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We develop an efficient, non-parametric Bayesian method for reconstructing the time evolution
of the dark energy equation of state w(z) from observational data. Of particular importance is the
choice of prior, which must be chosen carefully to minimise variance and bias in the reconstruction.
Using a principal component analysis, we show how a correlated prior can be used to create a smooth
reconstruction and also avoid bias in the mean behaviour of w(z). We test our method using Wiener
reconstructions based on Fisher matrix projections, and also against more realistic MCMC analyses
of simulated data sets for Planck and a future space-based dark energy mission. While the accuracy
of our reconstruction depends on the smoothness of the assumed w(z), the relative error for typical
dark energy models is . 10% out to redshift z = 1.5.

I. INTRODUCTION

The nature of dark energy (DE), the source driving
the acceleration of the universe in the framework of gen-
eral relativity, has remained a mystery since the accel-
eration was first discovered [1]. With the accumulating
observational data, including supernovae (SN), cosmic
microwave background radiation (CMB) and large scale
structure (LSS) data, we hope to understand whether
DE is a cosmological constant or whether it is dynami-
cal. Dynamical dark energy is characterised by having an
equation-of-state w 6= −1, and which in general could be
a function of redshift w(z) or, equivalently, the scale fac-
tor w(a). One of the key goals in dark energy observations
is to constrain the equation of state and its evolution.
The time evolution of w can, in principle, be re-

constructed from data using either parametric or non-
parametric methods (e.g. [2]). Non-parametric methods
have the advantage that they do not assume an ad hoc
functional form of w(z), which could lead one to miss ev-
idence for a different kind of evolution. Unfortunately,
non-parametric methods generically contain many de-
grees of freedom which can lead to parameter degenera-
cies, making them difficult to explore.
Many efforts have been made in the literature to de-

velop non-parametric methods, which can vary greatly
depending on the nature of the data and the choices of
the functions to be reconstructed. One particular focus
has been using SN and other standard candle data to re-
construct various ways of paramterizing the background
cosmology; the techniques either fit directly to SN mag-
nitudes or their luminosity distances DL(z), or to more
indirect quantities such as dark energy density, ρDE(z),
the expansion history, H(z), and the equation of state
w(z), or much more indirect quantities such as the po-
tential of the DE scalar field(s) [3–13].
Unfortunately, many of these techniques are specific to

luminosity distance measurements, or more generally to

measures of the background expansion rate, making it
difficult to include other types of data. The background
measurements can be limited by our knowledge of other
parameters, in particular the value of the dark energy
density today, ΩDE [5, 8]. Thus, it is useful to include
measurements which could be sensitive to the growth
of structure; such measurements, including weak lens-
ing, galaxy clustering and the integrated Sachs-Wolfe ef-
fect (ISW), can help to break the degeneracies and can
potentially be the basis for consistency tests of the DE
paradigm [14, 15].

When comparing background and structure evolution
data, it is useful to focus on more indirect parameteri-
sations like the equation of state, w(z). Non-parametric
approaches typically would expand w(z) in terms of bins
or basis functions. A powerful tool is the principal com-
ponent approach, which uses forecasts of the future ex-
periments in the form of Fisher matrix projections to
find linear combinations of these basis functions which
are independent and well determined [13, 16–22].

One reconstruction approach is to make a truncation of
the best constrained principal components, but the num-
ber of modes kept is an open question. This often is de-
cided without reference to the data, potentially missing
evidence because it is not expected. This simple trun-
cation can lead to significant biases and unrealistically
small errors in the reconstruction where the data are poor
or are absent entirely [16]. It is clear that some bias in
reconstructions is inevitable, particularly when one at-
tempts to reconstruct w(z) in regimes where the data
are poor or are absent entirely. However, it is worth in-
vestigating whether a better reconstruction method can
be found.

In a fully Bayesian approach, one can explicitly specify
a prior on the behaviour of w(z), which then determines
which modes are kept in the reconstruction, based on
where the evidence from the data outweighs the prior.
But the crucial question is then to understand the best
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way to specify priors in order to minimise the bias, while
at the same time reducing the impact of data noise in the
reconstruction. Here we extend previous work, where we
assumed that w(z) could be treated as a Gaussian ran-
dom field with a proposed correlation function [17]; this
correlation function effectively enforces a smoothness on
the reconstruction. Our approach is close in spirit to re-
cently proposed Gaussian Process (GP) method [23, 24],
which applied a similar prior to reconstructions of w(z)
using SN data, though there are important differences as
described below.
In this paper we discuss how to choose a prior and im-

plement it in a computationally efficient method to recon-
struct w(z) non-parametrically from the observed data.
As we will show, it is very accurate (with relative error .
10% for a range of dark energy models), computationally
cheap and fast, straightforward to implement, and can
be used to analyse any kind of cosmological data. Af-
ter discussing general issues regarding the choice of prior
correlation functions, we test our reconstruction accu-
racy using the simulated mock data for Planck [27] and
a future space-based mission. We then conclude with a
discussion of how to extend this method to other param-
eterization and how to calculate more realistic priors.

