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Abstract

We study primordial density perturbations generated by the late decay of a curvaton field whose

decay rate may be modulated by the local value of another isocurvature field, analogous to models

of modulated reheating at the end of inflation. We calculate the primordial density perturbation

and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field,

recovering standard curvaton and modulated reheating results as limiting cases. We verify the

Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial

density field generated by multiple field fluctuations, and find conditions for the bound to be

saturated.
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I. INTRODUCTION

Inflation in the very early universe provides a classical cosmology that drives the uni-

verse towards spatial flatness and homogeneity. It also provides an origin for primordial

density perturbations through the quantum fluctuations of light scalar fields, stretched by

the inflationary expansion to super-Hubble scales. Originally structure was assumed to orig-

inate from fluctuations in the inflaton field driving inflation, but more recently it has been

realised that there are many possible mechanisms through which scalar field fluctuations

could generate the observed primordial density perturbations [1]. Examples incude the late

decay (some time after inflation has ended) of a curvaton field [2–5], modulated reheating

at the end of inflation, where the rate of inflaton decay is modulated by the local vacuum

expectation value (VEV) of an isocurvature field [6, 7], or an inhomogeneous end of infla-

tion [8, 9]. All of these mechanisms for the origin of the primordial density perturbations

may be distinguished from adiabatic perturbations in the inflaton field driving inflation as

they introduce local-type primordial non-Gaussianity [10], most simply characterised by the

non-linearity parameter, fNL [11], which typically becomes large when the transfer efficiency

becomes small [12].

In this paper we go beyond the simplest curvaton models to include the possible modu-

lation of the curvaton decay by a modulator field, χ, in analogy with modulated reheating

at the end of inflation. In modulated reheating scenarios the rate of decay of a massive field

σ is assumed to be dependent on the VEV of a modulator field, χ. Consider a Lagrangian

which describes the decay of the σ-field oscillations into ψ-particles

L = −V (σ)− λ(χ)σψ̄ψ − U(χ) . (1)

If the field, σ, is displaced from its minimum during inflation, then the field oscillates once

H < mσ where m2
σ = V ′′(σ) at its minimum. Note that the potential, V (σ), may deviate

from a simple quadratic potential, but we will assume it can be described by a simple

quadratic potential once it begins to oscillate about its minimum, with effective mass mσ. If

the effective mass of the χ field remains small while the σ field oscillates, |U ′′(χ)| < H2 < m2
σ,

then the decay rate of massive σ-particles into light ψ-particles is given by Γ ∝ λ2 which is

assumed to be a function of the local VEV of χ. For example, if the coupling λ is a linear

function of χ then the decay rate is a quadratic function Γ ∝ χ2.

2



Any light field during inflation acquires an almost scale-invariant distribution of pertur-

bations due to small-scale vacuum fluctuations being stretched up and frozen-in on super-

Hubble scales. In particular, we will assume that light fields acquire a Gaussian distribution

of perturbations at Hubble-exit (k = (aH)∗) with power spectrum

P∗ =

(

H∗

2π

)2

. (2)

Local variations in the χ field change the local rate of reheating and hence the primordial

density perturbations, which can be represented by ζ , the metric perturbation on uniform-

density hypersurfaces [13] in the primordial radiation-dominated era, some time after infla-

tion has ended.

In the original modulated reheating scenario σ is the inflaton whose oscillations dominate

the energy density of the universe immediately after inflation comes to an end. In this work

we will consider the case where σ is a curvaton field whose energy density is sub-dominant

during inflation. We assume its effective mass is small compared to the Hubble scale dur-

ing inflation and hence it also acquires an almost scale-invariant spectrum of fluctuations.

The curvaton mass becomes larger than the Hubble scale either immediately at the end

of inflation or some time after, when H = mσ and the curvaton field eventually decays.

Fluctuations in the local VEV of the curvaton during inflation lead to perturbations in the

amplitude of oscillations and the density of curvaton particles when the field oscillates after

inflation. These density perturbations are transferred to the radiation when the curvaton

decays.

If both the modulator field and the curvaton field are light during inflation then their

vacuum fluctuations can generate a primordial density perturbation, in addition to any

adiabatic density perturbations produced from adiabatic fluctuations in the inflaton field,

φ, during inflation.

