
Advanced Modelling of Complex Processes by Fuzzy Networks 
 

 

ALEXANDER GEGOV
1
, NEDYALKO PETROV

2
, BORIANA VATCHOVA

3
, DAVID SANDERS

4 

School of Computing
1,2

, Institute of Information and Communication Technologies
3
, Mechanical and 

Design Engineering
4 

University of Portsmouth 
1,2,4

, Bulgarian Academy of Sciences
3 

Buckingham Building, Portsmouth PO1 3HE, UK
1,2

, Academic Georgi Bontchev Street, Block 2, 

1113 Sofia
3
, Anglesea Building, Anglesea Road, Portsmouth, Hants, PO1 3DJ  

UNITED KINGDOM
1,2,4

, BULGARIA
3 

alexander.gegov@port.ac.uk, petrovn@gmail.com, boriana.vatchova@gmail.com, 

david.sanders@port.ac.uk 
 

 

Abstract: - This work presents an application of the novel theory of rule based networks for building models of 

processes characterised by uncertainty, non-linearity, modular structure and internal interactions. The 

application of the theory is demonstrated for a flotation process in the context of converting a multiple rule 

based system into an equivalent single rule based system by linguistic composition of the individual rule bases. 

During the conversion process, the transparency of the multiple rule based system is fully preserved while its 

accuracy is improved to a level comparable with the accuracy of the single rule based system. 
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1 INTRODUCTION 
A complex process is usually defined as a process 

composed of interconnected subprocesses that when 

taken together as a single entity exhibit some 

properties that are not to be seen otherwise. In 

particular, a complex process is often described by a 

number of features such as uncertainty, non-

linearity, modular structure and internal interactions 

[1, 2]. These features undoubtedly present a serious 

challenge to the modelling of such a process. 

In this context, fuzzy logic has already proved 

itself as a powerful tool for dealing with non-

probabilistic uncertainty [9]. The most common 

cause for this type of uncertainty can be data that is 

in some way incomplete or ambiguous. 

At the same time, the implementation of fuzzy 

logic by means of fuzzy systems helps with the 

tackling of non-linearity [3]. In this sense, the rule 

base of a fuzzy system is usually capable of 

representing quite well strongly non-linear functions 

in complex processes which usually can’t be dealt 

with by other types of mathematical models. 

However, in spite of the relative success of fuzzy 

systems in capturing uncertainty and non-linearity, 

there are other features of complexity, which can’t 

be taken into account. For example, the interactions 

among subsystems and the high dimensionality in 

terms of large number of inputs may lead to the 

deterioration of fuzzy models. This deterioration can 

be attributed to the ‘grey box’ nature of fuzzy 

systems, which consider only the inputs to and the 

outputs from a complex process but not any 

interactions among separate subprocesses [6]. 

In contrast, a fuzzy network is a rule based 

network in the form of a ‘white box’ model that 

takes into some account the interactions among 

subprocesses [5]. This capability could bring 

considerable advantages in modelling complex 

processes in that all subprocesses and the associated 

interactions can be reflected in the model. In this 

context, the work presented here demonstrates the 

application of fuzzy networks for improving the 

model accuracy for a flotation process while 

preserving the model transparency. 

 

2  BACKGROUND 
 

2.1  Fuzzy Rule Based Systems  

The most common type of fuzzy system consists of 

a single rule base, whereby the associated fuzzy 
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model is described as a ‘grey box’ [3, 9]. A single 

rule based system (SRBS) deals with all process 

inputs simultaneously while not taking into account 

the interactions and the structure of the system. Such 

a system is shown in Figure 1, where RB is the rule 

base, {x1,…, xm} is the set of inputs and y is the 

output. In this case, the rules are derived from expert 

knowledge or data measurements about the whole 

process. The resulting SRBS model is usually quite 

accurate but its poor transparency may be an 

obstacle to the understanding of complex processes. 