II. RECONSTRUCTION METHODS

Reconstruction methods in general have been well ex-
plored; here we focus on a Bayesian method, so to make
our assumptions as explicit as possible. Whatever the
method, one needs some metric to evaluate the quality
of the reconstructions. One natural choice of metric, or
risk function, is the mean squared error (MSE) of the
binned equation of state, between the true model and
the reconstructed one:

MSE ≡
∑

i

(wtrue
i − wrecon

i )2. (1)

The MSE is not the only possible choice, but it is common
and we adopt it here.
Our Bayesian method must assume an a priori prob-

ability distribution in the space of models. In the ab-
sence of data, the reconstruction will return some fidu-
cial model, wfid, which is the peak of the prior distri-
bution; if the fiducial model differs from the true one,
the mean reconstructed model will be biased, where
w

mean ≡ 〈wrecon〉 is averaged over the ensemble of pos-
sible data consistent with the true model. The ensemble
average of the MSE can be shown to be the sum of two
terms: the variance with which the mean model will be
reconstructed and the bias between the true model and
the mean one:

〈MSE〉 =
∑

i

〈(wmean
i −wrecon

i )2〉+(wtrue
i −wmean

i )2. (2)

The challenge of reconstruction is to keep both types of
errors small; a stronger prior will reduce the variance

of the reconstruction, but will increase the bias if the
fiducial and true models do not match.

Here we focus on a fully Bayesian reconstruction
method. In it, we simply assume a prior probability dis-
tribution on the function we wish to reconstruct, and our
reconstructed function is the maximum of the posterior
probability distribution, which is the product of the data
likelihood and the prior. Thus, the reconstruction method
is entirely specified by the definition of the prior and this
makes our reconstruction assumptions fully explicit.

We try to choose the prior to minimise the bias; how-
ever, this is intrinsically subjective because it depends
on the expected ‘true’ model. In principle, this should be
determined by theoretical considerations and/or previ-
ous observations. Given that we are making projections
based on the most optimal future data, previous observa-
tions are not expected to have significant impact, making
theoretical considerations key. Theoretical priors can be
made by considering ensembles of possible models, either
using a combination of parametric models for the equa-
tion of state, or by using physical models; e.g., by putting
a prior on the space of possible quintessence potentials.
However, it is clear that this choice could vary wildly
between theorists.

One of the problems of using a non-parametric models
is the sensitivity of answers to the binning scheme as-
sumed. If few bins are assumed, then the answers are well
determined, but the resulting reconstruction has unphys-
ical discrete structures resulting from the binning. But if
many bins are assumed, some degrees of freedom (d.o.f.)
will not be constrained by the data, resulting in large
variance and slow convergence of Monte Carlo Markov
chain (MCMC) methods. An advantage of the Bayesian
approach is that we can use many bins, but then con-
strain the residual degrees of freedom by imposing a prior
on the space of functions. This prior tends to make the
functions smoother, reflecting our preconceptions of how
the equation of state should evolve.

Another common approach to reconstructions is to
simply smooth the data, e.g. by using some implementa-
tion of a low-pass filter, on the assumption that the mod-
els will not have high frequency variations. This equates
to an infinitely strong prior, which does not allow high
frequency modes in the reconstruction, no matter how
strong the evidence for them may be. While this is possi-
ble to implement with the methods we describe, it seems
more reasonable to set some strong but finite prior based
on theoretical considerations; that way, high frequency
modes could, in principle, enter the reconstruction if
the evidence for them becomes sufficiently strong (where
the definition of sufficient is based purely on theoretical
grounds.)

Here we focus on phenomenological choices for the
prior, and make recommendations based on simple con-
siderations, but allow that this will be up to individual
choice.
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III. THE CORRELATED PRIOR

A. The correlation function

The prior distribution could be an arbitrarily com-
plex multi-variate probability distribution for the non-
parametric amplitudes. We assume this distribution is
Gaussian, meaning it is specified by a covariance matrix
describing fluctuations around a mean or fiducial model,
wfid. Here for simplicity, we further assume that the co-
variance matrix is a function only of the scale factor and
in particular that it is translation independent, depend-
ing only on the difference in scale factor |a− a′|.
These assumptions allow us to specify the prior using

a simple one-dimensional function, defined in [17] as

ξw(|a− a′|) ≡
〈

[w(a) − wfid(a)][w(a′)− wfid(a′)]
〉

, (3)

which can be used to generate the likelihood for any
w(a). This has the effect of reducing the degrees of free-
dom of the function, effectively binding together neigh-
boring bins below some specified correlation length ac.
This is precisely the kind of prior assumed in the Gaus-
sian process approach [23, 24], though the shape and
parametrization of the correlation function can differ con-
siderably. In Ref. [17], we applied this smoothness prior
to the Fisher forecasts, and found it a natural way to
quantify how much we could learn from future data.
Here we choose the scale factor, a, as our independent

variable, which is somewhat arbitrary and in our ear-
lier work [17] instead used redshift. A function which is
translation invariant in one variable will not be precisely
translation invariant in another, meaning the priors can-
not be equivalent. However, if our answers strongly de-
pend on such differences, then likely the priors have been
made too strong.

B. Implementation of the correlation prior

We start by discretising w(a) at a ≥ amin using bins
uniform in scale factor a, and use a wide bin for a < amin.
We have checked that using uniform bins in ln(a) or z re-
turns a consistent result when the number of bins N is
large enough, namely, N ≥ 20 with amin = 0.4, which we
adopt in this work. Note that we use tanh bins rather
than tophat bins so that the time derivative of w is sta-
ble at any a, which is an important issue for calculating
the dark energy perturbations when using CMB and LSS
data.
Given some correlation shape and choice of fiducial

model, it is straight forward to discretize them given our
choice of binning. Let us assume the ith bin is from ai
to ai +∆, and for simplicity we will assume that all bins
have the same width ∆ = ai+1−ai. The equation of state
averaged over each bin is given by

wi =
1

∆

∫ ai+∆

ai

daw(a). (4)

We can write the variation from the true model averaged
over the bin as, δwi = wtrue

i − wfid
i . Calculating the co-

variance matrix of the binned equation of state is then
straightforward:

Cij ≡ 〈δwiδwj〉 =
1

∆2

∫ ai+∆

ai

da

∫ aj+∆

aj

da′ξw(|a− a′|).

