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ABSTRACT 
 

Cognitive modelling is a well-established computational intelligence tool, which is 

very useful for studying cognitive phenomena, such as young children’s first language 

acquisition. Specifically, linguistic modelling has recently benefited greatly from 

complex network theory by modelling large sets of empirical linguistic data as complex 

networks, thereby illuminating interesting new patterns and trends. In this chapter, we 

show how simple network analysis techniques can be applied to the study of language 

acquisition, and we argue that they reveal otherwise hidden information. We also note 

that a key network parameter – the ranked frequency distribution of the links – provides 

useful knowledge about the data, even though it had been previously neglected in this 

domain. 

 

 

INTRODUCTION 
 

The ability of humans to communicate effectively through the use of a common language 

is fascinating. Even more impressive is the fact that young children, when learning their first 

language, are able to pick it up so well, even in the presence of noisy input. When a child 

produces an incorrect utterance, there is rarely any corrective feedback, so it is up to the child 

to filter those out over time. 
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Two opposing approaches try to explain this remarkable capability of children, and 

specifically, their syntax acquisition. Universal Grammar (UG) [1] argues that certain rules 

and parameters for language are hard-wired in each and every one of us, and the process of 

acquisition is simply a tuning of those variables. A key argument for UG is the poverty of the 

stimulus argument: the input received by children contains numerous errors, false starts, 

unfinished sentences, and thus is not sufficient for inferring the rules of language. UG has 

generally been accepted as the de facto theory for syntax acquisition, but an alternative 

approach developed in the 1990s is gaining increasingly more support in recent years. There 

is increasing evidence that the environment provides much more information than had been 

assumed by Chomsky, and a number of simulation models have shown that much 

grammatical knowledge can be learnt from child-directed speech [2, 3]. 

If one does not subscribe to UG’s assumptions of innate abstract knowledge, one has to 

identify the specific mechanisms employed when young children acquire their first language. 

This can be achieved by using distributional analysis models, which extract information from 

a given input without any a priori assumptions about innate knowledge. Such models are 

typically based on neural networks, Bayesian statistics, or machine learning, but there are 

other types of models as well. For example, MOSAIC [2] is an intelligent linguistic model 

based on the CHREST architecture [4], which works by building a semantic discrimination 

network of chunks of statistically similar information. In essence, MOSAIC is trained with 

maternal utterances, and then produces utterances that can be directly compared to children’s 

utterances. By examining the quality of the obtained results, we can get a good idea of which 

mechanisms account for the empirical data. However, data sets of utterances are typically 

very large, noisy, and difficult to compare directly. Therefore, a worthwhile approach is to 

extract key characteristics of corpora first. This is what network modelling offers. It holds the 

key to embed all the information contained in a data set in a network, which can be analysed 

and compared with similar networks. It is important to identify which network parameters 

represent a useful statistic of the raw data, so they can be extracted from the network for 

analysis and cross-comparison.  

Researchers modelling language using network theory have experimented with a wide 

range of parameters, but there seems to be no consensus on which parameters are essential for 

understanding language acquisition, and which are merely providing some additional network 

information. Table 1 summarises the parameters used by recent research involving the 

network modelling of language, to give an idea of the network properties that we are 

interested in. The publications in the Table were collected by identifying seven key papers 

(Numbers 1-6 and 11 in Table 1) on the modelling of language using network theory, and 

papers (Numbers 7-10 in Table 1) on the syntax of language that cite any one of the initial 

seven. The shaded entries correspond to the papers that investigate children’s language 

acquisition, as opposed to language in general. The research summarised in Table 1 typically 

focuses on three types of networks: co-occurrence (see Figure 2 for a simple example), 

syntactic, and semantic; and two languages: English and Chinese. A total of sixteen unique 

statistical parameters were investigated in these publications, and we will briefly describe 

them here. In this chapter we investigate eight of these parameters: MLU, N, E, GCC, <k>, 

L, C and P(k), because they are key parameters in network theory, and they are also widely 

used in language modelling. In addition, we highlight another well-known network metric, 

called the ranked link frequency distribution, which has been neglected by the language 

research community, to the best of our knowledge. 
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Table 1. Parameters of interest in linguistic networks 

 

