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In standard cosmologies, dark energy interacts only gravitationally with dark matter. There
could be a non-gravitational interaction in the dark sector, leading to changes in the effective DE
equation of state, in the redshift dependence of the DM density and in structure formation. We
use CMB, BAO and SNIa data to constrain a model where the energy transfer in the dark sector is
proportional to the DE density. There are two subclasses, defined by the vanishing of momentum
transfer either in the DM or the DE frame. We conduct a Markov-Chain Monte-Carlo analysis to
obtain best-fit parameters. The background evolution allows large interaction strengths, and the
constraints from CMB anisotropies are weak. The growth of DM density perturbations is much
more sensitive to the interaction, and can deviate strongly from the standard case. However, the
deviations are degenerate with galaxy bias and thus more difficult to constrain. Interestingly, the
ISW signature is suppressed since the non-standard background evolution can compensate for high
growth rates. We also discuss the partial degeneracy between interacting DE and modified gravity,
and how this can be broken.

I. INTRODUCTION

The late-time acceleration of the expansion of the
Universe demands explanation and observational veri-
fication. Currently observational tests of the standard
ΛCDM cosmological model are not precise enough to ad-
equately rule out the wide variety of alternative dark en-
ergy (DE) models that have been proposed to explain
the data. Instead it is necessary to obtain constraints
on the free parameters of such models and find ways to
distinguish between them using observations. One way
to test ΛCDM is to describe DE as an effective fluid and
promote its equation of state w to a free parameter. This
is known as wCDM and allows deviations from the stan-
dard value of w = −1; w is still only measured to about
5%-10% accuracy and has a best-fit value of w < −1 for
some datasets [1].

Alternatively, one may go beyond wCDM by introduc-
ing a new parameter to quantify interactions within the
dark sector. It is natural to expect some new physics in
the dark sector given the richness of interactions between
species in the standard model of particle physics [2]. In-
deed taking dark sector interactions to be zero would be
an additional assumption of the model. Models of dark
sector interactions (see e.g. [3–76]) have little concrete
guidance from particle physics, but by studying possi-
ble interactions and confronting them with observations
we can shed light on questions such as which models may
lead to unphysical behaviour and which are in best agree-
ment with observations.

Further motivation for interacting dark energy (IDE)
models includes: (1) they may alleviate the coincidence
problem of explaining why the domination of DE roughly
coincides with the formation of large-scale structure;
(2) IDE affects structure formation and therefore pro-
vides a new way to modify the predictions of the standard
non-interacting model.

Here we investigate a particular version of the inter-
action model used in [77–85]. The general form of this
interaction in the background is Γρ̄, where Γ is constant.
This has also been used to describe particle decays in
other contexts [86–88]. Interactions of the form αHρ̄
(with α constant) (see e.g. [89] and references therein)
appear similar, but they mean that the interaction at
any event is affected by the global expansion rate H , as
opposed to the locally determined interaction Γρ̄.

We describe the IDE model in the background uni-
verse in Sec. II and in the perturbed universe in Sec. III.
In Sec. IV we investigate the effects of the interaction
on the CMB and matter power spectra. We find the
best-fit models using CMB, baryon acoustic oscillation
(BAO) and supernova (SNIa) data, and we discuss the
behaviour of some typical models and the implications
for the growth of large-scale structure in the Universe.
Our conclusions are in Sec. V.

II. IDE IN THE BACKGROUND

An IDE model is characterized in the background by
the energy transfer rate Q̄x = −Q̄c:

ρ̄′c = −3Hρ̄c + aQ̄c, (1)

ρ̄′x = −3H(1 + w)ρ̄x + aQ̄x, (2)

where primes denote derivatives with respect to confor-
mal time τ , H = d ln a/dτ and w = px/ρx. We can define
an effective DE equation of state parameter to be that of
a non-interacting DE with the same ρ̄x(a), i.e.

weff = w −
aQ̄x

3Hρ̄x
. (3)

We can see from Eq (3) that weff can be dynamical even
if w is a constant. Interestingly weff can be less than −1,
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or cross −1 during its evolution if Q̄x > 0, even though
w itself is always greater than −1.

A simple model for Q̄x is a linear function in the dark
sector energy densities. IDE with Q̄x ∝ ρ̄c has been
studied in the greatest detail [77–84]. However, for con-
stant w the model suffers from an instability [79]. This
instability arises because the model of DE as a fluid with
constant w is non-adiabatic. The instability can be cured
by allowing w to vary in time [83].

