

Clinical outcome modelling

Dr Jim Briggs
Centre for Healthcare Modelling and
Informatics (CHMI)
University of Portsmouth

Contents

- Background
- Clinical data: what's hot and what's not?
- What use is a model?
- Our models:
 - pathology
 - vital signs
 - latest developments
- Impact
- Future

Background

- People die in hospitals
 - [Hogan et al, BMJ Quality and Safety, 2012] study of 1000 adults who died in 10 English hospitals in 2009
 - 5% preventable (>50% chance)
 - = 12,000 per year in England
- Recent cases:
 - Mid-Staffs
 - Leeds paediatric cardiac surgery
- Often happens because:
 - a clinician (or team of) is less competent
 - someone of sufficient expertise sees patient too late
- Can data and information technology help?

History of our work

- David Prytherch (now visiting Prof) has been involved in outcome modelling since the mid-1990s
- Dave joined UoP in 2001 on secondment from Portsmouth Hospitals Trust (PHT)
- I got involved shortly thereafter
- Dave had previously worked (successfully) on data from surgical cases (P-POSSUM)
- Began to look at medicine cases

Clinical data: quality (poor)

- Some data in hospitals is poor quality for analysis:
 - much not stored electronically therefore not easily accessible
 - some stored electronically has transcription errors
 - some not recorded until days/weeks/months after the fact
 - some is an administrator's judgement (e.g. what an episode is classified as for claims purposes)
 - some is a clinician's judgement (e.g. diagnosis)

Clinical data: quality (better)

- Some data is much more reliable:
 - most pathology data is taken automatically from quality-controlled testing equipment
 - and the lab is regularly quality-assured
 - most test results available in an hour
 - in Portsmouth, vital signs data is collected regularly at the bedside using portable data entry devices (iPod touch)
 - very good user interface (reduces data entry error)
 - data available immediately
- Has to be "operational" data

Data we have available

- Patient administrative data
 - patient id pseudonymised
 - age, gender
 - date/time of admission and discharge
 - whether admitted as an elective or emergency case
 - whether discharged dead or alive
 - which dept(s)/ward(s) the patient was in
- Pathology data
 - 7 most commonly performed blood tests
- Vital signs data
 - 7 routinely measured physiological indicators

OUR MODELS

BIOCHEMISTRY AND HAEMATOLOGY OUTCOME MODELLING (BHOM)

Pathology data used

- The "magnificent 7" blood tests:
 - albumin
 - creatinine
 - haemoglobin
 - potassium
 - sodium
 - urea
 - white cell count
- Over 12 months, 9497 patients discharged from "general medicine"
- Outcome measured: mortality on discharge
- Method: logistic regression

The BHOM model

• In (R / 1-R)= $-10.192 + (-0.013 \times gender)$ $+(5.712 \times mode of admission)$ $+(0.053 \times age on admission) + (0.018 \times urea)$ $+(-0.001 \times Na+) + (-0.101 \times K+)$ $+(-0.047 \times albumin) + (-0.037 \times haemoglobin)$ $+(0.067 \times white cell count) + (0.001 \times creatinine)$ $+(2.744 \times urea/creatinine)$

BHOM model evaluated

- Two main evaluators:
 - calibration
 - does the model reflect the distribution of risk?
 - most patients are "low" (<5%) risk
 - discrimination
 - does the model discriminate between patients who died and those who didn't
 - AUROC ~ .76

VITAL SIGNS MODELS (VIEWS, NEWS AND DT-EWS)

Background to vital sign modelling

- 2006-2008 Knowledge Transfer Partnership with The Learning Clinic, developers of VitalPAC
- VitalPAC:
 - allows nurses to collect vital sign data at the patient's bedside
 - data immediately stored in hospital systems
 - doctors use a tablet-based interface
- Now in use at Portsmouth Hospitals Trust and about 20 other hospitals

Vital sign data used

- Another "magnificent 7", vital signs:
 - pulse
 - respiration rate
 - temperature
 - blood pressure (systolic)
 - O₂ saturation
 - supplemental oxygen
 - AVPU score (alert or not)

Digression: Early warning systems

- Used widely to monitor patient deterioration
- Map each parameter onto a "score"
- Add the scores up
- If score is above a threshold, take appropriate action, e.g.
 - increase frequency of observation
 - call for a doctor
 - call for a doctor immediately
- Most EWSs based on "experience" of a single clinician or a committee of clinicians

ViEWS - VitalPAC Early Warning Score

- First EWS based on large scale data
- Derived from 198,755 observation sets from 35,585 acute medical admissions
- Outcome: mortality within 24 hours
- Evaluation
 - discrimination
 - does the model discriminate between patients who died and those who didn't
 - -AUROC = .888
- Superior to 33 other published EWSs