The outline of this paper is as follows. In section II we describe how we can estimate the

primordial density perturbations produced by the modulated curvaton decay in terms of the

inhomogeneous densities and metric on an instantaneous decay hypersurface, generalising

previous results for non-linear perturbations from curvaton decay with an unmodulated de-

cay rate [14]. We calculate observable quantities including the primordial power spectrum,

tensor-scalar ratio, bispectrum and trispectrum. We show that the Suyama-Yamaguchi in-

equality between the tree-level bispectrum and trispectrum holds and consider the condition
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for this inequality to be saturated. We present our conclusions and discussion in section III.

II. SUDDEN-DECAY APPROXIMATION

We will work in the sudden-decay approximation where the curvaton decay is modelled

as an instantaneous transfer of energy from the curvaton field oscillations, ρσ, into radiation,

ργ . This has been shown to be a good approximation to the full numerical results in the

usual curvaton scenario [14].

If the curvaton decay rate is a constant, Γ = Γ̄, then the decay hypersurface, Hdec = Γ,

corresponds to a uniform-density hypersurface (on super-Hubble scales at the decay time)

with

ρ̄dec = 3MPl
2Γ̄2 . (3)

In the presence of fluctuations in the local VEV of χ, the modulator field, and therefore

local fluctuations of the decay rate, we have

ρdec = 3MPl
2Γ2(χ) . (4)

We will allow for the existence of inhomogeneous perturbations of the radiation density,

ζγ, after inflation but before the curvaton decays, due to adiabatic inflaton field fluctuations

during inflation, ζγ = ζφ = −Hδφ/φ̇. Before the curvaton decay, the curvature perturbation

on uniform-radiation-density hypersurfaces, ζγ, and uniform-curvaton-density hypersurfaces,

ζσ, are independently conserved [15]. After the decay, assuming the decay products are rela-

tivistic, the curvature perturbation on uniform-total-density hypersurfaces, ζ , is conserved.

On the decay hypersurface itself, we therefore have [14, 16]

ρσ,dec = ρ̄σ,dece
3(ζσ−ζdec) , ργ,dec = ρ̄γ,dece

4(ζγ−ζdec) , ρdec = ρ̄dece
4(ζ−ζdec) , (5)

where ζdec is the curvature perturbation (δN from a flat hypersurface) on the decay hyper-

surface. Note that we neglect the energy density of the modulator field χ throughout.

Matching ργ + ρσ = ρ at the decay time yields

(1− Ωσ,dec)e
4(ζγ−ζdec) + Ωσ,dece

3(ζσ−ζdec) = e4(ζ−ζdec) , (6)

where

Ωσ ≡
ρ̄σ
ρ̄
. (7)
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A. Linear perturbations

At linear order, one can expand the above relation (6) to give

− ζdec ≃
1

Ωσ,dec
[3Ωσ,decζσ + 4(1− Ωσ,dec)ζγ − 4ζ ] (8)

Using the above relation to eliminate ζdec in (5) and also using (4), results in

ζ ≃ ζγ − f
δΓ

6Γ
+ f(ζσ − ζγ) , (9)

where we have defined the transfer parameter

f ≡
3Ωσ,dec

4− Ωσ,dec
. (10)

The change in the curvature perturbation, ζ−ζγ in Eq. (9), due to the modulated curvaton

decay is seen to arise from the relative entropy perturbation between the curvaton density

and the radiation density, ζσ − ζγ, and the perturbed decay rate, δΓ ≃ Γ′δχ. In the case of

homogeneous curvaton decay rate, δΓ = 0, we reproduce the standard curvaton result. The

inhomogeneous decay rate adds an extra term in the primordial curvature perturbation (9)

proportional to f .

Note that since χ remains overdamped throughout the decay, we assume that we can

neglect its background evolution and hence its perturbation on the decay hypersurface cor-

respond directly to its perturbation on spatially flat hypersurfaces during inflation. The

curvaton, σ, is overdamped during inflation, but starts to oscillate when H = mσ. We

assume the curvaton density is still negligible at this time, so the curvaton field fluctuations

on this surface correspond to curvaton density perturbations on a uniform radiation-density

hypersurface

ρσ = ρ̄σe
3(ζσ−ζγ) . (11)

Allowing for possible evolution of the curvaton field from the end of inflation up until the

point at which it starts oscillating we write

ρσ =
1

2
m2

σg
2(σ̄ + δσ) . (12)

At linear order we thus have

Sσ ≡ 3(ζσ − ζγ) = 2
g′δσ

g
. (13)

where σ̄ + δσ describes the local curvaton VEV at the end of inflation.
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B. Non-linear perturbations