(5)
Given this, the prior for the model can be written as

Pprior(w) ∝ e−(w−w
fid)TC

−1(w−w
fid)/2. (6)

Subsequently, in the MCMC, we minimize the total pos-
terior χ2 defined as

χ2 = χ2
data + χ2

prior , (7)

where

χ2
prior = −2 lnPprior = (w −w

fid)TC−1(w −w
fid). (8)

In Sec. IV we show that one can marginalize over pos-
sible choices of wfid, or define a procedure by which w

fid

is defined using an averaging of w. In such a case, the
prior probability can be written as

P(w) ∝ e−w
T
C̃

−1
w/2, (9)

where C̃ is a modified version of the correlation matrix,
meaning that

χ2
prior = w

T
C̃

−1
w . (10)

The correlation function typically provides a frequency
dependent prior: high frequency oscillations are sup-
pressed by the prior, while the low frequency modes are
largely unaffected and are so dependent on the data. Pro-
viding a prior stabilizes the high frequency variances and
allows us to focus on the more interesting low frequency
modes. It also significantly improves the MCMC con-
vergence, as the flat directions are now curtailed by the
prior. Also, as long as there are sufficient bins compared
to the correlation length, the prior largely wipes out de-
pendence on the precise choice of binning.

C. The Wiener filter

To reconstruct w(a) from real data, we simply fold the
theoretical prior into our MCMC search using Eq. (7)
and search for the optimal model. One can gain analyti-
cal insight into reconstructions using the correlated prior
by exploiting similar arguments used forWiener filtering,
a well understood methodology for reconstructing a sig-
nal in the presence of noise. The Wiener approach can be
applied in this context once we recognise that the Fisher
matrix (or its inverse) describes the expected noise co-
variance in the w(a) reconstruction, while our theoretical
prior describes our expected signal covariance.
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We assume that we have some noisy data vector which
is the best fit to the observed data, and we wish to esti-
mate the best actual w(a) given the data has noise de-
scribed by the Fisher matrix, Fij . The expected likeli-
hood is given by

P(wobs|w) ∝ e−(wobs−w)TF(wobs−w)/2. (11)

Combining this with the theoretical prior defined above,
we find the posterior distribution P(w|wobs). We define
the reconstructed equation of state as that which maxi-
mizes the posterior; we find

F(wrecon −w
obs) +C

−1(wrecon −w
fid) = 0, (12)

which has the solution,

w
recon = F

−1(C+ F
−1)−1

w
fid +C(C+ F

−1)−1
w

obs.
(13)

Assuming that the noise dominates in the higher frequen-
cies, this is effectively a low-pass filtering of the data
combined with a high-pass filtering of the fiducial model.
Given most choices of fiducial models will be smooth, the
latter should have minimal effect.
As mentioned above and detailed in Sec. IV, it is pos-

sible to eliminate the explicit dependence on w
fid by in-

troducing a modified correlation matrix C̃ with the prior
probability given by Eq. (9). Then the maximum poste-
rior solution becomes simply

w
recon = C̃(C̃+ F

−1)−1
w

obs. (14)

This analytic solution is useful for projections, which
we present in Sec. VB2. When working with real data,
it is very difficult to estimate w

obs, which optimises the
observations alone, because flat directions in parameter
space make the MCMC convergence impossible when the
number of bins is large. But when searching for w

recon,
such flat directions are curtailed by the prior.

IV. EXPLORING SPECIFIC CORRELATED

PRIORS

A. The choice of correlation function

The choice of amplitude and shape of the prior can
critically effect the reconstructed w(a) and other con-
clusions, such as the number of dark energy parameters
which can be constrained. The prior should incorporate
both our theoretical prejudices and other earlier cosmo-
logical data which have not been explicitly included in the
present analysis. Theoretically, one might examine the
equation of state dynamics of the quintessence field, be-
ginning with some measure on the space of quintessence
potentials (e.g. [28], also see [29].) Earlier data can also be
used to decide on the prior. However, it is not clear how
useful this is, as the earlier data will naturally be weaker
than the data being considered, so it would be surprising

if it resulted in stronger constraints on any degree of free-
dom. If the experiment provides independent constraints,
it should be incorporated explicitly rather than using a
heuristic prior model which can misrepresent the distri-
bution of the information. Here we attempt a more prag-
matic approach, by using simulated data and attempting
to reconstruct a number of ‘typical’ dark energy models.
One choice is to assume that the prior is diagonal in

the binning, effectively assuming the correlation is a delta
function [20]. If all bins have the same prior, the correla-
tion matrix is proportional to the identity matrix, which
has the advantage that the principal components of data
remain unchanged when the prior is included. However,
such a prior lacks the bin independence and smoothing
properties of a more realistic prior choice.
In previous work [17], we worked with redshift z as the

variable, and modeled the correlation function using a
form ξw(δz) = ξw(0)/[1 + (δz/zc)

2]. Here, we adopt the
same form expressed in terms of the scale factor:

ξw(δa) =
ξw(0)

1 + (δa/ac)2
, (15)

where ac describes the typical smoothing distance, and
ξw(0) which is a normalising factor that relates to the am-
plitude of the expected variance of w(a). In what follows,
we will refer to this model as CPZ. The normalisation can
also be chosen by specifying the allowed variance of the
average equation of state,

σ2
w̄ ≡

∫ 1

amin

∫ 1

amin

da da′ ξw(a− a′)

(1− amin)2
≃

πξ(0)ac
1− amin

. (16)

The precise shape assumed was somewhat arbitrary, cho-
sen for simplicity and ease of use; while the correlation
is expected to decrease, the decline could be steeper a
steeper power, or exponential rather than a power law.
The Gaussian process [23, 24] work instead typically as-
sumes an exponential fall off, with ‘hyper-parameters’
determining the shape; some distribution is assumed for
these hyper-parameters and then they are marginalised
over.