Ref. Network Type Language Length MLU N E GCC NCC <k> AC DC NN D L C P(k) P(f) P(b) 

1 co-occurrence Engish  x x x   x          

2 co-occurrence English   x x   x     x x x   

3 semantic English   x x   x     x x x   

4 

co-occurrence 

syntactic 

semantic 

English   x x   x     x x x   

5 syntactic English  x x x   x     x x x x  

6 co-occurrence English  x x x   x  x        

7 
dependency 

syntactic 
English   x x   x    x x x x   

8 char. structure Chinese   x x   x x    x x x   

9 co-occurrence Chinese   x x   x x  x  x x x x x 

10 co-occurrence Chinese x  x x x x x    x x x x   

11 co-occurrence 
Chinese 

English 
x  x x x x x    x x x x   

 

References: 1. [5]; 2. [6]; 3. [7]; 4. [8]; 5. [9]; 6. [10]; 7. [11]; 8. [12]; 9. [13]; 10. [14]; 11. [15].  

 

• Length of a linguistic data set may refer to the total number of characters, words, or 

utterances within the sample. 

• Mean Length of Utterance (MLU) is the average number of words in an utterance. To be 

precise, Length and MLU are in fact data set parameters, but they are nevertheless treated 

like the network parameters here. 

• Total number of network nodes (N) is the first most basic network measure. 

• Total number of network links (E) is the second most basic network measure. 

• Giant Connected Component (GCC) represents the largest connected part of the entire 

network, i.e., the cluster with the highest number of nodes. In a connected network (where 

there are no isolated nodes or clusters of nodes), the GCC is identical to the original network. 

• Number of Connected Components (NCC) is simply the number of network components that 

are disconnected from one another. 

• Average degree <k> is the average number of links adjacent to a network node. This key 

parameter reflects the overall connectivity of the network. 

• Assortativity Coefficient (AC) measures how assortative the network is, i.e., to what extent 

high-degree nodes are connected to other high-degree nodes. 

• Degree Centralisation (DC) measures to what extent the links are centralized on a small 

number of high-degree nodes. 

• Average Nearest-Neighbour degree (NN) of a node is the average degree of the nodes that are 

connected to the given node. 

• Network diameter D is the length of the longest path between a pair of nodes, when the 

shortest possible paths are considered, i.e., containing the fewest links. 

• Average geodesic length L is the average length of the shortest paths between all pairs of 

nodes. 

• Clustering coefficient C, averaged among all nodes, measures the likelihood of the neighbours 

of a node being connected themselves. 
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• Node degree distribution P(k) is the probability distribution of a randomly chosen node with 

degree k. 

• Similarly, node frequency distribution P(f) is the probability distribution of a randomly 

chosen node with frequency f. 

• Finally, node betweenness distribution P(b) is the probability distribution of a randomly 

chosen node with betweenness centrality b. 

 

 

Ranked Link Frequency Distribution 
 

The ranked link frequency distribution shows how the magnitude of link frequencies 

decreases when the frequencies are sorted in descending order. To compute this function, all 

the links of the given network are ranked in order of frequency. This frequency is then 

normalised for consistency to a value between 0 and 1 by dividing all frequencies by the 

highest frequency in the network. The distribution is defined as the normalised frequency as a 

function of the rank. This distribution is particularly interesting for studying language because 

it has been previously neglected in this domain, but we believe that it has the potential to shed 

new light on hidden information, embedded in the networks. 

In addition, research [9] has shown that P(f) – the probability distribution of a node with 

frequency f – in children’s syntactic networks follows a power-law. Therefore, it is natural to 

ask whether the links obey a similar law. However, we note that the ranked link frequency 

distribution describes the actual frequencies observed, as opposed to P(f), which describes the 

probability of a certain frequency occurring. Figure 1 shows an example of a ranked link 

frequency distribution from our maternal results, which also seems to follow a power law. 

A power law is usually described by two parameters: a scaling factor a and an exponent n 

(thus, f(x) = ax
n
). The scaling factor simply determines how much the function is shifted 

along the y-axis. The exponent controls the slope of the function; thus, a higher n (in absolute 

sense) results in a more skewed distribution. In a co-occurrence network, the presence of a 

power law means that language productivity is very biased towards some word co-

occurrences, which are produced much more often than most other co-occurrences. Based on 

this, we expect a linear relationship between incremental stages of linguistic development and 

n.  