Here we study the version with Q̄x ∝ ρ̄x,

Q̄x = −Q̄c = Γρ̄x, (4)

where Γ is a constant transfer rate. The strength of the
interaction is measured by |Γ|/H0. Γ > 0 corresponds to
energy transfer from DM→DE. This appears somewhat
unnatural, since the energy transfer is proportional to ρ̄x.
For Γ < 0, the interaction can be seen in the background
as a decay of DE into DM, which is a more natural model.
The solution of (2) is [80]

ρ̄x = ρ̄x0a
−3(1+w) exp [Γ(t− t0)], (5)

which shows that Γ > 0 leads to exponential growth of
DE. By (1), it follows that ρ̄c eventually becomes nega-
tive. The model breaks down if this happens before the
current time, which is possible for large Γ/H0. Observa-
tional constraints require Γ/H0

<
∼ 1, so that typically the

DM density only becomes negative in the future. In this
case, we can treat the model as a viable approximation,
for the past history of the Universe, to some more com-
plicated interaction that avoids the blow-up of DE in the
future. The DE→DM decay model, with Γ < 0, does not
have this problem: both energy densities remain positive
at all times when evolving forward from physical initial
conditions [80]. Furthermore, the Γ < 0 case includes the
possibility of beginning with no DM present and having
it created entirely from the decay of DE.

We use a phenomenological fluid model for DE, in
which we treat w and the soundspeed cs as arbitrary
parameters. This is a commonly used model for non-
interacting DE, where the model is known as wCDM. We
impose the condition w ≥ −1 to avoid ‘phantom’ insta-
bilities that can arise in scalar field models of DE [90, 91].
The limiting case w = −1 is admitted by the background
equations, but the perturbation equations have singular-
ities (see below). Therefore we assume

w > −1, w = const. (6)

For completeness, we consider also the w ≤ −1 case in
Appendix A. In the background, the Γ < 0 case appears
to be better motivated. However, the analysis of pertur-
bations (see below) shows that these models suffer from
an instability when w > −1. The Γ > 0 models avoid
this instability.

III. IDE IN THE PERTURBED UNIVERSE

The critical difference between the background and
perturbed IDE is that there is nonzero momentum trans-
fer in the perturbed universe. As emphasized in [79], a
model for energy and momentum transfer does not follow
from the background model – and a covariant and gauge-
invariant approach is essential to construct a physically
consistent model for energy-momentum transfer.

General IDE

We give a brief summary of the general discussion
in [79]. The perturbed Friedmann metric in a general
gauge is

ds2 = a2
{

−
(

1 + 2φ
)

dτ2 + 2∂iBdτdx
i

+
[(

1− 2ψ
)

δij + 2∂i∂jE
]

dxidxj
}

. (7)

Each fluid A satisfies an energy-momentum balance equa-
tion,

∇νT
µν
A = Qµ

A, ΣAQ
µ
A = 0, (8)

where the second condition expresses conservation of the
total energy-momentum tensor. For dark sector interac-
tions, the energy-momentum transfer four-vectors satisfy

Qµ
x = −Qµ

c . (9)

We split Qµ
A relative to the total four-velocity uµ, so that

Qµ
A = QAu

µ+Fµ
A, QA = Q̄A+δQA, uµF

µ
A = 0, (10)

where QA is the energy density transfer rate relative to
uµ and Fµ

A is the momentum density transfer rate relative
to uµ. To first order

Fµ
A = a−1

(

0, ∂ifA
)

, (11)

where fA is the (gauge-invariant) momentum transfer po-
tential.

We choose each uµA and the total uµ as the unique
four-velocity with zero momentum density, i.e.