B. Comparing different correlation shapes

We compare a few different shapes for the correlation
functions, to see the impact of their qualitative features.
In addition to the form discussed above, ξCPZ(δa) =
ξw(0)/[1+ (δa/ac)

2], we also consider an exponential fall
off, ξexp(δa) = ξw(0)e

−δa/ac , and a general power law
form, ξpow(δa) = (δa/ac)

−n. We normalise each to the
same mean variance, σ2

w̄ and set ac = 0.06, apart from
the power law form where specifying the variance fixes
the value of ac. We then compare the discretised corre-
lation matrices over the range a = [0.4, 1.] The different
shapes are compared in Figure 1.
We first consider the behaviour of the functions at

small separations, where it can either approach a con-
stant or diverge for the power law models. If the slope
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FIG. 1. Different prior shapes normalised to the same mean
variance and ac = 0.06: CPZ (black, solid), exponential (red,
dashed), power law (blue, dotted).
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FIG. 2. Some of the normalised eigenvalues of the prior.
Changes to the prior description have little effect on the
modes themselves. The modes are largely ordered in fre-
quency (black, red, green, blue), with the lowest frequen-
cies the least constrained by the prior. The highest frequency
mode (dashed) is the most constrained. The deviation from
the simple Fourier transform is due to the boundaries on w.

is too steep, the discretised diagonal correlation also di-
verges unless a small scale cut-off is imposed. In the limit
that this cut-off becomes small, the correlation matrix ef-
fectively becomes diagonal which we consider as a sepa-
rate case. Below, we focus on the power law case only for
n = 1/2, a shape shallow enough to avoid the divergence.

The impact of these different ways of defining priors
is perhaps most clearly seen in the eigenvalues of the
associated prior matrices. To illustrate this, we choose

0 5 10 15 20
 mode number

10
2

10
3

10
4

10
5

1/
σ2

 ξ(0)/(1+(δa/a
c
)
2
)

 ξ(0) exp(-δa/a
c
)

 ξ(a
c
) (δa/a

c
)
-1/2

FIG. 3. Different prior eigenvalues normalised to the same
mean variance: CPZ (black, circles), exponential (red,
squares), power law (blue, diamonds). The normalisation re-
sults in the same lowest eigenvalue, and modes increase in
frequency.

a binning (20 bins between a = 0.4 and a = 1.) and
calculate the corresponding correlation matrices, and find
the eigenmodes and their eigenvalues in this binning.

Perhaps surprisingly, virtually all the ways of defining
the prior result in similar prior eigenmodes, and in iden-
tical ordering for the eigenvalues of these modes. A few of
the modes are shown in Fig. 2, where it is clear that the
modes correspond closely with the Fourier basis, apart
from minor differences which arise from the scale factor
boundaries. Because correlations fall off with distance,
the most constrained modes are those with the highest
frequencies. Slowly varying modes are least constrained
by the prior. (In the limit of a diagonal correlation ma-
trix, the eigenvalues are degenerate and the mode defini-
tions are arbitrary.)

However, the different correlation shapes significantly
change the associated eigenvalues, as can be seen in Fig.
3. Because the models are normalised to the same mean
variance, the lowest eigenvalues are the same. However,
the spacing of the higher values is significantly different.
For the CPZ model, the eigenvalues are nearly equally
spaced in log, and are steepest of these three models for a
given ac, leading to the most constrained high frequency
modes. This spacing directly depends on ac: the longer
the correlation distance, the steeper the spectrum. In the
limit of small ac, the matrix becomes diagonal. Because
of its relatively simple behaviour and transparent depen-
dence on its parameters, we adopt the CPZ form as our
default model below.
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C. Changing the fiducial model

The prior distribution function, as defined in (6), de-
pends explicitly on the choice of the fiducial equation of
state wfid(a). For simplicity, we could assume the fidu-
cial model to be w = −1, but arguably this is ad hoc.
Formally the priors should be chosen from fundamental
physics; a Gaussian prior centred at w = −1 is unphysi-
cal in many simple models that do not allow the so called
‘phantom’ [30] region, w < −1, which violates the null en-
ergy condition. Dynamical models like quintessence may
asymptote to cosmological constant behaviour at early
or late times (thawing or freezing models), but are al-
ways constrained to have w ≥ −1. While phantom mod-
els are possible, models which cross the ‘phantom divide’
(dubbed ‘quintom’ models [31]) can also be a struggle to
build in a natural way. In our present phenomenological
approach, it makes more sense to choose a prior which
does not favour a particular value. Since we wish to test
ΛCDM, we prefer to use a prior which does not favor
w = −1 over another model, e.g., w = −0.9.
One way to eliminate the dependence on wfid(a) is

to marginalise over it. For a constant wfid this can be
done analytically; we can write the fiducial model as
w

fid = wfid
u, where u = (1, 1, 1, ...) and we assume a

weak Gaussian prior on wfid with variance given by σ2
fid.

