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Abstract

Group formation for collaborative learning activities is a complex and time consuming task.
Different criteria have been proposed for grouping learners in computer-based systems, such
as performance and social characteristics. User behaviour is, however, rarely considered when
groups are formed. This paper proposes an approach based on user behaviour that complements
the current research on group formation based on different criteria. For this purpose, we propose a
synergetic approach based on case-based reasoning and clustering to form groups on the basis of
user behaviour. Case based reasoning is used to model user behaviour, while clustering uses the
output of the CBR mechanism as criteria for placing learners in relevant clusters. The proposed
approach is illustrated using an exploratory learning environment for mathematical generalisation
called eXpresser.
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1. Introduction

Collaborative activities play an important role in teaching and learning. There is an over-
whelming body of research from classroom-based education showing that learning in groups
enhances pupils’ learning by enabling them to learn from each other, e.g. Cohen (1986); Chi
et al. (1989); Mastropieri et al. (2003); Rohrbeck et al. (2003); Robinson et al. (2005); Mcmaster
et al. (2006). Although collaborative learning has been proved successful in classroom situa-
tions (Brown & Palincsar, 1989; Slavin, 2003), in computer-supported learning environments it
does not seem to lead to the same learning benefits. One contributing factor is the way the collab-
orative groups are formed, as forming efficient groups is very important to ensure an educational
benefit from the group interaction (Daradoumis et al., 2002).
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In classroom situations the grouping is most often done by the teacher based on different crite-
ria related to the goals of the collaborative activities. The teachers’ decisions about group forma-
tion are based on their knowledge of the students - both from educational and social point of view.
In computer-based learning this knowledge is used as well and most approaches to group forma-
tion consider learners characteristics related to performance and social features, e.g. Gogoulou
et al. (2007); Graf & Bekele (2006). Learning performance, however tends to be an aggregated
measure of a learner’s ability and does not entirely reflect a teacher’s knowledge of a particular
student, which is more complex and refined than a single indicator. In the context of computer-
based environments, more refined knowledge about the learner could be obtained by monitoring
the learners’ behaviour. In turn, this knowledge about the learners could constitute a more infor-
mative basis for the formation of groups.

In this paper we proposed an approach that used the learner’s behaviour as the basis for the
formation of groups. To this end, we propose a synergetic approach that combines case-based
reasoning and clustering to form groups on the basis of user behaviour. The learners’ behaviour
is modelled using a case-based reasoning approach which provides the input for the clustering
approach. Based on the information about the user behavior, the learners are placed in relevant
clusters. The proposed approach is illustrated in the context of an exploratory learning environ-
ment for the domain of mathematical generalisation called eXpresser.

The rest of the paper is structured as follows. The next section presents previous works re-
lated to user modelling, case-based reasoning and clustering. The following section presents
the domain of mathematical generalisation and the exploratory learning environment. Section 4
describes the case-based reasoning approach for learner modelling, while Section 5 presents the
clustering approach for user behaviour-driven group formation. Section 5 presents the integrated
approach in the context of a classroom situation, Section 6 provides a discussion of the approach
and Section 7 concludes the paper.

2. Related work

This section gives an overview of grouping approaches for collaborative activities, with a focus
on criteria for grouping. It also covers previous research in the areas of user modelling, case-
based reasoning and clustering in the context of exploratory learning environments, and outlines
the differences between our proposed approach and previous ones.

Collaborative learning has been has been extensively researched (e.g., Johnson & Johnson
(1994), Cohen (1994), Slavin (1995), Vermette (1998)) and one of the contributing factors
to successful collaboration has been identified as the formation of groups in a way that each
group member will benefit from the collaborative interaction. The criteria for successful group-
ing, however, are still not well established, not even for classroom collaborative activities. The
tendency is to group students based on their achievement (Macintyre & Ireson, 2002) and form
heterogeneous or homogeneous groups with the aim to reduce heterogeneity of learning or of
social behaviour (Gregory, 1984). It has been shown that low-achieving students learn more
in heterogeneous groups than in homogeneous ones, and that high-achieving students benefit
equally from heterogeneous and homogeneous groups (Webb et al., 1997). Besides these find-
ings, there is little known about the influence of group formation on the collaborative processes
and performance (Webb et al., 1997; Leornard, 2001).

In computer-supported learning, the criteria used for group formation are learners’ character-
istics related to their performance and social characteristics (e.g. Gogoulou et al. (2007); Graf
& Bekele (2006)). A high-level description of the processes involved in group formation was
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proposed for virtual learning environments where learners do not know each other and several
parameters that influence group collaboration were identified : (a) individual and group learn-
ing and social goals; (b) relationships among group members; (c) the interaction process; and
(d) members’ specific characteristics (Daradoumis et al., 2002). To ensure formation of optimal
groups, dynamic grouping supported by wireless handhelds has been proposed for classroom
use, allowing reconfigurations of groups to find optimal ones (Zurita et al., 2005). Consequently,
current research indicates that group formation is a complex problem with no straightforward
answer.

Our research extends the current research on grouping for collaborative learning activities by
taking into consideration the user behaviour in the grouping approach. This is especially impor-
tant in exploratory learning due to the difference in how the learners interact with exploratory
learning systems compared with tutoring systems.

Exploratory learning environments (ELEs), also referred to as open/inquiry/discovery learn-
ing environments (e.g. SimQuest (van Joolingen et al., 1997), Adaptive Coach for Exploration
(ACE) (Bunt & Conati, 2003), Vectors in Physics and Mathematics (Grigoriadou et al., 1999))
are characterised by freedom, allowing learners to explore the domain rather than guide their
learning in a structured manner. These environments are fundamentally different from Intelligent
Tutoring Systems (ITSs) (e.g. Algebra Tutor (Koedinger et al., 1997), Geometry Tutor (Mat-
suda & VanLehn, 2005), ActiveMath (Melis et al., 2003)) which are characterised by structured
learning.

The differences between ITSs and ELEs in how learners interact with the system leads to
differences between requirements for user modelling for the two types of systems. A typical ITS
has a domain model and a student model, where the student model is a “copy” of the domain
model with attached information about how much the student has learned/covered from that
domain model and to what degree; typically, the domain consists of concepts and/or common
misunderstandings (or bugs). Such an approach is not entirely suitable for ELEs because ELEs
are typically built for exploring the so-called ill-defined domains (Lynch et al., 2006), which are
characterised by more complex problems that often have multiple solutions, for which a complete
domain model is very difficult to develop.

