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Abstract

This paper presents a novel two phase method that combines one class support vector machine classifiers classifiers usingcombina-

tion rules to quantitatively assess the degree of abnormality at various heights during individual aircraft descents and also over the

whole descent. Whilst classifiers have been combined before in the literature with success, it is the first time they have been applied

to the problem of analysing the act of descending of commercial jet aircraft. The method is tested on artificial Gaussian data and

flight data from an industrial partner, Flight Data ServicesLtd, the world’s leading flight data analysis provider, withpromising

results.
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1. Introduction

The introduction and development of one class classifiers and

novelty detection methods has increased the potential for more

accurate fault detection systems. Such systems are very im-

portant in a world that has become increasingly automated. As

such, the topics of fault diagnosis [1, 2, 3, 4], detecting mechan-

ical failure [5, 6, 7] and condition monitoring [8, 9] are impor-

tant within the research community. The faults themselves can

potentially have catastrophic consequences such as loss ofthe

machine, loss of revenue and even death. Therefore there is

an increasing demand for diagnostic systems that can not only

detect faults but also identify when the system is moving from

normal operation to abnormal (or unusual) operation.
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It is difficult to create an efficient binary classifier with a good

generalisation ability because whilst there is usually plenty of

normal data, faulty data can be expensive to acquire or very

rare, thus creating a class imbalance. To investigate this prob-

lem, one class classifiers are specifically designed to modelnor-

mal data and detect outliers or abnormal data. Expert knowl-

edge of a particular problem or operation can be invaluable as it

can be used to identify useful features and also provide details

of likely faults.

Identifying a gradual or sudden change from normality to ab-

normality has great value in the field of condition monitoring.

In the field of flight safety, knowing at what point the aircraft

started to move towards an unsafe state can help flight safetyof-

ficers identify the reasons and advise other flight crew in similar

situations.

Furthermore, such a system can not only detect changes from

normality to abnormality, but also changes within normality it-

self. An abnormality can be an actual fault or merely unusual
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or different behaviour from the system. This could result from

changes to the aircraft due to maintenance or new instructions

for the approach to a specific aircraft.

In this paper we consider how fault detection methods can be

applied to aircraft descending and landing. Section 2 looksat

methods for novelty detection and how they have been applied

to real world problems. Section 3 introduces the one class Sup-

port Vector Machine (SVM). Section 4 introduces combination

rules as methods for summarising data. Section 5 introduced

the proposed two phase method. Section 6 details the exper-

iments on artificial and flight data and their results. Section

7 discusses the method and results and section 8 contains the

conclusion.
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2. Novelty Detection Research

There has been a lot of research in novelty detection and

the identification of pre-cursors for abnormalities. A compre-

hensive review of novelty detection methods can be found in

[10, 11]. Broadly speaking there are two main areas; statistical

methods and neural network/SVM type approaches. Statistical

methods often aim to estimate the probability density function

of the normal class and then test if unknown objects belong

to this distribution. Such an estimation can be made via para-

metric methods, such as a Mixture of Gaussians classifier, or

non-parametric methods such as a Parzen windows classifier.

Disadvantages of these methods are that there can be a lot of

parameters to optimise and they do depend on a large and rep-

resentative training set. Furthermore, they find it hard to incor-

porate abnormal data in the training set and their presence can

distort the model.

Neural network and SVM type approaches do not directly es-

timate the underlying probability distribution and they donot

make any a priori assumptions about the data. A disadvan-

tage with neural networks is that during training, they may get

trapped within local minima whereas the SVM method guar-

antees a global minimum. An additional advantage of SVMs

is that they are not adversely affected by having abnormal data

in the training set. Furthermore their presence can improvethe

model. SVMs are also examples of the Structural Risk Min-

imisation (SRM) paradigm [12], providing a trade off between

model complexity and training set error. For these reasons,the

one class SVM [13] will be used in this paper to detect abnor-

malities.