T µ
Aνu

ν
A = −ρAu

µ
A, T µ

ν u
ν = −ρuµ, (12)

ρA = ρ̄A + δρA, ρ ≡ ΣAρA = ρ̄+ δρ. (13)

Then we have

uµA = a−1
(

1− φ, ∂ivA
)

, uµ = a−1
(

1− φ, ∂iv
)

, (14)
(

ΣAρA +ΣApA
)

v = ΣA

(

ρA + pA
)

vA, (15)

where vA, v are the peculiar velocity potentials. Equa-
tions (10) and (14) imply that

QA
0 = −a

[

Q̄A

(

1 + φ
)

+ δQA

]

, (16)

QA
i = a∂i

[

Q̄A

(

v +B
)

+ fA

]

. (17)
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The evolution equations for δA and the velocity per-
turbation

θA = −k2(vA +B), (18)

are [79]:

δ′A + 3H(c2sA − wA)δA + (1 + wA)θA

+ 9H2(1 + wA)(c
2
sA − c2aA)

θA
k2

− 3(1 + wA)ψ
′ + (1 + wA)k

2(B − E′)

=
aQ̄A

ρ̄A

[

φ− δA + 3H(c2sA − c2aA)
θA
k2

]

+
a

ρ̄A
δQA, (19)

θ′A +H(1− 3c2sA)θA −
c2sA

(1 + wA)
k2δA − k2φ

=
a

(1 + wA)ρ̄A

{

Q̄A

[

θ − (1 + c2sA)θA
]

− k2fA

}

. (20)

Here csA is the physical soundspeed, defined by c2sA =
(δpA/δρA)restframe, and caA is the adiabatic soundspeed,
defined by c2aA ≡ p̄′A/ρ̄

′

A. For the adiabatic DM fluid,
c2sc = c2ac = wc = 0. By contrast, the DE fluid is non-
adiabatic: c2ax = w < 0 and so cax cannot be the physical
soundspeed. The physical soundspeed for the fluid DE
model is a phenomenological parameter. It must be real
and non-negative to avoid unphysical instabilities. We
choose csx = 1, which is the sounspeed for quintessence (a
self-consistent model of DE). Our analysis is insensitive
to the value of csx, as long as csx is close to one, so that
DE does not cluster significantly on sub-Hubble scales.
(See [79] for more details.)

DM-baryon bias from IDE

In IDE models, the DE exerts a drag on DM but not
on baryons. This leads to a linear DM-baryon bias in the
late-time density perturbations, and in general also to a
velocity difference [82]. For baryons after decoupling

δ′b+θb−3ψ′+k2(B−E′) = 0, θ′b+Hθb−k
2φ = 0. (21)

Thus for non-interacting DE models,

θc − θb = (θc − θb)i
ai
a

(22)

We can choose (θb − θc)i = 0, so that

θc − θb = 0, δc − δb = (δc − δb)i. (23)

Thus in standard DE models, there is no DM-baryon
velocity difference, and any linear density perturbation
difference is determined by initial conditions.

For IDE models, the interaction induces a non-
constant difference between δc and δb – which is degen-
erate with the standard galaxy bias. The Euler equation
for DM is (20), with c2sc = wc = 0. This differs from the

standard Euler equation unless k2fc = Q̄(θ − θc), which
follows only for Qµ

c = Qcu
µ
c , regardless of the form of

Qc [82]. In those models that modify the Euler equation
for DM, there will also be a velocity bias. Equations (19)
and (20) imply

(δc − δb)
′ +

aQ̄c

ρ̄c
(δc − δb) + (θc − θb)

=
a

ρ̄c

[

δQc + Q̄c(φ − δb)
]

, (24)

(θc − θb)
′ +

(

H+
aQ̄c

ρ̄c

)

(θc − θb)

=
a

ρ̄c

[

− k2fc + Q̄c(θ − θb)
]

. (25)

Thus there will be a velocity bias, unless Qµ
c = Qcu

µ
c .

Our IDE models

The preceding equations are completely general. A
choice must now be made for the energy-momentum
transfer in the dark sector. Firstly, the nature of the
background energy transfer suggests that we take

Qx = Γρx = Γρ̄x(1 + δx) = −Qc, (26)

where δA ≡ δρA/ρ̄A. Thus we are treating Γ as a univer-
sal constant. For the momentum transfer, the simplest
physical choice is that there is no momentum transfer in
the rest frame of either DM or DE [79, 82]. This leads
to two types of model, with energy-momentum transfer
four-vectors parallel to either the DM or the DE four-
velocity:

Qµ
x = Qxu

µ
c = −Qµ

c type: Q‖uc , (27)

Qµ
x = Qxu

µ
x = −Qµ

c type: Q‖ux . (28)

Thus

Qx
µ = aΓρ̄x

[

1 + δx + φ, ∂i(vA +B)
]