Expanding (4) and (5) to second order yields

ζ − ζdec =
1

2
ln

(

Γ

Γ̄

)

≃
Γ′

2Γ
δχ+

1

4

(

Γ′′

Γ
−

Γ′2

Γ2

)

δχ2 (14)

Eliminating ζdec in (6) and solving for ζ order by order yields

ζ ≃ ζγ +
f

3
Sσ − f

Γ′

6Γ
δχ +

f(1− f)(3 + f)

18
S2
σ −

Γ′ f(1− f)(3 + f)

18Γ
Sσδχ (15)

+
f

36

(

−3
Γ′′

Γ
+

Γ′2

2Γ2
(9− f(f + 2))

)

δχ2

where we define the entropy isocurvature perturbation

Sσ ≡ 3(ζσ − ζγ) ≃ 2
g′

g
δσ −

(

g′

g

)2 [

1−
g′′g

g′2

]

δσ2 . (16)

C. Observables

When calculating observables, such as the power spectrum and higher-order correlators

of the primordial density perturbations, it will be convenient to express the non-linear per-

turbation ζ in terms of the perturbed logarithmic expansion, N =
∫

Hdt, from an initial

spatially flat hypersurface where the scalar field perturbations originate during inflation and

a final uniform-density hypersurface during the subsequent radiation-dominated era [16, 17]

we note that the total curvature perturbation can be rewritten by

ζ = Naδφ
a +

1

2
Nabδφ

aδφb +
1

6
Nabcδφ

aδφbδφc + ... (17)

where δφa are the three Gaussian fields δφ, δχ and δσ , Na = Na ≡ ∂N/∂φa and Nab =

Nab ≡ ∂2N/∂φaφb.

Comparing Eq. (17) with (15) we identify

Nφ =
1

√

2MPl
2ǫφ

, Nσ =
2fg′

3g
, Nχ = −

fΓ′

6Γ
(18)

Nχσ = −
f(1− f)(3 + f)Γ′g′

9Γg
(19)

Nσσ =
2f

3

[

1 +
g′′g

g′2
−

4f

3
−

2f 2

3

](

g′

g

)2

(20)

Nχχ =
f

36

[

9− 6
Γ′′Γ

Γ′2
− 2f − f 2

](

Γ′

Γ

)2

. (21)
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in which

ǫφ ≡ −

(

Ḣ

H2

)

∗

. (22)

Note that higher-derivatives with respect to the inflaton field φ can be neglected during

slow-roll inflation.

From Eqs.(18-19) we identify

fσ ≡
∂f

∂σ
=

2f(1− f)(3 + f)

3

g′

g
, (23)

fχ ≡
∂f

∂χ
= −

f(1− f)(3 + f)

6

Γ′

Γ
, (24)

This will allow us to calculate all higher derivatives of N starting from Eqs. (18-19). One

can verify this is consistent with Eqs. (20-21).

The power spectrum is given, at leading order, by

Pζ = Pζφ +
f 2

9
PSσ

+ f 2

(

Γ′

6Γ

)2

Pχ =
1

2MPl
2

(

1

ǫφ
+

1

ǫχ
+

1

ǫσ

)(

H

2π

)2

∗

(25)

in which, in analogy with the inflaton contribution, we have defined [18]

ǫσ ≡
9

8

(

g

fg′MPl

)2

, ǫχ ≡ 18

(

Γ

fΓ′MPl

)2

(26)

The relative contribution of each field to the power spectrum (25) is given by the weights

wa defined via Pζa = waPζ in which

wa ≡
N2

a

N2
φ +N2

σ +N2
χ

=
ǫ−1
a

ǫ−1
χ + ǫ−1

φ + ǫ−1
σ

. (27)

Note that wφ + wσ + wχ = 1.

