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Abstract

This paper presents a novel two phase method that combieedass support vector machine classifiers classifiers esimdpina-
tion rules to quantitatively assess the degree of abnayatlivarious heights during individual aircraft descentd also over the
whole descent. Whilst classifiers have been combined befdheiliterature with success, it is the first time they haventapplied
to the problem of analysing the act of descending of comrakjei aircraft. The method is tested on artificial Gaussiataénd
flight data from an industrial partner, Flight Data Servitéd, the world’s leading flight data analysis provider, wigtomising

results.
Keywords: Aircraft landing guidance, Artificial intelligence, Fawdiagnosis, Support Vector Machines

1. Introduction Itis difficult to create anféicient binary classifier with a good

generalisation ability because whilst there is usualiynlef
The introduction and development of one class classifiats an

normal data, faulty data can be expensive to acquire or very
novelty detection methods has increased the potential fwem

rare, thus creating a class imbalance. To investigate tbis-p
accurate fault detection systems. Such systems are very im-

lem, one class classifiers are specifically designed to mmuatel
portant in a world that has become increasingly automatasd. A

mal data and detect outliers or abnormal data. Expert knowl-
such, the topics of fault diagnosis [1, 2, 3, 4], detectingnam-

edge of a particular problem or operation can be invaluable a
ical failure [5, 6, 7] and condition monitoring [8, 9] are iwp

can be used to identify useful features and also providdlsleta
tant within the research community. The faults themselags c

of likely faults.
potentially have catastrophic consequences such as |dks of

machine, loss of revenue and even death. Therefore there is!dentifying a gradual or sudden change from normality to ab-
an increasing demand for diagnostic systems that can npt onhormality has great value in the field of condition monitgrin

normal operation to abnormal (or unusual) operation. started to move towards an unsafe state can help flight saffety

ficers identify the reasons and advise other flight crew inlaim
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or different behaviour from the system. This could result frommake any a priori assumptions about the data. A disadvan-
changes to the aircraft due to maintenance or new instngtio tage with neural networks is that during training, they may g
for the approach to a specific aircraft. trapped within local minima whereas the SVM method guar-
In this paper we consider how fault detection methods can bantees a global minimum. An additional advantage of SVMs
applied to aircraft descending and landing. Section 2 laks is that they are not adverselffected by having abnormal data
methods for novelty detection and how they have been applieith the training set. Furthermore their presence can imptioee
to real world problems. Section 3 introduces the one claps Sumodel. SVMs are also examples of the Structural Risk Min-
port Vector Machine (SVM). Section 4 introduces combinatio imisation (SRM) paradigm [12], providing a tradé between
rules as methods for summarising data. Section 5 introducethodel complexity and training set error. For these readbes,
the proposed two phase method. Section 6 details the expesne class SVM [13] will be used in this paper to detect abnor-
iments on artificial and flight data and their results. Sectio malities.
7 discusses the method and results and section 8 contains the

Cannas et al. [14] looks at detecting and predicting disrup-

conclusion. ) )
tions in JET. Such pulses can cause damage to the system. Each

eps pulse in the training set is clustered using a Self Orgagislap

March 18, 2011 (SOM) and then trained with using an SVM. Using the SVM
decision function output, data falling outside of two batgls
2. Novelty Detection Research regarded as disruptive. It is important for the novelty déts

. . stem to detect precursors to these disruptive pulseshayd t
There has been a lot of research in novelty detection anay P P P

. e . should lie between 1 second and 100 milliseconds before the
the identification of pre-cursors for abnormalities. A cosp

. . . _event. The system reports an 83% success rate with no missed
hensive review of novelty detection methods can be found in

[10, 11]. Broadly speaking there are two main areas; sitzdist disruptions and only 10% premature alarms.
methods and neural netwg8VM type approaches. Statistical Perdisci et al. [15] also uses the one class SVM in order to
methods often aim to estimate the probability density fiomct  detect anomalies in computer networkffi@ The dificulty of

of the normal class and then test if unknown objects belonghis task can be seen by the fact that the system should be able
to this distribution. Such an estimation can be made via-parao detect unseen attacks. Previous systems used payldiad sta
metric methods, such as a Mixture of Gaussians classifier, aics but it has been shown that such systems can be evaded by
non-parametric methods such as a Parzen windows classifier.crafted mimicry attack. To tackle this problem, they prsgo
Disadvantages of these methods are that there can be a lotafi ensemble of SVM classifiers which makes a classification
parameters to optimise and they do depend on a large and rejpased on a majority vote, on the premise that with severat mod
resentative training set. Furthermore, they find it hardhtmi-  els of normality, a constructed mimicry attack will be haod t
porate abnormal data in the training set and their presegmte c achieve. The SVMs are trained orffdrent descriptions of the
distort the model. payload and the ensemble reports a very high AUC (area under

Neural network and SVM type approaches do not directly esthe receiver operator characteristic curve) value. Thianate

timate the underlying probability distribution and they dat  strates that multiple classifiers can be used to make a dacisi



on the overall impact of the parts. phase consists of classifiers considering snapshot daifieat d
Gardner et al. [16] uses a one class SVM with a sliding win-€nt heights during the descent. In Clifton’s paper, thesiies
dow to detect seizures from electroencephalography regsd output was assessed using combination rules. Also, these wa
(EEGS). The benefits of the method are that it is not patiest sp N° interest in comparing several sets of combustion tedisdo
cific and it does not require training on seizure data whigh ca the most abnormal combustion. This ability is useful to anal
be very dificult to obtain. It achieves a sensitivity of over 95%, Y€ multiple descents. To achieve this, the second phase of t

highlighting the ability of the one class SVM to detect unsee approach consists of one classifier analysing the outputseof

events. classifiers in phase one and ranking the occurrences by le sing
novelty score. The method is fully described in section 5.
Abnormalities in combustion were looked at by Clifton [17]. y y

