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Abstract. One important aspect of motivation is engagement. In order to learn, students 

need to be engaged in the learning activities. However, that does not always happen due 

to various factors. This paper investigates the possibility to detect the level of 

engagement of a learner using an e-Learning system. More specifically, we are looking 

for actions that could predict it. Using log files analysis we found that these actions are 

related to reading pages and taking tests, which are common to every e-Learning 

system. Several experiments showed that predictions based on attributes related to these 

two actions are as good as those that include a larger number of actions available in an 

e-Learning system. A comparison between the attributes found relevant in our research 

and the attributes used in previous research shows the consistency of our findings. The 

novelty of our approach is that the focus is on the learning time rather that on 

evaluation through quizzes-type activities.  

 

 

Introduction 

 

Motivation is a key component for learning success. One aspect of motivation is engagement: 

if a student is engaged in learning, he/she is motivated to learn; if disengaged, a student will 

not be efficient in his/her learning. In classroom settings, keeping track of student’s level of 

engagement and acting accordingly is one of teacher’s tasks. In e-Learning systems, the 

“engagement problem” is handled in a different way: through engagement theory [12], that 

emerged relatively recently from the teaching experience using technology. In fact, 

engagement became a problem in the context of e-Learning, even if the term existed and was 

used to designated learner’s focus on the activity. Now, in context of e-Learning the term 

engagement is usually associated with the theory of engagement that offers more than a 

definition of the term, the actual focus being on how to create activities in order to engage 

learners. 

 This paper is structured as follows. Section 1 briefly presents engagement theory, the 

relation between engagement and motivation, and how engagement concept was used in 

research. The research question and the methodological approach of our study are discussed in 

Section 2. The results are presented and discussed in Section 3. Section 4 covers a comparison 

with previous research results and finally, Section 5 concludes the paper. 

 

 

1. Learning engagement and motivation 

 

The theory of engagement ([12], [6], [5]) defines engaged learning with reference to two 

aspects: (1) the activities that involve active cognitive processes and (2) the students that are 

intrinsically motivated to learn due to the meaningful nature of the learning environment and 
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activities. Thus, engagement is about learning activities and the way they are performed. From 

the perspective of this theory, motivation would be a result, the focus being on the design of 

activities in order to increase motivation.  

Motivation is also a starting point for learning and could lead to learning engagement. 

Thus, there is a circular relation between the two. There is also a difference in terms of 

specificity or generalization: engagement refers to a task/ activity, while motivation is broader. 

In our approach we use the term engagement to designate the fact that the learner is focused 

on the activity. 

Research that investigates engagement has been done most of the time from a post-hoc 

perspective and using self-evaluation in classroom context (e.g. [7], [9]) and e-Learning 

context (e.g. [10], [8]) with the purpose to determine the educational value of a course / 

institution, or to find methods to improve engagement. 

Unlike these approaches, ours is focused on the learning time and is based on external 

indicators (the actual actions of learners). Thus, we are interesting in monitoring the learners’ 

actions in order to intervene when the student is not engaged in learning. In our research [3] 

identifying the level of engagement is the first step in eliciting motivation.  

 

 

2. Study design 

 

A study was conducted using 48 log files that registered the actions of learners using HTML 

Tutor, a web-based system for learning HTML. A total of 75 sessions (where a session is 

considered between login and logout) were analysed. Previous results [2] indicated that 

sequences of ten minutes are more valuable than whole sessions and thus, each session was 

split into sequences of ten minutes, leading to a database with 1015 entries. This database 

includes 943 sequences of exactly ten minutes and 72 sequences of less than ten minutes. The 

72 entries were eliminated and the analysis was performed only on sequences of exactly ten 

minutes. 

Several actions are possible in an e-Learning system. Following is a list of such possible 

actions with HTML Tutor: login/logout, setting the goal of using the system, setting 

preferences, reading pages, taking pre-tests and tests, following hyperlinks, consulting the 

manual of the system, looking for help, accessing a glossary of terms, communicating with 

other users or the tutor, search, making remarks, looking at statistics and giving feedback. In 

log files each action is registered with a time stamp, thus allowing identifying the amount of 

time spent in doing a certain action. 