Previous attempts at learner modelling for ELEs include: (a) the use of heuristics to guide the
learning process in a physics domain (Veermans, 2003); (b) Bayesian networks in a mathemati-
cal functions domain (Bunt & Conati, 2003); (c) neuro-fuzzy systems for student diagnosis in a
physics domain (Stathacopoulou et al., 2005); (d) Fuzzy sets for modelling cognitive states in a
computer-based learning environment for Newtonian dynamics (Andaloro & Bellomonte, 1998);
(e) eye-tracking for modelling meta-cognitive characteristics such as self-explanation (Merten &
Conati, 2006; Conati & Merten, 2007); (f) a Dynamic Decision Network approach for a dy-
namic learner model allowing reasoning about the learners behaviour and interventions across
time (Ting & Phon-Amnuaisuk, 2009).

The systems involved in the learner modelling approaches mentioned above are virtual labs or
simulation-based environments in which the students are asked to tune variables until they find
the right values. Our system, however, asks learners to construct patterns, and to identify vari-
ables and relations, which can be done by following various approaches that we call strategies
(a detailed description of the system is given in the following section). Thus, learner’s actions
are more important in our context than concepts. Moreover, our learner modelling component
was developed in parallel with the design of the system and of the educational activities, while
the learner models mentioned previously were developed after the systems were completed and
in use. Therefore, these two aspects required a different modelling approach that would address
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our need to model complex problems with multiple solutions and to provide flexibility and ex-
tendability to allow alignment with the development of the system. Consequently, a case-based
reasoning approach was used due to its capability to handle both aspects outlined above.

The existing approaches have a number of strengths and limitations that are outlined in the fol-
lowing. Bayesian Networks are an established modelling technique in the context of intelligent
tutoring systems; however, it does not fit our purpose as we are not dealing with concepts, but
with learner actions. The neuro-fuzzy approach has the advantage of dealing well with uncer-
tainty and of mimicking teachers’ reasoning; again, concepts in the form of fuzzy variables are
used which do not apply to our situation. Fuzzy sets also deal well with uncertainty, but have a
similar drawback - they keep track of the overall knowledge, while we want to keep track of the
models for each task in a more detailed manner than a number. The dynamic decision networks
have the advantage of dealing with the temporal aspect; however, they are used for modelling
skills, while we’re interested in modelling knowledge. Moreover, none of these approaches ad-
dress the need for diagnosing the learner during a task rather than at the end of it, which the
CBR-approach can do.

Although CBR has been successfully used in applications for domains like legal reason-
ing (Aleven, 2003), stock market prediction (Chun & Park, 2005), recommender systems (Kumar
et al., 2005), and other areas, there is little research on using CBR for e-Learning environments.
For example, Han et al. (2005) use CBR in the learner modelling process and call this approach
case-based student modelling, while Huang et al. (2007) use CBR and genetic algorithms to con-
struct an optimal learning path for each learner. CBR is used also in Stottler & Ramachandran
(1999) within a case-based instruction scenario rather than a method for learner modelling. We
have not found any references in the literature to ELEs that use CBR or CBR combined with
other intelligent methods.

The advantage of CBR for learning environments and especially for ELEs is that the system
does not rely only on the general knowledge of a domain, but it can also use specific knowledge
previously experienced (Han et al., 2005). It also seems promising for improving the effective-
ness of complex and unstructured decision making (Huang et al., 2007), especially in combina-
tion with soft computing methods.

To model the user behaviour we used a modified version of case-based representation that
allowed us to represent strategies (or composite cases) as series of simple cases with certain
relations between them. The typical CBR representation involves a case that has two parts: a
problem and a solution. When a new problem is encountered, it is matched to the problem part
of the cases in the knowledge base. If a good match is found, the solution of the matching case
is applied to the new problem; if no good match is found, the solution may be adapted for the
new problem and then stored for future use. We, however, are dealing with multiple solutions
of the same problem and the aim is to identify which of the solutions is used. Therefore, our
composite cases, i.e. strategies, do not have a problem part, as this does not vary. Moreover, as
learners often get stuck before finishing their constructions and it is important to identify what
the learners are doing while they solve the task and not only at the end, the strategies were defined
as a series of simple cases rather than a single entity that would not allow inspection of its parts.

In addition, modelling learner’s strategies, rather than concepts for example, gives the advan-
tage of having a more holistic view of the learner’s perspective of a particular task. In other
words, a strategy contains more information than a probability attached to a concept (a com-
mon approach for Intelligent Tutoring Systems). Also, this is more appropriate for ill-defined
domains (Lynch et al., 2006) for which exploratory learning is more suitable than tutoring, as
they are often characterised by complex problems, in which a concept cannot be explored in
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separation from other ones because the essence lies in the relation between concepts.
The user behaviour modelled by the CBR approach is used in the grouping approach by con-

sidering the pedagogical aims of the collaborative learning activities, which in our system (and
other ELEs) is to discuss similarities and differences between various approaches in solving the
same task. Therefore, two aspects were identified as relevant as criteria for grouping: the strategy
or strategy followed by each learner and the similarity between the different strategies of a task.
Consequently, we developed a clustering approach that takes into consideration these criteria.

Clustering methods are used in a variety of domains such as image segmentation (Bong &
Rajeswari, 2011), natural language processing (Ushioda & Kawasaki, 1996), wireless sensor
networks (Abbasi & Younis, 2007), galaxy formation (Ross et al., 2011) and gene expression
analysis (Dhiraj et al., 2009). However, in our searches of the literature we did not find any
research in the area of exploratory learning environments that use clustering methods, not any
research about grouping for collaborative activities in ELEs.

The next section introduces the domain of mathematical generalisation and eXpresser, the
exploratory learning environment for this domain. An outline of the difficulties encountered by
students in learning mathematical generalisation and how eXpresser addresses these issues is
presented, and the aims of the collaborative learning activities are also given.

3. Exploratory Learning of Mathematical Generalisation

Mathematical generalisation is at the center of algebraic expressions, as “algebra is, in one
sense, the language of generalisation of quantity. It provides experience of, and a language for,
expressing generality, manipulating generality, and reasoning about generality” (Mason, 2002,
pg. 105). This relation, however, and the idea of recognising and analysing patterns and ar-
ticulating structure, seems to be elusive to students who fail to understand algebra and its pur-
pose (Geraniou et al., 2008). Students are unable to express a general pattern or relationship in
natural language or in algebraic form (Hoyles & Küchemann, 2002).