Cannas et al. [14] looks at detecting and predicting disrup-

tions in JET. Such pulses can cause damage to the system. Each

pulse in the training set is clustered using a Self Organising Map

(SOM) and then trained with using an SVM. Using the SVM

decision function output, data falling outside of two bandsis

regarded as disruptive. It is important for the novelty detection

system to detect precursors to these disruptive pulses and they

should lie between 1 second and 100 milliseconds before the

event. The system reports an 83% success rate with no missed

disruptions and only 10% premature alarms.

Perdisci et al. [15] also uses the one class SVM in order to

detect anomalies in computer network traffic. The difficulty of

this task can be seen by the fact that the system should be able

to detect unseen attacks. Previous systems used payload statis-

tics but it has been shown that such systems can be evaded by

a crafted mimicry attack. To tackle this problem, they propose

an ensemble of SVM classifiers which makes a classification

based on a majority vote, on the premise that with several mod-

els of normality, a constructed mimicry attack will be hard to

achieve. The SVMs are trained on different descriptions of the

payload and the ensemble reports a very high AUC (area under

the receiver operator characteristic curve) value. This demon-

strates that multiple classifiers can be used to make a decision
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on the overall impact of the parts.

Gardner et al. [16] uses a one class SVM with a sliding win-

dow to detect seizures from electroencephalography recordings

(EEGs). The benefits of the method are that it is not patient spe-

cific and it does not require training on seizure data which can

be very difficult to obtain. It achieves a sensitivity of over 95%,

highlighting the ability of the one class SVM to detect unseen

events.

Abnormalities in combustion were looked at by Clifton [17].

Note that in this paper, a positive SVM decision function value

denotes abnormality whereas in this paper, it denotes normality.

A one class SVM was trained on data from each of the three

combustion chambers to identify the moment that the overall

combustion became unstable. To this end, a mean, product,

maximum and a minimum combination rule was used on the

three classifier outputs. It was found that the mean and maxi-

mum rules were the most effective in detecting precursors to un-

stable combustion but it was also stated that all four rules could

provide useful information. Clifton showed that this approach

was very accurate in identifying the first signs of unstable com-

bustion.

Combination rules were also studied by Tax et al. [18] for

the purposes of improving classification by combining the out-

puts from multiple classifiers. Rather than training one classi-

fier on a large dataset, there can be advantages to training dif-

ferent classifiers on different parts of the dataset and combining

their information to classify the data. It is found that the mean

rule is best when the posterior probabilities are not well esti-

mated.

The system described in this paper is similar to the method

in Clifton’s paper, but there are subtle differences. Clifton’s

method is trying to detect the first time an anomaly occurs

whereas when analysing flight data, if possible, all anomalies

and their impact should be detected. To this end, the first

phase consists of classifiers considering snapshot data at differ-

ent heights during the descent. In Clifton’s paper, the classifier

output was assessed using combination rules. Also, there was

no interest in comparing several sets of combustion tests tofind

the most abnormal combustion. This ability is useful to anal-

yse multiple descents. To achieve this, the second phase of the

approach consists of one classifier analysing the outputs ofthe

classifiers in phase one and ranking the occurrences by a single

novelty score. The method is fully described in section 5.

The novelty of the proposed method is that it quantifies the

degree of normality/abnormality at selected points during the

descent. By modelling each height during the descent via a one

class SVM and using the difference between the decision func-

tion value and the computed threshold, analysts can identify

the points where abnormalities occur and how abnormal they

are. In addition, the method has the ability to rank multipleoc-

currences of the descents using another SVM which compares

the all the outputs for an individual task. This unique feature

enables the analyst to identify those descents that had the great-

est overall novelties so that action can be taken to remedy any

problems. Furthermore, such scores could be plotted over time

to identify persistent deviations from the airline’s standard op-

erating procedures.