Note that in this paper, a positive SVM decision functiorueal The novelty of the proposed method is that it quantifies the

. L . . degree of normalitiabnormality at selected points during the
denotes abnormality whereas in this paper, it denotes fityma g g y P 9

. descent. By modelling each height during the descent viaea on
A one class SVM was trained on data from each of the three y g 9 9

. . . lass SVM and using the fierence between the decision func-
combustion chambers to identify the moment that the overal? g

. . tion value and the computed threshold, analysts can igentif
combustion became unstable. To this end, a mean, product, P y 9%

. - o the points where abnormalities occur and how abnormal they
maximum and a minimum combination rule was used on the

. re. In addition, the method has the ability to rank multi
three classifier outputs. It was found that the mean and maxF—l y (pte

o . currences of the descents using another SVM which compares
mum rules were the mosftective in detecting precursors to un-

. . the all the outputs for an individual task. This unique featu
stable combustion but it was also stated that all four rubesc: P q

provide useful information. Clifton showed that this apgeb enables the analyst to identify those descents that had<ae-g

o . , . est overall novelties so that action can be taken to remegy an
was very accurate in identifying the first signs of unstaloie¢

. problems. Furthermore, such scores could be plotted awer ti
bustion.

to identify persistent deviations from the airline’s staralop-
Combination rules were also studied by Tax et al. [18] for
erating procedures.
the purposes of improving classification by combining the ou
puts from multiple classifiers. Rather than training onesila

) o 3. Support Vector Novelty Detection
fier on a large dataset, there can be advantages to trairfing di

ferent classifiers on fierent parts of the dataset and combining  ope Class Support Vector Machine (OCSVM) [13, 19] is a

their information to classify the data. It is found that thean powerful novelty detection method based on the supporbvect

rule is best when the posterior probabilities are not weiles machine [20, 21].

mated. Consider 'normal’ training datay, %,, ..., X € R". Let¢ be

The system described in this paper is similar to the methothe mappingp : R — F into some feature dot product space
in Clifton’s paper, but there are subtleffdrences. Clifton’'s F. Letk(x,y) = (¢(X), #(y)) be a positive definite kernel which
method is trying to detect the first time an anomaly occursoperates on the mapping In this paper, the kernel used is
whereas when analysing flight data, if possible, all anagsali the Gaussian kernek(x,y) = exp(— X — yiI? /20-2), as it sup-

and their impact should be detected. To this end, the firspresses growing distances in larger feature spaces. btase,
3



the width parameter associated with the Gaussian kerned. ThHThe "abnormality’ detection function is then given by

data is mapped into the feature space via the kernel function
and is separated from the origin with maximum margin. The

decision function is found by minimising the weighted sum of

the support vector regulariser and the empirical error teéem

pending on a margin variabfeand individual error termé;,

|
min WP+ 5 X & - p,
weF.£eR' ,peR i=1
subject to (wW- (X)) = p - &, (1)
& >0,

wherew is a weight vector i andv is the fraction of the

Ns
909 = po - Y aik(s, ). (10)
i=1

The user has to choose the appropriate kernel, with its asso-
ciated parameters for the problem. However, rather thanszho
ing an error penaltyC as via the classical SVM method, one
chooses a value forwhich is the fraction of the training set to
be classified as outliers. The software used for this classsi
LIBSVM for Matlab version 2.91 [22], a well established SVM
program.

The one class SVM is ideally suited to this type of prob-

pliers,a;, B > 0, with constraints and setting the derivatives oftion takes values depending on the distance between the data

those multipliers with respect tw equal to zero leads to

|
w= " aig(x), (2)
i=1
|
Z aji =1, 3
i=1
o+ Bi= @

The dual problem is formulated to give

|
min 2 aiajk(x, Xj),
a€R' ij=1
|
subject to Yaj=1, )
i1
O<aj< i

vl*

Solutions for the dual problem yield parametesspo where

Ns

Wo= ) a@ig(s), (6)
i=1
1 Ns Ns

po= D D, k(s ). )
Sj=1i=1

Here,Ns is the number of support vectors agdlenotes a sup-

port vector. The decision function is given by
f(x) = sgniw - ¢(x) - po) (8)

Ns
=w{2ﬁﬂ&@—m} (9)

i=1

point and the boundary threshold. It is positive if the data

point is inside the decision boundary (normal) and negative

it lies outside (abnormal). The function is bounded above by

the minimum distance from the centroid of the hypersphere to
the boundary but is not bounded below as a data point could be
an infinite distance from the boundary. In practise typiaadip

tive values are between 0 and 5 and typical negative valges ar

between 0 and -50, depending on the level of abnormality.

