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Abstract 

The study implements a classic analysis technique in dynamics to examine 
nonlinear characteristics seen in apparent mass of a recumbent person during 
whole-body horizontal random vibration. The nonlinearity under present context 
refers to the amount of ‘output’ that is not correlated to the ‘input’ usually indicated 
by values of a coherence function that is less than unity. The analysis is based on 
longitudinal horizontal inline and vertical cross-axis apparent mass measured with 
0.25-20 Hz random vibration at 0.125 and 1.0 ms-2 r.m.s. Adding the vertical cross-
axis output force as a ‘reversed’ mathematical input markedly increased the 
multiple coherence of the apparent mass in the frequencies where ordinary 
coherence between the longitudinal horizontal excitation acceleration and the 
inline longitudinal force was low. Little improvement in the multiple coherence was 
achieved by an arbitrarily constructed mathematical input from the inline force. 

 

1. Introduction 

The paper outlines a system identification procedure to analyse ‘paths’ that contribute to nonlinear 

behaviours of biodynamic system such as the human body. The nonlinearity under present context 

refers to the amount of ‘output’ that is not correlated to the ‘input’ usually indicated by values of a 

coherence function that is less than unity. This mathematical nonlinearity is believed to associated 

with the biodynamic nonlinearity in which the resonance frequency increases with decreasing 

vibration magnitude (Huang and Griffin, 2008a, 2009). Improved understanding of the mathematical 

nonlinearity may help the definition and quantification of the biodynamic nonlinearity.  

The biodynamic nonlinearity has been reported in both the vertical and the fore-and-aft responses of 

the seated human body during vertical whole-body vibration (Nawayseh and Griffin, 2003), in both the 

fore-and-aft and vertical responses of the seated human body during fore-and-aft whole-body 

vibration (Nawayseh and Griffin, 2003, 2005; Holmlund and Lundstrom, 2001), in both vertical and 

longitudinal horizontal responses of the recumbent person during vertical whole-body vibration 

(Huang and Griffin, 2008b), and in both longitudinal horizontal and vertical responses of the 

recumbent person during longitudinal horizontal whole-body vibration (Huang and Griffin, 2008a). 

With recumbent subjects, any voluntary or involuntary movement and muscular activity were 

eliminated. Therefore, it provided a better condition to examine linearity of a dynamic system 

comparing with other postures (Huang and Griffin, 2009). 

The intended procedure is called reverse path nonlinear multi-input-single-output (MISO) method. It 

was introduced by Bendat (1992) and then more practically demonstrated with implementations by 

Bendat and Piersol (1993 and 2010). There are two principle steps: first, define and prepare 
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‘mathematical’ inputs (usually the measured output) and ‘mathematical’ output (usually the measured 

input) in the reverse path diagram (Figure 1); second, formulation of the MISO system including 

computation of frequency response functions (FRFs) based on correlated and uncorrelated 

mathematical inputs and their coherence functions (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Reverse path diagram (a) derived from original forward path diagram (b), and (c) the 

implemented reverse path MISO system (adapted from Bendat and Piersol, 1993). 

 

 

 

 

 

 

 

 

(a) Conditioned inputs ‘U’   (b) Recursive estimates of FRFs 

Figure 2 (a) Conditioned or uncorrelated mathematical inputs (U1, U2, U3) determined by 

recursive operation from correlated inputs (x1, x2, x3). (b) FRFs of correlated inputs ‘H’ found from 

recursive sum of uncorrelated FRFs ‘L’ (Bendat and Piersol, 1993). 



The full procedure has been used in structural dynamics to identify nonlinear behaviours presented in 

flexible and slender structures. A nonlinear stiffening effect of a beam structure clamped on its two 

ends was characterised by two nonlinear mathematical inputs in addition to the original dynamic force 

input (Sweitzer, 2006). The two added inputs were square and cubic of the input dynamic force. With 

the two mathematically constructed inputs, the multiple coherence function was markedly improved.  

The MISO system was employed to analyse transmissibilites of multiple acceleration inputs during 

road-induced vehicle vibration (Qiu and Griffin, 2004). Instead of using arbitrarily constructed 

mathematical inputs, the authors used multiple channels of physical inputs – up to twelve 

accelerations at the four corners of the seat floor and each in the three orthogonal directions. The 

method identified the dominant channels of input acceleration in predicting the seat transmissibility. 