Students, however, are able to identify and predict patterns (Mason, 2002) and there are claims
that it is not the generalisation problems that are causing difficulties to students, but the way
these are presented and the limitations of the teaching approaches used (Moss & Beatty, 2006):
“generalising problems are usually presented as numeric or geometric sequences, and typically
ask students to predict the number of elements in any position in the sequence and to articulate
that as a rule” (Moss & Beatty, 2006, pg. 443). A common strategy is “the construction of
a table of values from which a closed-form formula is extracted and checked with one or two
examples” (Bednarz et al., 1991, pg. 7), introducing a tendency towards pattern spotting and em-
phasizing its numerical aspect (Noss et al., 1997; Noss & Hoyles, 1996). This approach obscures
the variables involved, “which severely limits students ability to conceptualize the functional re-
lationship between variables, explain and justify the rules that they find, and use the rules in a
meaningful way for problem solving” (Moss & Beatty, 2006, pg. 444).

Another approach that affects students’ understanding of generalisation is the focus on math-
ematical products rather than mathematical processes (Warren & Cooper, 2008; Malara &
Navarra, 2003). Malara & Navarra (2003) argue that students should be taught to distance them-
selves from the result and the operations needed to obtain that result, and to reach a higher level
of thinking by focusing on the structure of a problem.

Another issue encountered in teaching mathematical generalisation is the students’ difficulty
to use letters that stand for the unknown (Küchemann, 1991) and to realise that letters represent
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Figure 1: eXpresser screenshots. The screenshot on the left includes a toolbar, the students’ world and the general world.
The screenshot on the top right shows the property list of a pattern. The bottom right screenshot illustrates a rule.

values (Duke & Graham, 2007). Secondary school students also tend to lack a mathematical
vocabulary for expressing generality (Geraniou et al., 2008) and research reports on students’
lack of precision in written responses (Warren & Cooper, 2008).

Taking these aspects into account, a system for teaching mathematical generalisation was de-
veloped using an iterative process that involved designing with students and teachers. The main
aim was to develop an environment that provides the students with the means for expressing
generality rather than considering special cases or spotting pattern (Geraniou et al., 2009a). Five
critical ideas have informed the design of the system: (a) providing a rationale for generality, (b)
supporting simultaneously model construction and analysis, (c) scaffolding the route from num-
bers to variables, (d) working on a specific case ‘with an eye’ on the general and (e) reflecting on
derived expressions (Geraniou et al., 2009b; Noss et al., 2009).

The system, called eXpresser, enables construction of patterns, creating dependencies between
them, naming properties of patterns and creating algebraic-like rules with either names or num-
bers. The system is intended for 11-14 year olds and classroom use in UK secondary schools,
and it follows the UK curriculum. Individual tasks in eXpresser involve building a construction
and deriving a rule form it; collaborative tasks involve discussion on similarities and differences
between individual constructions and rules.

Figure 1 illustrates the system, the properties list of a pattern (linked to another one) and an
example of a rule. The screenshot on the left includes two windows: (a) the students’ world,
where the students build their constructions and (b) the general world that displays the same
construction with a different value for the variable(s) involved in the task (placed in the area ‘I
need to vary’ in both worlds), and where students can check the generality of their construction
by animating their patterns (using the Play buttons). The presence of these two spaces allows
learners to work on a specific case (in the students’ world) ‘with an eye’ on the general (in the
general world).

We illustrate here a task called ‘pond tiling’ (see Figure 1) displayed in the students’ world
with a 4 by 3 blue (darker colour) pond and in the general world with a 9 by 7 pond; the task
requires to surround the pond and find a general rule for the number of tiles needed for this

6



purpose. The model for this task can be built in several ways that we call strategies. Here we
illustrate the so-called ‘H’ strategy, named after the shape of the construction. The components
of this strategy are highlighted in the students’ world for ease of visualisation: the 4 by 3 pond,
2 horizontal green (lighter colour) rows of 4 tiles and 2 vertical green bars of 5 tiles.

To provide a rational for generality, the tasks are presented dynamically. For example, the
‘pond tiling’ task is presented with the image displayed in Figure 1 in the student’s world with-
out any highlighting of structure; this image changes regularly to show different instances of the
pattern. This dynamic presentation provides “a rationale for deriving a rule that outputs the num-
ber of green tiles for any instance of the pattern, i.e. a ‘general’ rule giving concrete instantiation
to the meaning of ‘any’ ” (Geraniou et al., 2009b, pg. 52).

The property list of one of the horizontal bars is displayed in the top right screenshot. The
first property (A©) specifies the number of iterations of the building-block, i.e. the basic unit of a
pattern, which is displayed as an icon; the value for this attribute is set to the value of the width
of the pond by using a T-box (that includes a name and a value); by using a T-box, the two (or
more) properties are made dependent, i.e. when the value in the T-box changes in one property,
it also changes in the other one(s). The next properties are move-right (B©), which is set to 1, and
move-down (C©), which is set to 0. The last property (D©) establishes the number for colouring all
the tiles in the pattern - for this simple pattern the value is the same as the iterations and is also
related to the width of the pond through the use of a T-box. The bottom right screenshot displays
a rule for the number of green tiles: (h + 2) x 2 + w x 2, where h and w stand for the T-boxes in
the area ‘I need to vary’ (the same as the ones in property lists); a T-box can be displayed with
name only, value only or both, thus enabling use of multiple representations.

The use of T-boxes helps learners develop multiple representations which is considered ben-
eficial as it leads learners to deeper knowledge acquisition of a domain, that in turn, could lead
to knowledge transfer in other learning situations (van der Meij & de Jong, 2006). Also, “hav-
ing to make the mental transference between representations ... forces reflection beyond the
boundaries and details of the first representation and an anticipation of correspondences in the
second. The deeper level of cognitive processing can reveal glitches that might otherwise have
been missed” (Petre et al., 1998, pg. 474).

Multiple External Representations (MERs) (as opposed to mental representations) have several
functions: to complement, constrain and construct (Ainsworth, 1999). “The first function is to
use representations that contain complementary information or support complementary cognitive
processes. In the second, one representation is used to constrain possible (mis)interpretations
in the use of another. Finally, MERs can be used to encourage learners to construct a deeper
understanding of a situation” (Ainsworth, 1999, pg. 134).

Through their multiple representation, the T-boxes are scaffolding the route from numbers to
variables, emphasizing the idea that variables represent values, but those values do not need to
be known - hence the enabled display of a T-box with value only, name only or both. Thus
the transition from a specific value to a value that also has a name to a name only (i.e. vari-
able) is facilitated: “this stands in contrast to the standard approach in which generalisations
are constructed from special cases, and the path to the variable ‘n’ appears as a separate (often
nonnegotiable) cognitive leap” (Geraniou et al., 2009b, pg. 54).