4, Combination Rules

In this paper, a Combination Rule (CR) is regarded as a statis
tic summarising a set of data; in this case, the set of SVM de-
cision values for an occurrence of a descent. rFbeights, the

combination rules used are as follows

1. Sum} = i Xi
i=1

2. StDevo = /%i 1(xi - w)?,

n
3. MaxMa = max(x),
i=1

Ms

n
4. Min Mi = miln(xi),
1=
n .
i

5. NumNeg= (Z

)Wherexi <0,
i=1

n
6. SumNeg,” = (2 xi)wherexi <0,
i=1



n
i=1

8. Ratio PofNeg=In '% =

. In this section, the proposed two phase method is detailed.
The first phase is designed to assess the level of abnormality
The sum rule has been chosen because it is able to assess $agach height in the descent by training a one class SVM on
impact of positive and negative values in an additive way an@napshot data from each height. The magnitude of the SVM
thus is able to quantitatively assess the quality of an secce output measures the degree of normgibnormality for pos-
of a descent. The standard deviation is a measure of thedspregiye/negative outputs respectively. Each occurrence of a de-
of the data and it is anticipated that a high standard dewiati scent can now be represented as a feature vector consiéting o
will be indicative of an abnormal descent. It is probablet thathe svMm output at each height in the descent.
the minimum will be more useful than the maximum value as  The second phase of the method looks at all of the individual
it directly measures the most abnormal value. The number Gfescents and determines which is the most abnormal overall.
negatives measures how many of the heights returned negatiyyyo methods of representing individual descents are coeapar
values and, along with the sum of the negative values, shoulgihe first considers each descent represented by the raw SVM
be a good measure of the degree of abnormality of the descerjytputs. The second method calculates the combinatios rule
The sum of the positive values should provide a measure of tthee section 4) from the SVM outputs and these represent the
normality of the descent and the ratio rule, similar to theysu gescent. A new SVM is trained on individual descents repre-
rule, should be able to consider the descent as a whole. sented by these feature vectors of combination rules oratie r
It is noted that the sum rule is a linear combination of thevalues. The combination rules (CR) and raw values (RV) that
sum of the negatives rule and the sum of the positives rulis. Thwere created from data in the training sets for phase 1 atso fo
is not advisable in general when choosing features but fer th the training set for phase 2. The same process occurs for the
problem, a brute force method will be used which considdrs altesting set descents. The SVM outputs can then be ranked in
possible combinations of rules in order to find the best subseascending order, i.e. with the negative values ranked bighe

of rules. In summary, phase 1 of the method is concerned with iden-

The motivation behind introducing the combination rulestifying abnormalities at individual heights for individude-
was the concern that by using the raw-values, large abnsrmaiscents. Phase 2 is concerned with assessing the impactef the
ties for one stage could distort the overall score. Furtieen abnormalities over the whole of the descent and comparisg th
if the descent was represented by a large number of heightt other descents to see if there is any significaffeténce.
the 2nd phase feature space would have a large number of drigure 1 shows the method in block diagram form. A more de-
mensions. This would mean there would need to be trainindgiled description can be found in bullet point form in seati
data numbering at least an order of magnitude larger than tHe 1.
number of heights. For some applications this could be hard
to satisfy. By using the combination rules, the dimensiothef 5.1. Method Details

second phase feature space will remain small and large @moun e Using relevant domain knowledge, identify the airport for

of training data will not be needed. which the descents are being made into and select a suit-



Figure 1: Block Diagram of Proposed Method (FDM) program. For more details regarding FDM, see refer-

| i iz Sl | 2" Phase Classifiation | ences [23, 24, 25]. Each aircraft is equipped with a flighadat
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ysed for exceedances. The dataset used consists of a number

Ranked .
Output of descents onto the same runway over a 13 month period from

June 2007 to June 2008. Flight data experts have analyskd eac

descent and identified those which are regarded as abnamal (

unusual). For full details, see section 6.4.
able number of heights.

e Create training and testing sets for each of the heights. 6.2. Error Metrics

e Train a one class SVM for each height. To assess the performance of the classifiers in this pager, th

standard confusion matrix will be utilised, where True Rosi

e For each descent in the training and testing sets, form a i »
(TP) denotes the percentage of correctly identified norreal d

feature vector containing the combination rules computed _
scents, True Negative (TN) denotes the percentage of tlyrrec

from the SVM output from each height.
identified abnormal descents, False Positive (FP) denbtes t
e Feature vectors formed from SVM outputs from training percentage of incorrectly identified normal descents arseFa
data form a new training set for the second phase. LikeNegative (FN) denotes the percentage of incorrectly idiedti
wise for feature vectors created from testing data. abnormal descents.
The Balanced Error Rate (BER) [26] is a useful measure of

e Train a new one class SVM on the training set of feature

o . . the impact of misclassification on both cl nd is giyen
vectors and test it using the corresponding testing set. e impact of misclassification on both classes and is giyen b

e The SVM output ranks the descents by their level of over-
BER = (FP+ FN)/2. (11)

all abnormality.

Itis a very useful error metric in one class classificatiawbpr
lems where there is an imbalance between positive and megati
6. Experiments , . -
examples. Consider an example with 90 positive examples and

6.1. Overview 10 negative examples and a classifier that predicts all ebemmp

In this section, the proposed method is tested on artifieitl d are positive. The accuracy is 90% and the error is only 10%
and real world flight data. The artificial data is used to dighb  Which gives the impression of a strong model. The BER how-
if the combination rules provide better performance thangus €Vver is 50%, highlighting the fact that the classifier is vieopr
the raw outputs and if so, which combination rules achielied t at detecting negative examples.
best results.