For each action, the database contains the number of times the action has occurred and 

the average time spent on that action; for pre-tests and tests two additional parameters are 

included: number of correct and number of incorrect answers. Thus, the database contained 34 

attributes related to the 15 possible actions, plus session and sequence ID. The database also 

included a parameter referring to the level of engagement, with three values: engaged, 

disengaged and neutral. The latter was used for situations where it was very difficult to decide 

for one of the two levels mentioned. The level of engagement was established by analysing 

the actions of learner for each sequence of ten minutes and based on time frames for HTML 

Tutor. For example, a learner that spends excessively more time than necessary to read a page, 

take a test, make a search, etc. or, on the contrary, would spend less time than required to 

actually perform an action, would be disengaged. The opposite of these situations would 

indicate engagement. In some cases it was difficult to choose between the two, and thus, 

another category called neutral was introduced. Thus, by looking at the log files human raters 

established the level of engagement for each sequence in a similar way to that used by [4]. 



2.1. Research question 

 

The research question of our study is: What actions of learners could best predict their 

engagement? The actual focus is on the disengaged and on the actions or the lack of those 

actions that would indicate that they are not engaged in learning.  

 

2.2. Methodology 

 

In order to identify the actions that best predict disengagement, we investigated several 

aspects: (a) the frequency of each possible action; (b) the attribute ranking and (c) the level of 

engagement prediction results. The frequency of actions would give information about the 

actions that learners do most frequently; we would expect that the same actions would be 

reflected in (b) and (c) as well; if that wouldn’t happen, like for example, if an action with a 

low frequency would have a good ranking and a good predictive value, the low frequency 

would actually indicate that that particular action is not that relevant.  

 Looking at descriptive statistics for the actions registered in log files, we noticed that 

two actions were significantly more frequent compared to the rest: reading pages (787 

occurrences in 943 sequences) and taking test (415 occurrences in 943 sequences). The 

following events were: following hyperlinks (226), consulting the glossary (73), setting the 

learning goal (53), search (26), pre-tests (13), help (9), manual (7), communication (6), 

statistics (5), preferences (3), remarks (3) and feedback (3).    

 In order to see which attributes are more important for prediction, we used 3 different 

single attribute evaluation methods with ranking [13, pp. 424-425] as search method for 

attribute selection: (a)  Chi Squared Attribute evaluation [13, p.302, p.324]: computes the chi-

square statistic of each attribute with respect to the class; (b) Information Gain Attribute 

Evaluation[13, p.99, p.423]: evaluates the attributes based on information gain; (c) OneR 

Attribute Evaluation [13, pp. 84-85, p.423]: used OneR methodology to evaluate attributes; 

OneR stands for one-rule and it generates a one-level decision tree expressed in the form of a 

set of rules that all test one particular attribute. 

 We present the ranking for the first eight attributes out of 34. The first two methods 

delivered the same ranking: Average time/ Pages, Number of pages, Tests, Average time/ 

Tests, Number of correctly answered testes, Number of incorrectly answered testes, Average 

time/ Hyperlinks, Number of hyperlinks. OneR resulted in the same ranking for the first four 

attributes, followed by: Number of incorrectly answered testes, Average time/Hyperlinks, 

Number of correctly answered testes and Number of hyperlinks. Not surprisingly, all eight 

attributes refer to the three most frequent events registered in log files. 

 In order to see the prediction and the way it is influenced by the attributes, we used three 

trials and two experimental conditions. Trial 1 included all actions, Trial 2 comprised only the 

following actions: reading pages, taking test and following hyperlinks (top three actions found 

using frequency counting) and Trial 3 included just two actions: reading pages and taking 

tests. The two experimental conditions are: with attribute selection prior to prediction and 

without attribute selection. This experimental design is illustrated in Table 1.  
 

Table 1. Experimental design 

 

 Trial 1 Trial 2 Trial 3 

No attribute selection    

Attribute selection    

 



 The results from the three trials in the two experimental conditions are compared in 

terms of: (a) percentage correct for overall prediction, meaning for all levels of engagement 

and (b) true positives and false positives rate for disengagement. 
 

 

3. Results 
 

Waikato Environment for Knowledge Analysis (WEKA) [13] was used for the analysis. 

Several methods were experimented and similar results were found. We present here only two 

of them: one that had the best results for overall prediction for all three levels of engagement, 

classification via regression (CVR), and one that had the best results for the disengagement 

prediction, Bayesian Networks (BN). The results for these two methods according to the 

experimental design are presented in Table 2. 