 

 

Fig.1 Single rule based system 

 

Another quite common type of fuzzy system 

consists of multiple rule bases, whereby the 

associated fuzzy model is described as a ‘white box’ 

[11,12].  A multiple rule based system (MRBS) 

deals with process inputs sequentially while taking 

into account the interactions and the structure of the 

system. Such a system is shown in Figure 2, where 

{RB1,…, RBm-1} is the set of rule bases, {x1,…, xm} 

is the set of inputs, {z1,…, zm-2} is the set of 

interactions and y is the output. In this case, the 

rules are derived from expert knowledge or data 

measurements about the interacting subprocesses. In 

particular, a MRBS can be derived by functional 

decomposition of a SRBS such that all individual 

rule bases of the MRBS are subject to the stages of 

fuzzification, inference and defuzzification. The 

resulting MRBS model is transparent but its low 

accuracy may be a problem for the management of 

complex processes.  

 

 
Fig.2 Multiple rule based system 

A fairly novel type of fuzzy system consists of 

networked rule bases called fuzzy networks, 

whereby the associated fuzzy model is also 

described as a ‘white box’ [5]. A networked rule 

base system (NRBS) deals with process inputs 

sequentially while taking into account the 

interactions and the structure of the system. Such a 

system is shown in Figure 3, where {RB1,…, RBm-1} 

is the set of rule bases, {x1,…, xm} is the set of 

inputs, {z1,…, zm-2} is the set of interactions and y is 

the output. The identical mappings from the MRBS 

are represented by the sets of identity rule bases 

{I21},…, {Im-1,1, Im-1,2, …}. In this case, the rules are 

also derived from expert knowledge or data 

measurements about the interacting subprocesses. In 

particular, a SRBS can be derived by linguistic 

composition of a NRBS such that the stages of 

fuzzification, inference and defuzzification are 

applied only once to the linguistically equivalent 

rule base of the derived SRBS. The resulting NRBS 

model is transparent and fairly accurate at the same 

time due to its hybrid nature, which facilitates the 

understanding and the management of complex 

processes. 

 
Fig.3 Networked rule based system 

 

Overall, NRBSs represent a novel extension to 

SRBSs and MRBSs. As such, NRBSs have already 

been applied successfully for modelling the complex 

process of product pricing in the retail industry 

[4,8]. In particular, NRBSs provide a bridge 

between SRBSs and MRBSs that not only facilitates 

their use but may also improve some of their 

performance indicators such as accuracy and 

transparency. Also, linguistic composition of a 

NRBS into a SRBS is always based on physical 

considerations of complex processes. As opposed to 

this, functional decomposition of a SRBS into a 

MRBS is usually based on mathematical 

considerations of such processes.  

 

2.2 Fuzzy Rule Based Networks 

The novel theory of fuzzy networks introduces 

several formal presentation techniques for fuzzy 

systems such as Boolean matrices and binary 
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relations [3]. It also presents techniques for formal 

manipulation of fuzzy rule bases based on several 

basic operations. Some of them are to be found in 

mathematics and are therefore well known, whereas 

others are quite novel in terms of the underlying 

theory and have been introduced only recently. The 

operations use Boolean matrices or binary relations 

for the presentation of the individual rule bases in 

order to facilitate the manipulation in the context of 

the linguistic composition approach.  

 

2.2.1 Formal Presentation of Rule Bases 

A typical single-input-single-output fuzzy rule base 

can be described by the three rules in            

Equations (1)-(3) 

Rule1: If x is small, then y is low          (1)                                                                                    

Rule 2: If x is medium, then y is high  (2) 

 
Rule 3: If x is big, then y is average   (3) 

 

where the input x takes the set of linguistic terms 

{small, medium, big} and the output y takes the set 

of linguistic terms {low, average, high}. 

This rule base can be also described in a compressed 

form by the integer table shown in  

Table 1. 

Table 1. Integer table for a rule base 

Rule number Input x Output y 

1 1 (small) 1 (low) 

2 2 (medium) 3 (high) 

3 3 (big) 2 (average) 

 

where each linguistic term for the input and the 

output is presented as a positive integer in an 

increasing order from ‘small’ to ‘big’ and ‘low’ to 

‘high’, respectively. 

 The rule base above can be formally presented 

by the Boolean matrix in Equation (4) 

 

    y        1       2       3       (4) 

     x 

     1               1       0       0  

     2               0       0       1 

     3               0       1       0 

 

where the integer numbers for the linguistic 

terms of the input x are row labels, the integer 

numbers for the linguistic terms of the output y are 

column labels, a ‘1’ in the Boolean matrix 

corresponds to an existing rule and a ‘0’ 

corresponds to a missing rule. 