The flight data is obtained from jet aircraft making a descent6 3. Artificial Data

and landing on the same runway. The data has been extractedTo test the proposed method, Gaussian data was generated

from data obtained from that airline’s Flight Data Monitayi  along with outliers to identify how well descents with oatk
6



Table 1: Parameter Values for one class SVM. Table 2: Parameter Details for the Atrtificial Data Experiment

Phase  Name Values Parameter Values

1 op1 10 fori=-3,-2,-1,0,1 Number of Features 2,5,10

1 vp1 0.01,0.05,0.1 Number of Sample Points 10, 20, 50
2 opP2 10 fori=-3,-2,-1,0,1 Covariance Matrix Scale Multiplier 1.25,15,2
2 VP2 0.01,0.05,0.1

Table 3: Best BER for the Artificial Data Experiment with 10 Saenpoints
Number of Features Cov. Matrix RV BER CR BER

could be detected. Artificial outlier data for a one classsika

Multiplier

fication problem can be flicult to generate because there is a

2 1.25 35% 28.5%
danger that the outlier data is too distant from the target<c| 2 15 29.5% 25%
This means that the problem becomes a two class classifica- 2 2 19% 10.5%
. . . - . 1.2 2% 27.5%
tion problem and so the outlier model is too unrealistic. sThi 5 5 32% 5%

) ] . o 5 15 23% 20%

problem is avoided by using the same distribution for thgetar

5 2 10.5% 5.5%
class and the outlier class but multiplying the covarianegrix 10 1.25 26.5% 20.5%
by small numbers to generate outliers, thus ensuring tleat th 10 15 18.5% 10.5%

10 2 3.5% 0%

majority of outliers are close to the target class.

For this experiment the artificial data consists of ten, tyen
or fifty sample points. A training set for an arbitrary sample6.3.1. Results

point consists of 250 Gaussian data points with a mean vec-

tor containing all zeros. The covariance matrix is the idgnt This section shows the BERs for each of the artificial exper-

matrix. The testing set for the same sample point consisted Jments and compares the results if the raw values or the combi

another 150 Gaussian data points generated in the same rmamqgt'on rules are used as the inputs for the second phase SVM.

and 50 outlier Gaussian data points. The outlier data isrgeneTabIes 3, 4 and 5 show the results for 10, 20 and 50 sample

ated from the data in the training set by multiplying the cova points respectively. In all cases the combination rulesipce

ance matrix by a scale factor of 1.25, 1.5 or 2. The number of superior BER by a significant margin. This is perhaps bacaus

features is 2, 5 or 10. Full details of the parameters uselkin t the combination rules are better able to describe the siuipe

experiment are found in table 2. The software used to gmera%he graphed phase 1 SVM outputs which enables the phase 2

the artificial data was the DDool box for Matlab [27] created SVM'to obtain better results. Furthermore, there is likelpe

by David Tax who is an expert on one class classification. ThEOME redundancy in using all the SVM outputs (raw values) as

one class SVM used is LIBSVM for Matlab version 2.9 [22], not all sample points may be significant. This is likely insthi

one of the best SVM implementations. instance due to the fact that the artificial abnormal datbies
mal at every sample point. In general, for both methods;clas
Parameter ranges for the one class SVM classifiers can tsification improves with more sample points though this doul

found in table 1. be due to the same reason.



Table 4: Best BER for the Artificial Data Experiment with 20 Saenpoints

Number of Features Cov. Matrix RV BER CR BER
Multiplier

2 1.25 33% 31%

2 15 21.5% 18.5%

2 2 7.5% 5.5%

5 1.25 29.5% 24.5%

5 15 17% 8%

5 2 6% 1%

10 1.25 20% 12%

10 15 11.5% 1.5%

10 2 4% 0%

Table 5: Best BER for the Artificial Data Experiment with 50 Saenpoints

Number of Features Cov. Matrix RV BER CR BER
Multiplier

2 1.25 28% 22.5%

2 15 12.5% 5%

2 2 9% 0.5%

5 1.25 25.5% 15%

5 15 9% 4.5%

5 2 7.5% 0%

10 1.25 16.5% 4%

10 15 13.5% 0%

10 2 8.5% 0%

6.4. Flight Data Experiment

In this section, the proposed method is tested on real data
from jet aircraft descending and preparing to land. Snapsho
data is taken from certain heights in the descent, which of
course all aircraft must pass through if they are to land. The
data set consists of 1,518 descents by one operator onto the
same runway at the same airfield. All the descents were anal-
ysed by flight data experts to identify any that had significan
abnormalities and 63 were found. These 63 descents, along
with another 240 normal descents selected at random form the
testing set whilst the remaining 1,215 descents form thieitrg
set.

Existing methods of flight data analysis are event based (see
chapter 5 of [25]). The event based approach involves check-
ing to see whether aircraft parameters exceed given lifioits,
example, if the airspeed exceeds a fixed limit between prede-
fined heights then this is regarded as an event. Exceedargces a
graded by three levels, level 1 being a minor exceedance and
level 3 a major exceedance. An example of an event is the fol-
lowing: Pitch angle low during final approach between 1000ft
and 100ft. Level 1 limit -2 deg, level 2 limit= -4 deg and level
3 limit (most serious} -6 deg. Level 3 events are regarded as
severe and are reported to the flight safefjcer. Level 2 and
1 events are used for statistical purposes.

For the descent there are 24 sample points, corresponding to
heights that the aircraft descends through during the désce
The heights are 10000ft, 9000ft, 8000ft, 7000ft, 6000fO A
4000ft, 3500ft, 3000ft, 2500ft, 2000ft, 1500ft, 1000ft,0f5
500ft, 400ft, 300ft, 200ft, 150ft, 100ft, 75ft, 50ft, 25fhd Oft.

