
Reputation-Controlled Business Process Workflows

Benjamin Aziz
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

benjamin.aziz@port.ac.uk

Geoff Hamilton
School of Computing

Dublin City University
Dublin, Ireland

Geoff.Hamilton@computing.dcu.ie

Abstract—This paper presents a model solution for con-
trolling the execution of BPEL business processes based on
reputation constraints at the level of the services, the service
providers and the BPEL workflow. The reputation constraints
are expressed as part of an SLA and are then enforced
at runtime by a reputation monitoring system. We use our
model to demonstrate how trust requirements based on such
reputation constraints can be upheld in a real world example
of a distributed map processing BPEL workflow.

Keywords-BPEL; business process workflows; trust and rep-
utation management

I. INTRODUCTION

In recent years, service-oriented architectures have estab-
lished themselves as a major programming and computing
systems paradigm. The automated composition of basic Web
Services is one of the most promising ideas. Recently, this
idea has also emerged in the world of Cloud computing,
with platforms such as Amazon Simple Workflow Service
(Amazon SWF)1, Salesforce’s Visual Workflow2 and others
already well-established in the Cloud market.

Services composition can be made by a single peer ser-
vice, which could interact with different services at different
times, preserving their compositionality and providing a
single transparent view to the customers. This model is often
referred to as service orchestration in which a single service
orchestrates several others. On the other hand, it is also
possible to have the various services in a workflow acting
independently but in a pre-defined manner. This mode of
operation is often reffered to as service choreography.

Trust and reputation have been the centre of attention
in distributed systems in general. Trust, as a concept in
computer science has been elegently defined by Grandison
and Sloman [1, p.3] as “. . . the firm belief in the competence
of an entity to act dependably, securely and reliably within a
specific context.”. This definition encapsulates desired gen-
eral properties of computing systems such as dependability,
security and reliability while maintaining that these are only
measurable within the specific context in which the system
functions. For example, a Web security solution will not
be trusted in the context of the reliability of aerodynamics
systems. Trust and security have emerged as very important
issues in the composition of Web/Cloud services. Services
are provided by different entities in the network that could
implement different security mechanisms and apply different

1aws.amazon.com/swf
2www.salesforce.com/platform/cloud-platform/workflow.jsp

trust and security constraints. The overall interaction of
these constraints may not allow a service workflow execu-
tion to complete due to unexpected conflicts among such
constraints. Indeed, services are composed for adhering to
a business workflow and any trust and security constraints
must adhere to this view.

This paper presents a model for controlling the execution
of BPEL business processes based on reputation constraints
at the level of the services, the service providers and the
BPEL workflow. The reputation constraints are expressed as
part of an SLA and are then enforced at runtime by a repu-
tation monitoring system. We use our model to demonstrate
how trust requirements based on such reputation constraints
can be upheld in a real world example of a distributed map
processing BPEL workflow.

The rest of the paper is structured as follows. In Section
II, we give an overview of BPEL standard and its abstract
syntax, and we show how this syntax can be used to
model an example of BPEL workflows for distributed map
processing. In Section III, we define a model of utility-
based reputation for the case of service-oriented workflows,
which is capable of expressing the reputation of workflows,
services and service providers. In Section IV, we show
how reputation constraints can be specified, generated and
enforced in workflows. Finally, in Section V we give an
overview of related work and in Section VI, we conclude
giving directions for future research.

II. BPEL OVERVIEW

The Business Execution Language for Web Services
(BPEL4WS, simply called here BPEL) [2] is a standard
specification language for expressing Web service workflows
that was adopted by the Organization for the Advancement
of Structured Information Standards (OASIS3). BPEL re-
sulted from the merge of two earlier workflow languages:
XLANG, which is a block structured language designed
by Microsoft, and WSFL, which is a graph-based language
designed by IBM, and in fact, it adopted their approach in
using Web-based interfaces (WSDL, SOAP) as its external
communication mechanism while using XML as its specifi-
cation language. BPEL supports both cases of service com-
position: service orchestration and service choreography. In
the former case, a central process coordinates the execution
of a workflow by calling individual services. The services
themselves are agnostic to the existence of the workflow.

3www.oasis-open.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29585264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Therefore, the central process acts as the orchestrator of the
workflow. In the latter, there is no central coordinator and
each service knows its own share of the workflow, in other
words, it knows the exact operations it is meant to execute
and which other services it should invoke. In this sense,
services here are locked in a choreography.

The concept of executable process allows for services to
be orchestrated in BPEL. On the other hand, the concept
of abstract business protocol allows for the description
of public communication messages without describing the
internal details of the workflow process and hence facilitat-
ing the choreography of services. In the rest of the paper,
we concentrate on the orchestration paradigm since it is
more natural to BPEL. There are extensions of BPEL, such
as BPEL4Chor [3], that promote the use of BPEL as a
choreography language.