3. Support Vector Novelty Detection

One Class Support Vector Machine (OCSVM) [13, 19] is a

powerful novelty detection method based on the support vector

machine [20, 21].

Consider ’normal’ training datax1, x2, ..., xl ∈ R
n. Let φ be

the mappingφ : R → F into some feature dot product space

F. Let k(x, y) = (φ(x), φ(y)) be a positive definite kernel which

operates on the mappingφ. In this paper, the kernel used is

the Gaussian kernel,k(x, y) = exp
(

− ‖x− y‖2 /2σ2
)

, as it sup-

presses growing distances in larger feature spaces. Here,σ is
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the width parameter associated with the Gaussian kernel. The

data is mapped into the feature space via the kernel function

and is separated from the origin with maximum margin. The

decision function is found by minimising the weighted sum of

the support vector regulariser and the empirical error termde-

pending on a margin variableρ and individual error termsξi ,

min
w∈F,ξ∈Rl ,ρ∈R

1
2 ‖w‖

2 + 1
νl

l
∑

i=1
ξi − ρ,

subject to (w · φ(xi)) ≥ ρ − ξi ,

ξi ≥ 0,

(1)

wherew is a weight vector inF andv is the fraction of the

training set to be regarded as outliers. Using Lagrangian multi-

pliers,αi , βi ≥ 0, with constraints and setting the derivatives of

those multipliers with respect tow equal to zero leads to

w =
l

∑

i=1

αiφ(xi), (2)

l
∑

i=1

αi = 1, (3)

αi + βi =
1
νl
. (4)

The dual problem is formulated to give

min
α∈Rl

l
∑

i, j=1
αiα jk(xi , x j),

subject to
l
∑

i=1
αi = 1,

0 ≤ αi ≤
1
νl .

(5)

Solutions for the dual problem yield parametersw0, ρ0 where

w0 =

Ns
∑

i=1

αiφ(si), (6)

ρ0 =
1
Ns

Ns
∑

j=1

Ns
∑

i=1

αik(si , x). (7)

Here,Ns is the number of support vectors andsi denotes a sup-

port vector. The decision function is given by

f (x) = sgn(w · φ(x) − ρ0) (8)

= sgn

















Ns
∑

i=1

αik(si , x) − ρ0

















. (9)

The ’abnormality’ detection function is then given by

g(x) = ρ0 −

Ns
∑

i=1

αik(si , x). (10)

The user has to choose the appropriate kernel, with its asso-

ciated parameters for the problem. However, rather than choos-

ing an error penaltyC as via the classical SVM method, one

chooses a value forν which is the fraction of the training set to

be classified as outliers. The software used for this classifier is

LIBSVM for Matlab version 2.91 [22], a well established SVM

program.

The one class SVM is ideally suited to this type of prob-

lem (see the end of section 2). The abnormality detection func-

tion takes values depending on the distance between the data

point and the boundary threshold. It is positive if the data

point is inside the decision boundary (normal) and negativeif

it lies outside (abnormal). The function is bounded above by

the minimum distance from the centroid of the hypersphere to

the boundary but is not bounded below as a data point could be

an infinite distance from the boundary. In practise typical posi-

tive values are between 0 and 5 and typical negative values are

between 0 and -50, depending on the level of abnormality.

4. Combination Rules

In this paper, a Combination Rule (CR) is regarded as a statis-

tic summarising a set of data; in this case, the set of SVM de-

cision values for an occurrence of a descent. Forn heights, the

combination rules used are as follows

1. Sum
∑

=
n
∑

i=1
xi

2. StDevσ =

√

1
n

n
∑

i=1
(xi − µ)

2,

3. Max Ma =
n

max(xi)
i=1

,

4. Min Mi =
n

min
i=1

(xi),

5. NumNeg=

(

n
∑

i=1
i

)

wherexi < 0,

6. SumNeg
∑− =

(

n
∑

i=1
xi

)

wherexi < 0,
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7. SumPos
∑+ =

(

n
∑

i=1
xi

)

wherexi ≥ 0,

8. Ratio Pos/Neg= ln
∣

∣

∣

∣

∑+ +1
∑− −1

∣

∣

∣

∣

.