In this experiment the number of heights is varied to deter-
mine if this has any impact on the results, along with all gales
non empty subsets of the set of all 8 combination rules.

Table 1 contains the one class SVM parameter ranges for the

experiment. The number of features for the snapshot data at



Figure 2: Distance-Height Ratio Distribution for Normal aAtinormal De- Figure 3: Indicated Airspeed Distribution for Normal and Albmal Descents.
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Figure 4: ROD Diference Distribution for Normal and Abnormal Descents.
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plotted for an individual descent for which the raw SVM out- ROD_Dift/ Fest/Min

put from each of the phase 1 classifiers is plotted against the
heights that those SVMs represent. This enables the userto i
tributions for the normal and abnormal descents. The spiky n
mediately identify any regions of abnormality and the htdgh
ture of the middle part of the chart highlights that the aifcr
at which they occur at.
for the most part of the descent aim to fly at specific speeds.

6.4.1. Features Though it is not as distinct as the Distance-Height chagreh

Table 6 shows all the features used in the flight data. Thest @ larger proportion of the abnormal data in the higher and
were selected via expert knowledge. Note that not all featur lower regions. An important point to note is that many of the
are used at each height. data points on the abnormal descents will be normal; thus mak

In this section, some of the features used in this dataset af8d it harder to detect overall fierences.
analysed. Figure 2 shows theffdrences in the distributions  Figure 4 shows the fferences in the Recommended Rate of
of the Distance-Height ratio for the normal and abnormal deDescent (ROD) distribution for the normal and abnormal de-
scents. All heights for which this parameter was used are inscent. This data ranges from 1000ft to 100ft. For a given air-
cluded in this chart and range from 10000ft to 2500ft. The macraft groundspeed, it is the recommended rate of descemt in o
jority of the normal data is contained between 238/ and  der to land on the correct part of the runway. Like figure 2,tmos
350FfNM whereas the abnormal data has a larger proportiomf the normal data is between -100 and 200 feet per minute, the
of its values in the higher and lower regions. centre part of the graph. There is a greater proportion ofiabn

Figure 3 shows the ffierences in the Indicated Airspeed dis- mal data in the tails of the distribution.
9



Table 6: List of features used.

Name Unit Typical Range Description
V-Vref Knots -5t0 50 Diference between airspeed and reference landing
speed
IAS Knots 110 to 300 Indicated Airspeed
(\AY) FeetMin -4000to 0 Rate of Descent
Pitch Degrees -2to 5 Angle of aircraft relative to the horizon
Glideslope Deviation Dots -3t03 Deviation in the vertigarh optimum landing path
Localiser Deviation Dots -3t0 3 Deviation in the horizonfadm optimum landing
path
Flap Degrees 0to 30 Flap setting
Landing Gear No Units Oorl Landing gear deployment
Speedbrake No Units Oorl Speedbrake deployment
Engine Speed No Units 30to 70 Percentage of nominal maximum speed
Ratio of height to distance to landing Fadv 200 to 400 Height divided by track miles to landing
Difference between IVV and Recommended Rate dfeetMin -300 to 300 Diference between actual descent rate and recom-
Descent (ROD) mended descent rate
6.4.2. Results Table 7: Best BER for the Flight Data Experiment
Table 7 shows the main results for the flight data experiment. Number of Best Combina- RVBER(SD) CRBER (SD)
As expected, by increasing the number of heights, the BER for Heights tion Rule
10 (2,4,5,6,7,8) 9.6% (0.7%)  7.9% (0.7%)
both approaches falls. The raw value method and the combina-13 (1.4.6.8) 4.9% (0.8%) 6.4% (0.4%)
tion rule method produce similar results with the combmati 24 (4,5,8) 3.0% (0.5%)  3.4% (0.6%)

rule approach having a lower BER at 10 heights. A two-tailed

t-test was also used to analyse the data. The combinatien ruﬁection rate was 30%. This gives a BER of 35% which is much

approach has a significantly lower average BER with 10 heighthigher than the results for the raw value and combinatioa rul

(t(18) = 5.2807 p0.05) though with 13 heights the raw value methods in table 7.

approach BER s significantly lower (t(18)4.9906, p:0.05). 6.5. Analysis of Select Descents of the Flight Data

However for 24 heights, there is no significanffelience be- _ ) ) o
In this section, 3 descents are studied to highlight how the
tween the two methods (t(18) 1.6612, p<0.05). What is in- ) ) ) )
method provides information about the degree of abnorynalit
teresting to note is that the best rule set for all experisiean- ) .
at various heights.
tains rule 4 and 8 (minimum and ratio). This is logical given

that they make statements about the abnormal regions of th&5.1. Descent 1 - Very steep descent.

DAPs and therefore should be valuable in describing them. The large negative region on figure 5 is caused by the very
Of the 63 descents which have abnormalities, only 19 werateep descent of the aircraft. At 10000ft, the aircraft s |
detected by traditional flight data analysis methods udimeg t 24NM track miles to go compared to the average value of
event based parameter exceedance approach (see Appendid@\M. This leads to high rates of descent, high airspeeds and

of [25] for details). There were no false positives and the deheavy speedbrake usage. Furthermore, at 2500ft and 2000ft,
10



Table 8: A Sample of Points of Interest on Descent 1. Table 10: A Sample of Points of Interest on Descent 2.