BPEL has also been recently proposed for Clound com-
putations. Figure 1 depicts the BPEL metamodel. Based
on this model, the lifecycle of a BPEL-based executable
workflow process is described intuitively as follows. The
process representing the workflow is invoked by another
external process (usually called the client) in which case the
workflow process is started within its execution environment,
typically a BPEL execution engine. The workflow process
contains a description of activities that it must perform
during the workflow. These activities may be either basic,
such as the invocation of Web services, receiving invocations
from other services/processes, replying to invocations etc.,
or structured, which describe the flow of control of basic
activities, for example, the sequential composition, parallel
composition or the conditional composition of activities. In
each basic activity, the name of the port type, the name
of the partner link offering that port type and the name of
the operation on the port type are specified. Additionally,
parter links may be grouped as one partner and they may
have partner roles. A process may also have a correlation
set, which is a set of properties shared by all messages in
a group of operations offered by a service. A process is
divided into scopes, each of which contains an activity, a
fault handler, a compensation handler and an event handler
(we shall ignore event handlers from now on). Fault handlers
catch faults and may sometimes re-throw them, whereas
compensation handlers of successfully completed activities
are used to reverse the effect of those activities (rollback)
whenever a fault is caught in the workflow later on.

A. BPEL Abstract Syntax

We adopt here an abstract syntax for the BPEL language
as defined by [4] and shown in Figure 2. The syntax defines
a BPEL business process as a pair, {| B,F |}, consisting of
an activity, B, and a fault handler, F. The activity may be
composed of several other activities. These could be either
a basic activity, A, a do-nothing activity, skip or a fault
throw activity, throw. Examples of basic activities are the
communication activities, such as:
• Service invocations in the form of

invoke(ptlink, op, ptype), in which the operation,
op, is invoked belonging to a partner link, ptlink, and
the operation is invoked on a port type, ptype.

• Receiving a request in the form of receive :
(ptlink, op, ptype), where a service receives a request
for an operation op on some port type ptype by some
client ptlink.

• Replying to a request, reply : (ptlink, op, ptype), which
generates a reply by calling an operation op over a port
type ptype belonging to a partner link ptlink.

For simplicity, in the abstract syntax of Figure 2 we have
abstracted away all these basic activities and represented
them by a simple activity, A, without loss of generality.

An activity may also be a structured activity. We consider
the following structured activities:
• sequence(B1,B2): this is a structured activity and it

represents the sequential composition of two activities,
B1 and B2. For B2 to start executing, B1 must have
already terminated.

• flow(B1,B2): this is a structured activity and it rep-
resents the parallel composition of two activities, B1

and B2. We do not assume anything here about the
concurrency mode of these two activities (whether it is
interleaving or non-interleaving).

• switch(〈case b1 : B1〉, . . . , 〈case bn :
Bn〉, 〈otherwise B〉): this activity represents the
conditional case-based statement, where an activity Bi
is chosen if its logical condition, bi, is true. If there are
more than one logical conditions that are true, then one
of these is chosen non-deterministically. Otherwise, the
default B is executed if none of the logical conditions
is satisfied. Conditions b are assumed to be expressed
in some form of first order logic.

• scope n : (B,C,F): this is a scope named n, which
has a default activity, B, a compensation handler, C
and a fault handler F. The scope usually runs as the
default activity, B. If this executes successfully, the
compensation handler, C, is installed in the context.
Otherwise, the fault handler, F, is executed.

Fault and compensation handlers have the same definition
as activities except that they can perform compensation-all
calls. For simplicity, we do not consider named compen-
sations, since these are a special case of compensation-all
that require special operations to search for the name of the
compensation scope belonging to past finished activities.

B. Example: Distributed Map Processing
We consider here a simple example of a distributed map

processing application inspired by one of the application
scenarios of project GridTrust [5]. The application could
also be thought of as a Cloud-based workflow. The workflow
representing interactions among the different components of
the application are illustrated in Figure 3.

The application consists of a main orchestrator process,
which is the server farm, that interacts with a couple of
services, the processing centre and the storage resources
services, whenever the server farm receives a request from
the client. The workflow proceeds as follows:
• A client cartographer submits a request to the server

farm process, which advertises a map processing ser-
vice that can create new maps. The request contains any
relevant information related to the old and new maps

process

port typeoperationmessagecorrelation set partner role

partner link

partner

activity

basic activity, sequence, flow, switch, throw etc.

contains

refers to

groups

includes

refers to refers to has

includes refers tohas

scope

fault handler

compensation handlercomposed from

contains

contains

contains

contains

contains

Figure 1. The BPEL Metamodel.