With longitudinal horizontal random excitation of a semi-supine human body, the coherence function 

of the apparent mass showed a drop between 6 and 20 Hz (Huang and Griffin, 2008a). With 

increasing magnitude of excitation, the frequency of the coherence drop decreased – a similar 

behaviour to the resonance frequency of the apparent mass between 2 and 4 Hz. It was plausible to 

assume that at certain frequencies a part of the output force in the inline (longitudinal) direction was 

transferred to the cross-axis (vertical) direction, and therefore the coherence of the inline apparent 

mass was low at these frequencies. However, there has been no investigation to quantify the amount 

of ‘transferred’ output force from the inline axis to the cross axis.  

In most biodynamic studies, any nonlinear effects were believed to be present in the ‘output’ side of 

the transfer function (e.g. Huang, 2007). It was not known whether the output could have a nonlinear 

feedback path to affect the linear input such as that shown in Figure 1a. At the same time, 

implementing a feedback loop in the frequency response functions (FRFs) involves time-consuming 

iterative procedures and stringent assumptions about the random distribution of the output. A 

reversed path would offer a more efficient computational algorithm for FRFs and coherences. The 

study examines the longitudinal inline and vertical cross-axis apparent mass of a supine body with 

0.25-20 Hz random vibration at 0.125 and 1.0 ms-2 r.m.s. measured by Huang and Griffin, 2008a. The 

original system of input excitation and output force measured at the driving point was transformed into 

the reverse path diagram in Figure 1b. The longitudinal inline response force forms the first 

mathematical input, the vertical cross-axis force the second mathematical input, the square of the 

inline force the third mathematical input, and the longitudinal excitation acceleration the mathematical 

output (Figure 1c). 

 

2. Method 

While extensive procedures to derive uncorrelated (conditioned) mathematical inputs, correlated and 

uncorrelated FRFs, ordinary, partial and multiple coherence functions were demonstrated (Bendat 

and Piersol, 1993, 2010) and implemented (Qiu and Griffin, 2004; Sweitzer, 2006) elsewhere, The 

paper focuses on the key variables used to implement the method to examine the transfer function 

defined by apparent mass. The apparent masses of one semi-supine subject (S9) measured at two 



magnitudes of continuous broadband random (0.25 to 20 Hz) vibration, i.e. 0.125 and 1.0 ms-2 r.m.s., 

were examined (data from Huang and Griffin, 2008a). Figures 3 to 6 are based on data of this 

experimental study. MATLAB 7.10 was used to perform all computational analysis.  

The three mathematical inputs were defined from Figure 1 as:  

x1 – measured longitudinal inline response force at the driving point. 

x2 – measured vertical cross-axis response force at the driving point. 

x3 – constructed square of longitudinal inline response force at the driving point. 

The one mathematical output was defined from Figure 1 as: 

y – measured longitudinal excitation acceleration at the base. 

 

In general, ‘H’ is used to denote transfer functions based on correlated original mathematical inputs, 

while ‘L’ for transfer functions based on conditioned or uncorrelated mathematical inputs where 

correlated portions are removed from each path. The general algorithm to formulate the MISO system 

in operational order is provided in Appendix A. The present study was based on three inputs and one 

output. A simplified notation is summarised below with a schematic representation shown in Figure 2.  

 

Standard transfer function of apparent mass using cross spectral density (CSD) method takes the 

form:     H1(f) = Goi(f) / Gii(f) 

H2(f) = Goo(f) / Gio(f) 

and, for ordinary coherence function: cohio = | Gio(f) |2 / ( Gii(f) Goo(f) ) = H1(f) / H2(f) 

where, H1(f) and H2(f) both measure the amount of output that is linearly correlated by the input; H1(f) 

assumes nonlinearity or noise comes from output; H2(f) assumes nonlinearity or noise comes from 

input; Goi(f) is the cross spectral density (CSD) function between the output and the input; Gii(f) and 

Goo(f) are the power spectral density (PSD) function for the input and the output; cohio is the (ordinary) 

coherence function between the input and the output. In a normal sense, the input of the apparent 

mass is the excitation acceleration, output is the driving point dynamic force. However, as illustrated 

above, the reverse path method, the inputs will be constructed from the driving point dynamic force, 

i.e. x1, x2, and x3, and the output will be the excitation acceleration, i.e. y. 

 

The FRFs based on correlated original mathematical inputs i.e. H3y, H2y, and H1y take the form: 

 H3y = L3y  where L3y = G3y:2! / G33:2! 

 H2y = L2y – L23 H3y  H1y = L1y – L12 H2y – L13 H3y  

The FRFs based on uncorrelated conditioned mathematical inputs i.e. L2y, L1y are:  

L1y = G1y / G11  



L2y = G2y:1 / G22:1  

The ordinary coherence functions of conditioned inputs are: 

 cohu1y = (Gy1 G1y) / (G11 Gyy) which is the same as the ordinary coherence function 

cohu2y = (Gy2:1 G2y:1) / (G22:1 Gyy) 

cohu3y = (Gy3:2! G3y:2!) / (G33:2! Gyy) 

where subscript u denotes uncorrelated inputs, e.g. u1 = G11, u2 = G22.1 , u3 = G33.2!,                 

see Appendix A for Gjj.r!. 