The sum rule has been chosen because it is able to assess the

impact of positive and negative values in an additive way and

thus is able to quantitatively assess the quality of an occurrence

of a descent. The standard deviation is a measure of the spread

of the data and it is anticipated that a high standard deviation

will be indicative of an abnormal descent. It is probable that

the minimum will be more useful than the maximum value as

it directly measures the most abnormal value. The number of

negatives measures how many of the heights returned negative

values and, along with the sum of the negative values, should

be a good measure of the degree of abnormality of the descent.

The sum of the positive values should provide a measure of the

normality of the descent and the ratio rule, similar to the sum

rule, should be able to consider the descent as a whole.

It is noted that the sum rule is a linear combination of the

sum of the negatives rule and the sum of the positives rule. This

is not advisable in general when choosing features but for this

problem, a brute force method will be used which considers all

possible combinations of rules in order to find the best subset

of rules.

The motivation behind introducing the combination rules

was the concern that by using the raw-values, large abnormali-

ties for one stage could distort the overall score. Furthermore,

if the descent was represented by a large number of heights,

the 2nd phase feature space would have a large number of di-

mensions. This would mean there would need to be training

data numbering at least an order of magnitude larger than the

number of heights. For some applications this could be hard

to satisfy. By using the combination rules, the dimension ofthe

second phase feature space will remain small and large amounts

of training data will not be needed.

5. Proposed Method

In this section, the proposed two phase method is detailed.

The first phase is designed to assess the level of abnormality

at each height in the descent by training a one class SVM on

snapshot data from each height. The magnitude of the SVM

output measures the degree of normality/abnormality for pos-

itive/negative outputs respectively. Each occurrence of a de-

scent can now be represented as a feature vector consisting of

the SVM output at each height in the descent.

The second phase of the method looks at all of the individual

descents and determines which is the most abnormal overall.

Two methods of representing individual descents are compared.

The first considers each descent represented by the raw SVM

outputs. The second method calculates the combination rules

(see section 4) from the SVM outputs and these represent the

descent. A new SVM is trained on individual descents repre-

sented by these feature vectors of combination rules or the raw

values. The combination rules (CR) and raw values (RV) that

were created from data in the training sets for phase 1 also form

the training set for phase 2. The same process occurs for the

testing set descents. The SVM outputs can then be ranked in

ascending order, i.e. with the negative values ranked highest.

In summary, phase 1 of the method is concerned with iden-

tifying abnormalities at individual heights for individual de-

scents. Phase 2 is concerned with assessing the impact of these

abnormalities over the whole of the descent and comparing this

to other descents to see if there is any significant difference.

Figure 1 shows the method in block diagram form. A more de-

tailed description can be found in bullet point form in section

5.1.

5.1. Method Details

• Using relevant domain knowledge, identify the airport for

which the descents are being made into and select a suit-
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Figure 1: Block Diagram of Proposed Method
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able number of heights.

• Create training and testing sets for each of the heights.

• Train a one class SVM for each height.

• For each descent in the training and testing sets, form a

feature vector containing the combination rules computed

from the SVM output from each height.

• Feature vectors formed from SVM outputs from training

data form a new training set for the second phase. Like-

wise for feature vectors created from testing data.

• Train a new one class SVM on the training set of feature

vectors and test it using the corresponding testing set.

• The SVM output ranks the descents by their level of over-

all abnormality.

6. Experiments

6.1. Overview

In this section, the proposed method is tested on artificial data

and real world flight data. The artificial data is used to establish

if the combination rules provide better performance than using

the raw outputs and if so, which combination rules achieved the

best results.