B ::= activity
A basic activity

| skip do nothing
| throw fault
| sequence(B1,B2) sequential composition
| flow(B1,B2) parallel composition
| switch(〈case b1 : B1〉, . . . , 〈case bn : Bn〉, 〈otherwise B〉) conditional composition
| scope n : (B,C,F) named scope

C,F ::= compensation, fault handler
compensate compensate-all
| B activity

P ::= {| B,F |} business process

Figure 2. Abstract Syntax of the BPEL Language.

requested by the client. As an example, we consider
that the compensation for receiving the client’s request
is to request back to the client to send the map job
again.

• The server farm process invokes a local or a network-
based resource storage service and stores on that service
data related to the job submitted by the client. We
consider that this invocation will be compensated by
deleting the job data from the storage service.

• The server farm process next submits a map processing
request to a processing centre service requesting, which
then retrieves information relevant to the new map and
then sends the results back to the server farm.

• Once the processing centre has ensured that the server
farm is authorized to modify the map, the processing
centre processes the job request and sends the results
back to the server farm. These results contain the new
map. We consider here that if the server farm is unable
to receive the results of the map processing, then it
will ask for a compensation of the finished previous
activities.

• After having received the results from the processing

centre, the server farm carries on final customisation
processing on the new map and once finished, sends
back the result to the client cartographer.

• The client cartographer now is expected to make a
payment to (possibly as a result of an off-line invoice
it received) the server farm process. This payment is
received and checked by the server farm process. If ok,
the client is acknowledged.

The basic BPEL definition of the main server farm
process is shown in Figure 4, where we have used
the syntactic sugar sequence(B1, . . . ,Bn) instead of
sequence(B1, sequence(. . . ,Bn)).

III. A UTILITY-BASED REPUTATION MODEL FOR
WORKFLOWS

In this section, we provide an adaptation of the model pre-
sented in [6] for the case of BPEL-based workflows. Central
to our reputation model is the notion of a service provider.
A service provider is any entity (e.g. organisation, company,
administrator) that provides a service in a workflow. The set
of all service providers is denoted by Sps. We keep track
of all service providers that have existed and use the set

Invoke “Map Build”

Receive “Process Map“ Invoke “Process Map”

Client Database Service
Server Farm
(Orchestrator)

Storage Resources

Service

Receive “Map Build”

Receive “Job Data”Invoke “Store Job Data”

Reply “Map Processing

Results”
Receive “Results”

Invoke “Client Results”Receive “Results”

Invoke “Make Payment” Receive “Payment”

Figure 3. Workflow for the Distributed Map Processing Application.

ServerFarm = {| sequence(
scope req : (receive(Client,mapBuild,Map Build Port),Creq, throw),
scope str : (invoke(Storage Resources, storeJobData,Resource Port),Cstr, throw),
scope prcinv : (invoke(Processing centre, processMap,Process Port), skip, throw),
scope prcrec : (receive(Processing centre, inputProcessingResults,Process Results Port),

skip, compensate),
scope res : (reply(Client,mapResults,Map Results Port), skip, throw),
scope pay : (receive(Client,makePayment,Payment Port), skip, throw),
scope ack : (invoke(Client, allOK,Payment), skip, throw)),
compensate |}

where,
Creq = sequence(invoke(Client, resendMap,

Map Build Port), receive(Client,mapBuild,Map Build Port))
and,
Cstr = invoke(Storage Resources, deleteJobData,Resource Port)

Figure 4. The Server Farm Process.

WId to denote the set of all workflow identifiers. These are
unique identifiers that identify each workflow. The services
we want to keep reputation values for are defined as elements
of the set Srv. These services belong to service providers. We
are interested in some particular issues of interest associated
to an entity; the set of all issues of interest is represented
by Issue. The following function defines the set of services
offered by a service provider:

sSP : Sps→ P Srv

On the other hand, the following function defines the set of
service providers involved in a particular workflow:

wS : WId 7→ P Srv

In our model, we assume the existence of monitors that
deliver events indicating the current value (result) produced
by a service invocation in relation to a particular issue of
interest within a workflow, at an observed moment in time
(local to the monitor). We represent an event as a tuple that
contains the following elements: a timestamp of the event,
a service, an issue, a workflow id WId and a real number
indicating the value of the specific element of issue captured
by the event:

Event : TimeStamp× Srv× Iss×WId × R

For example, the following tuple generated by the monitor
represents an event at 12:09:52 local time, indicating that
the result of invoking service map processor has produced
a Quality of Service (QoS) value of 0.65 for the workflow
whose identity is my workflow:

evex = (12:09:52,map processor,QoS,my workflow, 0.65)

The value of 0.65 could be either associated to a specific ele-
ment of QoS (e.g. performance, bandwidth, failure rate etc.)
which is being monitored, or it could reflect an aggregated
value of all these elements.