Marginalising over wfid has the effect of changing the ef-
fective correlation matrix:

Pprior ∝

∫

dwfide−(w−wfid
u)C−1(w−wfid

u)/2−(wfid)2/2σ2
fid

∝ e−w
T
C̃

−1
w/2 , (17)

where

C̃−1
ij = C−1

ij −
C−1

ik ukulC
−1
lj

σ−2
fid + ulC

−1
lk uk

. (18)

Such expressions are a common result when marginalis-
ing over nuisance parameters (e.g. [32]) and can be sim-
ply inverted using the Sherman-Morrison formula [33], a
special case of the Woodbury formula [34], to find:

C̃ij = Cij + σ2
fiduiuj. (19)

Here we see the utility of introducing a prior on the fidu-
cial value, however weak – a flat prior corresponds to
an infinite variance, which makes C̃ undefined. Most im-
portantly, marginalising assigns large noise to the flat
mode in the prior and ensures that for reconstructions
this mode is determined by the data alone.
An alternative approach is to define the fiducial model

to be a function of the assumed equation of state
(wfid(w)) rather than being fixed; for example, it could
float to a constant value given by the average of the equa-
tion of state,

wfid = w̄ ≡
1

af − ai

∫ af

ai

daw(a) =
1

N
Σiwi. (20)

0 5 10 15 20
mode number

10
-2

10
0

10
2

10
4

1/
σ2

 original prior
 11 bin average
 5 bin average
 3 bin average
 derivative prior

FIG. 4. Impact on the eigenspectrum of various transforms
considered. The original CPZ spectrum is in black (solid cir-
cles). Marginalising over the mean only zeroes out the first
eigenvalue. Using a running average tends to reduce the low-
est frequency modes while leaving the higher frequency con-
straints unchanged. (11 bin average - open circles, 5 bin av-
erage - open squares, 3 bin average - open diamonds.) Taking
the CPZ prior form for the derivative results in the green
triangles; the spectrum steepens and the first mode is zeroed.

Such a change, where the fiducial model is a linear trans-
formation of the underlying model, wfid = Sw is also
equivalent to simply changing the effective correlation
matrix. The explicit dependence of the prior on the fidu-
cial model is absorbed into a modified correlation matrix,

C̃−1
ij = (δik − ST

ik)C
−1
kl (δlj − Slj). (21)

In the case above where the fiducial model is the average
over all bins, we have Sij = uiuj/N , implying

C̃−1
ij = C−1

ij −
1

N
(uiukC

−1
kj +C−1

ik ukuj)+
1

N2
uiujukC

−1
kl ul.

(22)
This is similar to the result for marginalisation and, like
that case, can result in a degenerate direction unless an
additional prior is assumed; without this, the matrix can-
not be inverted.
The implementation of a ‘floating’ fiducial model can

be based on other smoothing schemes. We might instead
define the fiducial model as a more local average of the
true model, which reduces the prior penalty for the longer
wavelength modes, making them more responsive to the
data. For example, we could have

wfid
i =

∑

|aj−ai|≤ac

wtrue
j /Nj (23)

where Nj denotes the number of the neighboring w bins
around the ith bin wi within the ‘correlation’ radius ac.
We tried other smoothing methods, such as a Gaussian
kernel scheme, and found very similar results.
These modifications to the fiducial model significantly

affect the eigenvalues, particularly the one for the con-
stant w mode, which is effectively reset to zero (or the
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prior that it has been explicitly given.) Both approaches,
marginalising over the mean value or redefining the fidu-
cial model to the global average, do this while leaving
the other eigenvalues unchanged, just as expected. Using
a more local definition of the fiducial model also reduces
the constraints on other long wavelength modes while
leaving the shorter ones mostly unchanged, as can be
seen in Fig. 4. We adopt this local averaging method of
Eq. (23) when performing the reconstructions in Sec. V

D. Correlations of w(a) derivatives

Another way to ensure that the average of the fiducial
model does not impact the reconstruction is to apply a
prior instead to the derivative of the w(a) function. Es-
sentially, we specify a correlation matrix for the difference
of the equation of state between bins,

〈(wi − wi+1)(wj − wj+1)〉 = Dij . (24)

This has one less dimension than the correlation of the w
bins itself. Again, we can define a Gaussian prior based
on this correlation matrix.

P(w) ∝ e−(wi−wi+1)
TD−1

ij
(wj−wj+1)/2. (25)

This can be thought of as a prior on the bin values them-
selves with an alternative inverse correlation defined by,

C̃−1
ij = D−1

ij −D−1
i−1,j −D−1

i,j−1 +D−1
i−1,j−1 (26)

The indices of C̃ span [1, N ], while those for D span
[1, N − 1]; where an index for D exceeds its range (i.e.
i = 0, N), the inverse matrix is taken to be zero.

While C̃−1
ij is well defined in this way, it is not invertible

because the constant w mode is not constrained in any
way. If required, this can be combined with a weak prior
on the constant w mode to yield a correlation matrix
which is invertible.
Assuming the fiducial CPZ correlation for the deriva-

tive of w (rather than for w itself) results in a new spec-
trum of eigenvalues. As expected, the constraint on the
mean mode is reset to zero. However, it also results in a
steeper spectrum than the original one, as can be seen in
Fig. 4. This is roughly equivalent to using a smaller cor-
relation length in the original prescription, and so would
not qualitative change the analysis below.

V. RECONSTRUCTING THE EQUATION OF

STATE

Next we combine the priors we have defined with the
data to see how effective they will be in reconstructing
w(a). We do this in two ways: first, using calculations
of the Fisher matrices for a set of observations to test
Wiener reconstructions of some sample w(a) functions,

0 5 10 15 20
mode number

10
-2

10
0

10
2

10
4

1/
σ2  Data 

 Prior
 Data + Prior

FIG. 5. Eigenvalues from the data (red circles) and prior in-
dependently (blue squares) and combined (black stars). The
modes are arranged roughly from low frequency to high fre-
quency, though this correspondence is not exact when the
data are included. The low frequency modes are constrained
by the data, while the high frequency modes are constrained
by the prior.

effectively assuming a simple Gaussian approximation to
the likelihood. Second, we create more realistic simula-
tions of the expected CMB, SN and H(z) data and re-
construct w(a) by finding the maximum posterior model
using MCMC techniques.