 

2.2.2 Horizontal Merging of Rule Bases 

Horizontal merging is a binary operation that can be 

applied to a pair of sequential rule bases, i.e. rule 

bases residing in different layers within the same 

level of a fuzzy network. This operation merges the 

operand rule bases into a single product rule base, as 

shown in Figure 4.  

 

 
Fig.4 Horizontal merging of rule bases 

 

 When Boolean matrices are used as formal 

models for representing the rule bases of the 

operand rule bases, the horizontal merging operation 

is identical with Boolean matrix multiplication, as 

shown by Equations (5)-(7). The latter is similar to 

convex matrix multiplication, whereby each 

arithmetic multiplication is replaced by a 

‘minimum’ operation and each arithmetic addition is 

replaced by a ‘maximum’ operation. Therefore, this 

operation can be applied only when all the outputs 

from the first rule base are fed forward as inputs to 

the second rule base in the form of an intermediate 

variable. In this case, the product rule base has the 

same inputs as the inputs to the first operand rule 

base and the same outputs as the outputs from the 

second operand rule base, whereas the intermediate 

variable does not appear in the product rule base. 

RB1 :         z      1     2     3            (5)                                                                                         

           i1 

          1             1     0     0  

          2             0     0     1 

          3             0     1     0 
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RB2 :         o2    1     2     3           (6)                                                                                           

          z 

          1             0     1     0  

          2             0     0     1 

          3             1     0     0 

 

RB :     o2      1     2     3      (7) 

                                                                                                            

i1 

          1           0     1     0  

         2           1     0     0 

          3           0     0     1   

 

2.2.3 Vertical Merging of Rule Bases 

Vertical merging is a binary operation that can be 

applied to a pair of parallel rule bases, i.e. rule bases 

located in the same layer of a fuzzy network. This 

operation merges the operand rule bases from the 

pair into a single product rule base, as shown in 

Figure 5. 

 

 

Fig.5 Vertical merging of rule bases 

When Boolean matrixes are used as formal 

models for representing the rule bases of the 

operand rule bases, the vertical merging operation is 

like an expansion of the first operand matrix along 

its rows and columns, as shown by Equations (8)-

(10). In particular, the product matrix is obtained by 

expanding each non-zero element from the first 

operand matrix to a block that is the same as the 

second operand matrix and by expanding each zero 

element from the first operand matrix to a zero 

block of the same dimension as the second operand 

matrix. In this case, the inputs to the product rule 

base represent the union of the inputs to the operand 

rule bases, whereas the outputs from the product 

rule base represent the union of the outputs from the 

operand rule bases. This operation can always be 

applied due to the ability to concatenate the inputs 

and the outputs of any two parallel rule bases. 

RB1 :  o1     1     2     3       (8)                                                                                              

          i1 

          1             1     0     0  

          2             0     0     1 

          3             0     1     0 

 

RB2 :         o2    1     2     3            (9)                                                                                             

          i2 

          1             0     1     0  

          2             1     0     0 

          3             0     0     1 

RB : o1, o2   11   12   13   21   22   23   31   32   33                                                                                                                   

i1, i2                                                                     (10) 

11                  0     1     0     0     0     0     0     0     0 

12              1     0     0     0     0     0     0     0     0 

13                  0     0     1     0     0     0     0     0     0 

21                  0     0     0     0     0     0     0     1     0 

22                  0     0     0     0     0     0     1     0     0 

23                  0     0     0     0     0     0     0     0     1 

31                  0     0     0     0     1     0     0     0     0 

32                  0     0     0     1     0     0     0     0     0 

33                  0     0     0     0     0     1     0     0     0 

 

3 ISSUES AND PROBLEMS  
 

3.1 Flotation Process Description 

The flotation process from the mining industry is a 

typical complex process that deals with the 

enrichment of raw ore [10]. It usually consists of a 

certain number of interacting subprocesses, which 
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are characterised by non-probabilistic uncertainty. 