Height  Parameter ParameteParameter Average Parameter Height Parameter  ParameteParameter Average Parameter

Value Percentile  Value Value Percentile  Value
10000 DISTRAT  23.75 0 40.05 500 V-Vref 30.16 100 8.336
9000 DISTRAT  20.36 0 36.07 500 RODDIFF  -139.9 5 4.87
8000 DISTRAT  18.03 0 32.22 500 Pitch -2.1 0 1.871
7000 DISTRAT  15.54 0 27.22 400 V-Vref 27.16 99 8.239
6000 DISTRAT  13.03 0 22.71 400 Pitch -2.5 0 2.002
3000 (\AY -3002 0 -973.36 300 V-Vref 27.16 100 7.914
2500 \AY -2368 1 -875.33 300 RODDIFF  -229.2 1 2.87
2000 \AY -1926 1 -798.40 300 Pitch -0.7 1 2.073
1500 \AY -1507 1 -823.33

Table 11: Event List Descent 2.

Table 9: Event List Descent 1.

- - Event Name Severity Level Height
Event Name Severity Level Height
- Pitch Low 1000-100ft 1 568
High Descent Rate2000ft 1 2935
. High Speed 500-50ft 3 284
High Speed 500-50ft 1 286
Low Pitch at Touchdown 3 20
G Landing 1 0
Figure 5: Descent 1 DAP
s Descent Abnormality Profile
CERE 6.5.2. Descent 2 - High speed event
=
]
~ At 10000ft the aircraft is 60NM from the runway at an air-
(0]
§_ speed of 207kts. The average track miles to landing is 40NM
(%]
% and the average indicated airspeed is 275kts. From thebiail
=
= evidence the aircraft chose a shallow descent because fof hig
-2 -
Height AAL (Feet) winds. Once the aircraft reaches a height of around 75Gt, th

airspeed begins to increase and the pitch angle becomes nega

the aircraft has the speedbrakes deployed but with morelihan tive. See table 11 for a list of events.

degrees of flap set, which is prohibited in the airline’s St Table 10 shows some of the heights of interest for this flight.
Operation Procedure (SOP). However, the aircraft manages t The slightly negative region shown on the DAP (see figure 6)
descent well as seen by the largely positive region of fliffleta  resuited from the aircraft descending earlier than ususlam
1000ft. This is an example where a potentially unsafe amroa gjower than average indicated airspeed. Whilst this is net un
has been corrected and the lack of high severity level evenigyfe it is unusual. However, the main point of interest ieraf
shows this. Nonetheless a flight safefjiaer would be inter-  5ooft. At 10001t the aircraft satisfies the criteria for axtsap-
ested in this descent as it may indicate a wider problem. Seﬁroach but from 500ft, the airspeed has increased rapidly an
table 9 for a list of events. the pitch angle is negative. The impact of these parameters i

Table 11 shows some of the heights of interest for this flightvisible on the DAP.
11



Figure 6: Descent 2 DAP Figure 7: Descent 3 DAP

s Descent Abnormality Profile i Descent Abnormality Profile
g 4
505 542
s 0 £ '
2-05 o 08
0'8) p 08) 0.6
=~ 2 04
315 =02
> 3 0
o 5| o T T T T T T T T T T T T T T T T T T T T T T 1
Z Z OO0 00O o000 OO0 0000000000 Wowo
OO0 00O o000 OO0 00O 0OWVLOOOODOWLOM~WLMN
25 S58223988 822 e v oar<
Height AAL (Feet) b Height AAL (Feet)
7. Discussions of Method and Results
Table 12: A Sample of Points of Interest on Descent 3.
Height Parameter ParameteParameter Average Parameter 7.1. Discussion of Method
Value Percentile  Value
2000 IAS 145 1 172 The benefits of such a method are that firstly abnormalities
2000 Flap 25 98 8.52 can be detected and individual descents can be ranked tigains
1500 IAS 130 2 156

others. Phase 2 outputs can be stored and over time, this his-
torical information could prove very valuable in assessing

changes in the act of descending. It could Fected by very

6.5.3. Descent 3 - Normal descent cold or very hot weather or there could béfdiences between

. . . ) early descents and later descents resulting from changhs to
This descent is smooth with an airspeed and a rate of descent

. . . standard operating procedures. All of this information ban
typical for this approach. Landing gear and flaps are deploye

. . . . . utilised to improve the responses of the maintenance teaths a
at typical heights and by 1500ft, the aircraft is establisba

) . the flight safety fficers. The ability of the one class SVM to
the Instrument Landing System (ILS) with a normal speed. By

) . . . interpret abnormal data in the training set is importantiiee
1000ft, the aircraft’s airspeed is around v#e8 kts with a rate