, (29)

where A = c, x for type Q‖uc , Q‖ux . By (17), the
momentum transfer relative to the background frame is

fx = Γρ̄x(vc − v) = −fc for Q‖uc , (30)

fx = Γρ̄x(vx − v) = −fc for Q‖ux . (31)

For both the Q‖uc and Q‖ux models, the density per-
turbation (continuity) equation (19) reduces to

δ′c + θc − 3ψ′ + k2(B − E′) = aΓ
ρ̄x
ρ̄c

(δc − δx − φ), (32)

δ′x + 3H(1− w)δx + (1 + w)θx + 9H2(1 − w2)
θx
k2

− 3(1 + w)ψ′ + (1 + w)k2(B − E′)

= aΓ
[

φ+ 3H(1− w)
θx
k2

]

. (33)
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The velocity perturbation (Euler) equations are however
different. For the Q‖uc model, (20) gives

θ′c +Hθc − k2φ = 0, (34)

θ′x − 2Hθx −
k2δx

(1 + w)
− k2φ =

aΓ

(1 + w)

(

θc − 2θx
)

. (35)

For the Q‖ux model:

θ′c +Hθc − k2φ = aΓ
ρ̄x
ρ̄c

(θc − θx), (36)

θ′x − 2Hθx −
k2δx

(1 + w)
− k2φ = −

aΓθx
(1 + w)

. (37)

It follows that the Euler equation for DM in the
Q‖uc model has the standard form, whereas it is modified
in the Q‖ux model.

Instability

There is an obvious instability in the Euler equations
for DE, (35) and (37), as w → −1. Thus we must exclude
the value w = −1. This instability is different from that
for a dynamical DE model with w crossing −1, in which
case the DE perturbation is well-defined, but at least one
more degree of freedom is required, usually leading to its
interpretation as a sign of modified gravity. Here though,
the DE is not dynamical and the DE perturbation is ill-
defined at w = −1.

These equations also reveal an instability for w 6= −1
in certain regions of parameter space. The underlying
cause of this instability is the choice of c2sx = 1, which
means that the DE fluid is non-adiabatic, as discussed
above. It is qualitatively similar to the instability first
discovered for constant w IDE in [79]. (See also [34, 92–
96] for the case of models with Γ replaced by αH). This is
a DE velocity instability, which then drives an instability
in the DE and DM density perturbations.

On large scales, we can drop the δx and φ terms in the
DE Euler equations (35) and (37). In (35) we can also
set θc = 0 by (34). Then we can integrate to find that

θx

θ
(Γ=0)
x

= exp

[

−α
Γ

1 + w
(t− t0)

]

, (38)

where θ
(Γ=0)
x is the DE velocity in the non-interacting

case, and α = 2, 1 for Q‖uc , Q‖ux . It follows that

−
Γ

(1 + w)
> 0 ⇒ instability. (39)

Note that although one can choose a reference frame
where θx ≡ 0, the instability is still present in the ve-
locity difference, which is gauge invariant. Given our
assumption (6), the stable models must have positive Γ,
i.e.

w > −1 and Γ > 0 ⇒ no instability, (40)

for both Q‖uc and Q‖ux . This defines for us the phys-
ically acceptable models. In Appendix A we allow for
any sign of Γ and 1 + w. In order for the instability to
affect significantly the perturbation evolution by today,
the time scale of growth of θx in (38) should be shorter
than the Hubble time, i.e., the models with

−
Γ

H0(1 + w)
>
∼

{

1 for Q‖uc ,

2 for Q‖ux .
(41)

may not be viable. The results from our full parameter
scan confirm this (see the excluded wedges near to w =
−1 in Fig. 9).

IV. ANALYSIS

The evolution of ΓwCDM models was computed nu-
merically using a modified version of the CAMB Boltz-
mann code [97], including implementation of the initial
conditions derived in Appendix B. The code was adapted
(a) to allow for the non-standard background evolution
caused by the interactions; (b) to evolve the DM veloc-
ity perturbation (ordinarily set to zero); (c) to suppress
perturbations when |1+w| < 0.01 due to the blow up of
terms in (35) and (37) as w → −1. It is useful to include
the w = −1 limit for comparison with ΛCDM.

Insight into the physical implications of the interaction
can be gained by running the modified CAMB code with
fixed input parameters, varying only the interaction rate
Γ. Figure 1 shows the CMB power spectrum for three
values of Γ with all other cosmological parameters set to
typical values (see Table I for details).