To make a construction general, T-boxes are needed to link the different parts of the construc-
tion. Without these links, a construction is specific, i.e. it is valid only as a particular instance
of the task pattern; a construction can also have some links in place, while others are missing,
i.e. the construction is partially general. These concepts of specific, partially general and general
are pedagogically important, as they signal the learners’ progress in solving the task. Most of-
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ten learners start with specific constructions and gradually change their properties to make them
general. The most important step is from a specific construction to making one of its components
general, i.e. the transition from specific to partially general.

The use of property lists to construct patterns facilitates the derivation of the algebraic-like
rule by the presence of the couloring property which refers to the number of tiles needed for
certain parts of the construction; the rule is essentially formed by putting together the values of
the colouring properties of all parts of a construction. Thus, the system supports simultaneously
model construction and analysis.

To enable the dynamic presentation of a construction in the general world, the learners need
to define a rule for the number of green tiles. This step was designed “to encourage students’
reflection on their own actions. This process allows students to validate the generality of their
final rule as well as a means to express their generalisations ‘symbolically’ ” (Geraniou et al.,
2009b, pg. 55). Moreover, in collaborative activities the students are requested to share their
constructions and rules and justify them to their peers. The aim of these activities is to emphasise
the equivalence of seemingly different constructions and rules, which would deepen the learners’
grasp of generalisation.

The construction in Figure 1 and the rule in the bottom-right corner constitute one possible
solution for the ‘pond tiling’ task. Although in its simplest form the rule is unique, there are
several ways to build the construction and infer a rule from its components. Thus, there is
no unique solution and students follow various kinds of strategies to build their constructions.
More examples of such constructions and rules are displayed in Figure 2. The ‘Area’ strategy
in Figure 2a is built by placing a larger rectangle over the pond; the ‘-4’ strategy in Figure 2d
is built of rows and columns that correspond to the pond’s width plus 2 and the ponds’ height
plus 2, respectively, and the highlighted corners (slightly darker) correspond to the overlapping
between rows and columns.

Figure 2: ‘Pond tiling’ task constructions and associated rules: (a) the ‘Area’ strategy; (b) the ‘I’ strategy; (c) the ‘+4’
strategy; (d) the ‘-4’ strategy; (e) the ‘Spiral’ strategy.

We illustrate here another task called ‘stepping stones’, which is easier than the ‘pond tiling’
task, as it involves only one variable. It requires to build a construction such as the one in
Figure 3a and to find a rule for the green (lighter colour) tiles in relation to the red (darker)
tiles, i.e. the stepping stones. Some construction are expanded for ease of visualisation and
the variable “red” refers to the number of red tiles. In these figures, the internal structure of
the constructions has been highlighted for clarity. In eXpresser all constructions would look the
same in the normal course of the task.

As illustrated above, each task has multiple solutions corresponding to different visual rep-
resentations. Some of these solutions are similar to each other while others are different. For
example, in the ‘pond-tiling’ task the ‘H’ strategy in Figure 1 and the ‘+4’ strategy in Figure 2c
share similar characteristics because they have the same horizontal bars, while the ‘I’ strategy in
Figure 2b and ‘+4’ strategy in Figure 2c share similar characteristics for having the same vertical
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Figure 3: ‘Stepping Stones’ task constructions and associated rules: (a) the task construction regardless of structure; (b)
the ‘C’ strategy; (c) the ‘HParallel’ strategy; (d) the ‘VParallel’ strategy; (e) the ‘Squares’ strategy

bars. The constructions are illustrated with same pond and the same ‘stepping stones’, respec-
tively; however, learners build constructions of various dimensions. Therefore, in this work the
notion of similarity between different strategies refers to structural similarity rather than the exact
dimensions of the construction.

As mentioned above, the aim of collaborative activities is to reflect on the equivalence of
seemingly different constructions and expressions. Figure 4 illustrates two such constructions
and expressions. The strategy used to solve the task is the same, but the visual representations of
the construction and the representation of the variables involved in the task (the T-boxes) seem
different. The learners’ discussion aims to establish the equivalence of these representations by
recognising what is different, e.g. the dimensions of the pond, the names used for variables,
and what is the same and captures the essence of generalisation, e.g. the structure used (the ‘H’
strategy), the expressions. To this end, the detection of the strategies followed by each learner is
necessary; this process is described in the next section.

Figure 4: Two approaches using the ‘H’ strategy.

4. Modelling User Behaviour using a Case-based Representation

The architecture with the components involved in modelling the learners’ behaviour when
performing generalisation tasks and in the grouping mechanism are displayed in Figure 5. As
the learners are working with eXpresser, their actions are stored in individual Learner Models
and passed to the Behaviour Analysis Module (BAM). Using the information from the Task
Model, the BAM component analyses the actions of the learners and identifies the most similar
approaches followed by learners when they do the task. This information is then passed back
and stored in the Learner Models. To form groups for performing collaborative activities, the
Grouping Module uses information about the approaches followed by learners, the so-called
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strategies as explained in Section 3, from the Task model and about strategy or strategies used by
each learner from the individual Learner Models.

Figure 5: Schematic architecture for eXpresser with the components involved in modelling the learners’ strategies and in
the grouping mechanism.

Next we present a knowledge representation system to interpret relevant sequences of users
actions during exploratory activities, and explain how inferences can be derived from these ac-
tions about ways users construct models/explore activities of mathematical generalisation. To
this end, a case-based reasoning (CBR) approach is used; in CBR (Kolodner, 1993) knowledge
is stored as cases, typically including the description of a problem and its solution. When a new
problem is encountered, similar cases are retrieved and the solution is used or adapted from one
or more of the most similar cases. The CBR cycle typically includes four processes (Kolodner,
1993): (a) Retrieve cases that are similar to the current problem; (b) Reuse the cases (and adapt)
them in order to solve the current problem; (c) Revise the proposed solution if necessary; (d)
Retain the new solution as part of a new case.

In exploratory learning the same problem can be solved through different user strategies and
it is important to identify which strategy is used by the learner, as this relates to the learner’s
perception of generalisation tasks. To address this for eXpresser each task has a case-base (or
knowledge base) of exploratory strategies. When a learner is performing an exploratory task,
their construction-related actions are transformed into a sequence of simple cases, i.e. a strategy,
and compared with all the strategies in the case-base for the particular task that the learner is
working on; the case-base consists of general strategies, i.e. composite cases, rather than simple
cases. To retrieve the strategies that are most similar to the one used by the learner, appropriate
similarity metrics are employed that are described below. Once the most similar strategies are
identified, they are used in the grouping mechanism that implements a form of reuse by taking
this information into account along with the information on the strategies from the Task Model.
The work described in this paper does not involve the revise and retain steps of the CBR cycle.
These steps, however, are involved in identifying and storying new strategies in the Task Model.
As this work is out of the scope of this paper, the reader is referred to (Cocea et al., 2009) for
more details.