) . whilst it may be possible to obtain faults with which to test
of descent appropriate for its groundspeed. The approagarmpo

is set and flap 30 (landing flap) has been chosen, on, there might be examples of unusual data which contains no
faults but they are still dierent to normal approach conditions.
Table 12 shows some of the heights of interest for this flightThe ability to handle this unseen data is very important. An-
The DAP (see figure 7) is such that all data points are posiether benefit is that the magnitude and sign of the SVM output
tive, highlighting that the descent has been conducted thi¢h allows descents to be directly compared and this can be use-
majority of parameters at theftérent heights within normal ful in assessing any fierences over a period of time. There are
ranges. Table 12 shows that some of the parameters at certailso very few parameters to be optimised. If the Gaussiareker
heights were abnormal but their impact on the whole descens$ used then a grid search can be used to optimigeop,, vp1

was not enough to make the descent itself abnormal or for thatndvp,. The P1 parameters are those of the individual SVMs

matter, any of the heights. for phase 1 and the P2 parameters are those for the single SVM
12



in phase 2. viation) appears the least often. This is probably becalise a
There are however some disadvantages. Firstly, it is not int the normal occurrences have nearly all positive sampletpoin
itively clear how to choose the number of heights. However, t outputs whereas the abnormal occurrences will have nelarly a
results show that more heights led to a smaller BER. It isrcleanegative outputs. Hence the standard deviation may beagimil
that significant domain knowledge will be needed in order tobetween the two sets. Rules 1 and 8 (sum and ratio) appear the
understand which heights could be informative and the featu most often. This could be due to the fact that they incormorat
necessary to record at each height. information about the normal (positive outputs) and theaatbn

mal (negative outputs) into a single figure whereas rule X(ma

7.2. Discussion of Results
rule) for example only makes a statement about the normal sam

Looking at the results for the artificial data experimene(se ple points. For 10 features, rules 2, 4 and 6 (standard dewjat

tables 3 to 5), it is clear that the combination rules provide min, positive sum) appear the least often. The fact that4ule

lowest BER compared to the raw values. This is in part becausgppears the least often is unusual given that a low minimum is

the combination rules are better able to describe the sflape g i ication of an abnormality or unusual behaviour. How-

the profile created from the phase 1 SVM outputs for each OCéver, given that the outlier data will be similar for each péam

currence. Furthermore, some of the raw values are likelyeto bpoint (since they were generated from the same Gaussian pa-

redundant due to the artificial nature of the data in that the a rameters), the minimum may not stand out very much,

normal occurrences contain outlier data at every sampla;poi

N . . . Another point to make is that although there were 8 rules
thus making it easier for the classifier to successfullyrilisie P g

available, the classifier never needed more than 6 rules to
nate between normal and abnormal occurrences.

. . . achieve the best BER and usually 2 or 3 was enough. In some
Itis also unlikely that abnormal occurrences of a descelt wi

) ) cases one rule was enough but this is likely to be because of th
be abnormal at every sample point, thus making them harder in

principle to detect artificial nature of the data.
In the flight data experiment (see table 7), the BERSs for the It is important to note that there are some importafitedi
raw value method and the combination rule method are closences between the artificial data and the flight data. Whigst th
and in fact there is little dierence between the two methods artificial abnormal occurrences had abnormalities at gesdt
as the combination rule method is significantly lower with 100f the sample points, this was not the case for the flight data.
heights, the raw value method is significantly lower with 13fact some normal flights had abnormalities at some heights bu
heights and there is no significanfiédrence with 24 heights. in the opinion of the flight data experts, these were not ehoug
The results for the artificial data set (see tables 13 to X5) arto make the label of those descents abnormal. Similarly, de-
illuminating in terms of the best combination rules to ctmos scents that were regarded as abnormal often had regions-of no
For the experiments with just 2 features at each sample,poinmal flight. For this reason, it is not surprising that rule ®ie
the rules appear roughly the same number of times. This sugf the best rules in the 3 experiments (see table 13). It is abl
gests that with so little discriminative information, itasdiffi-  to consider the impact of the negative and positive regians i

cult classification problem, which is also confirmed by thghhi  terms of number and magnitude and is therefore ideal for de-

BER values. When 5 features are used, rule 2 (standard déecting abnormalities. Rule 4 is also prominent becauseva lo
13



Table 13: Best BER and Combination Rules for the Artificial@®Bkperiment

with 10 Heights
Number of Cov. Matrix Combination Rule CR BER

Features Multiplier

? 125 (1.23.6.7.8) 28.:5% Table 15: Best BER and Combination Rules for the Artificial &DBkperiment
2 15 1,2,3,4), (2,3,4,7),(2,3,4,8) 10.5% with 50 Heights
2 2 (38) 10.5% Number of Cov. Matrix Combination Rule CR BER
5 1.25 (1,4,6), (4,6,7), (4,6,8) 27.5% Features Multiplier
> Lo @5.7). 3.7.8) 20% 2 1.25 (1,3.4,5,7) 22.5%
> 2 (38) 5-5% 2 1.5 (1,2,3,7,8) 5%
10 125 @ 20.5% 2 2 (1,2,4,5),(2,45,7), (456,7)  0.5%
10 15 (1,3,5,7) 10.5% 5 195 (15.8) 15%
10 2 (15).(5.8) 0% 5 15 (1,3,7), (1,3,8) 4.5%
5 2 1. (M. ®) 0%
Table 14: Best BER and Combination Rules for the Artificial @®Bkperiment 10 1.25 @) 4%
with 20 Heights 10 15 @) 0%
Number of Cov. Matrix Combination Rule CR BER 10 2 @ 0%