 
Table 2. Predictions of engagement level using Classification via Regression and Bayesian Networks 

 
  Trial 1 Trial 2 Trial 3 

  CVR BN CVR BN CVR BN 

%correct 87.64 87.07 88.10 87.00 87.21 86.68 

TP rate  0.92 0.93 0.92 0.93 0.91 0.93 

No attribute selection 

FP rate 0.20 0.23 0.18 0.22 0.18 0.24 

%correct 87.75 87.79 88.10 87.47 87.25 86.70 

TP rate  0.93 0.94 0.92 0.93 0.91 0.93 

Chi-square 

FP rate 0.21 0.24 0.18 0.22 0.18 0.24 

%correct 87.70 87.80 88.10 87.44 87.25 86.67 

TP rate  0.93 0.94 0.92 0.93 0.91 0.92 

Info gain 

FP rate 0.21 0.25 0.18 0.22 0.18 0.24 

%correct 87.69 87.55 88.03 87.36 87.20 86.70 

TP rate  0.93 0.93 0.92 0.93 0.91 0.93 

Attribute 

selection 

 

OneR 

FP rate 0.21 0.24 0.18 0.22 0.18 0.24 

 

 The high TP rate and relatively low FP rate indicate a very good level of prediction and 

a good discrimination (the d-prime values are between 2.11 and 2.32).   

 

3.1. Trial 1 versus Trial 2 versus Trial 3 
 

Comparing the results we notice that there is no significant difference between the results 

obtained using the three different trials. Following the MDL (minimum description length) 

principle, we should use the trial with the minimum number of attributes, meaning Trial 3.  
 

3.2. No attribute selection versus Attribute selection  
 

The tables shows a better prediction for both percentage correct and true positives rate with 

attribute selection for the first trial (for both classification methods: CVR and BN); for the 

second trial there is better prediction with attribute selection for BN, while for CVR is 

constant for the first two cases and decreases for OneR attribute selection; for the third trial 

there are both increases and decreases with attribute selection for CVR and BN. However 

these variations are not statistically significant. From all trials, attribute selection increases 

most the prediction in Trial 1, which includes 34 attributes. As not all of them are relevant, an 

increase is to be expected when attribute selection is performed prior to prediction. 
 

3.3. Ranking within “the most valuable attributes” 
 



Using again the three attribute evaluation methods with ranking as search method for attribute 

selection, we can see the ranking among the 6 attributes from Trial 3, attributes related to 

reading and taking tests. The ranking is the same as the one obtained when using all attributes, 

for all three methods. Thus, according to chi-square and information gain ranking the most 

valuable attribute is average time spent on pages, followed by the number of pages, number of 

tests, average time spent on tests, number of correctly answered tests and number of 

incorrectly answered tests. OneR ranking differs only in the position of the last two attributes: 

number of incorrectly answered tests comes before number of correctly answered tests. 
 

 

4. Our results and previous research: comparison and implications 

 

Three previous approaches are particularly relevant to our research: (a) a rule-based approach 

to motivational states [4]; (b) using learner’s focus of attention to detect motivation factors 

[11] and (c) engagement tracing [1]. Each of these approaches has identified aspects from the 

learners’ actions to be used for motivation or engagement estimation or prediction. Each of 

these are briefly described and compared to our results. 

 The first mentioned approach identified 61 rules for different motivational states. The 

input for these rules consisted in four categories of information: performance, teaching 

materials, motivation model and motivation traits. The aspects related to students’ actions are 

the inputs of performance: quality (correctness of answers), speed (time spent in doing the 

instructional unit) and give up – whether the student chose to give up the lesson or not. The 

first two aspects are also reflected in our indicators; about the third, there is no information 

and it is not something that could be identified and logged as a specific action. This 

information is due to the fact that the task is very specific and within a limited time. 

 In the 61 rules there are 21 references to quality, 11 references to quantity and 14 

references to speed. The quality corresponds to the number of correctly and incorrectly 

answered tests from out approach; quantity corresponds to number of tests and speed refers to 

time spent reading and/or taking tests. 

 The second approach mentioned uses besides the learner’s focus of attention inputs 

related to learners’ actions: time to perform the task, time to read the paragraph related to the 

task, the time for the learner to decide how to perform the task, the time when the learner 

starts/ finishes the task, the number of tasks the learner has finished with respect to the 

current plan (progress), the number of unexpected tasks performed by the learner which are 

not included in the current plan (the learner’s actions are compared to a learning plan) and 

number of questions asking for help. Compared to our results, we find the time spent 

reading, the time spent on tests corresponding to time to perform the tasks and number of 

correctly answered tests corresponding to progress. 

 The third approach should theoretically be the closest to our research as engagement 

term is used with the same meaning. It is also similar in terms of information source, both 

using easily accessible information: in [1] data normally collected by a computer tutor is 

used and in our approach data normally logged is used. The differences are related to: (a) 

type of activities: in [1] the only activity is to answer multiple-choice cloze questions, while 

in our approach the actual study time is also included; (b) [1] starts form item-response 

theory to estimate (dis)engagement, while we are using data mining methods. The two 

indicators related to learner’s actions used in [1] are responses time and correctness. In our 

approach they correspond to time spent taking tests and number of correctly and incorrectly 

answered tests. 