The following subsections present the knowledge representation and the similarity metrics
used for strategy identification.

4.1. Case Representation

In our approach, exploratory user strategies when performing a task are represented as a series
of cases with certain relations between them.

10



Definition 1 A case is defined as Ci = {Fi,RAi,RCi}, where Ci represents the case and Fi is a
set of attributes. RAi is a set of relations between attributes and RCi is a set of relations between
Ci and other cases respectively.

Definition 2 The set of attributes of a given case Ci is defined as Fi = {αi1 , αi2 , . . . , αiN }.

It relates to user’s construction and includes three types of attributes: (a) numeric, (b) variables
and (c) binary. The numeric attributes correspond to the values in the property list and the
variables correspond to the type of those properties: number, T-box, expression with number(s)
or expression with T-box(es). The binary attributes refer to the membership of a case to a strategy
and is defined as a PartO f S function which returns 1 if the case belongs to the strategy and 0 if
it does not. There are S binary attributes, where S is the number of strategies in the knowledge
base.

Definition 3 The set of relations between attributes of a given case Ci and attributes of other
cases (as well as attributes of Ci) is represented as RAi = {RAi1 ,RAi2 , . . . ,

RAiM }, where at least one of the attributes in each relation RAim ,∀m = 1,M, is from Fi, the set of
attributes of Ci.

Two types of binary relations are used: (a) dependency relations such as the one illustrated in
Figure 1 where the number of the iterations of the horizontal green patterns depends on the width
of the pond (i.e. blue pattern) through the use of a T-box; (b) value relations such as the fact that
the value of the colouring property of the horizontal green patterns in Figure 1 is the value of the
width of the pond. A case is considered specific when it does not have dependency relations and
is considered general when it has all the dependency relations required by the task. The specific
and general “status” of a construction is important in diagnosing the learner’s stage in solving
the task, as outlined in Section 3.

Definition 4 The set of relations between cases is represented as RCi = {RCi1 ,RCi2 , . . . ,RCiP },
where one of the cases in each relation RCi j ,∀ j = 1, P is the current case (Ci).

Two time-relations are used: (a) Prev relation indicates the previous case and (b) Next relation
indicates the next case, with respect to the current case.

Definition 5 A user strategy is defined as S u = {Nu(C),Nu(RA),Nu(RC)}, u = 1, r , where Nu(C)
is a set of cases, Nu(RA) is a set of relation between attributes of cases and Nu(RC) is a set of
relations between cases.

4.2. Similarity Assessment for Case-based Reasoning

The inference stage is based on scoring elements of the strategy followed by the learner to
construct models in eXpresser with an emphasis on structural properties of the user’s construc-
tion. To this end, the similarity between the current learner strategy and strategies previously
stored is calculated taking into account their attributes and relations. The similarity metrics used
for cases and strategies are displayed in Figure 6. The overall similarity metric for strategies is:
S im = w1 ∗F1 + w2 ∗F2 + w3 ∗F3 + w4 ∗F4, where F1 is the normalised value of F1. To bring F1
in the same range as the other metrics, i.e. [0, 1], we applied linear scaling to unit range (Aksoy
& Haralick, 2001) using the function F1 = F1/z.
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Figure 6: Similarity metrics for cases and strategies.

Weights are applied to the four metrics to express the central aspect of the construction, the
structure. This is mostly reflected by the F1 metric and, to a lesser extent, by the F3 metric.
Therefore, the following values for the weights were set: w1 = 6,w2 = 1,w3 = 2,w4 = 1,
leading to the range [0, 10] for values of S im.

The metrics have been tested for several situations of pedagogical importance: identifying
complete strategies, mixed strategies, non-symmetrical strategies and partial strategies. The sim-
ilarity metrics were successful in identifying all these situations - details can be found in (Cocea
& Magoulas, 2009). For the purpose of this paper, we illustrate each of the situations mentioned
above to facilitate a discussion about their potential role in group formation in Section 7.

Figure 7 illustrates constructions for the four types of situations mentioned above. Figure 7a
illustrates a complete strategy; this is the ‘H’ strategy illustrated earlier in Figure 1. Identifying
complete strategies is important for two reasons: (a) to know if the learner has found a solution,
and (b) to identify if that solution is specific, partially general or completely general, as a way to
assess the learners’ progress (see Section 3).

Figure 7: Situations of pedagogical importance examples from the ‘pond tiling’ task: (a) complete strategy (‘H’ strategy);
(b) mixed strategy (‘I’ and ‘+4’); (c) non-symmetric strategy; (d) partial strategy; (e) partial (mixed) strategy

Figure 7b illustrates a mixed strategy, in which parts of the ‘I’ and the ‘+4’ strategies are
used. From pedagogical point of view it is important to identify these situations so that guidance
towards one of the strategies used can be given should the learners have difficulties to generalise.
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Figure 7c illustrates a non-symmetric strategy, which is, at the same time, a mixed strategy
formed of parts of the ‘H’ and ‘Spiral’ strategies; the strategy in Figure 7a is symmetric with
respect to both horizontal and vertical axes, while the strategy in Figure 7b is symmetric only
with respect to the vertical axis. Symmetry facilitates generalisation, especially when learners
need to ‘translate’ their construction into an algebraic-like expression. Therefore, detecting non-
symmetric approaches is important so that guidance towards a symmetric approach can be given
should the learners have difficulties to generalise.

Figs. 7d and 7e illustrate partial strategies, i.e. the pond is not completely surrounded; the
strategy in Figure 7e is also mixed, having parts from the ‘H’ and ‘+4’ strategies. Detection of
these situations is important for guiding learners by building on the strategy they started with
should they be stuck or ask for help.

These different types of strategies could play an important role in creating collaboration learn-
ing activities for mathematical generalisation; a discussion on this aspect is presented in Sec-
tion 7. The next section presents how user’s strategy information and its similarity with other
strategies is used for group formation.