A. Data assumptions

We test our reconstruction algorithms by combining
the CMB distance prior [35] from Planck [27] with su-
pernovae (SN) and galaxy-galaxy correlation measure-
ments potentially possible for a future space-based dark
energy mission. Note that our assumptions are close to
those that could be achieved from a next generation
survey such as Euclid, but do not exactly match those
now expected for the default Euclid mission [25, 26]. For
the CMB, we use a Fisher matrix forecast based on the
Planck data. For the SN data, we assume 4000 SN dis-
tributed in 14 redshift bins from z = 0.15 to z = 1.55
for a deep SN survey [36]. We also include 300 low-z SN
from the Nearby Supernova Factory [37] to improve the
constraint and assume a Gaussian noise with a variance
σ = 0.13 for all the data points.
The measurement of the expansion rate at different

redshifts H(z) can tighten constraints on w(a), since
the DE energy density is directly related to the Hub-
ble rate at a given redshift (e.g., [38]). One of the most
promising ways of estimating H(z) from future spectro-
scopic surveys is to observe the Alcock-Paczynski effect
in the power spectrum or correlation function of galax-
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ies [39], exploiting features such as the baryon acoustic
oscillations (BAO) and the power spectrum peak. The
BAO feature in the correlation function is at a fixed
comoving scale which is determined by the physics at
recombination; measuring the redshift difference of this
feature in the radial correlation function provides a di-
rect local measurement of H(z). We divide the galaxies
(0.35 < z < 2.5) into bins of width ∆z = 0.1 and predict
the measurement errors σH(z) in each redshift bin, using
the Fisher matrix technique of [40]. We assume that the
spaced-based survey would cover 20,000 deg2 surveying
area and will detect emission line galaxies with the red-
shift precision of σz = 0.001(1 + z). For our projections,
we adopt the values derived in [41] for the number density
of emission line galaxies and the bias model of [42].
Given these data models, we consider the following set

of cosmological parameters,

P ≡ (ωb, ωc,Θs, τ, ns, As, w1, ..., w20,N ), (27)

where ωb and ωc are the physical baryon and cold dark
matter densities relative to the critical density respec-
tively, Θs is the ratio of the sound horizon to the angular
diameter distance at decoupling, τ denotes the optical
depth to reionization, ns and As are the primordial power
spectral index and amplitude respectively and w1, ..., w20

denote the 20 w bins uniform in a. We also include and
marginalize over one nuisance parameter N for super-
novae, which accounts for the calibration uncertainty in
measuring the supernova intrinsic luminosity. The details
of the Fisher forecast and the related survey parame-
ters can be found in [43] and [44]. After marginalising
over the cosmological and nuisance parameters, the pro-
jected constraint on a constant equation of state model
is σw̄ = 0.015.

B. Reconstruction Forecasts

A Fisher matrix analysis provides a means of project-
ing the constraints possible for the experiments, under
the optimistic assumption that the resulting likelihood is
Gaussian (Eq. 11.) Combined with our assumed Gaussian
prior, we can analytically forecast the expected recon-
structions when assuming a particular underlying w(a)
using the Wiener filter approach described in Section
III C. This approach also allows us to quantify the ex-
pected bias and variance for a given input model.

1. Combined eigenmodes

When combining data with the prior, the effective re-
sulting Fisher matrix changes from F → F+ C̃

−1. Many
of the general aspects of reconstructions can be under-
stood by considering the eigenvalues of this combined
matrix. Roughly speaking, the data constrain the low
frequency modes the best, while the prior constrains the

FIG. 6. The first four best constrained eigenmodes of the data
covariance matrix (solid lines), along with the corresponding
modes of the data+prior covariance (dashed lines). As seen in
Fig. 5, the data eigenvalues become comparable to the prior
eigenvalues at the n = 4 mode, and the n > 4 modes are
completely determined by the prior.

high frequencies, and the most constrained modes of each
survive in the combined matrix. However, this is only ap-
proximate since the data and prior have different eigen-
modes; in particular, the data modes are more weighted
to the lower redshifts.

Fig. 5 shows the impact of combining the data and
prior on the eigenvalues. The cross over point is crucial,
as it determines the reconstruction bias, while the slope
of the prior eigenvalues will determine the variance of the
reconstructions. With the data described above and our
fiducial prior choice, only 4 data modes survive to play
a role in the reconstructions. The surviving modes are
shown in Fig. 6. One can see that, while the shapes are
distorted by the prior, their basic features remain in tact.

More modes would survive if the data were better, or if
the prior were weaker (e.g. reducing the prior normalisa-
tion σw̄ or the slope ac.) The benefit of a weaker prior is
that more modes would be used to reconstruct the data,
giving smaller potential bias. The cost would be signifi-
cantly more variance in the reconstructions. The key is-
sue is whether the true underlying w(a) will require more
modes to achieve a small bias.
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FIG. 7. Wiener reconstructions of the various test functions, based on the Fisher projections for a joint data set of SN + H(z)
+ CMB distance prior (Planck), and using our fiducial prior assumptions.