The spectral index is then

ns − 1 = wχ(nζχ − 1) + wσ(nζσ − 1) + (1− wχ − wσ)(nζφ − 1) (28)

The tensor to scalar ratio is also given by

r = 16ǫχwχ = 16ǫσwσ = 16(1− wσ − wχ)ǫφ . (29)

The local-type primordial bispectrum is characterised at leading order in term of fNL [17]

6

5
fNL =

NaNbN
ab

(NaNa)2
(30)
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FIG. 1: A logarithmic plot for fNL as a function of relative energy density f . In both plots we

assumed g ∝ σ and neglected the contribution from inflaton field (wφ ≃ 0). For the left plot we

also assumed Γ ∝ χ2 and in the right one, we have set wσ = 0.2. The apparent singularity in the

left plot is due to a change of sign in fNL.

which we can write as

fNL = w2
σf

σ
NL + 2wχwσf

σχ
NL + w2

χf
χ
NL , (31)

where we write the different contributions as

6

5
fσ
NL ≡

Nσσ

N2
σ

=
1

f

[

3

2

(

1 +
g′′g

g′2

)

− 2f − f 2

]

(32)

6

5
fσχ
NL ≡

Nχσ

NχNσ

=
(1− f)(3 + f)

f
(33)

6

5
fχ
NL ≡

Nχχ

N2
χ

=
1

f

[

9

(

1−
2

3

Γ′′Γ

Γ′2

)

− 2f − f 2

]

(34)

where we have used Eqs. (18-21).

In the limit wσ → 1 then fNL → fσ
NL and we recover the standard result for the curvaton

[14, 17, 19]. In the opposite limit where wχ → 1 and f → 1 we recover the standard result

for modulated reheating [20]

fχ
NL → 5

[

1−
Γ′′Γ

Γ′2

]

. (35)

The primordial trispectrum is composed of distinct two terms [21]

τNL =
NabN

acNcN
b

(NaNa)3
, (36)

gNL =
25

54

NabcN
aN bN c

(NaNa)3
. (37)
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FIG. 2: A plot for τNL as a function of relative energy density f . The values of the independent

parameters are the same as in Fig.1

which in our case we can write as

25

36
τNL = w3

σ(f
σ
NL)

2 + 2w2
σwχf

σ
NLf

σχ
NL

+wσwχ(wσ + wχ)(f
σχ
NL)

2 + 2wσw
2
χf

σχ
NLf

χ
NL + w3

χ(f
χ
NL)

2 , (38)

gNL = w3
σg

σ
NL + 3w2

σwχg
σσχ
NL + 3wσw

2
χg

σχχ
NL + w3

χg
χ
NL , (39)

where we identify the different contributions to gNL as

54

25
gσNL ≡

Nσσσ

N3
σ

,

=
9

4f 2

(

g′′′g2

g′3
+ 3

g′′g

g′2

)

−
9

f

(

1 +
g′′g

g′2

)

+
1

2

(

1− 9
g′′g

g′2

)

+ 10f + 3f 2 , (40)

54

25
gσσχNL ≡

Nσσχ

N2
σNχ

,

=
3(1− f)(3 + f)

2f 2

(

1 +
g′′g

g′2
−

8f

3
− 2f 2

)

, (41)

54

25
gσχχNL ≡

Nσχχ

NσN2
χ

,

=
(1− f)(3 + f)

f 2

(

9− 6
Γ′′Γ

Γ′2
− 4f − 3f 2

)

, (42)

54

25
gχNL ≡

Nχχχ

N3
χ

,

=
1

f 2

{

135− 54f − 22f 2 + 10f 3 + 3f 4 − 18(9− 2f − f 2)
Γ′′Γ

Γ′2
+ 36

Γ′′′Γ2

Γ′3

}

.(43)

where we have used Eqs. (20-24).

In the curvaton limit wσ → 1 then gNL → gσNL and we recover the standard result for the

curvaton [14]. In the opposite limit, wχ → 1, we recover the result for modulated reheating
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FIG. 3: A plot for gNL as a function of relative energy density f . Again the values of the indepen-

dent parameters are the same as in Fig.1

when f → 1 [10, 22]

gχNL →
50

3

[

2− 3
Γ′′Γ

Γ′2
+

Γ′′′Γ2

Γ′3

]

. (44)

D. The Suyama-Yamaguchi inequality

Here we verify that the Suyama-Yamaguchi (SY) inequality [22], stating that τNL ≥

(6
5
fNL)

2, holds at tree-level in our model 1.