Features Multiplier

2 1.25 (1,6), (4.6), (5.6), (6,7), (6,8)  31%
2 1.5 (7.8) 18.5%
2 2 €7 5.5%

5 1.25 (1,2,8), (5,6,8) 24.5%
5 15 1) 8%

5 2 (3.4,7) 1%

10 1.25 (1,8), (7,8) 12%
10 1.5 (1,3) 1.5%
10 2 (2,5) 0%

Table 16: Best Average BER for each Combination Rule for thghEData

Experiment. H stands for heights.
CR Num- Average BER (10 Average BER (13 Average BER (24

minimum will almost certainly indicate the presence of a sig

ber H) H) H)
nificant abnormality. 1 21.6% 19.2% 14.3%
2 21.6% 19.3% 13.8%

Table 16 shows the average BER for all appearances of each
3 23.4% 21.0% 16.5%
rule for each height experiment with the flight data. For all , 21 5% 19.1% 13.8%
experiments rule 8 produces the lowest average BER which is5 21.4% 19.2% 14.2%
. . 0, 0, 0,
consistent for reasons already explained. Rule 3 prodinges t 6 22.0% 19.7% 14.7%
. _ o 7 22.3% 20.0% 15.2%

highest average BER for all experiments which is in contrast

8 21.1% 18.7% 13.6%

with the artificial data results. However, it highlights tlesen
an abnormal flight can have many normal heights (hence a sim-
ilar maximum to a normal descent) and therefore it strugigles

discriminate between the normal and abnormal descents.

14



Table 17: Average Correlation for each Combination Rule @le8VM pa- Table 18: Average BER for a set number of Combination Rules osedall

rameters for 24 Heights in the Flight Data Experiment SVM parameters for 24 Heights in the Flight Data Experiment
Combination Rule Average Correlation (St Average BER (St Number of Rules Average BER (St Average Best BER (St
Number Dev) Dev) Used Dev) Dev)
1 0.774 (0.170) 14.3% (9.2%) 1 23.3% (10.8%) 9.7% (11.6%)
2 0.661 (0.287) 13.8% (9.3%) 2 17.9% (5.7%) 6.1% (3.7%)
3 0.301 (0.115) 16.5% (9.8%) 3 15.7% (3.6%) 4.9% (2.0%)
4 0.667 (0.238) 13.8% (8.8%) 4 14.5% (2.5%) 4.3% (1.2%)
5 0.667 (0.201) 14.2% (9.6%) 5 13.7% (1.8%) 4.1% (0.8%)
6 0.687 (0.238) 14.7% (9.7%) 6 13.1% (1.3%) 4.0% (0.6%)
7 0.622 (0.174) 15.2% (9.3%) 7 12.6% (0.8%) 4.1% (0.4%)
8 0.758 (0.188) 13.6% (8.9%) 8 12.1% (rfa) 4.3% (ia)

7.2.1. Analysis of Second Phase Features 8. Conclusion

Table 17 shows the average degree of correlation between

) In this paper, a method that demonstrates twiedént ways
each of the second phase features. The average correlation b

o ) to combine one class classifiers to identify abnormalithegiri-
tween rules can be computed by considering the correlaftons

. craft descents and rank multiple descents has been inedduc
each permutation of phase 1 SVM parameters. Let values for

) The results show that on artificial data, using combinatides,
one rule be denoted by = {x|1 < i < N} and let the values for

. . rather than the raw SVM outputs, achieves a lower BER for all
the other rule be denoted by= {y;|1 < i < N}. Then the linear

] ) o experimental parameters as shown in 2. It also highligtes th
correlation between the two variables is given by

there is no optimum set of combination rules to achieve a low

BER on artificial data. However, of the combination rulesesu
X=X -Y)

L=

1, 7 and 8 (sum, sum of negatives and ratio) appear the most of-

Correl(X,Y) = (12)

\/N (% — )2 \/g‘: (i -9 ten. Rules 1 and 8 are able to assess both positive and reegativ
I
i=1 i=1

regions so it is not surprising that they perform well whilge

It highlights that whilst rule 3 (maximum) has very low cor- 7 is useful given that the abnormal occurrences are designed
relation with any rule, inclusion of this rule significantigises  be abnormal at each sample point.
the average BER. This demonstrates that it is not a usefell rul  The experiments on the real world flight data set produced
because even abnormal descents can have high maximums. results diferent to those from the artificial experiment. This

Table 18 shows the average BERs and average best BERsdue to the fact that for abnormal descents, abnormadities
when using a certain number of rules. As is perhaps expectedlikely to occur at every height. The results demonstriade t
using more rules reduces the average BER but interestingly Biles 4 and 8 (minimum and ratio) perform well on #idult
is the optimum number in terms of best average BER. This redataset. Both are included in the best set of rules for eanieeh
flects the complexity of the dataset. However, due to the higlef heights.
correlation between many of the features, the lowest BER is Although the combination rule method is ho worse statisti-

achieved with only 3 rules (see table 10). cally than the raw value method, it does have an added advan-
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tage. The dimensionality of the feature space for the 2ndgha [5] N. Saravanan, V. Siddabattuni, K. Ramachandran, Faagrisis of spur

SVM is equal to the number of heights. This means that for

large numbers of heights, the training set would need to con-

tain task instances numbering at least an order of magnitud%]

larger if classifying via the raw-value method. If the conmpi

tion rule method is used, the dimensionality remains theesam

which means the training set does not need to be as large.

[7]

Section 6.5 demonstrates that the method can accurately

identify abnormalities and assess their impact in the fofm o [8]

the DAP which allows the user to easily to assess any points

of interest. By collecting historical data, the user camtifg

[9]

if there are any changes at any of the heights and perform the

appropriate actions.

For future work, itis intended to investigate whethdfatient

heights are needed forftirent runway approaches and whether

(20]

(11]

there is an optimum number of heights that produces the best

BER.
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