This chapter is structured as follows: in Method we describe the data collection and the 

construction of the networks; in Results we summarise our main findings in terms of 

parameter correlations and trends; in Discussion we evaluate our results and provide a 

conclusion.  
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Figure 1. Ranked link frequency distribution. 

 

METHOD 
 

This section consists of three subsections: Data Sets, Construction of Networks, and 

Analysis of Networks. In Data Sets we describe how linguistic data sets are obtained from 

two sources: mothers and their children. In Construction of Networks we present the steps 

involved in the creation of word co-occurrence networks from the data. Finally, in Analysis of 

Networks we outline the analysis done on the networks.  

 

 

Data Sets 
 

We use data from the Manchester corpus of the CHILDES database [16, 17], which holds 

large files of logged conversations between mothers and their children, produced while they 

are interacting at home. Over a significant developmental time period, the children are 

regularly visited by an experimenter that records all the interactions for a fixed time period. 

The utterances are recorded on audio tapes that are transcribed to text files by keeping all 

clearly audible utterances and ignoring anything inaudible. The children’s files are partitioned 

into three discrete, non-overlapping stages of development, and all the files for a given stage 

are combined to produce three data sets.  

We call these stage 1, stage 2 and stage 3. For each mother, the files at the three stages 

are combined to produce just one data set, as their language should remain fairly stable. In 

addition, since data consist of a long list of utterances, some of which have duplicates, those 

duplicates are removed (filtered) in order to obtain consistent networks. 
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Construction of Networks 
 

Word co-occurrence networks are built using the data in a process consisting of four 

stages. Figure 2 illustrates a simple version of such a network for the following two 

sentences: The cat sleeps. The dog wakes the cat. 

In the first stage, the utterances are split into overlapping pairs of adjacent words, such 

that each co-occurrence is represented by a single pair. For example, the first two pairs in this 

sentence are “For example” and “example the”, when ignoring any punctuation marks.  

 

 

Figure 2. Simple word co-occurrence network. 

 

Also, single word utterances are kept unchanged because they become isolated nodes in 

the final network, if they do not appear in any pair elsewhere.  

In stage two, the pairs are transformed into a corresponding network of nodes and links 

using a simple mapping: for every pair, insert a directed link from the first word to the second 

word. The network is represented as a list of nodes and links, where the nodes are trivially 

obtained by taking all words from the pairs, and removing duplicates. 

However, this network is a multidigraph, i.e., there exist multiple links from a source to a 

target node, which is to be avoided if possible since it is difficult to process. Therefore, in 

stage three, the network is converted to a weighted digraph – with no parallel links – where 

the weight (frequency) of a link denotes the original number of links from the source to the 

target node in the multidigraph. This digraph is used in all of the analysis except for the 

calculation of two network parameters – the average geodesic length and the clustering 

coefficient – which require a simple graph, i.e., an unweighted, undirected graph with no self-

loops. 

Hence, for the final stage four, the weighted digraph is converted to a simple graph by 

erasing all link weights, converting all links from directed to undirected (and removing 

duplicates), and removing all self-loops. 

 

 

Analysis of Networks 
 

First, we compute the network parameters and then we follow an analysis process – from 

networks to conclusions – which has two branches. 
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The first branch is concerned with the average for a given source and stage, thereby 

ignoring the specifics of the individual children. For each parameter, the average value across 

the six children is calculated and a summary plot is produced.  

The second branch of the analysis deals with correlations between mothers and children, 

for a given source and stage, thereby focusing on the details of the individual children. The 

process begins with a decision. If a single parameter is being analysed, the value of this 

parameter is used and the fitting step is by-passed.  

By contrast, if a function (i.e. the frequency distribution or the degree distribution) is 

being analysed, it is necessary to fit a best-fit curve to the data so that the parameters of the 

function can be used for further analysis. For both functions we use a power-law fit of the 

form f(x) = ax
n
 where a is the coefficient and n is the exponent.  

In the frequency distributions, x represents the rank and f(x) represents the normalised 

frequency for that rank. In the degree distributions, x represents the degree and f(x) represents 

the probability of a randomly chosen node with degree x. 