The subprocesses represent different parts of the 

flotation process, whereby the associated 

uncertainty is related to the incomplete and 

ambiguous information available about the factors 

affecting the ore enrichment at each stage. The 

paragraphs below describe the modelling of the first 

stage of a flotation process using the three types of 

fuzzy systems from Section 2. 

The purpose of flotation is the improvement of the 

characteristics of multi-component poly-metal ores. 

In particular, flotation is implemented by processing 

a mixture of finely ground ore, water and reagents 

called pulp, through a sequence of two stages, as 

shown in Figure 6.  

 
Fig. 6 General block scheme of the flotation process 

 

At the first stage of the flotation process, there 

are only three measurable inputs: x1 – the 

concentration of copper in the pulp given in [%] , x2 

– the concentration of iron in the pulp given in [%], 

x3 – the pulp debit given in [l/min]. However, there 

are a number of unknown input factors 

characterising the pulp such as acidity, density and 

temperature, which can’t be quantified in a 

mathematical model. The same measurable inputs 

appear also as outputs y1, y2, y3 from the first stage 

of the process and as outputs z1, z2, z3 from the 

second stage of the process. At the output of the first 

and the second stage, the concentration of iron and 

copper in the pulp is usually increased, whereas the 

pulp debit may either increase or decrease 

depending on the quantity of the water and reagents 

added to and removed from the pulp. The variables 

v1, v2, v3 and w1, w2, w3 at the output of the two 

stages of the flotation process represent waste 

quantities of the corresponding outputs, which are 

removed from the pulp for further treatment or 

disposal. For the purpose of initial prototyping, only 

the concentration of copper in the pulp is considered 

as an output of the first stage for the three types of 

fuzzy system models from Section 2. 

 

3.2 Flotation Process Modelling 

The SRBS model is not capable of capturing the 

influence of the inputs on the outputs of the flotation 

process. Moreover, this model is not capable of 

modelling the interactions between the inputs and 

the outputs. As opposed to this, the MRBS and the 

NRBS models are usually better in capturing the 

influence of the inputs on the outputs as well as in 

modelling the interactions between them. This is 

why MRBS and NRMS models are the main focus 

of this work, whereas the SRBS model is used only 

for comparison purposes. 

The first model represents a MRBS. It has very 

good transparency and can deal with process inputs 

sequentially. However, this model is expected to be 

worst in terms of accuracy because of the 

fuzzification – defuzzification error accumulated for 

every individual rule base [9]. 

The second model is obtained from the first model 

and represents a NRBS. It also has very good 

transparency and can deal with process inputs 

sequentially. This model is expected to have better 

accuracy than the first model because of the single 

fuzzification - defuzzification sequence applied to 

its rule base [3]. 

The third model represents a SRBS. It is expected to 

be the best in terms of accuracy [9]. However, this 

model is not transparent and can deal with process 

inputs only simultaneously. This model is 

considered here for comparison purposes. 

All the models are based on the data from the 

flotation process studied in [10] and part of the data 

used is shown in Table 2. The data includes about 

75 measurements for the three inputs and the output 

introduced at the start of the current section. 

Table2. Partial data sets for the flotation process 
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4 SOLUTIONS AND 

RECOMMENDATIONS 
 

4.1 Implementation of Rule Based System 

Models 

The two merging operations from Sections 2 have 

been implemented in MATLAB
®
 environment. In 

order to work with Boolean matrices as formal 

models of rule bases, two additional MATLAB
®
 

functions have been implemented [7]. These 

functions convert the integer table representation of 

a rule base into a Boolean matrix form and vice 

versa, i.e. the Boolean matrix representation of a 

rule base into an integer table form.  

The result of the first additional function is a 

Boolean matrix with rows that represent all possible 

permutations of the linguistic terms of the inputs 

from the integer table sorted in ascending order. The 

columns of that matrix represent all possible 

permutations of the linguistic terms of the outputs 

from the integer table sorted in ascending order. An 

element of the product Boolean matrix is set to 1, if 

it reflects an existing mapping from an input / output 

permutation from the operand integer table, or to 0 

otherwise. 

The result of the second additional function is a 

rule base represented in the form of an integer table. 

For a fuzzy system with m inputs and n outputs, the 

first m columns of the table represent the linguistic 

terms of the inputs to the system and the next n 

columns represent the linguistic terms of the outputs 

from the system. This product integer table is used 

for creating a fuzzy system in the Fuzzy Logic 

Toolbox™ for MATLAB
®
. 