The flight data is obtained from jet aircraft making a descent

and landing on the same runway. The data has been extracted

from data obtained from that airline’s Flight Data Monitoring

(FDM) program. For more details regarding FDM, see refer-

ences [23, 24, 25]. Each aircraft is equipped with a flight data

recorder and data from the flights can be downloaded and anal-

ysed for exceedances. The dataset used consists of a number

of descents onto the same runway over a 13 month period from

June 2007 to June 2008. Flight data experts have analysed each

descent and identified those which are regarded as abnormal (or

unusual). For full details, see section 6.4.

6.2. Error Metrics

To assess the performance of the classifiers in this paper, the

standard confusion matrix will be utilised, where True Positive

(TP) denotes the percentage of correctly identified normal de-

scents, True Negative (TN) denotes the percentage of correctly

identified abnormal descents, False Positive (FP) denotes the

percentage of incorrectly identified normal descents and False

Negative (FN) denotes the percentage of incorrectly identified

abnormal descents.

The Balanced Error Rate (BER) [26] is a useful measure of

the impact of misclassification on both classes and is given by

BER= (FP+ FN)/2. (11)

It is a very useful error metric in one class classification prob-

lems where there is an imbalance between positive and negative

examples. Consider an example with 90 positive examples and

10 negative examples and a classifier that predicts all examples

are positive. The accuracy is 90% and the error is only 10%

which gives the impression of a strong model. The BER how-

ever is 50%, highlighting the fact that the classifier is verypoor

at detecting negative examples.

6.3. Artificial Data

To test the proposed method, Gaussian data was generated

along with outliers to identify how well descents with outliers
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Table 1: Parameter Values for one class SVM.

Phase Name Values

1 σP1 10i for i = −3,−2,−1,0,1

1 νP1 0.01,0.05,0.1

2 σP2 10i for i = −3,−2,−1,0,1

2 νP2 0.01,0.05,0.1

could be detected. Artificial outlier data for a one class classi-

fication problem can be difficult to generate because there is a

danger that the outlier data is too distant from the target class.

This means that the problem becomes a two class classifica-

tion problem and so the outlier model is too unrealistic. This

problem is avoided by using the same distribution for the target

class and the outlier class but multiplying the covariance matrix

by small numbers to generate outliers, thus ensuring that the

majority of outliers are close to the target class.

For this experiment the artificial data consists of ten, twenty

or fifty sample points. A training set for an arbitrary sample

point consists of 250 Gaussian data points with a mean vec-

tor containing all zeros. The covariance matrix is the identity

matrix. The testing set for the same sample point consisted of

another 150 Gaussian data points generated in the same manner

and 50 outlier Gaussian data points. The outlier data is gener-

ated from the data in the training set by multiplying the covari-

ance matrix by a scale factor of 1.25, 1.5 or 2. The number of

features is 2, 5 or 10. Full details of the parameters used in the

experiment are found in table 2. The software used to generate

the artificial data was the DDTool box for Matlab [27] created

by David Tax who is an expert on one class classification. The

one class SVM used is LIBSVM for Matlab version 2.9 [22],

one of the best SVM implementations.

Parameter ranges for the one class SVM classifiers can be

found in table 1.

Table 2: Parameter Details for the Artificial Data Experiment

Parameter Values

Number of Features 2, 5, 10

Number of Sample Points 10, 20, 50

Covariance Matrix Scale Multiplier 1.25, 1.5, 2

Table 3: Best BER for the Artificial Data Experiment with 10 Sample Points

Number of Features Cov. Matrix

Multiplier

RV BER CR BER

2 1.25 35% 28.5%

2 1.5 29.5% 25%

2 2 19% 10.5%

5 1.25 32% 27.5%

5 1.5 23% 20%

5 2 10.5% 5.5%

10 1.25 26.5% 20.5%

10 1.5 18.5% 10.5%

10 2 3.5% 0%

6.3.1. Results

This section shows the BERs for each of the artificial exper-

iments and compares the results if the raw values or the combi-

nation rules are used as the inputs for the second phase SVM.