2. Wiener filter projections

If the Gaussian approximation to the likelihoods are
reasonable, then the Fisher matrix should allow a good
approximation to the expected errors on the measured wi

bins. We can make realisations of the observed binned
wi data by assuming some true underlying model and
adding to it random noise derived using the principal
components of the Fisher matrix. Each principal compo-
nent is assigned a random Gaussian amplitude with the
appropriate variance, and these are summed to get the
total noise in the binned data. These realisations are then
Wiener smoothed using Eq. (14) to get the reconstructed

w(a). (Note that when C̃ makes negligible constraint on

the average, then the term F
−1(C̃+ F

−1)−1
w

fid can be
neglected if the fiducial model itself is constant, making
Eqns. (13) and (14) equivalent.)
With these assumptions, we can derive analytically

the mean reconstructed models, as well as the variance
and bias expected. For a given w

true, the average recon-
structed model is

w
mean = C̃(C̃+ F

−1)−1
w

true. (28)

This implies that that bias contribution to the MSE is

∑

i

(wtrue
i −wmean

i )2 = ||F−1(C̃+F
−1)−1

w
true||2. (29)

We can similarly predict the variance contribution under
these assumptions to find,

∑

i

〈(wmean
i − wrecon

i )2〉 = Tr[(F+ C̃
−1)−2

F]. (30)

Note that in this approximation, the variance is inde-
pendent of the assumed model. We have confirmed these
analytic results using 20,000 realisations for each input
model.
We consider four basic underlying phenomenological

models (wtrue) to test the ability of our algorithm to

capture different kinds of evolving features in w(a):

wconst = − 1.0

wlin = − 1.2 + 0.8(1− a)

wfeat =− 1 + 2lna · exp(−ln2a/0.42)

wtrans =− 1 + 0.2 tanh(ln(a/at)/∆) . (31)

We refer to these as the constant w model, the linear
model [45], the feature model (see discussions in [46])
and the transition model (e.g. [47]), respectively. For this
section, we also consider a fifth ‘thawing’ model based
on the parametrization of [29] for a thawing quintessence
which smoothly goes from w = −1 at high redshifts to
w = −0.8 today. The transition model changes from w =
−1.2 at high redshifts to w = −0.8 at low redshifts, and
we chose the transition to occur at at = 0.75 with width
of ∆ = 0.1.
These functions and their reconstructions are shown

in Fig. 7. For these reconstructions we use our fiducial
prior, which we define as the CPZ prior (σw̄ = 0.02, ac =
0.06) with a fiducial model as the average of bins within
∆a = 0.06 given by Eq. (23) (effectively the five bin
average shown in Fig. 4.) Note that σw̄ primarily is used
to normalise the high frequency priors; in fact, the local
averaging means that effectively no prior is placed on w̄.
One can see that on average the reconstructions are

fairly unbiased, with practically no bias in the case of
a constant w. This is expected, as the smoother func-
tions are well represented by the modes which survive
the prior. Models with stronger evolution, such as the
feature model and the fast transition model, have the
most bias. However, even for these, the average MSE is
dominated by the variance for this choice of prior.
The variance can be decreased by strengthening the

prior, but this effectively allows fewer data modes to sur-
vive and so increases the potential bias of the reconstruc-
tions. Thus the MSE cannot be dramatically reduced ex-
cept in those cases where the bias is intrinsically small.
For example, the constant w modes are unbiased in this
prescription, and so the variance can be made very small.
The MSE, and its contributions from bias and vari-

ance for each input model are shown in Table I. One can
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FIG. 8. Amplitudes of the various test functions expanded
in the prior eigenmodes. Those functions which are best re-
constructed are those dominated by the low mode numbers.
Those with higher frequency features are reconstructed with
more bias.

Model MSE Bias Variance
w = −1 0.064 - 0.064
Linear 0.068 0.004 0.064
Feature 0.081 0.017 0.064

Transition (∆ = 0.1) 0.071 0.007 0.064
Transition (∆ = 0.05) 0.095 0.031 0.064

Thawing 0.065 0.001 0.064

TABLE I. A comparison of MSE results for different assumed
models, broken down into bias and variance contributions.

see that the MSE figures are dominated by the variance,
with the bias term being comparable in the transition
model when the change is very quick. This is intentional;
a stronger prior does not significantly reduce the MSE
for most of the models we assume (the exception being
the constant model), and given the choice it seems better
to have a slightly noisier reconstruction than one which
could be significantly biased.
The relative biases can be easily understood by look-

ing at the input models expanded in the eigenmodes of
the prior, as shown in Fig. 8. We see that the models
which are reconstructed with least bias (constant, thaw-
ing model, slow transition model) have little support be-
yond the fifth prior mode, while the others have some
higher frequency components which are wiped out by the
prior.

C. Reconstructions from simulated data

We next explore how our reconstruction method works
for more realistic data, because Fisher forecasts tend to
be optimistic and ignore potential non-Gaussianities in
the likelihood. Here we look at single realisations of the
potential data sets based on the models in Eq. (31). For

these we then perform a blind MCMC reconstruction,
adding to the data χ2

data a similar term for the prior
χ2
prior as described in Sec III B.

To generate the simulated data, we set the fiducial val-
ues of other cosmological parameters to values favoured
by the WMAP7 observations [35], i. e. Ωm = 0.263 and
H0 = 71 km/s/Mpc. We then simulate the SN luminosity
data by randomly generating the SN redshifts and errors,
while respecting their expected redshift density. The sim-
ulated SN distance modulus µ of four phenomenological
dark energy models (offset by that of the ΛCDM model)
are shown in Fig. 10. We similarly randomly generate
H(z) measurements in the redshift bins described above
consistent with their expected errors.