 

4.2 Multiple Rule Based System Model 

The first model represents a MRBS structured as a 

hierarchical fuzzy system. It is based on inferential 

composition of two interacting rule bases. In this 

case, the composition is applied to the rule bases 

such that each of them is subject to fuzzification, 

inference and defuzzification. The MRBS model is 

illustrated in Figure 7. 

 
Fig.7 Block scheme of the MRBS model 

 

The first rule base RB1 in the MRBS model has 

two inputs i1 and i2 - the initial concentration of 

copper in the pulp and the initial concentration of 

iron in the pulp. These two inputs are presented by 

eleven linguistic terms each, as shown in Figures 8-

9. The output z from the first rule base RB1 is the 

intermediate concentration of copper in the pulp and 

it is presented by eleven linguistic terms, as shown 

in Figure 10. The first and the last several rules from 

the rule base RB1 are presented as an integer table in 

Table 3. 

 
Fig. 8 Linguistic terms for the initial concentration 

of copper 

 
Fig.9 Linguistic terms for the initial concentration of 

iron  

 
Fig. 10 Linguistic terms for the intermediate 

concentration of copper  
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Table 3 Partial presentation of the first rule base for 

the MRBS model 

 
 

The second rule base RB2 in the MRBS model 

has two inputs - the intermediate concentration of 

copper in the pulp z and the pulp debit i3. The first 

input to RB2 is the same as the output from RB1 and 

it is already presented by the eleven linguistic terms 

in Figure 10. The second input to RB2 is also 

presented by eleven linguistic terms, as shown in 

Figure 11. The output o from the second rule base 

RB2 is the new concentration of copper in the pulp 

and it is presented by the eleven linguistic terms for 

the first input z in Figure 10, because z has the same 

physical meaning and variation range as o. The first 

and the last several rules from the rule base RB2 are 

presented in Table 4. 

 
Fig. 11 Linguistic terms for the pulp debit  

Table 4 Partial presentation of the second rule base 

for the MRBS model 

 
The first rule base in the MRBS model has 44 

rules, whereas the second rule base has 46 rules. The 

rules in these rule bases are derived using simple 

data clustering of the input and output data sets [7]. 

All inputs and outputs in these two rule bases are 

considered in their variation ranges. 

The MRBS model is simulated for all available 

measurements. The results from the model 

simulation are shown in Figure 12, where the data 

output is given by the ´o´ marker and the model 

output is given by the ´x´ marker.  

 

Fig. 12 Simulation results for the MRBS model 

 

The two output surfaces of the model are 

presented in Figures 13-14, from where it can be 

seen that they are strongly non-linear due to the non-

linearity of the process. In this case, the first surface 

represents the first rule base, whereas the second 

surface represents the second rule base. 

 

Fig.13 First output surface for the MRBS model 

 

Fig.14 Second output surface for the MRBS model 
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4.3 Networked Rule Based System Model 

The second model represents a NRBS and it can be 

obtained from the first model. In this case, the two 

rule bases are the same as the ones used for the 

MRBS model and they are composed linguistically 

into an equivalent single rule base. An identity rule 

base (IRB) is added to the NRBS model for the 

purpose of making the operations of vertical and 

horizontal merging of rule bases compatible. The 

first and the last several rules from the rule base IRB 

are presented in Table 5, from where it can be seen 

that output is identical to the input. The equivalent 

single rule base for the model is then subject to a 

single fuzzification - defuzzification sequence. The 

NRBS model is illustrated in Figure 15. 

Table 5 Partial presentation of the identity rule base 

for the NRBS model 

 

 
Fig. 15 Block scheme of the NRBS model 

 

The linguistic composition of the individual rule 

bases is applied, as shown in Equation (11) 

 

RB = (RB1 + IRB) * RB2             (11)                                                                                                     

 

where RB1 is the first rule base, RB2 is the 

second rule base, IRB is the identity rule base, RB is 

the equivalent single rule base of the NRBS model. 

The symbols ‘*’ and ‘+’ denote horizontal and 

vertical merging operations of rule bases, 

respectively. The first and the last several rules from 

the rule base RB are presented in Table 6. 