The multiple coherence functions as a summation of all uncorrelated contributions of inputs is:  

cohy:x = cohu1y + cohu2y + cohu3y 

In general there are two possible algorithms to compute the multiple coherence function (Bendat and 

Piersol, 1993). One is to compute the ordinary coherence functions of conditioned inputs as a 

percentage of the uncorrelated input u to the total output (Gyy) and then sum them up – described 

above. Another is to compute the partial coherence functions as a percentage of the uncorrelated 

input u but to the part of the output after removing the correlated contribution from the inputs (Gyy.(i-1)!) 

and then sum them up, see partial coherence in Appendix A. The first definition was used in the 

present study as the concept of ordinary coherence functions of conditioned inputs offers more 

physical interpretation of each uncorrelated input with regard to the overall output. 

The linear FRF determined from the mathematical output y and the original mathematical input x1 is  

 Hy1 = 1 / H1y 

 

 

 

 

 

 

 

 

Figure 3 Time histories of the mathematical inputs: x1 – horizontal inline output force at the 
driving point; x2 – vertical cross-axis output force at the driving point; x3 – squared horizontal inline 
force; and mathematical output: y – horizontal excitation acceleration at the base with each lasting for 
90 seconds at 0.125 ms-2 r.m.s. 

3. Results 

The results are presented in the working order of the MISO recursive operation. Figure 4 shows the 

correlated and uncorrelated transfer functions and relevant coherence functions at 0.125 ms-2 r.m.s. 

The correlated (H) and uncorrelated (L) transfer functions show envelops inverse of the apparent 



mass transfer function (H1 and H2 in Figure 6(a)) due to the reverse path algorithm. The main drop in 

the ordinary coherence (coh1y) was between 12 and 20 Hz. Shown by its partial coherence (coh2y), 

the second mathematical input (x2), i.e. the cross-axis output force, exhibited improvement of up to 

0.5 to the multiple coherence (cohyy) in the frequency range of low coherence. At 0.125 ms-2 r.m.s., 

the cross-axis force also improved the ordinary coherence at lower frequencies near the primary 

resonance i.e. around 3, 4 and 7 Hz. The third mathematical input (x3), i.e. the squared inline output 

force, had little contribution to the overall response.    

At 1.0 ms-2 r.m.s., the main drop in the ordinary coherence (coh1y) was between 8 and 16 Hz (Figure 

5). The second mathematical input and its partial coherence coh2y showed improvement of up to 0.7 

to the multiple coherence (cohyy) in this frequency range. There was small but evident improvement in 

the multiple coherence at lower frequencies near the primary resonance around 2 to 4 Hz. The third 

mathematical input had little contribution to the overall response. The drop in ordinary coherence was 

wider and greater at the high vibration magnitude than at the lower magnitude. In the frequency range 

of the main coherence drop, the cross-axis force improved the multiple coherence more at the higher 

magnitude of vibration than at the lower magnitude. 

The difference between the two standard FRFs H1 and H2 in Figure 6 illustrated the frequency range 

at which the ordinary coherence function was low. In Figure 6, Hy1 represented the transfer function 

H(f) of the linear system in Figure 1(a) after removing effects from the nonlinear transfer functions H2y 

and H3y by means of calculating the uncorrelated transfer functions L1y and L2y. The primary 

resonance frequencies estimated by H1 and Hy1 were 3.8 and 3.9 Hz respectively at 0.125 ms-2 

r.m.s., and 2.3 and 3.0 Hz respectively at 1.0 ms-2 r.m.s. (Figure 6). The primary resonance 

frequencies of Hy1 were estimated by curve fitting a 4-pole continuous time filter in the Laplace form 

to the FRF Hy1 using ‘invfreqs()’ in the MATLAB software. The difference between the resonance 

frequencies for H1 and Hy1 was larger at the higher vibration magnitude than at the lower magnitude.   

 

 

 

 

 



 

Figure 4 Ordinary coherence (coh1y), partial coherence (coh2y, coh3y), and multiple coherence 
functions (cohyy) computed based on individual and combined mathematical inputs (x1, x2, x3) and 
output (y). H3y, H2y, H1y – FRFs based on correlated mathematical inputs. L2y, L1y – FRFs based on 
uncorrelated mathematical inputs. Vibration magnitude: 0.125 ms-2 r.m.s., subject S9.  