Tables 3, 4 and 5 show the results for 10, 20 and 50 sample

points respectively. In all cases the combination rules produce

a superior BER by a significant margin. This is perhaps because

the combination rules are better able to describe the ’shape’ of

the graphed phase 1 SVM outputs which enables the phase 2

SVM to obtain better results. Furthermore, there is likely to be

some redundancy in using all the SVM outputs (raw values) as

not all sample points may be significant. This is likely in this

instance due to the fact that the artificial abnormal data is abnor-

mal at every sample point. In general, for both methods, clas-

sification improves with more sample points though this could

be due to the same reason.
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Table 4: Best BER for the Artificial Data Experiment with 20 Sample Points

Number of Features Cov. Matrix

Multiplier

RV BER CR BER

2 1.25 33% 31%

2 1.5 21.5% 18.5%

2 2 7.5% 5.5%

5 1.25 29.5% 24.5%

5 1.5 17% 8%

5 2 6% 1%

10 1.25 20% 12%

10 1.5 11.5% 1.5%

10 2 4% 0%

Table 5: Best BER for the Artificial Data Experiment with 50 Sample Points

Number of Features Cov. Matrix

Multiplier

RV BER CR BER

2 1.25 28% 22.5%

2 1.5 12.5% 5%

2 2 9% 0.5%

5 1.25 25.5% 15%

5 1.5 9% 4.5%

5 2 7.5% 0%

10 1.25 16.5% 4%

10 1.5 13.5% 0%

10 2 8.5% 0%

6.4. Flight Data Experiment

In this section, the proposed method is tested on real data

from jet aircraft descending and preparing to land. Snapshot

data is taken from certain heights in the descent, which of

course all aircraft must pass through if they are to land. The

data set consists of 1,518 descents by one operator onto the

same runway at the same airfield. All the descents were anal-

ysed by flight data experts to identify any that had significant

abnormalities and 63 were found. These 63 descents, along

with another 240 normal descents selected at random form the

testing set whilst the remaining 1,215 descents form the training

set.

Existing methods of flight data analysis are event based (see

chapter 5 of [25]). The event based approach involves check-

ing to see whether aircraft parameters exceed given limits,for

example, if the airspeed exceeds a fixed limit between prede-

fined heights then this is regarded as an event. Exceedances are

graded by three levels, level 1 being a minor exceedance and

level 3 a major exceedance. An example of an event is the fol-

lowing: Pitch angle low during final approach between 1000ft

and 100ft. Level 1 limit= -2 deg, level 2 limit= -4 deg and level

3 limit (most serious)= -6 deg. Level 3 events are regarded as

severe and are reported to the flight safety officer. Level 2 and

1 events are used for statistical purposes.

For the descent there are 24 sample points, corresponding to

heights that the aircraft descends through during the descent.

The heights are 10000ft, 9000ft, 8000ft, 7000ft, 6000ft, 5000ft,

4000ft, 3500ft, 3000ft, 2500ft, 2000ft, 1500ft, 1000ft, 750ft,

500ft, 400ft, 300ft, 200ft, 150ft, 100ft, 75ft, 50ft, 25ft and 0ft.

In this experiment the number of heights is varied to deter-

mine if this has any impact on the results, along with all possible

non empty subsets of the set of all 8 combination rules.

Table 1 contains the one class SVM parameter ranges for the

experiment. The number of features for the snapshot data at
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Figure 2: Distance-Height Ratio Distribution for Normal andAbnormal De-

scents.

each height varies between 5 and 12. It is known that a good

choice forσ is the reciprocal of the number of features and the

range chosen reflects this. 10 fold cross validation was used

during training.

In the results section of this experiment, there is reference

to the term Descent Abnormality Profile (DAP). This is a chart

plotted for an individual descent for which the raw SVM out-

put from each of the phase 1 classifiers is plotted against the

heights that those SVMs represent. This enables the user to im-

mediately identify any regions of abnormality and the heights

at which they occur at.