5. Group Formation for Collaboration

In the context of eXpresser, the collaboration activities aim for students to reflect on the equiva-
lence of seemingly different constructions and expressions and observe the similarity at a higher
structural level as the essence of generalisation. These collaborative activities would benefit
learners by raising their awareness of the several ways to approach the same task and their effort
to establish the equivalence of representations for both visual patterns and variables expressed
with T-boxes will lead to deeper understanding (van der Meij & de Jong, 2006; Petre et al.,
1998; Ainsworth, 1999). Translating between representations, however, is found difficult by stu-
dents (Ainsworth, 1999; Schoenfeld et al., 2002; Yerushalmy, 1991). Therefore, our approach is
to group students using the same or similar strategies, which ensures the presence of structural
similarity between their constructions, to facilitate the translation between their representations
of variables and expressions.

Unlike previous research, we propose characteristics of individual approaches and similarities
between approaches as criteria for group formation, as these aspects are relevant for the way
learning activities are defined in eXpresser. Although the goals of a task and user’s performance
or knowledge have been used in group formation, we are not aware of any research that considers
users’ behaviours, such as exploratory strategies, structural characteristics and relationships in
users’ constructions.

In order to incorporate our desired criteria in the grouping mechanism, we looked for a method
that can perform grouping based on the defined criteria. Thus, we wanted to take into consider-
ation the strategies used by the learners and the similarities between the various strategies used
for the same task. Moreover, we are interested in a flexible way of defining similarities between
strategies, as this has an impact on the difficulty of the collaborative task and also is viewed differ-
ently by different teachers (this is discussed in more detail in Section 7). Therefore, a mechanism
that can handle this flexibility was required.

To this end, we are using clustering analysis approach that employs array-based clustering
and resemblance coefficients. Similar approaches have been proposed in the literature for group
formation in manufacturing systems (King & Nakornchai, 1982; Selim et al., 1998; Joines et al.,
1996).
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In array-based clustering, an incidence matrix is used whose entries are either zero or one.
In our case, if the entry in row i and column j is one it means that learner j used strategy i; if
it is zero, the learner has not used that strategy. The array-based technique leads to clusters of
learners and strategies by rearranging the order of rows and columns to form diagonal blocks
of ones in the incidence matrix. In our approach, similarity coefficients are used to form the
incidence matrix and array-based clustering is then applied to obtain the clusters.

As mentioned at beginning of the section, it is important to group learners that use the same or
similar strategies to facilitate the translation between different representations. To this end, the
grouping procedure includes the following phases (see also Figure 8):

Phase 1. Represent all strategies stored in the Task Model as binary vectors that define similar-
ities between them.

Phase 2. Retrieve learner strategies from the Learner Models and represent learners as vectors
whose elements depict the existence of a relation between a learner’ strategy and a strategy
stored in the set of task strategies.

Phase 3. Define resemblance coefficients and calculate them.

Phase 4. Derive the Strategies-Learners Matrix (SLM) from the results of previous step.

Phase 5. Perform clustering on SLM.

Figure 8: The procedure for group formation.

Definition 6 Let S be the set of strategies of a task: S =
{
s j

}
, j = 1, 2..., n.

Every strategy can be represented as a n-dimensional vector of 0s and 1s: s j = (s1
j , s

2
j , ...., s

n
j )

where:

si
j =

{
1 if s j is similar to strategy si

0 if s j is not similar to strategy si

For example, the vectors for the five strategies of the ‘pond-tiling’ task illustrated in Figure 2
are displayed in Table 1.

For example, as already mentioned in Section 2, strategy ‘I’ in Figure 2b is similar to itself
and to the ‘+4’ strategy in Figure 2c; the ‘+4’ strategy is similar to itself and to strategies ‘I’
(Figure 2b) and ‘H’ (Figure 1). These similarities can be automatically deducted from the exis-
tence of structurally similar components like the ones illustrated in Section 2; alternatively they
can be defined by teachers.
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Table 1: Vectors for the strategies of ‘pond tiling’ task
Area ‘I’ ‘+4’ ‘-4’ ‘Spiral’

‘Area’ 1 0 0 0 0
‘I’ 0 1 1 1 0
‘+4’ 0 1 1 0 0
‘-4’ 0 1 0 1 0
‘Spiral’ 0 0 0 0 1

Definition 7 Let L = {λk}, k = 1, 2, ....,m be the set of learners.

A learner can be represented as a vector of 0s and 1s: λk = (λ1
k , λ

2
k , ..., λ

n
k), where:

λi
k =

{
1 if learner λk used si strategy
0 if learner λk did not use si strategy

For example, learner A that has used the ‘I’ strategy is represented as (0 1 0 0 0) and learner
B that has used the ‘Spiral’ strategy is represented as (0 0 0 0 1). Sometimes learners use com-
binations of different strategies; for example, learner C who has used the ‘I’ and ‘+4’ strategies
would be represented as (0 1 1 0 0). This vector formulation is based on the information stored in
the Learner Models; thus, learner A and B have in their Learner Models that their constructions
are most similar to strategies ‘I’ and ‘Spiral’, respectively, while the Learner Model for learner
C indicates that the ‘I’ and ‘+4’ strategies are most similar.

Definition 8 For each learner vector λk and each strategy vector s j, the following are defined
(see also Figure 9):

1. a is the number of matching 1s, i.e. the number of strategies contained in both vectors;

2. b is the number of 1s in λk and 0s in s j, i.e. the number of strategies followed by the learner
which are contained in λk but not included in s j;

3. c is the number of 0s in λk and 1s in s j, i.e. the number of strategies that the learner did not
follow but are included in s j;

4. d is the number of matching 0s, i.e. the number of strategies that are not contained in both
vectors.

Figure 9: Example for Definition 8.
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5.1. Calculating Resemblance Coefficients between Learners and Their Strategies

Two resemblance coefficients are used: one for the similarity between learners and strategies,
and one for the relevance of each strategy for a particular learner.

Definition 9 The similarity coefficient (SC) between a learner λk and a strategy s j is defined
as: S C(λk, s j) = a

a+b+c , for each learner λk ∈ L, k = 1, 2, ...,m and each strategy s j ∈ S ,
j = 1, 2, ..., n.

This was first defined for use in clustering by McAuley (1972) and is in fact a Jaccard similarity
coefficient - a well known measure of similarity, which has been found to be quite robust, i.e. in
several trials by Yin & Yasuda (2005) the results were within a small variation range around the
average result, rather than within a wide range spanning from bad to very good results (that can
still give a relatively good average).

Definition 10 The Relevance Coefficient (RC) of a strategy s j for learner λk is defined as:
RC(λk, s j) = a

a+b , for each learner λk ∈ L, k = 1, 2, ...,m and each strategy s j ∈ S , j = 1, 2, ..., n.

