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ABSTRACT 
A heated discussion has arisen over the “best” priorities derivation method. Using a 
Monte Carlo simulation this article compares and evaluates the solutions of four 
AHP ratio scaling methods: the right eigenvalue method, the left eigenvalue method, 
the geometric mean and the mean of normalized values. Matrices with different di-
mensions and degree of impurities are randomly constructed. We observe a high 
level of agreement between the different scaling techniques. The number of ranking 
contradictions increases with the dimension of the matrix and the inconsistencies. 
However these contradictions affect only close priorities.   
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1. Introduction 

 
Since AHP was introduced by Saaty (Saaty 1977, 1980), it has been applied in 

numerous situations with impressive results (see lists in Golden, 1989; Shim, 1989; 
Vargas, 1990; Zahedi, 1986). AHP has been also criticised in the literature on ac-
count of weaknesses in its theoretical foundation. The three most important issues 
are the rank reversal problem (Johnson, et al., 1979), the priorities derivation method 
(Barzilai, et al. 1987, 2001b) and the comparison scale (Barzilai 2002, 2001a, 
2001b, 1998; Salo et al., 1997). This paper focuses only on the priorities derivation 
methods and its consequences on rank contradictions. The literature covers several 
derivation methods which can be divided in two groups (Golany, et al., 1993): the 
eigenvalue approach and the methods minimizing the distance between the user-
defined matrix and the nearest consistent matrix.   
 

Among the eigenvalue methods, we distinguish the principal right eigenvalue 
(Saaty 1977, 1980), the principal left eigenvalue (Johnson, et al., 1979), and the 
modified eigenvalue method. Because of the reciprocity of the matrix, the last util-
izes only the upper triangle to calculate the priorities. Unfortunately, since the rank-
ing depends on the order of the alternatives in the matrix (Cogger, et al., 1985; Ta-
keda, et al., 1987) the modified eigenvalue method is not reliable. 

 
A minimum distance can be reached by different metrics. This has lead to the 

development of different derivation methods, in particular the logarithmic least 
squares also called geometric mean (Crawford, 1985), the least squares (Jensen, 
1984), the weighted least squares (Chu, et al., 1979; Blankmeyer, 1987), and the 
logarithmic least absolute values (Cook, 1988). 

 
With the exception of the logarithmic least squares equation, the methods are 

difficult to apply. In particular, the least squares method can result in several minima 
which make the choice ambiguous. Saaty (1984a) gives an example where the least 
squares method produces an illogical result.  
 

A heated discussion has arisen over the “best” method. One side supports the 
eigenvalue method (Saaty, et al., 1984a; Saaty, et al., 1984b; Harker, et al., 1987; 
Saaty, 2001a; Saaty, 2003), the other side argues for the geometric mean (Barzilai, 
et al., 1987; Barzilai, et al., 1990; Barzilai, 1997; Barzilai, 2001). This dispute seems 
to be futile because experimental studies (Budescu, et al., 1986; Golany, et al., 1993) 
show that each method is best in at least one criterion (usually among the criteria it 
explicitly seeks to optimize), but neither is optimal by all or even most criteria. 

 
The first part of the paper reviews theoretically the four derivation methods: the 
right eigenvalue method, the left eigenvalue method, the geometric mean and the 
mean of the normalised values. Next we describe a Monte Carlo simulation compar-
ing the methods, and finally we evaluate these results. 
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2. Derivation of priorities 

 

A pairwise comparison matrix is called consistent if the transitivity (1) and the 
reciprocity (2) rules are respected. 
 aij = aik · akj    (1) 
 

 
ji

ij
a

a
1

=  where i, j and k are any alternatives of the matrix (2) 

 
In a perfectly consistent matrix (3), all the comparisons aij obey the equality aij 

= 
j

i

p

p
, where pi is the priority of the alternative i. Each method introduced in section 

1 calculates identical priorities for consistent matrices. When the matrix contains 
inconsistencies, two approaches can be applied: the perturbation theory and the dis-
tance minimization. 
 