Finally, the correlations between the parameters of the six children and those of their 

mothers are calculated. 

 

 

RESULTS 
 

The results are presented in two parts. First we summarise the results obtained for the 

ranked link frequency distributions using summary plots of averages, and we briefly describe 

the other parameters that were obtained. Then, all the parameter correlations between the two 

sources are reported.  

At this point we would like to note that the quality of all best-fit functions in this research 

is checked by computing the correlation coefficient between the real data and the fitted 

function, in order to ensure the reliability of the results. For the degree distribution fits, all 

correlations are above 0.99, indicating an almost perfect power-law relationship in the data. 

For the frequency distribution fits, all correlations are above 0.92, which is still an excellent 

fit between data and fitted function. 

After we calculated the node in-degree and out-degree distributions, we found that the 

first data point (representing in/out-degree 0) is far from a power-law fit due to its unique 

nature, and therefore regarded it as an additional parameter, which we called p. The reason 

for this behaviour is that the in/out-degree 0 nodes decrease as the network becomes 

increasingly connected.  

 

 

Summary Plots 
 

The summary plots for the parameters of the ranked link frequency distributions 

demonstrate their effectiveness in capturing linguistic development, and also show a much 

unexpected trend in one of the two parameters. For the mothers and for each stage of the 

children’s development, we calculated the mean and the Standard Error of the Mean (SEM) 

of the six subjects, and plotted the results on two graphs (one for each parameter). The points 

on the graphs represent the mean and the vertical bars represent the SEM. The mothers’ 
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results are shown next to the children’s stage 3 results for comparison. In Figure 3 we have 

shown parameter a, and in Figure 4 – parameter n. Note that whereas the children are steadily 

approaching their mothers in Figure 3, they diverge in Figure 4, but the mothers are exactly 

where we would have expected their children to be by linear extrapolation. 

Inspection of each of the single network parameters on a summary plot (not shown), 

shows that MLU, N, E, GCC, <k> and L are behaving predictably with respect to the 

developmental stage of the children – the former five are increasing and L is decreasing – 

because more complex utterances are produced and therefore the networks become larger and 

more connected. On the other hand, C drops slightly in stage 3, suggesting that the children 

probably experimented with a wider variety of utterances, resulting in fewer word co-

occurrence loops. This curvilinear function is interesting and is in line with what we have 

found for the n parameter of the ranked link frequency distribution. 

By examining the in-degree and out-degree distribution parameters we observe a 

decrease in p and a small increase in a, but non-linear behaviour in n. However, the 

magnitude of these changes in parameter n is small. Also, the children appear to be close to 

the mothers with respect to all three degree distribution parameters. This leads us to believe 

that children in general produce utterances that are statistically similar to adults, in terms of 

the bias to particular word usage.
1
 

 

 

Figure 3. Summary plot for parameter a of the link frequency distributions. 

 

                                                           
1
 The standard deviation of both mothers and children is significantly different from 0, for all 15 parameters under 

study. For 9 of the parameters, the SEM, and therefore, the variability of the children, is greater than that of the 

mothers. Specifically, for the more complex parameters (L, C, n (in-degree), n (out-degree), and n 

(frequency)), the children have a significantly higher variability compared to the mothers, and vice versa, for 

the more simple parameters (MLU, N, E, GCC), the mothers have higher variability. For the moderately 

complex parameters (<k>, p (in-degree), p (out-degree), a (in-degree), a (out-degree), and a (frequency)), the 

children and the mothers have relatively similar variability. 
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Figure 4. Summary plot for parameter n of the link frequency distributions. 

 

Correlations 
 

The correlation coefficients between the parameters of the mothers and their 

corresponding children at stage 3 were calculated, in order for us to identify which 

parameters, if any, in the children resemble their mothers’. Table 2 reports the single network 

parameter correlations. Table 3 presents the correlations of parameters of the best-fit 

functions of the node in-degree and out-degree distributions.  

The correlations of parameters a and n of the best-fit functions of the ranked link 

frequency distributions are -.56 and .06, respectively. Overall, some of these correlations are 

moderate (0.30 ≤ r < 0.50) or even strong (r ≥ 0.50), to use Cohen’s criteria [18]. However, 

given the small number of observations (6 child/mother pairs) and hence degree of freedom (n 

= 4), none of these correlations are statistically significant.  