The model in [6] also introduces another fundamental
concept in the modelling of reputation, i.e. that of a utility
function. A utility function is a fitness criterion, which
represents the satisfaction of the user (in this case, the
service invocator or orchestrator). We focus here on one
definition of such utility functions, which incorporates
events and Service Level Agreements (SLAs):

utility : Event→ [0, 1]

∀(t, s, i,w, r) ∈ Event •
utility((t, s, i,w, r)) ={

1 if r ≥ SLA(s, i,w)
r

SLA(s,i,w) if r < SLA(s, i,w)

where a SLA is defined as the following function, returning
the expected value for the issue of interest:

SLA : Srv× Iss×WId → R

Hence, for evex above, if
SLA(map processor,QoS,my workflow) < 0.65 then
utility(evex) = 1. Otherwise, utility(evex) < 1 reflecting the
ratio between the actual and agreed values for the QoS.

A. Reputation Models
After introducing the main notions of an event and a

utility function, we can now define three models of the
reputation of services in workflows in the context of issues
of interest. We start with the definition of the reputation
of a specific service in a specific workflow with respect
to a specific issue of interest. Given that Eventw ⊆ Event
is the set of events captured by the workflow monitor for
the workflow w, then we can define our first reputation
function as follows:

[WId, Srv, Iss]
srv rep wsi : TimeStamp× Srv× Iss×WId → [0, 1]

∀ t :TimeStamp, s :Srv, i : Iss,w :WId •
srv rep wsi(t, s, i,w) =∑
ev∈{(ts,s,i,w,r)∈Eventw}

ϕ(t,ts)utility(ev)

#{(ts,s,i,w,r)∈Eventw}

where #s denotes the cardinality of a set s and ϕ(t, ts) is a
time discount function that puts more importance (emphasis)
on events registered closer in time to the moment of comput-
ing the reputation. Reputation, srv rep wsi, is defined as the

weighted average of the utilities obtained from all generated
events so far.

Based on the definition of srv rep wsi, we can next
define the more general reputation of a specific service in
a specific workflow in relation to all issues of interest, as
follows:

[WId, Srv]
srv rep ws : TimeStamp× Srv×WId → [0, 1]

∀ t :TimeStamp, s :Srv,w :WId •

srv rep ws(t, s,w) =

∑
i∈Iss

srv rep wsi(t,s,i,w)

#Iss

Which aggregates over the total number of issues of interest,
#Iss, which the service is being monitored against.

The next level of reputation defines the reputation of a
whole workflow, aggregating over the srv rep ws reputation
values of all of its member services, as follows:

[WId]
srv rep w : TimeStamp×WId → [0, 1]

∀ t :TimeStamp,w :WId •

srv rep w(t,w) =

∑
s∈wS(w)

srv rep ws(t,s,w)

#wS(w)

Based on srv rep ws, in fact we can also define the
reputation value of a specific service with respect to all the
workflows it has participated in:

[Srv]
srv rep s : TimeStamp× Srv→ [0, 1]

∀ t :TimeStamp, s :Srv •

srv rep s(t, s) =

∑
w∈{w:s∈wS(w)}

srv rep ws(t,s,w)

#{w:s∈wS(w)}

Where {w : s ∈ wS(w)} is the set of all those workflows
that have the service s as a member. Finally, we are now
able to define the reputation of a service provider based on
the last model:

[Sps]
srv rep p : TimeStamp× Sps→ [0, 1]

∀ t :TimeStamp, p :Sps •

srv rep p(t, p) =

∑
s∈sSP(p)

srv rep s(t,s)

#sSP(s)

IV. REPUTATION CONSTRAINTS IN BPEL WORKFLOWS

Having defined the machinery for modeling reputation of
processes (or services) in a workflow in the previous section,
we now proceed to define a method by which reputation
constraints can be enforced in a business workflow.

We define a reputation constraint to indicate that a
specific reputation level must remain within the boundary of

two real values Min and Max. For each reputation constraint,
we assign a corresponding constraint identifier as follows:

Conswsi = Min ≤ srv rep wsi(t, s, i,w) ≤ Max
Consws = Min ≤ srv rep ws(t, s,w) ≤ Max
Consw = Min ≤ srv rep w(t,w) ≤ Max
Conss = Min ≤ srv rep s(t, s) ≤ Max
Consp = Min ≤ srv rep p(t, p) ≤ Max

For the sake of simplicity, we shall use the general notation
Consx to refer to any of the above constraints, where
x ∈ {wsi,ws,w, s, p}, and assume the set Cons to include
all the above constraint functionidentifiers (hence treating
all constraints as of the same type). A set of reputation
constraints can be obtained using the following function:

repCons : User 7→ PCons

for a specific user u User, who is a client of the business
workflow or the orchestrator process. Therefore, one can
imagine repCons(u) as being a form of a SLA agreed with
the user u on the quality of protection of their business
requirements.

A. Generating the Reputation Constraints
We define next a method for generating reputation con-

straints, Consx, of the previous section in a top-to-bottom
approach. We write Consx.Min to refer to the minimum
value of the constraint, and Consx.Max to the maximum
value. We also define the relation Consx � Consy to mean
that the definition of Consy includes that of Consx (i.e.
the definition of the reputation function within Consy is
dependant on that within Consx). For example, we have
that Consws � Conswsi since srv rep ws is dependant in
its definition on the definition of srv rep wsi.