 

 

 
 

Figure 5 Ordinary coherence (coh1y), partial coherence (coh2y, coh3y), and multiple coherence 
functions (cohyy) computed based on individual and combined mathematical inputs (x1, x2, x3) and 
output (y). Vibration magnitude: 1.0 ms-2 r.m.s., subject S9. 
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(b)    1.0 ms-2 r.m.s.  (a)    0.125 ms-2 r.m.s.  



 

 

Figure 6 H1 and H2 are standard apparent mass FRFs. Hy1 is the linear FRFs determined from 
the mathematical output y and mathematical input x1. (a) Vibration magnitude 0.125 ms-2 r.m.s.        
(b) Vibration magnitude 1.0 ms-2 r.m.s. Subject S9. 

 

4. Discussion and conclusions 

Inclusion of the vertical cross-axis force response of the recumbent person effectively improve the 

coherence function measuring the linearity of the body system in the frequency range 8 to 18 Hz. 

Huang and Griffin (2008a) speculated that low output force at the driving point, or, high noise and 

distortion, at these frequencies could be the primary cause. Current study provided more quantitative 

explanation of the cause of the coherence drop in the horizontal apparent mass. However, in the 

frequency 8 to 18 Hz, some compensated coherences were still down to about 0.8 at 0.125 ms-2 r.m.s 

and down to about 0.7 at 1.0 ms-2 r.m.s. There must have been some other causes.  

The constructed mathematical input (x3) played little role in the multiple coherence function. Sweitzer 

(2006) applied mathematically constructed inputs to clamped beam structures where direction of 

movement was certain. The cross-axis movement of the recumbent human body introduced 

complexity when analysing the linearity or the nonlinearity of the body. Since any test condition 

involving human subject will be somehow affected by the cross-axis response, it would be plausible to 

explore means to eliminate or control such movements in the experiments. The reverse path MISO 

provides an alternative to investigate the linearity between signals. With better-controlled 

experiments, this method could be used to test effects of potential mathematical inputs on the linearity 

of the system. The mathematical inputs could be constructed by applying mathematical operations to 

physically measured input or output signals.  
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Appendix A  

General arithmetic for formulation of the MISO system (Bendat and Piersol, 1993)  

Subscripts: 

1, 2, 3 or x1, x2, x3 – mathematical input  y – mathematical output 

i, o – input and output    q – number of inputs    

i, j – counter up to q    r – removed input channel number  

r! – all input channels up to r 

Recursive algorithm defined in Figure 2 is used to compute: 

- conditioned single-sided auto and cross spectral density functions (e.g. G23); 

- individual transfer functions between mutually uncorrelated (conditioned) inputs and the 

output (Liy);  

- individual transfer functions between (usually correlated) original inputs and the output (Hiy); 

- ordinary and partial coherence functions (cohiy:r!),  

- multiple coherence functions (cohyi).  

Based on the recursive operations shown in Figure 2, arithmetic to formulate the MISO system can be 

performed in the following order (in the current study q = 3): 

Conditioned PSDs and CSDs of relative to 2nd, 3rd until qth mathematical input 

Lrj = Grj.(r – 1)! / Grr.(r – 1)!   r = 1, … , (j – 1); j = 1, … , q 

Gij.r! = Gij.(r – 1)! – Lrj Gir.(r – 1)!  i > r, j > r, i ≠ j 

Gjj.r! = Gjj.(r – 1)! – |Lrj|2 Grr.(r – 1)!  j > r 

Giy.r! = Giy.(r – 1)! – Lry Gir.(r – 1)!    i > r 

Liy = Giy.(i – 1)! / Gii.(i – 1)!   i = 1, … , q 

Partial coherence functions 

cohiy.(i – 1)! =  | Giy.(i – 1)! |2 / ( Gii.(i – 1)! / Gyy.(i – 1)! ) i = 1, … , q 

Gyi.r! = Giy.(r – 1)! – Lri Gyr.(r – 1)!     i > r 

Gyy.i! = Gyy.(i – 1)! – | Liy |2 Gii.(i – 1)!     i = 1, … , q 

Multiple coherence function with q inputs x. 

cohy:q! = 1 – (Gyy.q! / Gyy) = 1 – [(1 – coh1y
2) (1 – coh2y.1

2) … (1 – cohqy.(q – 1)!
2)] 

Individual transfer functions of original inputs calculated from relations of conditioned inputs 

Hqy = Lqy  

Hiy = Liy –  

� 

j= i+1

q

∑ Lij Hjy  i = (q – 1), (q – 2), … , 1 