Positive Γ describes a transfer of energy from DM
to DE, so with fixed Ωc today, the DM energy density
would have been correspondingly greater in the past than
without interactions. Hence the amplitude of the CMB
power spectrum is decreased and the position of the peaks
shifted, since a larger proportion of DM at early times
implies a smaller amount of baryonic matter and there-
fore a more significant effect from photon driving before
decoupling. The present-day matter power spectrum for
these choices of Γ shows that a relative increase in the
past DM density naturally leads to more structure for-
mation and an increase in the amplitude of the matter
power spectrum.

The modified CAMB code was integrated into the Cos-
moMC [98] Markov-Chain Monte-Carlo (MCMC) code
in order to explore the parameter space (see Appendix A
for more details). The data used in the MCMC analy-
sis were: CMB (WMAP7 [1]), BAO [99], HST [100], and
SNIa (SDSS [101]) data, as well as a prior on Ωb from big-
bang nucleosynthesis [102]. Figure 2 shows the 68% and
95% likelihood contours in the w − Γ plane for the two
different momentum transfer models Q‖uc and Q‖ux ,
where all other parameters have been marginalized over.

The likelihood regions are very similar for the two
models since they differ only in their perturbations
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Model Qµ
A ∆χ2

Γ/H0 w H0 Ωbh
2

Ωch
2 ns As τrei

ΛCDM best-fit - 0 - −1 69.8 0.0223 0.113 0.960 2.16×10
−9 0.0844

ΛCDM69 - 0.774 - −1 69.0 0.0221 0.114 0.958 2.18×10
−9 0.0855

ΛCDM70 - −0.0200 - −1 70.0 0.0224 0.112 0.962 2.16×10
−9 0.0844

wCDM best-fit - −0.220 - −1.03 70.7 0.0222 0.113 0.960 2.18×10
−9 0.0883

ΓwCDM A Q‖uc - 0 −0.98 70.0 0.0226 0.112 0.960 2.10×10
−9 0.0900

ΓwCDM B Q‖uc - 0.2 −0.98 70.0 0.0226 0.112 0.960 2.10×10
−9 0.0900

ΓwCDM C Q‖uc - 0.4 −0.98 70.0 0.0226 0.112 0.960 2.10×10
−9 0.0900

ΓwCDM 1a Q‖uc −0.00830 0.4 −0.95 70.9 0.0222 0.0702 0.961 2.16×10
−9 0.0816

ΓwCDM 1b Q‖uc 0.702 0.7 −0.85 70.0 0.0223 0.0311 0.963 2.15×10
−9 0.0832

ΓwCDM 2a Q‖ux −0.236 0.4 −0.95 71.0 0.0224 0.0701 0.966 2.19×10
−9 0.0870

ΓwCDM 2b Q‖ux −0.0420 0.7 −0.85 70.2 0.0224 0.0305 0.966 2.15×10
−9 0.0819

Γ ≥ 0, w ≥ −1 best-fit Q‖uc −0.0522 0.366 −0.964 71.0 0.0224 0.0748 0.963 2.18×10
−9 0.0849

Γ ≥ 0, w ≥ −1 best-fit Q‖ux −0.322 0.798 −0.851 70.4 0.0224 0.0194 0.965 2.18×10
−9 0.0870

TABLE I: Cosmological parameters for IDE models (see Appendix A for more general constraints).

FIG. 1: CMB and total matter power spectra from the modified CAMB code for 3 Q‖uc models with different values of Γ but
identical values of their remaining parameters (see ΓwCDM A,B,C in Table I).
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FIG. 2: Smoothed 68% and 95% contours of the marginalised probability distribution for IDE model with Q‖uc (left) and
Q‖ux (right) in the range of stability, w > −1 and Γ ≥ 0. Crosses identify models chosen to be analyzed in more detail (see
Table I).
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FIG. 3: CMB and total matter power spectra from the modified CAMB code for the WMAP7 wCDM best-fit values and
the ΓwCDM 1a,1b,2a,2b models chosen from the 95% confidence range for further analysis (see Table I). The best-fit values
of standard cosmological parameters were found using CosmoMC. Models 1a,1b have Γ = 0.4H0 and Q‖uc while 2a,2b have
Γ = 0.7H0 and Q‖ux .