The generation of the constraint Consy based on the
definition of Consx can in fact be considered as a solution
to a constraint satisfaction problem [7]. Assuming that
Consx.Min and Consx.Max are available, and that Consx
will result in a k number of constraints at the next level,
Consy1 . . .Consyk then one can generate the values for
Consyi.Min and Consyi.Max for each i ∈ {1, . . . , k} provided
that the following two constraints on the generated values
(solutions) are met:∑

i∈{1,...,k}

Consyi.Min

k = Consx.Min∑
i∈{1,...,k}

Consyi.Max

k = Consx.Max

These constraints say that the average of the generated
values for the next level reputation constriant must be equal
to the value of the higher level reputation constraint, both in
the case of the maxima and the minima. Despite the fact that
this approach so far has been discussed in the case of top-
to-bottom constraint generation, it is also valid for the case
of bottom-to-top generation (i.e. from Conswsi to Consw).

To demonstrate how this solution works, let’s revisit
our example of Section II-B of distributed map processing

in this case to demonstrate how workflow-level reputation
constraints can be used to enforce a SLA with the clients of
the workflow by means of propagating this reputation down
to the reputation of individual services and service providers.
The distributed map processing workflow consisted of three
main services; the Server Farm (which is also the orchestra-
tor process), the Processing Centre service and the Storage
Resources service.

In one such SLA, the Client and the Owner of the
workflow process/orchestrator can agree on a workflow-level
of reputation stating that this reputation must fall within the
range of 0.5 and 0.75, for any time t:

0.5 ≤ srv rep w(t, distributed map processing) ≤ 0.75

In other SLAs, it is also possible to start from top reputation
constriants on srv rep p or srv rep s.

Starting from this constraint and using the definition of
srv rep ws, we can next solve the reputation constraints for
each of the three services involved in the workflow. One
such solution could be the following set of constraints:

0.4 ≤ srv rep ws(t, SF, distributed map processing) ≤ 0.8

0.2 ≤ srv rep ws(t,PC, distributed map processing) ≤ 0.5

0.9 ≤ srv rep ws(t, SR, distributed map processing) ≤ 0.95

for each of the three services (SF=Server Farm,
PC=Processing Centre, SR=Storage Resources). Assuming
we consider only two issues of interest for each of
these services, namely performance effeciency (i.e. the
service’s response time and throughput) and availability
(i.e. percentage of time the service is running), then we can
deduce the following six reputation constraints at the level
of each service and for each of the above two issues of
interest (PE=Performance Effeciency, A=Availability):

0.5 ≤ srv rep wsi(t, SF,PE, distributed map processing)

≤ 1.0

0.3 ≤ srv rep wsi(t, SF,A, distributed map processing)

≤ 0.6

0.2 ≤ srv rep wsi(t,PC,PE, distributed map processing)

≤ 0.7

0.2 ≤ srv rep wsi(t,PC,A, distributed map processing)

≤ 0.3

0.95 ≤ srv rep wsi(t, SR,PE, distributed map processing)

≤ 1.0

0.85 ≤ srv rep wsi(t, SR,A, distributed map processing)

≤ 0.9

The reputation monitoring service will issue events from
time to time in and frequently calculate the value of
srv rep wsi for each service and issue of interest in the
distributed map processing workflow. Each time such cal-
culation is made, the above constraints are checked and
enforced, in order to enforce the top-level SLA agreement
with the Client containing the workflow constraint of 0.5 ≤
srv rep w(t, distributed map processing) ≤ 0.75.

B. Enforcing the Reputation Constraints
Next, we discuss how the reputation constraint generated

in the previous section can be enforced on the semantics of
the BPEL abstract syntax. In [4], the authors define a big-
step semantics for the same subset of the BPEL syntax of
Section II-A based on a transition system, −→:

Γ ` P −→ �,F

where � is defined as being one of the following three
termination states:

� : successful process termination.
� : unsuccessful process termination with an error.
� : premature forced termination.

The environment of the BPEL orchestration engine, Γ, will
determine for each transition performed by the process
whether the transition will terminate according to one of the
above three semantic outcomes. In [8], this semantics was
extended to deal with fine-grained access control policies
controlling the termination outcome of BPEL processes.

Here, we shall extend the transition system of [4] to be
able to enforce our reputation constraints. First, we need
to define a new type of events, which are emitted by the
transition relation −→ and which are captured by the rep-
utation monitoring system. We call these events monitoring
hooks and we write them as ω1, . . . , ωn ∈ Ω. A monitoring
hook may contain any information about a transition step.
Therefore, we leave the definition of a monitoring hook
general, however, one possible such definition that we adopt
as an example would be ω = (s,w, a), where s ∈ Srv is the
name of the service (BPEL process) involved in the transitio
step, w ∈ WId the id of the workflow and a ∈ B being a
BPEL basic activity.