 

Table 2. Single network parameter correlations between mothers and children 

 

MLU nodes links GCC <k> L C 

.62 .39 -.02 .39 -.14 -.19 -.39 

MLU = mean length of utterance; GCC = giant connected component; <k> = average degree; L = 

average geodesic length; C = clustering coefficient. 

 

Table 3. Correlations of parameters of node degree distributions  

between mothers and children 

 

In-degree Out-degree 

p a n p a n 

.43 .41 .32 .54 .54 .41 

p = probability of degree 0; a = scaling factor; n = exponent. 
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DISCUSSION 
 

We begin this section by focusing on the ranked link frequency distributions in Figures 3 

and 4. Clearly, coefficient a of the children is increasing in time in a linear fashion, 

converging to the mothers’. Here, a is the best-fit estimate of the top-ranked normalised 

frequency. Therefore, it should be close to 1, and the fact that it is increasing above 1 over the 

three stages implies that the best-fit is diverging from the data for the top-ranked frequency, 

in order to provide a better fit to the rest of the data. This suggests that over the stages, the top 

frequency is falling below the expected power-law frequency. In other words, the most 

common pair of words occurs a little less frequently than a power-law would predict. 

However, the exponent n is in fact the key parameter in a power-law, as it controls how 

skewed the function is. Therefore, an increasing n in absolute terms (going down in Figure 4 

due to negative sign), implies more bias towards certain pairs of words in language 

productivity. We note that the mothers are well-aligned with the children of stages 1 and 2, 

but the stage 3 children have in fact diverged completely from the expected linear trend. This 

is a clear indicator that in terms of word combinations, children are still developing their 

linguistic skills at this stage 3. We suspect that the children probably experimented with a 

variety of new, or relatively new, word combinations when producing utterances, thereby 

reducing the frequency of the more common word pairs, which are already well-known. Even 

though the other network parameters (except C) and the previous two stages for this 

parameter suggest otherwise, we have seen that the exponent of the ranked link frequency 

distribution has uncovered something very surprising. This result is also supported by the 

trend in C, but more importantly, the frequency distribution is a function parameter of the link 

weights, so it is telling us a lot more about the dynamics on the network.  

Now we briefly concentrate on the correlation coefficients that we obtained between 

children and mothers. For MLU, the correlation 0.62 suggests that if parents produce longer 

utterances then so should their children. The negative correlation -0.39 for C implies that if 

parents’ networks are more clustered then their children’s networks would be less clustered. 

This is particularly interesting because it means that the more parents use the same words to 

generate various utterances, the more their children generate completely new utterances that 

do not contain any previously used words, and vice versa. However, all of the presented 

correlations are difficult to interpret without strong a priori theoretical hypotheses, which we 

do not have at the moment. In addition, the small number of degrees of freedom means that it 

is very difficult to reach the significance level, which none of our correlations did. Thus, 

research with larger samples must be awaited before stronger conclusions can be made about 

the meaning of these correlations. 

 

 

CONCLUSION 
 

In summary, we have reached two main conclusions. Firstly, we have demonstrated that 

the ranked link frequency distribution of a word co-occurrence network is a powerful tool that 

can provide deeper insights into the language acquisition of young children. Therefore, we 

encourage its use in future research in this field and hope that the language acquisition 

community will exploit its potential. Secondly, we have found an interesting pattern of 
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correlations between children and mothers for the parameters under study, but have suggested 

that clear-cut theoretical hypotheses are necessary to make sense of them. It is important to 

highlight that these conclusions, as well as all of the results presented in this chapter, are 

dependent on the underlying language, and we would expect fairly different results for other 

languages, such as Chinese for example.  

In general, then, network analysis provides powerful constrains for theories of language 

acquisition, and therefore we would like to encourage its use for the study of cognitive 

phenomena, such as language, and more generally, for the wide-range of problems that need 

to be tackled by computational intelligence. Ongoing work testing the syntax acquisition of 

MOSAIC compared to the children presented here is promising exciting new developments in 

the field. Future research may focus on the search for more useful network parameters, other 

languages, and the robustness of linguistic networks to perturbation. 
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