FIG. 4: Left: Normalized growth rates for ΛCDM and the same best-fit models as in Fig. 3. Right: The same models but
showing a normalized combination of a2ρ̄cδc which is important for the ISW effect.

FIG. 5: Deviations from ΛCDM of the effective Hubble parameter (left) and effective Newton constant for δc (right), for the
same best-fit models as in Fig. 3.
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FIG. 6: Comparison with ΛCDM of the effective DE equation of state (left) and the DM density (right), for the same best-fit
models as in Fig. 3.

and the observations predominantly constrain the back-
ground evolution. The best-fit values for the Q‖uc and
Q‖ux models are different due to the Integrated Sachs-
Wolfe (ISW) effect on the CMB, as shown in Table I.
For the Q‖ux model the best-fit value is a genuine global
maximum. For the Q‖uc model however the mean like-
lihood function of w and Γ is essentially one-tailed, with
the true global maximum lying outside of the region we
consider physical (see Appendix A). Indeed the χ2 of this
point is close to that of ΛCDM (see Table I). This is be-
cause Q‖uc models in this region can closely mimic the
ISW signature of ΛCDM.

The CMB data is best fit by a particular ISW sig-
nal, and the two momentum transfer models differ some-
what in their structure formation histories. DM in the
Q‖ux model receives a change in momentum from the DE
perturbations, as expressed by its modified Euler equa-
tion (34), leading to more structure growth relative to
the Q‖uc model. This means that DE can be weaker for
the Q‖ux model in order to give the same amount of ISW
signal as the Q‖uc model.

In order to assess the relative merits of these models
we have included the change in χ2 from a ΛCDM base-
line. To help put this quantity into context we have also
included two best-fit ΛCDM models with H0 fixed at 69
and 70 km/s/Mpc. The mean likelihoods of the sam-
ples vary little in the direction of the degeneracy in the
w−Γ plane. For example, the difference in ∆χ2 between
the Q‖ux best-fit and the ΛCDM best-fit is less than
the difference between the two fixed-H0 ΛCDM models
(ΛCDM69 and ΛCDM70 in Table I).

In Fig. 6, we show the effective DE equation of state
and the a3-scaled energy density for DM for a selection
of models in comparison with ΛCDM. Interestingly, we
find that the weff for the best-fit ΓwCDM models with
w = −0.85 and −0.95 crosses −1 during its evolution,

showing a quintom-like behaviour [103].
We have focused on the stable Γ > 0 models with

w > −1. These models do have a problem of negative
DM energy densities in the future, but we assume that
this can be cured by a more realistic model to which our
model is a good approximation when ρc > 0.

Growth of structure

Models ΓwCDM 1a,1b,2a,2b (see Table I) were se-
lected for further study. CosmoMC was rerun with Γ
and w fixed, to obtain the best-fit values of the other non-
derived parameters for input back into CAMB, namely
Ωbh

2, Ωch
2, H0, ns (scalar spectral index), As (scalar

amplitude) and τrei (optical depth of reionization).
Figure 3 shows the CMB power spectrum of the best-

fit parameter sets for the chosen values of Γ and w. The
only significant difference between the CMB spectra is in
the ISW feature, although this is not very large because
CosmoMC has fit them well to the data from WMAP7.
By contrast, there are dramatic differences between the
total matter power spectra at z = 0 for these models
(see also Fig. 4). We chose not to fit the matter power
spectrum to observational data – because the modifica-
tion to the growth of matter perturbations δm due to
the interactions is degenerate with the galaxy-DM bias
b in observations of galaxy number density fluctuations:
δg = bδm. This degeneracy is governed by equations (24)
and (25). Figure 3 does not include any bias.

Note that Ωc can be very small in models with large
Γ, since it can be compensated for by a higher w in order
to obtain a sensible H0. This explains the correlation in
the Γ − w plane shown in Fig. 2, so the late-time effect
of the DM may be proportionately even greater than one
might think at first glance.
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The combination of similar ISW signatures and large
differences in the growth of structure is unusual – in a
ΛCDM cosmology for example, different growth rates
lead to correspondingly dissimilar ISW signatures. The
mechanisms behind this are clearest from the growth
of DM perturbations in the Newtonian limit: on sub-
Hubble scales at late-times,