The strategies-learners matrix is defined as:
S LM =

{
ci j

}
, i ∈ [1, n], j ∈ [1,m],

ci j =

{
1 if RC ≥ θRC and S C ≥ θS C

0 otherwise

where θRC , θS C ∈ (0, 1].
A minimum density of the matrix is necessary to obtain meaningful results. More specifically,

each column should have at least a ‘1’, i.e. each learner should follow at least one strategy.
Therefore, the minimum density is the number of learners: m. Consequently, to fulfill the matrix
density constraint, the values of θRC and θS C could be defined dynamically for each class. To
avoid unnecessary computation, however, the following were established: (a) the value of θRC

should not be lower than 0.5; this was decided because the relevance coefficient reflects the
strategies followed by the learner and, consequently, should have an important role to ensure
that the learner is placed in a group of learners that use at least one of the strategies followed
by him/her; (b) calculate values dynamically only if the density constraint is not satisfied using
the value of 0.5 for both thresholds. Therefore, the grouping starts with the value of 0.5 for
both thresholds and if the matrix density constraint is not satisfied, the value of θS C is gradually
decreased until the constraint is satisfied.

5.2. Array-based Clustering

To illustrate the next phase of the procedure, i.e. the clustering, let us consider the matrix
displayed in Step 1 of Figure 10. Rank Order Clustering (ROC), one the most frequently used
methods in array-based clustering (Joines et al., 1996), is applied, which involves organising
columns and rows in the order of decreasing binary weights. The following procedure is applied
which is illustrated in Figure 10:

Step 1. Assign value 2m− j to column j. Evaluate each row (Rowi =
∑m

j=1 ci j2m− j) and order
rows in decreasing order. If there is no change compared to previous order, stop. Else, go to
step 2.
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Step 2. Assign value 2n−i to row i. Evaluate each column (Column j =
∑n

i=1 ci j2n−i) and order
columns in decreasing order. If there is no change compared to previous order, stop. Else, go
to step 1.

Figure 10: Steps of Rank Order Clustering example.

In this example, the following clusters were formed: learners 1, 3 and 6 with strategies 1 and
3; learners 2 and 5 with strategy 2, and learner 6 with strategy 4. In this particular example
the blocks of 1s are clear cut; however, that is rarely the case, showing that clusters are not
independent. Also, one strategy may be used by many learners, forming a big cluster. In the
context of forming groups for collaboration using eXpresser, these situations are not critical
limitations for the formulation of strategies-learners clusters: if clusters are not independent,
it means that some learners are using other strategies besides the ones of that cluster; if many
learners are using the same strategy, forming a large cluster, it can be broken down in several
subgroups for the purpose of the collaborative task.

The next section illustrates how the approach presented above has been used in conjunction
with the strategy identification in a classroom application of eXpresser.

6. Classroom Application

We illustrate the approach presented in the previous sections using data from a classroom
session where 18 students used eXpresser to solve the ‘stepping stones’ task. Using the ap-
proach presented in Section 4, we identified that out of the 18 learners, 6 used the ‘C’ strategy
(C) illustrated in Figure 3b, 4 used the ‘HParallel’ strategy (H) displayed in Figure 3c, 2 used
the ‘VParallel’ strategy (V) illustrated in Figure 3d, 1 used the ‘Squares’ strategy (S) displayed
in Figure 3d, 1 used a combination of ‘HParallel’ and ‘VParallel’ strategies (H&V) (Cocea &
Magoulas, 2009) and the remaining 4 students were either off-task or used non-systematic ap-
proaches such as building the construction using individual tiles - see Table 2.

Table 2: Distribution of strategies used by learners.
Strategies C H V S H&V Other
Number of Learners 6 4 2 1 1 4

A subset of the vectors for strategies and learners is displayed in Table 3. For learners that
used the same strategy, only one example is provided; for example, learners λ1 to λ6 have the
same vectors and thus only learner λ1 is displayed. The learners that did not follow a systematic
approach are excluded. As shown in Table 2, four learners used non-systematic approaches
to solve the task denoted by ‘Other’. These could also be represented by a distinctive vector
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which will result in a cluster formed by these learners; however, they are already classified as
a distinctive group and, therefore, including them in the grouping mechanism will only lead to
unnecessary computations.

Table 3: Strategies and learners vectors.
Strategies C H V S Learners λ1 λ7 λ11 λ13 λ14

C 1 0 0 1 C 1 0 0 0 0
H 0 1 0 0 H 0 1 0 0 1
V 1 0 0 0 V 0 0 1 0 1
S 1 0 0 1 S 0 0 0 1 0

Table 4 displays the values of RC and S C for each strategy and learner. Using θRC = 0.5 and
θS C = 0.5, the initial matrix in Table 5 is obtained; applying ROC to it leads to the final matrix
in Table 5 and to the following groups:

(1) Group 1 includes learners λi, i = 1, 2, ..., 6 and λ13 that adopted the ‘C’ and ‘Squares’ strate-
gies;

(2) Group 2 includes learners λi, i = 7, 8, ..., 10 and λ14 that adopted the ‘HParallel’ strategy;

(3) Group 3 includes learners λi, i = 11, 12 that adopted the ‘VParallel’ strategy.

Table 4: Similarity between strategies and learners and relevance of strategies for each learner.
Strategies λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14

C forward RC 1 1 1 1 1 1 0 0 0 0 0 0 1 0
SC 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 0

HParallel RC 0 0 0 0 0 0 1 1 1 1 0 0 0 0.5
SC 0 0 0 0 0 0 1 1 1 1 0 0 0 0.5

VParallel RC 0 0 0 0 0 0 0 0 0 0 1 1 0 0.5
SC 0 0 0 0 0 0 0 0 0 0 1 1 0 0.5

Squares RC 1 1 1 1 1 1 0 0 0 0 0 0 1 0
SC 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 0

Table 5: Initial and final matrix.
Initial matrix Final matrix (after ROC)

The advantages of using this method, as opposed to clustering based only on the strategies
used, is that the similarities between different strategies could be modified by the teacher. They
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could vary from being very strict (a strategy is similar only to itself) to being very relaxed (a
strategy is similar to other strategies when there is at least one part that is similar). Given the
way classes are formed in the UK, based on achievement levels, a relaxed definition of similarity
would be more appropriate for higher achievements classes that need more challenges, while
a strict definition of similarity would be more appropriate for lower achievement classes. Our
proposed approach, thus, gives the necessary flexibility to teachers to define similarity depending
on the characteristics of the class.

