

and

E

[
F

((
ξ1v

1

1

)
,

(
ξ2v

2

1

)
, · · · ,

(
ξdv

d

1

))]
= 0,

where (η1, η2, . . . , ηd) = ηT are independent random variables, taking values 1 and −1 with E[ηk] =
vkh for all 1 ≤ k ≤ d, and (ξ1, ξ2, · · · , ξd) = ξT are i.i.d. random variables, taking values 1 and
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−1 with equal probability. By combining these two identities, we have, for any constant c, the
following identity

F (v̄1, v̄2, · · · , v̄d) =
∑

β∈Bd,
∏d
k=1 βk=−1

(c− Prob {η = β})F
((

β1v
1

1

)
,

(
β2v

2

1

)
, · · · ,

(
βdv

d

1

))

+
∑

β∈Bd,
∏d
k=1 βk=1

(c+ Prob {η = β})F
((

β1v
1

1

)
,

(
β2v

2

1

)
, · · · ,

(
βdv

d

1

))
.

If we let c = maxβ∈Bd,
∏d
k=1 βk=−1 Prob {η = β}, then in the above identity, the coefficient of each

term F (·) is nonnegative. Therefore we are able to find β′ = (β′1, β
′
2, · · · , β′d)T ∈ Bd such that

F

((
β′1v

1

1

)
,

(
β′2v

2

1

)
, · · · ,

(
β′dv

d

1

))
≥ τ0 F (v̄1, v̄2, · · · , v̄d),

with

τ0 :=

 ∑
β∈Bd,

∏d
k=1 βk=1

(c+ Prob {η = β}) +
∑

β∈Bd,
∏d
k=1 βk=−1

(c− Prob {η = β})

−1

≥
(

2dc+ 1
)−1
≥

(
2d
(

1

2
+

1

2d

)d
+ 1

)−1

≥ 1

1 + e
,

where c ≤
(

1
2 + 1

2d

)d
is applied because E[ηk] = vkh = ±1/d for all 1 ≤ k ≤ d.

Let us denote z̄k =
(
zk

zkh

)
:=
(β′kvk

1

)
for all 1 ≤ k ≤ d, and we have

F (z̄1, z̄2, · · · , z̄d) ≥ τ0 F (v̄1, v̄2, · · · , v̄d) ≥ ln(1 +
√

2)

1 + e

(
2

π

)d−1

d−d(n+ 1)−
d−2

2 vmax(P ). (9)

For any β = (β1, β2, · · · , βd)T ∈ Bd, denote

z̄(β) := β1(d+ 1)z̄1 +
d∑

k=2

βkz̄
k.

By noticing zkh = 1 and |zki | = |vki | = |uki |/d = 1/d for all 1 ≤ k ≤ d and 1 ≤ i ≤ n, it follows that

2 ≤ |zh(β)| ≤ 2d and |zi(β)| ≤ (d+ 1)/d+ (d− 1)/d = 2,∀ 1 ≤ i ≤ n.

Thus z(β)/zh(β) ∈ [−1, 1]n. By Lemma A.1, a binary vector x′ ∈ Bn can be found, such that

vmin(P ) ≤ p(x′) ≤ p (z(β)/zh(β)) = f (z̄(β)/zh(β)) .

Moreover, we shall argue below that

β1 = 1 =⇒ f(z̄(β)) ≥ (2d)d vmin(P ). (10)

If this were not the case, then f (z̄(β)/(2d)) < vmin(P ) ≤ 0 (by Lemma A.2). Notice that β1 = 1
implies zh(β) > 0, and thus we have

f

(
z̄(β)

zh(β)

)
=

(
2d

zh(β)

)d
f

(
z̄(β)

2d

)
≤ f

(
z̄(β)

2d

)
< vmin(P ),
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which is a contradiction.
Suppose (ξ1, ξ2, · · · , ξd) = ξT are i.i.d. random variables, taking values 1 and −1 with equal

probability. By Lemma 3.4 it follows that

d!F
(

(d+ 1)z̄1, z̄2, · · · , z̄d
)

= E

[
d∏

k=1

ξkf (z̄(ξ))

]

=
1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = 1

]
− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = −1

]

− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = −1,
d∏

k=2

ξk = 1

]
+

1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = −1,
d∏

k=2

ξk = −1

]

=
1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = 1

]
− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = −1

]

− 1

4
E

[
f (z̄(−ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = (−1)d−1

]
+

1

4
E

[
f (z̄(−ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = (−1)d

]
.