We modify the transition system of [4] as follows:

ΓrepCons(u) ` P
{ω1...ωn}−→ �,F

This new system replaces the generic BPEL runtime envi-
ronment Γ with ΓrepCons(u) that incorporates the reputation
constraints repCons(u) of a specific user u of the BPEL
workflow or business process. The set {ω1 . . . ωn} represents
the monitoring hooks that have been captured by the rep-
utation monitoring system during the course of transitions
performed by the process P. Note that since this semantics
is a big-step semantics leading from an initial state (i.e. P)
to a final one (i.e. �,F), the captured hooks must be a set
to reflect all the small-step transitions not visible in this
semantics.

A reputation monitoring system can be itself defined as:

M : Ω→ PEvent

which is a function taking a monitoring hook and produces
a set of events each concerned with one issue of interest.

For example, let’s consider the Server Farm process
defined in Figure 4. Running this process within the dis-
tributed map processing workflow could emit the follow-
ing monitoring hooks, which are then captured by the
workflow’s monitor as shown in Figure 5 (assuming the
workflow has a successful flow execution). Additionally,
the monitoring system will also update its internal state

reflecting the values of the various definitions of reputation,
srv rep x for x ∈ {wsi,ws,w, s, p} based on the events
generated from M(ω). We write such internal function as
update(M(ω), srv rep x) = srv rep x′, where srv rep x′
is an updated reputation relation calculated based on the
model of Section III-A. Hence, for a new srv rep x′, a
service, workflow or service provider will have a new
reputation value that can be obtained by applying srv rep x′
to the appropriate parameters.

Hence, for the example of Server Farm process, and given
the monitoring events of Figure 5, one can get the following
intermediate average values for srv rep wsi for the cases
of PE and A respectively as shown in Figure 6 (where we
assume that ϕ(t, ts) = 1). Both of these issues of interest are
within the acceptable constraints for srv rep wsi specified in
Section IV-A at all times during the execution of the Server
Farm process.

More formally, we can define the property of reputation
constraints enforcement as follows.

Property 1 (Reputation Constraints Enforcement):
We say that a transition system for a BPEL process,
ΓrepCons(u) ` P

{ω1...ωn}−→ �,F has enforced the reputation
constraints specified in repCons(u) for some user u during
the course of its transitions ending in the terminated state
�,F if and only if the following holds true:

∀ x ∈ {wsi,ws,w, s, p}, i ∈ {1 . . . n},
srv rep x′ ∈ {update(ωi,M, srv rep x)} :∧

cons∈repCons(u)[srv rep x′/srv rep x]
cons

Examining the results of Figure 6, we can see that none
of the two constraints is violated in its intermediate values
according to the above definition of reputation constraints
enforcement.

V. RELATED WORK

Reputation is a general concept widely used in all aspects
of knowledge ranging from humanities, arts and social
sciences to digital sciences. It is a concept closely related to
trust and it is defined by the Merriam-Webster dictionary
4 as the “overall quality or character as seen or judged
by people in general”. In fact, reputation is often seen as
one measure by which trust or distrust can be built based
on good or bad past experiences and observations (direct
trust) [9] or based on collected referral information (indirect
trust) [10]. In recent years, the concept of reputation has
shown itself to be useful in many areas of research in
computer science, particularly in the context of distributed
and collaborative systems, where interesting issues of trust
and security manifest themselves. Therefore, one encounters
several definitions, models and systems of reputation in
distributed computing research [11].

There are many works in the literature that tackle the
security and trust management of workflow-based systems.
In [12], the authors are concerned with the modelling of
access control policies for BPEL processes. In particular the
authors presents an approach to integrate Role-Based Access

4http://www.merriam-webster.com/

M((server farm, distributed map processing, receive(Client,mapBuild,MapBuildPort))) =
{(12:09:52, server farm,PE, distributed map processing, 0.6), (12:09:52, server farm,A, distributed map processing, 0.5)}

M((server farm, distributed map processing, invoke(Storage Resources, storeJobData,ResourcePort))) =
{(12:09:57, server farm,PE, distributed map processing, 0.51), (12:09:57, server farm,A, distributed map processing, 0.43)}

M((server farm, distributed map processing, invoke(Processing Centre, processMap,ProcessPort))) =
{(12:10:02, server farm,PE, distributed map processing, 0.46), (12:10:02, server farm,A, distributed map processing, 0.22)}

M((server farm, distributed map processing, receive(Processing Centre, inputProcessingResults,ProcessResultsPort))) =
{(12:10:04, server farm,PE, distributed map processing, 0.77), (12:10:04, server farm,A, distributed map processing, 0.54)}