For the CMB data, we generate realisations for the
three CMB distance parameters [35] consistent with their
expected covariances expected from Planck. Note that
for the real data analysis, one should use the full CMB
spectrum data, which is also sensitive to dark energy
through the integrated Sachs-Wolfe effect. For such cal-
culations, one must include dark energy perturbations,
otherwise the derived constraints on cosmological pa-
rameters will be biased [48–50]. Furthermore, one should
treat dark energy perturbations self-consistently when w
crosses w = −1 [51, 52]. One must be careful even with
the CMB distance prior, which can be biased if the model
is significantly different from the ΛCDM for which it has
been derived [53].

We simultaneously fit the 20 bins with Ωm and H0 to
our combined mock dataset using a modified version of
CAMB/CosmoMC [54], with the smoothness prior im-
plemented. In Fig. 11 we show the reconstructed w(a)
from a joint mock dataset of SN + H(z) +CMB distance
prior (Planck). As shown, our algorithm can successfully
capture all the DE models we hide in the data, and the
reconstruction is very accurate – the absolute value of the
relative difference . 10% in all cases. The calculation of
the prior χ2

prior adds virtually no overhead to the likeli-
hood calculations, making the method quite efficient.

It is important to emphasise that Figs. 7 and 11, while
apparently very similar, are actually showing very differ-
ent things. Fig. 7 shows the average reconstructed w(a)
over the ensemble of data realisations consistent with the
experiments, and the errors show the distribution of the
reconstructed w(a) for these different data realisations.
Fig. 11 instead shows the reconstructed w(a) for a single
simulated data set (similar to what we expect to get from
real observations) and its error bars represent the uncer-
tainty in the determination of w(a) for this realisation.
This best fit differs from the input model both because
of the average bias seen in Fig. 7 and because of the ran-
domness of the realised data. However, the error regions
are similar because they are related to very similar ∆χ2

functions.
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VI. DISCUSSION

Our reconstructions are very good, but some bias re-
mains; this primarily takes the form of smoothing out the
more quickly varying w(a) behaviours. While this can be
made smaller by weakening the prior, the cost would be
to increase the variance in the reconstruction. The bias
simply reflects our assumption that smoother w(a) mod-
els are more likely.

This is not an intrinsic limitation of the method, but
reflects our choice to assume that w(a) is smooth. While
we do not have to make this assumption, we do require
some theoretical basis where smoothness (or a measure)
can be assumed, such as the DE scalar field potential
V (φ). However, this is essentially the requirement that
the given model is well enough posed to be falsifiable.
Any model description should allow for the calculation
of the prior in some effective basis, such as bins of w(a).

We could either perform the reconstruction directly us-
ing the parameters where the behaviour is expected to be
smooth, or we could reconstruct in a more phenomenolog-
ical basis, like w(a), but use a prior in this basis derived
assuming smooth behaviour in another basis. Direct re-

construction of something like the scalar field potential is
better in the sense that one keeps in contact with the the-
oretical context in which the prior makes sense; however,
it makes it harder to compare the conclusions arising
from different assumptions. Alternatively, we can derive
a prior on w(a), either arising from more fundamental
physics or purely phenomenological models by calculat-
ing the resulting w correlation matrices C by marginal-
ising over whatever parameters appear in the description
(e.g. [28]).

Inevitably, the simplifying assumptions we have made
above for the form of these correlations will not hold
when realistic models are considered. In particular, we
assumed that the prior is Gaussian, and that the corre-
lations are a function of δa and are translation indepen-
dent. The latter is certainly not expected, for example
‘freezing’ models of quintessence will have larger vari-
ance at high redshifts, while ‘thawing’ models will have
larger variance at low redshifts. Even translating the sim-
ple linear parameterisation, w(a) = w0 + wa(1− a) with
Gaussian priors on w0 and wa, into a correlation matrix
on w(a) turns out not to be translation invariant; the re-
sulting variance is smallest at a = 1, and increases with
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FIG. 11. The reconstructed w(a) from a joint mock datasets of SN + H(z) + CMB distance prior (Planck). We show the best
fit model (red solid), the true model we put in (black dashed) with 68 and 95% CL. error (dark and light shaded bands) in the
upper panels, and the absolute value of the relative difference in the lower panels. Unlike the Wiener results, these are based
on a single realisation of the data.

1− a.
It is possible that including many different classes of

models together, such as thawing and freezing models,
might homogenise the correlations to some extent. Al-
ternatively, one could hope that such deviations of the
covariance from our simplifying assumptions will not be
significant enough to greatly impact the reconstructions.
However, this requires further exploration and we will
investigate this in future work.

VII. CONCLUSIONS

Here we have outlined a Bayesian method for recon-
structing w(a), which essentially involves multiplying the
likelihood of a non-parametric description of w(a) by a
suitably defined prior. This prior is defined in such a
way as to make the reconstructions smooth and inde-
pendent of the binning choice, eliminating flat directions
in parameter space which are a generic problem for non-
parametric approaches.
With the right choice of prior, we can also eliminate the

dependence on the fiducial model; reconstructions where
the data are poor or non-existent are instead determined
by the assumed smoothness of the function, tending to-
wards the mean of the measured w(a). However, appli-
cation of a prior always implies some bias; in this case,
the bias is largest for models which are quickly changing
in redshift or scale factor.
The advantages of this approach are that it makes one’s

priors explicit and it is easy to implement; once one de-
cides on the prior parameters, e.g. the correlation length
and the strength of the prior, it is straightforward and
fast to evaluate the prior likelihood for whatever choice
of binning is used. This can be combined with the data
in an MCMC analysis, searching for the highest posterior
solution for the w bin amplitudes; indeed, by breaking the
parameter degeneracies, the prior will speed up MCMC
analyses.

With the accumulating high-quality data of SN, CMB
and LSS, our method is an ideal tool to help reveal the
nature of dark energy in the near future. Here we have
focused on the methodology only, but in future work we
will apply this prior to present data.
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