For example, a teacher may consider the ‘Squares’ strategy to be similar to the ‘VParallel’
rather than the ‘C’ strategy. Consequently, the strategies vectors would be: (a) ‘C’ strategy (1 0
0 0); (b) ‘HParallel’ strategy (0 1 0 0); (c) ‘VParallel’ strategy (0 0 1 1); (d) ‘Squares’ strategy (0
0 1 1). Using these vectors a new SLM matrix is obtained and the clustering procedure outputs
the following groups:

(1) Group 1 includes learners λi, i = 1, 2, ..., 6 that used the ‘C’ strategy;

(2) Group 2 includes learners λi, i = 7, 8, ..., 10 and λ14 that used the ‘HParallel’ strategy;

(3) Group 3 includes learners λi, i = 11, 12 and λ14 that used the ‘VParallel’ and ‘Squares’
strategies.

The mechanism we developed provides the teachers with groups based on the strategies fol-
lowed by learners, i.e. the clusters formed as explained above. Using this information, teachers
decide the size of groups and how the learners are distributed.

7. Discussion

The research presented in this paper had to address two main challenges: (1) assessment of
individual behaviour in terms of recognising the strategies used and (2) developing a grouping
mechanism that takes into account not only the information about the strategy or strategies fol-
lowed by each learner, but also the similarity between the different strategies of a task.

The first challenge was addressed using a case-based reasoning approach that allowed the
modelling of complex problems with multiple solutions. Unlike previous research that used
concepts for modelling the domain and the student, we use strategies represented as series of
cases with relations between them. This approach enabled a more detailed diagnosis of the
learner as a strategy captures the complexity of an exploratory learning task more than domain
concepts. Moreover, by including relations in the representations of the strategies, an essential
part of the domain is included which cannot be captured by concepts alone.

As in the typical CBR new problems can be encountered for which there is no good match,
in our context it is possible to encounter a strategy that is not part of the Task Model. There are
two possibilities in this situation: (a) the new strategy is valid and should be stored in the Task
Model, or (b) the new strategy is not valid and, therefore, should not be added to the knowledge
base. The latter situation is not encountered in typical CBR and is only a characteristic of the
domain we are working with. To address this, we have developed a mechanism that verifies
new strategies that do not match the ones in the Task Model and stores them if the verification
is successful - for details see (Cocea et al., 2009). Therefore, the presence of this mechanism
enables to distinguish between learners that reached a valid solution despite this not being in the
Task Model and learners that did not reach a solution or used non-systematic approaches, and
ensures that the learners with valid new strategies are considered for the group formation.
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One of the attributes of the simple cases refer to their membership to strategies. This attribute is
useful in automatically defining similarities between strategies - if the criterion for this similarity
is the existence of one or more common parts. The teachers, however, are given the option to
override this definition and be able to set different similarities.

Regarding the second challenge, i.e. taking into account the similarities between strategies, as
well as the strategies used by each learner in group formation, we used resemblance coefficients
to define the similarity between learners and strategies and the relevance of each strategy for a
particular learner, and an array-based clustering approach to form cluster of learners and strate-
gies. The approach outputs homogeneous groups; however, heterogeneous groups can be formed
by choosing one or more learners from each or some of the homogeneous groups.

The mechanism we propose has an important advantage compared with simple clustering,
which is the flexibility given to teachers in defining similarities between strategies. When simi-
larity is defined in a strict way, i.e. a strategy is similar only to itself, our mechanism gives the
same output as a simple clustering method. The latter, however, does not allow a more relaxed
definition of similarity, i.e. a strategy is similar to other strategies when there is at least one part
that is similar or when there is some conceptual similarity, while our approach supports such
definitions.

While the proposed clustering mechanism performs well, it has the limitation of using a ‘black
and white’ approach rather than a continuous measurement scale. Thus, a strategy is either
similar to another one or it is not similar at all. A grading scale, however, could be defined to
reflect different degrees of similarity. In the same way, the similarity of a learner’s strategy to
all stored strategies is defined as either similar or dissimilar. It would be useful in the future
to extend this mechanism to exploit information stored in the Learner Model about the most
similar strategies, including similarity values for each one. For example, if a learner’s strategy
is similar to ‘HParallel’ and ‘VParallel’ strategies, with the values of 2.37 and 3.14, respectively,
this information could be used instead of the ‘black and white’ approach.

Currently, our approach does not include social, cultural or personality factors, which are
handled by the teacher. However, they could be easily integrated with our approach, which is
part of our future work. Moreover, we will look into enabling teachers to set up constraints such
as ‘learner X should never be grouped with learner Y’.

The proposed approach does not distinguish between the types of strategies described in Sec-
tion 4.2: complete, mixed, non-symmetric and partial, as we consider that mixing these types
would be beneficial for learning. Consequently, the groups include learners using these differ-
ent types. Often, the learners who follow complete strategies have used the other types before,
and in practice teachers usually invite these learners to act as tutors for their peers. Research
shows that peer tutors usually benefit by taking up this role because it helps them to reflect on
their own knowledge and use it as a basis for constructing new knowledge - a process referred
to as knowledge-building (Roscoe & Chi, 2007). Three properties of peer tutoring have been
related to tutor learning: structuring, taking responsibility and reflecting (Biswas et al., 2005).
Giving explanations, asking and answering questions helps peer tutors in structuring their own
knowledge; taking responsibility for their tutee’s learning motivates peer tutors to gain a better
understanding of the material; peer tutors’ reflection on how their explanations were understood
and used helps them in evaluating their own understanding of the domain.

Research also shows that tutee learning is maximised when the tutee reaches an impasse and
is prompted to find the right way to continue and explain it, and is given an explanation only if
they failed to do so (Vanlehn et al., 2003). Therefore, learners with partial constructions that do
not know how to continue would benefit from the explanations of a peer that has completed the
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same strategy; the ones with mixed strategies would benefit from discussing the similarities and
differences between their approaches; the ones with non-symmetric strategies would learn about
the benefit of working with a symmetric approach.

8. Conclusions

This paper presented an approach that extends the current research in the area of grouping for
collaborative learning activities by replacing the use of a single indicator of performance with a
more refined way of considering performance in the form of user strategies. This approach also
complements the research that looks at the social characteristics of learners and the way they can
be used in forming meaningful groups. Moreover, the social-based approaches can be integrated
with our approach, potentially leading to a more comprehensive mechanism for group formation
which we will investigate in the future.

Although we developed the approach for our particular exploratory learning environment, i.e.
eXpresser and a specific domain, i.e. mathematical generalisation, the learner modelling mech-
anism and the grouping approach can be applied, either separately or in combination, to other
exploratory learning environments and domains characterised by multiple equally valid solutions.
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