M((server farm, distributed map processing, reply(Client,mapResults,MapResultsPort))) =
{(12:10:09, server farm,PE, distributed map processing, 0.81), (12:10:09, server farm,A, distributed map processing, 0.33)}

M((server farm, distributed map processing, receive(Client,makePayment,PaymentPort))) =
{(12:10:17, server farm,PE, distributed map processing, 0.71), (12:10:17, server farm,A, distributed map processing, 0.49)}

M((server farm, distributed map processing, invoke(Client, allOK,Payment))) =
{(12:10:22, server farm,PE, distributed map processing, 0.5), (12:10:22, server farm,A, distributed map processing, 0.29)}

Figure 5. Events Transmitted by the Reputation Monitor of the Server Farm Process.

srv rep wsi(12:09:52, server farm,PE, distributed map processing) = 0.6
srv rep wsi(12:09:57, server farm,PE, distributed map processing) = 0.56
srv rep wsi(12:10:02, server farm,PE, distributed map processing) = 0.52
srv rep wsi(12:10:04, server farm,PE, distributed map processing) = 0.59
srv rep wsi(12:10:09, server farm,PE, distributed map processing) = 0.63
srv rep wsi(12:10:17, server farm,PE, distributed map processing) = 0.64
srv rep wsi(12:10:22, server farm,PE, distributed map processing) = 0.62

srv rep wsi(12:09:52, server farm,A, distributed map processing) = 0.5
srv rep wsi(12:09:57, server farm,A, distributed map processing) = 0.47
srv rep wsi(12:10:02, server farm,A, distributed map processing) = 0.38
srv rep wsi(12:10:04, server farm,A, distributed map processing) = 0.42
srv rep wsi(12:10:09, server farm,A, distributed map processing) = 0.4
srv rep wsi(12:10:17, server farm,A, distributed map processing) = 0.4
srv rep wsi(12:10:22, server farm,A, distributed map processing) = 0.4

Figure 6. Intermediate Reputation Values for srv rep wsi for the case of Performance Effeciency and Availability Issues of Interest.

Control and BPEL on the meta-model level. They describe
a mapping of BPEL to RBAC elements and extracts them
from BPEL. In particular they present a XSLT script, which
transforms BPEL processes to RBAC models in an XML
format.

On the contrary [13] presents two languages, RBAC-WS-
BPEL and BPCL in order to be able to specify authorization
information associating users with activities in the business
process and authorization constraints on the execution of
activities. Their RBAC-WS-BPEL architecture works on
the orchestrator process. As a matter of fact through these
languages, they rewrite the specification of the orchestrator
by inserting authorization specification specified in BPCL.
In our approach we consider also the satisfaction of possible
local policies of each service by considering each of them
as a subject that interacts with the orchestrator.

In [14], the author presents an analysis of the satisfiability
of task-based workflows. The model of workflows adopted
is enriched with entailment constraints that can be used for
expressing cardinality and separation of duties requirements.
Given such and other authorisation constraints, the analysis
then answers questions related to whether the workflow can
or cannot be achieved and whether an enforcement point can
or cannot be designed based on all instances of the workflow.
This is similar to our semantics, however we work closer to
a standard language (i.e. BPEL) and we do not deal with

the design of the enforcement point (i.e. the PDP).
In [8], fine-grained access control policies were proposed

for BPEL workflows based on process algebra. The current
abstract syntax of BPEL adopted in this paper is based on the
syntax defined in [8]. In [6], the authors proposed a general
reputation model for collaborative computing systems as a
measure for trust in such systems.

In the context of composite services systems, [15], the
authors propose an architecture for automated, dynamic,
pro-active, and transparent maintenance and improvement
of composite services, which in [16], [17] is extended to
deal with the reputation of Web services based on QoS
issues. In [18] a model of probabilistic success of BPEL-
based systems is defined, and in [19], a method is defined
for integrating human agents into BPEL process that permits
the monitoring of service behaviour and the calculation of
their reputation based on this behaviour.

VI. CONCLUSION

Reputation is one means for measuring trust among
entities in a distributed system. In this paper, we have
demonstrated how reputation expressed as a constraint in a
mathematical model, can be used to control the execution of
a BPEL-based workflow. Our model is capable of capturing
and enforcing constraints on the reputation of workflows, in-
dividual services and service providers. We have shown one

real world example of the applicability of the model related
to the domain of distributed map processing applications.

Future research could focus on enhancing the robustness
of the model by adding reliability measures to the events
generated by the reputation monitor. The expressivity of
the model can also be improved by adopting a well-defined
language for expressing the issues of interest and SLAs to
be able to better specify whether a service/workflow/service
provider meets the expectations of the client. Finally, another
interesting future research direction is related to config-
uration analysis, where reputation constraints are used at
the beginning of service composition to configure the right
workflow satisfying those constraints. This would render
reputation constraint a fundamental non-functional criterion
when building a workflow, which would be added to the
functional requirements underlying the workflow process.