 The fact that the actions identified in our experiment to be the best predictors of 

disengagement are found in previous research indicates the consistency of our findings.  



 

 

5. Conclusion 

 

We presented in this paper a study conducted in order to identify the actions of learners that 

would best indicate their level of engagement. The results show that these actions are reading 

pages and taking tests. The attributes related to these actions that were used for level of 

engagement detection are, in the order of their importance: average time spent reading, 

number of pages read / accessed, number of tests taken, average time spent on taking tests, 

number of correctly answered tests and number of incorrectly answered tests. 

 A comparison with previous approaches indicated that similar indicators were used in 

detecting/ predicting aspects of motivation or engagement, proving the consistency of the 

actions identified as most valuable. The difference that adds value to our approach is that we 

focus on learning time and not only on evaluation / assessment.  

 The fact that the actions found relevant for engagement are related to common tasks in 

e-Learning system: reading and taking tests could potentially mean that any e-Learning system 

could add a module for engagement monitoring. This would be beneficial in terms of keeping 

track of both motivation and learning outcomes, as disengagement indicated low motivation 

and ineffective learning. 

 The next step in our research is to investigate another e-Learning system in order to see 

if we find similar results: if it is a matter of just changing the timing framework for that 

system or if a completely different approach is required. 

 

 

References 
 

[1] Beck, J.E.: Engagement tracing:  using response times to model student disengagement. Proceedings of the 

12th International Conference on Artificial Intelligence in Education (AIED 2005), Amsterdam, 88-95. 
[2] Cocea, M., Weibelzahl, S.: Can Log Files Analysis Estimate Learners’ Level of Motivation? In Proceedings of ABIS 

Workshop, ABIS 2006, the 14th Workshop on Adaptivity and User Modeling in Interactive Systems, Hildesheim, (2006), 

32-35 

[3] Cocea, M.: Assessment of motivation in online learning environments. In Proceedings of Adaptive Hypermedia and 

Adaptive Web-Based Sys-tems, Dublin, Ireland, June 2006, 414-418. 

[4] De Vicente, A., Pain, H.: Informing the Detection of the Students’ Motivational State: an empirical Study. In Cerri, S. 

A.; Gouarderes, G.; Paraguau, F: Intelligent Tutoring Systems, 6th International Conference. Berlin: Springer-Verlag., 

(2002) 933-943   

[5] Higgins, E. T., Trope, Y.: Activity engagement theory: Implications of multiply identifiable input for intrinsic 

motivation. In E. T. Higgins & R. M. Sorrentino (Eds.), Handbook of motivation and cognition: Foundations of 

social behavior, Vol. 2.New York, NY: The Guilford Press, (1990), 229-264 

[6] Kearsley, G., Shneiderman, B.: Engagement Theory: A framework for technology-based teaching and 

learning. (1999). Retrieved on 14 October 2006 from http://home.sprynet.com/~gkearsley/engage.htm 

[7] Libbey, H.P.: Measuring Student Relationships to School: Attachment, Bonding, Connectedness, and 

Engagement, Journal of School Health, September 2004, Vol. 74, No. 7, 274-283 

[8] Lippincott, J. K.: Learning, Engagement, and Technology. In Student Engagement and Information 

Literacy, edited by Craig Gibson.  Chicago:  Association of College and Research Libraries, (2006) 

[9] O’Malley, K. J.,  Moran B.J., Haidet, P., Seidel, C.L., Schneider, V., Morgan, R. O., Kelly, P.A., Richards, 

B.: Validation Of An Observation Instrument For Measuring Student Engagement In Health Professions Settings, 

Evaluation & the Health Professions, Vol. 26, No. 1, (2003), 86-103 

[10] Pfaffman, J. A.: Manipulating and Measuring Student Engagement in Computer-Based Instruction. PhD 

Thesis. Vanderbilt University. Retrieved on 14 October 2006 from: http://etd.library.vanderbilt.edu/ETD-

db/available/etd-11262003-090736/unrestricted/pfaffman.pdf  
[11] Qu, L., Wang N., Johnson, W. L.: Detecting the Learner’s Motivational States in an Interactive Learning 

Environment. Artificial Intelligence in Education. C.-K. Looi et al. (Eds.), IOS Press (2005) 547-554 

[12] Shneiderman, B.: Relate-Create-Donate: A teaching/learning philosophy for the cyber-generation, 

Computers & Education 31, 1 (1998), 25-39  
[13] Witten, I.H., Frank, E.: Data mining. Practical Machine Learning Tools and Techniques. Second Edition, Morgan 

Kauffman Publishers, Elsevier (2005) 