 

 

A  =                                                          (3) 
 

 
 
 

 
2.1. Mean of normalized values 

 
This is the oldest method and is based on three steps (example 1): 

 
1. Sum of the elements of the column j 
2. Normalization of the column j 
3. Mean of row i 

 
Demonstration : 
All the elements of the column j of the matrix (3) are summed, which gives   
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The normalised value is calculated by dividing the comparison 
j

i

ij
p

p
a =  by (4): 

p1/p1 ... p1/pj ... p1/pn 

... 1 ... ... ... 

pi/p1 ... 1 ... pi/pn 

... ... ... 1 ... 

pn/p1 ... pn/pj ... pn/pn 
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The priority i is the average of the elements (5) of the row i. 
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The priority pi is as expected the normalised priority pi normalised. 
 
For this method no mathematical approach is available for dealing with inconsistent 
matrices. 
 
Example 1: 
 
Consider the following comparison matrix: 
 
 
The method “mean of normalized values” derives the priorities as follow: 
 

1. Add the elements of the columns:  (1.5, 9, 4.5) 
 
 

2. Normalize the columns:                    

 
 

3. Calculate the mean of the rows:  (0.67, 0.11, 0.22). 
 
 
2.2. The eigenvalue approach 

 
Saaty (1977, 1980) proposes the principal eigenvector p

r
 as the desired priori-

ties vector.  It is calculated with the following equation: 
 
 A · p

r
 = λ · p

r
 where A is the comparison matrix (7) 

  p
r
is the priorities vector 

  λ  is the maximal eigenvalue. 

1 6 3 

1/6 1 1/2 

1/3 2 1 

0.67 0.67 0.67 

0.11 0.11 0.11 

0.22 0.22 0.22 
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Demonstration: 
We multiply the consistent matrix (3) by the priority vector p = (p1, ..., pi, ..., pn), we 
obtain: 

 A p = n p where  p = (p1, ..., pj, ..., pn) (8) 
  n = dimension de A 

 
Saaty (1977, 1980) justifies the eigenvalue approach for slightly inconsistent 

matrices with the perturbation theory, which says that slight variations in a consis-
tent matrix imply slight variations of the eigenvector and the eigenvalue (example 
2). 
 
Example 2:   
Figure 1 represents the characteristic equation of the consistent matrix A. The 
maximal eigenvalue is 3 (dimension of the matrix) and the associated eigenvector is 
p
r
 = (0.67, 0.11, 0.22). Figure 2 draws the characteristic equation of the near consis-

tent matrix B, slightly modified from the matrix A. We can see that the characteristic 
equation, the eigenvalues and the priorities are also slightly modified. 
 

The eigenvalue method is less transparent than the minimization of the distance. 
Many authors have underlined the unclearness of the eigenvalue process (Johnson, 
et al., 1979; Chu, et al., 1979). To clarify the eigenvalue method we apply the power 
method, a numerical method to calculate the maximal eigenvector (e.g. Lusti, 2002). 

 
The power method relies on an iterative process (example 3), where: 

1. The pairwise matrix is squared. 
2. The row sums are then calculated and normalised. This is the first approxima-

tion of the eigenvector. 
3. Using the resulting matrix. Step 1 and 2 are repeated. 
4. Step 3 is repeated until the difference between these sums in two consecutive 

priorities calculations is smaller than the stop criterion. 
 
 consistent 
 
                                       
A = 
 
 
  

 near consistent 

 
B = 
 
 

1 6 3 

1/6 1 1/2 

1/3 2 1 

1 6 2 

1/6 1 1/2 

1/2 2 1 
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p
r
 = (0.67, 0.11, 0.22) p

r
 = (0.61, 0.12, 0.27) 

Figure 1:  Characteristic equation of the 
consistent matrix A 

Figure 2:  Characteristic equation of the 
near consistent matrix B 

 
Example 3: 
Considering the inconsistent matrix B of example 2, the priorities are derived as 
follow: 
 
1. Square the matrix  
 
 
 