A direct analysis shows that

K ≡
25

36
τNL − f 2

NL = c1(f
χ
NL)

2 + c2f
χ
NL + c3 (45)

in which

c1 ≡ w3
χ(1− wχ) (46)

c2 ≡ 2wσw
2
χ [(1− 2wχ)f

σχ
NL − wσf

σ
NL] (47)

c3 ≡ w3
σ(1− wσ)f

σ 2
NL + wσwχ(wσ + wχ − 4wσwχ)f

σχ 2
NL + 2wχw

2
σ(1− 2wσ)f

σ
NLf

σχ
NL (48)

We wish to determine the sign of K in Eq. (45) which is a quadratic function of fχ
NL for

c1 6= 0. Hence we re-write Eq. (45) as

K = c1

(

fχ
NL +

c2
2c1

)2

+
∆

c1
, (49)

where

∆ = w3
χwσ(1− wσ − wχ)(wσf

σ
NL + wχf

σχ
NL)

2 . (50)

1 Note that loop-corrections violate this tree-level inequality [23, 24].
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Both the coefficient, c1 in Eq. (46), and the discriminator, ∆ in Eq. (50) are non-negative,

since the weights, wσ and wχ, and their sum, wσ + wχ, are bounded between zero and one.

Hence K given in Eq. (49) is non-negative and we conclude that τNL ≥ (6
5
fNL)

2 as required.

One may ask under what conditions the SY inequality is saturated. Firstly this can

occur if c1 = 0 and c2f
χ
NL + c3 = 0, which requires either wσ = 1 or wχ = 1, i.e., either

the curvaton fluctuations or the modulator fluctuations dominate the primordial density

perturbations corresponding to effectively a single source for the primordial density field, or

wφ = 1 corresponding to the Gaussian case, τNL = fNL = 0

For c1 6= 0, the SY equality is saturated when ∆ = 0 and 2c1f
χ
NL + c2 = 0 in Eq. (49).

This either requires

w2
σf

σ
NL = w2

χf
χ
NL = −wσwχf

σχ
NL (51)

which implies τNL = fNL = 0, or requires wσ + wχ = 1 and

wσf
σ
NL − wχf

χ
NL = (wσ − wχ)f

σχ
NL (52)

or, equivalently,

wσ =
fχ
NL − fσχ

NL

fσ
NL + fχ

NL − 2fσχ
NL

, wχ =
fσ
NL − fσχ

NL

fσ
NL + fχ

NL − 2fσχ
NL

. (53)

Note that this is possible only when fσ
NL and fχ

NL are either both less than fσχ
NL or both

greater than fσχ
NL, i.e.,

(fσ
NL − fσχ

NL) (f
χ
NL − fσχ

NL) > 0 . (54)

III. DISCUSSION

The curvaton and modulated reheating scenarios have previously been studied as distinct

models for the origin of structure from quantum field fluctuations during inflation. Here we

have considered a curvaton scenario where the curvaton decay rate may be modulated by a

second scalar field. Thus fluctuations in two independent fields may be responsible for both

the primordial power spectrum and primordial non-Gaussianity described by higher-order

correlations.

The relative contributions to the primordial power spectrum (25) are determined by

the weights, wσ and wχ defined in (27). The overall contribution of both curvaton and

modulator fluctuations to the first-order primordial density perturbation is proportional to
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the fractional density in the curvaton at the time of decay, f defined in (10). The relative

contribution depends on the fractional perturbations in the curvaton amplitude of oscillation,

g, versus the decay rate, Γ:
wσ

wχ

=
g′/g

Γ′/Γ
. (55)

We recover (i) previous results for the curvaton scenario in the limit that curvaton field

fluctuations dominate the primordial power spectrum (wσ ≫ wχ) and (ii) previous results

for modulated reheating in the limit that the curvaton dominates the total energy when it

decays (f → 1) and modulated fluctuations dominate (wχ ≫ wσ) .

We also allow for an adiabatic density perturbation produced due to inflaton perturba-

tions during inflation, ζφ. This is required to be Gaussian, hence the inflaton contributes to

the first-order density perturbation, but not to higher-order correlators. Any detection of

local-type primordial non-Gaussianity would be evidence of non-adiabatic field fluctuations

playing a role in the origin of large-scale structure, see however [25].

Non-Gaussianity can become very large, either for f ≪ 1 or due to non-linear evolution,

g′′g ≫ g′2, in the curvaton scenario. Indeed it is bounded by current observations [26]

fNL = 37.2± 19.9 . (56)

Such a large value is difficult to achieve in standard modulated reheating unless the decay

rate is strongly dependent upon the modulator field, Γ′′Γ/Γ′2 ∼ 8. On the other hand one

can easily have large non-Gaussianity in a modulated curvaton reheating when f ≪ 1 even

when the modulator dominates the primordial fluctuations, wχ → 1.