Methods

- Initially, trial and error to optimise discrimination
- More recently, started using Decision Tree tools to develop models (Tessy Badriyah PhD work)
 - DT-EWS
- DT is a data mining method that produces models that are feasible for humans to apply

Get a table like this (actually DT-EWS)

	3	2	1	0	1	2	3
Respiration Rate (bpm)				<u><</u> 18	19-20	21-24	<u>></u> 25
S _p O ₂ (%)	<u><</u> 89	90-92	93-94	95-99	≥100		
Supplement al oxygen				No			Yes
Temperature (°C)	<u><</u> 35.8	35.9- 36.0	36.1- 36.4	36.5- 37.1	37.2- 37.9	<u>></u> 38.0	
Systolic Blood pressure (mmHg)	<u><</u> 89		90-116	117-272			<u>></u> 273
Pulse rate (bpm)	<u><</u> 38		39-46	47-89	90-100	<u>></u> 101	
Level of consciousne ss				Alert (A)			Voice (V) Pain (P) Unrp (U)

Impact

- Embodied into VitalPAC
 - Alerts doctors
- Issue is where to set threshold for response
 - $\sim 20\%$ of obs have score of >=5 (medium alert)
 - $\sim 10\%$ of obs have score of >=7 (high alert)
 - Too low a threshold means too much work to do
 - Too high means you might be too late to save the patient
- ViEWS has been adapted by the Royal College of Physicians of England
- Now National Early Warning Score (NEWS) and recommended for adoption by all hospitals

Return to BHOM

- Could decision trees be used to develop an EWS based on pathology data?
 - Recent work by Jarvis, Kovacs, et al

LDT-EWS (lab decision tree EWS): male

	3	2	1	0	1	2	3
Hb		≤11.1	11.2- 12.8	≥12.9			
WCC				≤9.3	9.4-16.6	≥16.7	
U				≤9.4	9.5-13.7		≥13.8
Cr				≤114	115-179	≥180	
Na		≤132		133-140	≥141		
K			≤3.7	3.8-4.4	4.5-4.7	≥4.8	
Alb		≤30	31-34	≥35			

Future work

- condition-specific models
- combined BHOM/vital sign models
- other data
- other outcomes
- multi-centre studies
 - scale
 - validation
 - comparison
- commercial exploitation

Acknowledgements

- Prof David Prytherch, UoP/PHT
- Dr Stuart Jarvis, Caroline Kovacs (current CHMI research team)
- Tessy Badriyah (current PhD student)
- Prof Gary Smith (Bournemouth University)
- Dr Paul Schmidt and Dr Peter Featherstone (PHT consultant physicians)
- Dr Paul Meredith (PHT IT)
- Dr Mohammed Mohammed (Birmingham U & UoP visiting fellow)

Key references

- D R Prytherch, J S Sirl, P Schmidt, P I Featherstone, P C Weaver, G B Smith, The use of routine laboratory data to predict in-hospital death in medical admissions, *Resuscitation* 2005; 66: 203-207.
- D R Prytherch, J S Briggs, P C Weaver, P Schmidt, G B Smith. Measuring clinical performance using routinely collected clinical data. *Medical Informatics and the Internet in Medicine* June 2005; 30(2): 151-156.
- Smith, G., Prytherch, David, Schmidt, P. and Featherstone, P. (2008) Review and performance evaluation of aggregate weighted 'track and trigger' systems. *Resuscitation*, 77 (2). pp. 170-179. ISSN 0300-9572 10.1016/j.resuscitation.2007.12.004
- Smith, G., Prytherch, David, Schmidt, P., Featherstone, P., Kellett, J., Deane, B. and Higgins, Bernard (2008) Should age be included as a component of track and trigger systems used to identify sick adult patients? *Resuscitation*, 78 (2). pp. 109-115. ISSN 0300-957210.1016/j.resuscitation.2008.03.004
- Smith, G., Prytherch, David, Schmidt, P., Featherstone, P. and Higgins, Bernard (2008) A review, and performance evaluation, of single-parameter "track and trigger" systems. *Resuscitation*, 79 (1). pp. 11-21. ISSN 0300-9572 10.1016/j.resuscitation.2008.05.004
- Prytherch, D. R., Smith, G. B., Schmidt, P. E., & Featherstone, P. I. (2010). ViEWS Towards a national early warning score for detecting adult inpatient deterioration. *Resuscitation*, 81(8), 932-937.
- Mohammed, M., Rudge, G., Wood, G., Smith, G., Nangalia, V., Prytherch, David, Holder, R. and Briggs, Jim (2012) Which is more useful in predicting hospital mortality dichotomised blood test results or actual test values? a retrospective study in two hospitals. *PLoS One*, 7 (10). e46860. ISSN 1932-6203 10.1371/journal.pone.0046860

jim.briggs@port.ac.uk

THE END