2. Sum and normalise the rows:  (0.615, 0.116, 0.268). 

3. Repeat step 1 and 2:  (0.614, 0.117, 0.268). 

4. Stop if the difference between the priorities of steps 2 and 3 is smaller than 
the stop criterion. 

In example 3, the value a13 = 7 is the sum of: 

a13 = a11 · a13 = 1 · 2 = 2 

a13 = a12 · a23 = 6 · 
2

1
= 3 

a13 = a13 · a33 = 2 · 1 = 2 

These three lines are the direct and indirect comparisons deduced by the 
transitivity rule (1). Since the matrix is inconsistent, the three estimations are not 
equal. The power method of squaring the matrix takes the sum of all the three 
estimations, taking into account direct and indirect estimations.  

When matrices are inconsistent, the ratio between two priorities may differ 
from our direct estimations. This phenomenon criticised from Bana e Costa, et 

3 16 7 

0.583 3 1.333 

1.333 7 3 
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al. (2001) is due to the consideration of indirect estimations in the priorities cal-
culation. As indirect estimations contain important information, we think that 
their influence on the final priorities must be taken into account. Therefore we do 
not consider the criticism from Bana e Costa, et al. (2001) to be valid. A debate 
has been opened on the weight to be allocated on the indirect estimations 
(Brugha, 2000).  

 
 
2.3. The geometric mean 

 

In this approach, the priorities are given by the geometric mean (example 4), 
which minimizes the logarithmic error (Crawford, 1985):  
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a  where aij is the comparison between i and j  

 pi is the priority of i. (9) 
 

This method is insensitive to an inversion of the scale: the geometric mean 
of the rows and the columns give the same ranking. 
 

Saaty (1990) criticizes this method because he sees no conceptual justifica-
tion for working with a logarithmic scale. He adds that the calculation is made 
only with a row, i.e. the indirect estimations are not considered (Saaty 1984a, 
1984b).  
 
Example 4:   
The priorities from the matrix of the example 1 calculated with the geometric 
mean are: 

p1 = 62.23613
=⋅⋅ , p2 = 44.0

2

1
1

6

1
3 =⋅⋅ , p3 = 87.012

3

1
3 =⋅⋅  

Normalizing, we obtain: p
r
 = (0.67, 0.11, 0.22) 

 
 
3. Simulations 

 

We generated matrices of different dimensions and inconsistencies in a 
Monte Carlo simulation and compared the results of the four derivation methods.  
 

Budescu et al. (1986) and Triantaphyllou et al. (1990) generate random ma-
trices and then assign them to an inconsistency group. We do not think that a 
random filling of matrices reflects the process used by decision makers when 
using AHP. Additionally we expect the rate of unusable matrices (totally incon-
sistent matrices) to be very high. 
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Golany et al. (1993) have improved the matrix generation process. Only the 
first row is randomly selected from a uniform distribution in the interval [1, 9]. 
The other comparisons aij are randomly selected from the distribution aij 

∈ [
i

j

a

ak

1

1

100

)100(

⋅

⋅−

, 
i

j

a

ak

1

1

100

)100(

⋅

⋅+

], where j > i >1 and k ∈  [10, 20, … ,90] . 

This method considers the errors of the decision maker to be multiplicative: aij · 
eij , where eij is the error factor. Multiplicative errors consider low values to be 
less perturbation sensitive than high values. For example, if we have an error of e 
= 2, the initial comparison 2 is subject to a shift of 2 = (4 · 2) - 2 units. For the 
same error, the comparison 4 is subject to a shift of 4 = (4 · 2) – 4 units.  
This method suffers from other problems: The first row contains discrete values 
from the interval [1, 9], but the other entries obtain continuous values which 
could be even values outside the comparisons scale! 
 

Our simulation approach uses an additive error of aij + eij. Additive errors 
modify all values of the comparison scale equally. All matrix values come from a 
discrete interval [1, 9] and we discuss how to deal the extremities of the scale. 
 