By inserting and canceling a constant term, noticing f (z̄(−ξ)) = f (−z̄(ξ)) = (−1)df (z̄(ξ)), the
above expression further leads to

d!F
(

(d+ 1)z̄1, z̄2, · · · , z̄d
)

= E

[
d∏

k=1

ξkf (z̄(ξ))

]

=
1

4
E

[(
f (z̄(ξ))− (2d)d vmin(P )

) ∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = 1

]

− 1

4
E

[(
f (z̄(ξ))− (2d)d vmin(P )

) ∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = −1

]

+
(−1)d−1

4
E

[(
f (z̄(ξ))− (2d)d vmin(P )

) ∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = (−1)d−1

]

+
(−1)d

4
E

[(
f (z̄(ξ))− (2d)d vmin(P )

) ∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = (−1)d

]

≤ 1

2
E

[(
f (z̄(ξ))− (2d)d vmin(P )

) ∣∣∣∣∣ ξ1 = 1,
d∏

k=2

ξk = 1

]
,

where the last inequality is due to (10). Therefore, we are able to find β′′ = (β′′1 , β
′′
2 , · · · , β′′d )T ∈ Bd

with β′′1 =
∏d
k=2 β

′′
k = 1, such that

f(z̄(β′′))− (2d)d vmin(P ) ≥ 2d!F ((d+ 1)z̄1, z̄2, · · · , z̄d)

≥ 2 ln(1 +
√

2)

1 + e

(
2

π

)d−1

(d+ 1)!d−d(n+ 1)−
d−2

2 vmax(P ),

where the last step is due to (9).
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By Lemma A.2, a binary vector x′ ∈ Bn can be found in polynomial-time with p(x′) ≥ 0. Since
z(β′′)/zh(β′′) ∈ [−1, 1]n, by Lemma A.1, a binary vector x′′ ∈ Bn can be found in polynomial-time
with p(x′′) ≥ p(z(β′′)/zh(β′′)). Below we shall prove at least one of x′ and x′′ satisfies

p(x)− vmin(P ) ≥ τP (vmax(P )− vmin(P )) . (11)

Indeed, if −vmin(P ) ≥ τP (vmax(P )− vmin(P )), then x′ satisfies (11) in this case. Otherwise we
shall have −vmin(P ) < τP (vmax(P )− vmin(P )), then

vmax(P ) > (1− τP ) (vmax(P )− vmin(P )) ≥ (vmax(P )− vmin(P )) /2,

which implies

f

(
z̄(β′′)

2d

)
− vmin(P ) ≥ (2d)−d

2 ln(1 +
√

2)

1 + e

(
2

π

)d−1

(d+ 1)!d−d(n+ 1)−
d−2

2 vmax(P )

≥ τP (vmax(P )− vmin(P )) .

The above inequality also implies that f (z̄(β′′)/(2d)) > 0. Recall that β′′1 = 1 implies zh(β′′) > 0.
Therefore,

p(x′′) ≥ p
(
z(β′′)

zh(β′′)

)
= f

(
z̄(β′′)

zh(β′′)

)
=

(
2d

zh(β′′)

)d
f

(
z̄(β′′)

2d

)
≥ f

(
z̄(β′′)

2d

)
,

which implies x′′ satisfies (11). Finally, arg max{p(x′), p(x′′)} satisfies (11) in both cases. �
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