 

Table 6 Partial presentation of the rule base for the 

NRBS model 

 

 

The NRBS model has three inputs and one 

output. The inputs and the output are presented by 

the same eleven linguistic terms as the ones used for 

the MRBS model. The overall number of rules for 

the equivalent single rule base of the model is 251. 

The rules in these rule bases are derived using 

simple data clustering of the input and output data 

sets, as the one used for the MRBS model. All 

inputs and outputs in the equivalent single rule base 

are considered in their variation ranges.  

The NRBS model is simulated for all available 

measurements. The results from the model 

simulation are shown in Figure 16, where the data 

output is given by the ´o´ marker and the model 

output is given by the ´x´ marker.  

 

 

Fig 16 Simulation results for the NRBS model 

 

The output surface of the model is presented in 

Figure 17, from where it can be seen that it is 

strongly non-linear due to the non-linearity of the 

process. The peaks in the surface correspond to 

strong variations of the output for small variations 

of the inputs, which are due to the non-measurable 

input factors that are not included in the model.  
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Fig. 17 Output surface for the NRBS model 

 

4.4 Single Rule Based System Model 

The third model represents a SRBS. This model is 

very similar to the NRBS in that it also has a single 

rule base RB with the same three inputs and one 

output as the NRBS model. However, this single 

rule base is derived in advance and not from other 

rule bases. The first and the last several rules from 

the rule base RB are presented in Table 7. The 

SRBS model is illustrated in Figure 18. 

 

Table 7 Partial presentation of the rule base for the 

SRBS model 

 

 

 

Fig 18 Block scheme of the SRBS model 

 

The inputs and the output are presented by the 

same eleven linguistic terms as the ones used for the 

MRBS model. The overall number of rules for the 

rule base of the model is 58. The rules in these rule 

bases are derived using simple data clustering of the 

input and output data sets, as the one used for the 

MRBS model. All inputs and outputs in the single 

rule base are considered in their variation ranges.  

The SRBS model is simulated for all available 

measurements. The results from the model 

simulation are shown in Figure 19, where the data 

output is given by the ‘o´ marker and the model 

output is given by the ´x´ marker. 

 

 

Fig19 Simulation results for the SRBS model 

 

The output surface of the model is presented in 

Figures 20. It can be seen that the surface is strongly 

non-linear due to the non-linearity of the process.  

 

 

 

Fig. 20 Output surface for the SRBS model 

 

4.5 Evaluation of Models Performance 

The three rule based models are evaluated by 

quantitative metrics based on two indicators – mean 

absolute percentage error (MAPE) and overall 

transparency index (OTI). 
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The MAPE is a widely used indicator for model 

validation [9]. It is calculated as the absolute value 

of the difference between each data point in the data 

sets from the flotation process and the output of the 

corresponding rule based model. This difference is 

then divided by each data point and summed over all 

points from the simulations of the three models. 

Finally, the sum is divided by the overall number of 

simulated points, as shown in Equation (12) 

 

     MAPE = ( Σi=1n | di – mi |  / di ) / n        (12) 

 

where di and mi, i=1,n denote the data output 

and the model output for the i-th simulated point, 

respectively. 

The OTI is a novel indicator for model validation 

[5]. It is estimated by first subtracting the sum of 

identity rule bases and identity intermediate 

variables from the overall sum of rule bases and 

intermediate variables. The result of this subtraction 

is then divided by the sum of inputs and output. The 

assumption here is that each rule base or 

intermediate variable improves the transparency by 

taking into account the modular structure and the 

interactions of the flotation process. However, this is 

not the case for identity rule bases and identity 

intermediate variables in the NRBS model, which 

represent mathematical constructs for the linguistic 

composition of the rule bases from the MRBS, but 

don’t have any physical meaning. In particular, the 

OTI is obtained, as shown in Equation (13) 

 

OTI = (Nn + Nz – Nidn – Nidz) / (Ni + No)       (13)                                                                                                                

 

where Nn is the number of rule bases, Nz is the 

number of intermediate variables, Nidn is the 

number of identity rule bases, Nidz is the number of 

identity intermediate variables, Ni is the number of 

inputs and No is the number of outputs. 