 
3.1. Description 

 
The experiment is based on five steps: 
 
1) Building inconsistency groups 

For dimensions from three to seven, we build five groups of inconsistent 
matrices based on the consistency ratios ([0, 0.02[; [0.02, 0.04[; [0.04, 0.06[; 
[0.06, 0.08[; [0.08, 0.1[). We have chosen consistency ratios smaller than 0.1 
(Saaty’s limit to accept matrices as “near consistent”). For each five different 
dimensions and each five consistency group, one hundred matrices have been 
generated, which results in a total of 100 · 5 · 5 = 2500 matrices.  
 
2) Generating a consistent matrix 

A consistent matrix is constructed in four steps (Ishizaka, et al., 2004a): the 
principal diagonal, the independent, the transitive and the reciprocal compari-
sons. Only the first diagonal below the main diagonal is randomly selected from 
the fundamental scale values [1/9, 1/8, …, 1, 2, …, 9], the other comparisons can 
be deduced by the transitivity and the reciprocity rules. If a value is induced out-
side the fundamental scale, the matrix is rejected. 
 
3) Introducing impurities 

The number of impurities introduced in the upper part of the matrix is ran-

domly selected from the interval [0, 1, …, 
2

2
nn −
], where n is the dimension of 

the matrix. This impurity is represented as a shift in the comparison scale 
(equivalent to an additive error term) reaching at most 45 % of the extreme pref-
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erence 9, i.e ± 4 scale positions (example 5). The comparisons modified by slight 
perturbations (impurities) are chosen randomly. The process is stochastic; there-
fore a comparison can be modified by more than one perturbation. The amplitude 
of the maximum shift allowed is a delicate question. The introduced error should 
reflect the inconsistencies of a typical decision maker. It should not be too small 
to exclude possible scenarios. In this paper we assume that a maximum shift of 4 
units meets the requirements. Anyway, if the impurities are too high and induce 
strong inconsistencies (i.e. a consistency ratio of more than 0.1) then the matrix 
is rejected. 
 

The percentage of each new value is equal to 100 / 9 = 11.11 %, where the 
denominator 9 is the number of possible new values. If the original comparison 
value is greater than 5 or smaller than 1/6 then the number of shift possibilities is 
less than 9.  
 
Example 5:   
If the consistent comparison is 3, a shift from at most 4 positions scale is admit-
ted. The new value can be between 1/3 and 7. 
 
 

   
  1/9    1/8    1/7    1/6    1/5    1/4   1/3    1/2     1        2       3       4       5       6       7       8       9 

 
One question which arises from this is whether the decision maker is subject to a 
border effect and which is the impact? Two contradictory theories exist: 

- The extreme value is used more frequently than others. Every time the 
user wishes to enter a value outside the scale, the highest authorised 
value will be chosen. For example, if a decision maker places aij = 5 and 
ajk = 4 then aik = 9 will probably be entered. 

- Psychologist have argued that extreme values are less used than middle 
values (e.g. Berekoven, et al., 2001).   

We suppose that these tendencies compensate for each other and no border 
effect exists. To avoid a border effect, the percentage of each new value remains 
11.11 % and the original comparison gets the remaining percentage. For exam-
ple, if the entry is 8, the new value can be 9, 7, 6, 5, or 4 with a probability of 
11.11 % for each number and 8 with a probability of 100 - (5 · 11.11) = 44.45 %. 
 
4) Assigning the matrix to an inconsistency group 

The consistency ratio (C.R.) is calculated and the matrix is classified into 
one of the five inconsistency groups (see step 1) or rejected if the C.R. is equal or 
higher than 0.1. 
 
5) Deriving the priorities 

The priorities are calculated with the following four methods: 



 10 

- Mean of the Normalised Values (MNV) 
- Right Eigenvalue Method (REM) 
- Left Eigenvalue Method (LEM) 
- Geometric Mean (GM) 

The solutions are collected and analysed. The results are shown in the next para-
graph. 