In the simplest scenario of a quadratic curvaton potential, leading to linear evolution of

the curvaton field, g′′ = 0, and a linear coupling, λ(χ) in Eq. (1), leading to a quadratic

decay rate, Γ ∝ χ2, the primordial non-Gaussianity is a function of f , wσ and wχ. Hence a

measurement of the three lowest-order non-Gaussian correlators, fNL, τNL and gNL, would

be required to determine f , wσ and wχ.

There are some general predictions for the simplest model of a quadratic curvaton po-

tential with g′′ = 0. The contributions to the primordial bispectrum, given in Eq. (31),

from fχ
NL and fσχ

NL, defined in Eqs. (34) and (33), are non-negative for any Γ′′Γ ≤ Γ′2, which

includes a quadratic decay rate. Thus in the modulated curvaton decay when g′′ = 0, we

find a lower bound fNL ≥ fσ
NL ≥ −5/4, generalising the result found previously for a single
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curvaton [14], and multiple curvaton decays [27]. This bound is saturated, fNL = −5/4, for

wσ = 1 and f = 1.

For this simple quadratic curvaton scenario with linear evolution, such that g′′ and g′′′ can

be neglected, we find the third-order trispectrum parameter gσNL ∝ f−1 ∝ fNL whereas the

second-order trispectrum parameter τNL ∝ f−2 ∝ f 2
NL. Hence τNL is much larger than gσNL

if fNL is large. On the other hand gσσχNL ∝ f−2 ∝ f 2
NL even for g′′ ≃ 0, and hence gNL/τNL is

not necessarily suppressed for a simple quadratic curvaton in a modulated curvaton scenario

with δΓ 6= 0.

We generally expect gNL ∝ τNL ∝ f 2
NL due to non-linear evolution of the curvaton field

with a self-interaction potential [28–32]. On the other hand the self-interacting curvaton can

give rise to strongly scale-dependent non-Gaussianity [33], while the modulated curvaton

decay with a quadratic curvaton potential gives rise to non-Gaussianity which is scale-

independent.

We have verified that the trispectrum parameter τNL obeys the Suyama-Yamaguchi in-

equality [22] τNL ≥ (36/25)f 2
NL. It is saturated when the curvaton perturbations (wσ → 1)

or modulator perturbations (wχ → 1) dominate, or in the trivial case of Gaussian perturba-

tions when wφ → 1. It can also be satisfied for particular parameter values even when both

curvaton and modulator fluctuations contribute to the primordial density field, wσ+wχ = 1

given by Eq. (53). This emphasizes that a single-source for the primordial density field is

a sufficient condition for the SY inequality to be saturated, but not a necessary condition

[22].

Throughout this work we have assumed that the decay products of the curvaton rapidly

thermalise leaving no residual isocurvature perturbations. If the matter asymmetry inherits

a different density perturbation from the overall radiation density (because it comes ex-

clusively from either the curvaton decay products or the pre-existing radiation before the

curvaton decay, but not both) then it may leave a residual matter isocurvature perturba-

tion [34–36]. This would be further evidence of the origin of structure from non-adiabatic

field perturbations during inflation, and measurements of the relative amplitude of residual

isocurvature perturbations and their correlations with the adiabatic density perturbation

could give independent constraints on model parameters. It would be interesting to investi-

gate whether these could then distinguish modulated curvaton decay from standard curvaton

or modulated reheating scenarios.
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FIG. 4: Plots for the Suyama-Yamaguchi equality/inequality (45). In both figures wφ = 0. Left:

f = 0.2 with generic value of fσ
NL, f

χ
NL and f

σχ
NL. Right: The particular case fσ

NL = f
χ
NL = 5fσχ

NL is

plotted for arbitrary wσ. As expected the SY inequality is saturated when wσ = 0, 1 or when Eq.

(52) is met with wσ + wχ = 1, which in this particular case, yields wσ = wχ = 0.5.

Although we have assumed that the modulator field has negligible energy density, it

would be interesting to consider possible observational signatures of the eventual decay of

the modulator field, assuming that it too eventually decays into standard model particles

[37], analogous to our recent study of the effect of the late-time decay of a field responsible

for the inhomogeneous end of hybrid inflation [38]. We leave this for future work.

Note added: While completing this work, we became aware of related work by Langlois

and Takahashi [39]. Both papers should appear on the arXiv on the same day.
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