δc ≫ φ = ψ, δx = φ′ = ψ′ = 0, (42)

in the Newtonian gauge (B = 0 = E). The evolution
of synchronous gauge density perturbations in CAMB
matches that of perturbations in the Newtonian gauge.
The ISW effect comes from gravitational potentials de-
termined by the Poisson equation,

k2φ = −4πGa2(ρcδc + ρbδb), (43)

and the left panel of Fig. 4 shows that there are indeed
large differences between the models in their growth rates
at late times. The reason the ISW effects can remain
small for these models is that the non-standard back-
ground evolution (see Fig. 6) can counteract the growth
of δc in (43) and lead to relatively stable gravitational po-
tentials. The right panel of Fig. 4 shows that the relevant
combination, a2ρ̄cδc, can remain comparable for models
with very different structure formation histories such as
those considered here. Note how well the ΓwCDM 1a
model mimics the ΛCDM behaviour of a2ρ̄cδc, effectively
leading to the same χ2 (see Table I).

This important feature of IDE models has implications
for any cosmological test which assumes a standard evo-
lution of the DM energy density during matter domina-
tion, such as those for detecting deviations from GR. It
may also be useful for distinguishing between IDE and
modified gravity models [104], which have standard back-
ground evolutions.

Using (1), (2), (32), (33), (34), (43) and the Fried-
mann equation, H2 = 8πGa2ρtot/3, a velocity indepen-
dent equation of motion for δc can be derived for the
Q‖uc model:

δ′′c +H
(

1−
aΓ

H

ρx
ρc

)

δ′c = 4πGa2
{

ρbδb + ρcδc

[

1 +

2ρtot
3ρc

aΓ

H

ρx
ρc

(

2− 3w +
aΓ

H

(

1 +
ρx
ρc

))]}

. (44)

Thus the DM perturbations experience effectively differ-
ent values of H and G due to the interactions:

Heff

H
= 1−

aΓ

H

ρx
ρc
, (45)

Geff

G
= 1 +

2ρtot
3ρc

aΓ

H

ρx
ρc

[

2− 3w +
aΓ

H

(

1 +
ρx
ρc

)]

.(46)

The Q‖ux model by contrast has a non-standard Euler
equation (36), and there remains a term proportional to
θx which can not in general be neglected:

δ′′c +H
(

1− 2
aΓ

H

ρx
ρc

)

δ′c = 4πGa2
{

ρbδb + ρcδc

[

1 +

2ρtot
3ρc

aΓ

H

ρx
ρc

(

2− 3w +
aΓ

H

)]}

+ aΓ
ρx
ρc
θx. (47)

Nevertheless, for stable models θx remains small enough
to be negligible and we can define the deviations from
standard growth due to the interactions via

Heff

H
= 1− 2

aΓ

H

ρx
ρc
, (48)

Geff

G
= 1 +

2ρtot
3ρc

aΓ

H

ρx
ρc

(

2− 3w +
aΓ

H

)

. (49)

These equations show that the differences in mo-
mentum transfer lead to a greater modification to the
growth via Heff for the Q‖ux model and via Geff for the
Q‖uc model, as can be seen in Fig. 5. It is clear that DM
perturbations in the models with large couplings are al-
ready beginning to grow exponentially at the present day
(compare [48, 94, 96, 105]). In models with Qµ

x = Γρcu
µ
c ,

as studied in [79, 83, 84], there is no interaction source
term in the synchronous gauge version of (32) and so the
DM perturbations are stable.

V. CONCLUSIONS

We have studied a model of dark sector interactions
with an energy transfer proportional to the DE energy
density, and with momentum transfer vanishing either
in the DM or the DE rest frame. We performed an
MCMC analysis and found the best-fit parameters us-
ing a data compilation that predominantly constrains the
background evolution. We found model constraints to
which ΛCDM is a good fit, although parameter degen-
eracies do allow for significant interaction rates at the
present day and even admit the two extreme cases of
zero DM at early times and zero DM today.

We analyzed the growth of structure in this model and
found that the effects of large growth rates on the ISW
signature in the CMB can be suppressed by the non-
standard background evolution. We also showed that
interactions can greatly enhance growth in these models
via effective Hubble and Newton constants, in varying
degrees depending on the momentum transfer.

There appears to be some tension between the back-
ground evolution and structure formation. The CMB,
SNe and BAO data slightly favour interactions, while the
growth rate of DM perturbations likely rules out large in-
teraction rates. There is a degeneracy with galaxy bias,
which deserves further investigation. This would allow
the use of full range of large-scale structure data and
would significantly improve the constraints on the IDE
models considered here.