 
 

4. Results 

 

 

4.1 Rankings contradictions 

 

The four derivation methods do not always result in the same ranking. The 
number of ranking contradictions out of 100 with regard to the dimension of the 
matrix and the consistency ratio is represented in table 1. 
 
 dim 3 dim 4 dim 5 dim 6 dim 7 total 

C.R. < 0.02 0 0 7 8 12 27 
C.R. < 0.04 0 5 15 17 30 67 
C.R. < 0.06 0 8 20 23 43 94 
C.R. < 0.08 0 15 28 43 58 144 
C.R. < 0.10 0 20 33 58 81 192 
total 0 48 103 149 224  

Table 1:  Number of ranking contradictions with regard to the dimension of the matrix 
and the consistency ratio 

 
All methods provide the same ranking for matrices of dimension three. The rank-
ing contradiction phenomenon increases linearly with the inconsistencies (figure 
3) and the dimension of the matrix (figure 4). This is easily explicable: if the 
number of alternatives increases, the possibilities of reversal rise too. The proc-
ess is analogous to the disorder measured by the consistency ratio: when it in-
creases, the probabilities of reversal are higher. Tables 2 and 3 show that the 
linear correlation between the data is very high. 
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Figure 3: Number of rankings contradictions in function of the consistency ratio 
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Figure 4: Number of rankings contradictions in function of the dimension of the matrix 
 

 
Dimension of 

the matrix 
Slope Correlation 

4 5 0.99 
5 6.5 0.99 
6 12.6 0.98 
7 16.6 0.99 

Table 2: Slope of the linear functions “consistency ratio” to “number of contradictions” 
and the correlation between these two set of data 
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Consistency ratio Slope Correlation 

< 0.02 3.2 0.96 
< 0.04 7.2 0.98 
< 0.06 10.1 0.97 
< 0.08 14.4 0.99 
< 0.1 20 0.99 

Table 3: Slope of the linear functions “dimension of the matrix” to “number of contradic-
tions” and the correlation between these two set of data 

 
4.2 Comparisons between alternative methods 

 
The highest number of ranking contradictions occurs between the right ei-

genvalue method (REM) and the left eigenvalue method (LEM) followed by the 
the left eigenvalue method (LEM) and the mean of the normalised values (MNV) 
(table 4). Relatively few ranking contradictions are found between the right ei-
genvalue method (REM) and the mean of the normalised values (MNV). This 
probably explains why the mean of the normalised values is widely used as an 
approximate method of the eigenvalue method. 

[%] REM LEM GM 
MNV 9 23 17 
REM - 25 18 
LEM - - 19 

Table 4: Percent of ranking contradiction between each method 

A χ2 test (table 5) confirms our observations of table 4. The levels of contra-
diction are similar if χ2 < 3.841 (significance level at P(χ2) = 0.05). Therefore the 
number of contradictions between the methods MNV - REM is significantly 
lower than for the others comparisons and the number of contradictions between 
the methods MNV - LEM and REM - LEM is significantly higher.  

χ2 MNV/ 

LEM 

(573) 

MNV/ 

GM  

(431) 

REM/ 

LEM 

(618) 

REM/ 

GM 

(449) 

LEM/ 

GM 

(475) 

MNV/ 

REM (228) 
176.9 72 216.4 83.4 101.0 

MNV/ 

LEM (573) 
- 25.1 2.2 18.9 11.6 

MNV/ 

GM (431) 
- - 42.2 0.4 2.6 

REM/ 

LEM (618) 
- - - 34.0 23.9 

REM/ 

GM (449) 
- - - - 0.9 

Table 5: χ2 test for the number of contradictions (in brackets) between the methods; if χ2 < 
3.841 (significance level at P(χ2)=0.05), contradiction levels are similar (in bold) 
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  4.3 Reversed priorities 
 

Table 6 represents the mean difference between two reversed priorities. We 
illustrate the difference between two reversed priorities with the example 6.  
 