REFERENCES

[1] T. Grandison and M. Sloman, “A Survey of Trust in
Internet Applications,” IEEE Communications Surveys and
Tutorials, vol. 3, no. 4, September 2000. [Online]. Available:
http://pubs.doc.ic.ac.uk/TrustSurvey/

[2] BEA and IBM and Microsoft and SAP and Siebel, “Web
Services Business Process Execution Language Version 2.0,”
OASIS Standard, 2007.

[3] G. Decker, O. Kopp, F. Leymann, and M. Weske,
“BPEL4Chor: Extending BPEL for Modeling Choreogra-
phies,” in Proceedings of the IEEE 2007 International Con-
ference on Web Services (ICWS 2007). Salt Lake City, Utah,
USA: IEEE Computer Society, 2007.

[4] Z. Qiu, S. Wang, G. Pu, and X. Zhao, “Semantics of
BPEL4WS-Like Fault and Compensation Handling,” in Pro-
ceedings of the International Symposium of Formal Methods
Europe (FM 2005), ser. Lecture Notes in Computer Science,
vol. 3582. Newcastle, UK: Springer, 2005, pp. 350–365.

[5] GridTrust, “Deliverable D5.1(M19) Specifications of Appli-
cations and Test Cases, 2007.”

[6] A. E. Arenas, B. Aziz, and G. C. Silaghi, “Reputation
management in collaborative computing systems,” Security
and Communication Networks, vol. 3, no. 6, pp. 546–564,
2010.

[7] B. Nadel, “Some applications of the constraint-satisfaction
problem,” Wayne State University, Tech. Rep. CSC-90-008,
1990.

[8] B. Aziz, A. Arenas, F. Martinelli, I. Matteucci, and P. Mori,
“Controlling usage in business process workflows through
fine-grained security policies,” in Proceedings of the 5th
international conference on Trust, Privacy and Security in
Digital Business, ser. TrustBus ’08. Springer-Verlag, 2008,
pp. 100–117.

[9] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and
Reputation Systems for Online Service Provision,” Decision
Support Systems, vol. 43, no. 2, pp. 618–644, March 2007.

[10] A. Abdul-Rahman and S. Hailes, “Supporting trust in vir-
tual communities,” in HICSS ’00: Proceedings of the 33rd
Hawaii International Conference on System Sciences-Volume
6. Washington, DC, USA: IEEE Computer Society, 2000.

[11] G. C. Silaghi, A. Arenas, and L. M. Silva, “Reputation-based
trust management systems and their applicability to grids,”
Institutes on Knowledge and Data Management and System
Architecture, CoreGRID - Network of Excellence, Tech. Rep.
TR-0064, February 2007.

[12] J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann,
“An Approach to Extract RBAC Models from BPEL4WS
Processes,” in Proceedings of the Thirteenth IEEE Interna-
tional Workshops on Enabling Technologies (WETICE 2004):
Infrastructure for Collaborative Enterprises. Modena, Italy:
IEEE Computer Society, 2004, pp. 81–86.

[13] E. Bertino, J. Crampton, and F. Paci, “Access Control and
Authorization Constraints for WS-BPEL,” in Proceedings of
the 2006 IEEE International Conference on Web Services.
Chicago, Illinois, USA: IEEE Computer Society, 2006, pp.
275–284.

[14] J. Crampton, “An Algebraic Approach to the Analysis of
Constrained Workflow Systems,” in Proceedings of the 3rd
Workshop on Foundations of Computer Security, 2004, pp.
61–74.

[15] D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Falt-
ings, “Automated dynamic maintenance of composite services
based on service reputation,” in Proceedings of the 5th
international conference on Service-Oriented Computing, ser.
ICSOC ’07. Springer-Verlag, 2007, pp. 449–455.

[16] D. Bianculli, W. Binder, L. Drago, and C. Ghezzi, “Trans-
parent reputation management for composite web services,”
in Proceedings of the 2008 IEEE International Conference
on Web Services, ser. ICWS ’08. IEEE Computer Society,
2008, pp. 621–628.

[17] D. Bianculli, W. Binder, M. L. Drago, and C. Ghezzi,
“Reman: A pro-active reputation management infrastructure
for composite web services,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE
’09. IEEE Computer Society, 2009, pp. 623–626.

[18] Y. Chen and X. Wu, “Success measurement of web services
with bpel,” in Proceedings of the 2010 Fifth IEEE Interna-
tional Symposium on Service Oriented System Engineering,
ser. SOSE ’10. IEEE Computer Society, 2010, pp. 86–90.

[19] B. Jennings and A. Finkelstein, “Flexible Workflows:
Reputation-based Message Routing,” in 9th Workshop on
Business Process Modeling, Development, and Support (BP-
MDS 08), Montpellier, 2008.