The comparative evaluation of the three rule 

based models of the flotation process with respect to 

accuracy and transparency is summarised in Table 

8. 

 

 

 

 

 

 

Table 8 Comparative evaluation of models 

Indicator / Model MRBS NRBS SRBS 

MAPE 4.76 % 4.60 % 4.35 % 

OTI 0.75 0.75 0.25 

 

The simulation results show that in terms of 

accuracy the SRBS model is the best, the NRBS 

model is slightly worse, whereas the MRBS is the 

worst of all. The superiority of the SRBS model in 

terms of accuracy can be attributed to the presence 

of approximation errors as a result of multiple 

fuzzification-inference-defuzzification applied to the 

rule bases in the MRBS model or multiple linguistic 

composition applied to the rule bases in the NRBS 

model. As far as transparency is concerned, the 

SRBS model is the worst, whereas the MRBS model 

and the NRBS are better and equal to each other.  

 

4.6 Improvement of Models Performance 

The accuracy of the NRBS model could be further 

improved due to the Boolean matrix multiplication 

nature of the horizontal merging operation. This 

potential improvement is a subject of on-going 

research and it follows from the fact that the 

Boolean matrix multiplication nature of the 

horizontal merging operation allows the number of 

linguistic terms for the intermediate variables 

connecting any pair of rule bases that are 

horizontally merged to be increased, while 

preserving the overall number of rules in the NRBS 

model equal to the number of rules in the 

linguistically equivalent SRBS model.  

In this context, the MAPE of a NRBS model is 

expected to decrease with the increase of the 

number of linguistic terms for the intermediate 

variables connecting the individual rule bases. The 

latter is due to the decreased approximation error 

during the linguistic composition of the rule bases in 

the MRBS. 

A two-step algorithm for improving the accuracy 

of a NRBS model is proposed as follows: 

1. A given MRBS model is converted to a 

NRBS model, whereby IRBs are 

introduced for the presentation of any 

identity intermediate variables. 

2. The number of linguistic terms for all other 

intermediate variables is increased until the 
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error of the NRBS model becomes close 

enough to the error of the SRBS model. 

 

5 FUTURE RESEARCH 

DIRECTIONS 
The theory of rule based networks presented in this 

work can be further extended in the context of 

complex networks. In particular, a number of 

network complexity indicators could be considered 

which would also provide details about the 

complexity of the process that is modelled by the 

rule based network. Some of these indicators could 

be the following: 

• in-degree and out-degree for a node in 

the rule based network, i.e. the number 

of inputs to and outputs from an 

individual rule base in the network, 

• overall in-degree and out-degree for a 

level, i.e. the number of inputs to and 

outputs from the rule bases in a 

particular horizontal level of the rule 

based network, 

• overall in-degree and out-degree for a 

layer, i.e. the number of inputs to and 

outputs from the rule bases in a 

particular vertical layer of the rule based 

network, 

• degree of completeness for a level, i.e. 

the number of occupied layer positions 

in a particular level of the rule based 

network as a proportion of the overall 

number of layer positions in this level, 

• degree of completeness for a layer, i.e. 

the number of occupied level positions in 

a particular layer of the rule based 

network as a proportion of the overall 

number of level positions in this layer, 

• overall degree of completeness for a rule 

based network, i.e. the number of 

occupied  positions as a proportion of the 

overall number of positions in the 

underlying grid structure of the network. 

In terms of applications, the theory of rule based 

networks could be further validated on other 

complex processes in areas such as manufacturing, 

business, finance, transport and the environment. 

This is because many processes in these areas are 

characterised by uncertainty, non-linearity, modular 

structure and interactions. Therefore, these 

processes could be easily handled by the theory of 

rule based networks that is aimed at dealing with all 

these aspects of complexity. 

 

6 CONCLUSION 
This work illustrates the application of the novel 

theory of rule based networks for building and 

improving a fuzzy model for a complex flotation 

process from the mining industry. The theoretical 

concepts introduced in this work can be applied to 

any rule based models and not only to fuzzy models. 

As a whole, the theory of rule based networks 

facilitates the building of rule based models for 

complex industrial and other processes, 

characterised by uncertainty, non-linearity, modular 

structure and interactions. 
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