 MNV REM LEM GM 

Dim 4 
0.008 ± 
0.000 

0.008 ± 
0.000 

0.020 ± 
0.001 

0.007 ± 
0.000 

Dim 5 
0.007 ± 
0.000 

0.009 ± 
0.000 

0.016 ± 
0.000 

0.007 ± 
0.000 

Dim 6 
0.013 ± 
0.000 

0.017 ± 
0.001 

0.017 ± 
0.001 

0.012 ± 
0.000 

Dim 7 
0.007 ± 
0.000 

0.011 ± 
0.000 

0.012 ± 
0.000 

0.007 ± 
0.000 

Table 6: Mean difference between two reversed priorities classified by dimension and 
method 

 
Example 6: 
The priorities are calculated with method A and B: priorities of method A = 
(0.244; 0.439; 0.11; 0.101; 0.106) and priorities of method B = (0.25; 0.455; 
0.104; 0.098; 0.094). A contradiction arises between ranks 4 and 5. The differ-
ence between the two reversed priorities is for the method A: 0.106 – 0.101 = 
0.005 and for the method B: 0.098 – 0.094 = 0.004.  
 

These differences are small (≤0.020) as we can confirm with a binomial test. 
If we have 4 priorities, the equivalent distance between them is of 0.2 (figure 5). 

 p1 p2 p3 p4 
 
 
   0 0.2 0.4 0.6 0.8 1 

Figure 5: The equivalent distance between the four priorities pi is 0.2 
 

The zero-hypothesis states that if we randomly set the priorities on the scale 
0 to 1, the interval between them is in 50% of the cases higher than 0.2 and in the 
others 50% lower than 0.2. In our experiment, we can reject the zero-hypothesis 
because in no cases the difference between two reserved priorities is higher than 
0.2. 

The same binomial test can be repeated with the matrices of the higher di-
mensions. Again the zero-hypothesis is rejected because no difference between 
two reserved priorities is higher than the distance of an equivalent distance be-
tween the priorities. 
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5. Conclusion 

 
In a Monte Carlo simulation, consistent matrices of different dimensions 

have been generated and an additive error has been introduced randomly. Then 
four priority derivation methods have been compared. We have not observed any 
classification difference for matrices of dimension three and for perfect consis-
tent matrices. For superior dimensions the differences between the solutions of 
derivation methods are minor. This applies even to the mean of normalized val-
ues where no mathematical theory for inconsistent matrices exists. Only very 
close priorities suffer from ranking contradictions. The number of contradictions 
increases with the inconsistencies and the matrix dimension. Ranking contradic-
tions are issued from the different processing methods of inconsistencies, the 
more inconsistencies, the more contradictions. The eigenvalue approach consid-
ers the indirect estimations in the calculation of priorities. The calculated priori-
ties depend on how much these comparisons are intransitive. The geometric 
mean uses only the direct comparisons. For this reason the geometric mean of the 
columns and the geometric mean of the rows always give the same ranking. Con-
tradictions in the ranks can be used as an indicator to decrease the inconsistency 
in order to determine better the dominance of close priorities. Decreasing the 
dimension with clusters could be also used in case of comparison of heteroclite 
alternatives (Saaty, 2001b; Ishizaka, 2004b). This technique allows an easier 
comparison and an extension of the comparison scale from 1-9 to 1-∞. 

 
There is a high level of agreement between the different scaling techniques. 

This has already been observed in previous studies, where the generation tech-
niques of matrices for the simulation were different: totally randomly filling of 
the matrices (Budescu, et al., 1986) and consistent construction of the matrices 
followed with an introduction of a randomly multiplicative error (Golany, et al., 
1993). We do not think that one method is superior to another. We advice deci-
sion-makers also to consider other criteria like “easy to use” in selecting of their 
derivation method.  

The concordance of the right and left eigenvalue is the lowest compared to 
any other pair of solutions. This finding reinforces the warning of Johnson et al. 
(1979) regarding the use of the right eigenvector. 
 

This study should help decision maker with their choice of a priorities deri-
vation method. To understand the priority derivation process, we have also de-
veloped an intelligent tutoring system (Ishizaka, et al., 2003). It guides the user 
in the construction of a consistent or a near consistent matrix and teaches how to 
derive priorities by the four methods and to observe the effects of slight perturba-
tions on a consistent matrix. All exercises allow the user to freely navigate 
through the solution trees. 
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