Interacting models are known to be degenerate with
modified gravity models [71, 74, 82, 105–107]. It is impor-
tant to break this degeneracy, in order to strengthen cos-
mological tests of GR – currently devised tests do not in-
corporate the possibility of a dark sector interaction. The
key distinguishing features of IDE and modified gravity
(MG) occur in: (1) the late-time anisotropic stress, i.e.
φ− ψ; (2) the evolution of the background DM density,
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ρ̄c(1 + z)−3; (3) the DM-baryon bias:

MG IDE

φ− ψ 6= 0 = 0

ρ̄c(1 + z)−3 = const 6= const

δb − δc = const 6= const

θb − θc = 0 can be nonzero

These features are the basis for breaking the degeneracy.
For example, any difference between the metric potentials
can be tested via peculiar velocities (a probe of φ), weak
lensing and ISW (both sensitive to φ+ ψ).
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Appendix A: MCMC Analysis

Using CosmoMC we explore the full parameter space
of the ΓwCDM model, as illustrated in Fig. 7. The code
was modified to vary the two new parameters Γ and w
and further coding was necessary to ensure that models
with negative DM energy densities were rejected from the
MCMC analysis. In addition, the scaling solution for the
background used to find the redshift of the two BAO data
points was replaced by coding to take into account the
non-standard background evolution of the models. Cos-
moMC varies a parameter θ = 100 times the ratio of the
sound horizon to the angular diameter distance, in place
of H0, because it is more efficient. However the deriva-
tion of θ also assumes a standard background evolution.
We therefore chose not to use θ, but to constrain H0 di-
rectly instead. Note that the HST prior on H0 assumes a
particular model of ΛCDM for evolving H(z = 0.04) up
to the present day and so has slight model dependence,
which we neglect.

There is a plane of degeneracy in the Γ−w−Ωc param-
eter space which allows for an entire range of possibilities
from zero DM at early times to zero DM at the present
day – see Figs. 7 and 8.

The cosmological parameters of the median and best-
fit models from CosmoMC for w = −1 and when the

entire parameter space is considered are shown in Ta-
ble II. For Q‖uc models, the ISW creates a preference
in the mean likelihood function for Γ < 0, as was found
previously for the Qµ

c = Γρcu
µ
c models [84].

For Q‖ux models, there is a preference for Γ > 0. De-
spite this the median samples have Γ < 0 and w < −1 for
both the Q‖uc and Q‖ux models. The background data
therefore shows a slight preference for values of Γ < 0 and
w < −1. Both the best-fits and the median samples how-
ever are relatively close to ΛCDM, given the wide range
of interaction strengths allowed. The w = −1 results are
included here to show the proximity of Γ to 0 for these
models, in line with ΛCDM.

The singularity in the perturbations at w = −1 leads
us to impose |1 + w| < 0.01, allowing us to explore the
entire parameter space. The effect of the w 6= −1 insta-
bility (38) is illustrated in Fig. 9. The wedged gaps in the
distribution of accepted MCMC chain steps are given by
the boundaries of the instability region, defined by (41).

Appendix B: Initial Conditions

In synchronous gauge, φ = B = 0 and ordinarily the
residual gauge freedom is eliminated by setting θc = 0.
For theQ‖ux model the interaction term in the DM Euler
equation (36) does not in general allow for θc = 0. How-
ever, since Γ ≃ H0 ≪ H in (32)–(37), the interactions can
be neglected at early times. Using 3ψ′ + k2E′ = −h/2,
where h is the synchronous gauge variable [108], the evo-
lution equations used to find the initial conditions for the
dark sector are,

2δ′c + h′ = 0, θ′c = 0, (B1)

δ′x + 3H(1− w)δx + (1 + w)θx

+ 9H2(1− w2)
θx
k2

+ (1 + w)
h′

2
= 0, (B2)

θ′x − 2Hθx −
k2δx

(1 + w)
= 0. (B3)

The dominant growing mode solution for h found in [108]
leads to the standard adiabatic initial conditions for DM,

δc i = −
1

2
h = −

1

2
C(kτ)2, θc i = 0. (B4)

For DE, we find the leading order solutions, in agreement
with [109],

δx i =
C(1 + w)k2τ2

12w − 14
, θx i =

Ck4τ3

12w − 14
. (B5)
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