6.4.1. Features

Table 6 shows all the features used in the flight data. These

were selected via expert knowledge. Note that not all features

are used at each height.

In this section, some of the features used in this dataset are

analysed. Figure 2 shows the differences in the distributions

of the Distance-Height ratio for the normal and abnormal de-

scents. All heights for which this parameter was used are in-

cluded in this chart and range from 10000ft to 2500ft. The ma-

jority of the normal data is contained between 250Ft/NM and

350Ft/NM whereas the abnormal data has a larger proportion

of its values in the higher and lower regions.

Figure 3 shows the differences in the Indicated Airspeed dis-

Figure 3: Indicated Airspeed Distribution for Normal and Abnormal Descents.

Figure 4: ROD Difference Distribution for Normal and Abnormal Descents.

tributions for the normal and abnormal descents. The spiky na-

ture of the middle part of the chart highlights that the aircraft

for the most part of the descent aim to fly at specific speeds.

Though it is not as distinct as the Distance-Height chart, there

is a larger proportion of the abnormal data in the higher and

lower regions. An important point to note is that many of the

data points on the abnormal descents will be normal; thus mak-

ing it harder to detect overall differences.

Figure 4 shows the differences in the Recommended Rate of

Descent (ROD) distribution for the normal and abnormal de-

scent. This data ranges from 1000ft to 100ft. For a given air-

craft groundspeed, it is the recommended rate of descent in or-

der to land on the correct part of the runway. Like figure 2, most

of the normal data is between -100 and 200 feet per minute, the

centre part of the graph. There is a greater proportion of abnor-

mal data in the tails of the distribution.
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Table 6: List of features used.

Name Unit Typical Range Description

V-Vref Knots -5 to 50 Difference between airspeed and reference landing

speed

IAS Knots 110 to 300 Indicated Airspeed

IVV Feet/Min -4000 to 0 Rate of Descent

Pitch Degrees -2 to 5 Angle of aircraft relative to the horizon

Glideslope Deviation Dots -3 to 3 Deviation in the vertical from optimum landing path

Localiser Deviation Dots -3 to 3 Deviation in the horizontalfrom optimum landing

path

Flap Degrees 0 to 30 Flap setting

Landing Gear No Units 0 or 1 Landing gear deployment

Speedbrake No Units 0 or 1 Speedbrake deployment

Engine Speed No Units 30 to 70 Percentage of nominal maximum speed

Ratio of height to distance to landing Feet/NM 200 to 400 Height divided by track miles to landing

Difference between IVV and Recommended Rate of

Descent (ROD)

Feet/Min -300 to 300 Difference between actual descent rate and recom-

mended descent rate

6.4.2. Results

Table 7 shows the main results for the flight data experiment.

As expected, by increasing the number of heights, the BER for

both approaches falls. The raw value method and the combina-

tion rule method produce similar results with the combination

rule approach having a lower BER at 10 heights. A two-tailed

t-test was also used to analyse the data. The combination rule

approach has a significantly lower average BER with 10 heights

(t(18) = 5.2807 p<0.05) though with 13 heights the raw value

approach BER is significantly lower (t(18)= 4.9906, p<0.05).

However for 24 heights, there is no significant difference be-

tween the two methods (t(18)= 1.6612, p<0.05). What is in-

teresting to note is that the best rule set for all experiments con-

tains rule 4 and 8 (minimum and ratio). This is logical given

that they make statements about the abnormal regions of the

DAPs and therefore should be valuable in describing them.

Of the 63 descents which have abnormalities, only 19 were

detected by traditional flight data analysis methods using the

event based parameter exceedance approach (see Appendix B

of [25] for details). There were no false positives and the de-

Table 7: Best BER for the Flight Data Experiment

Number of

Heights

Best Combina-

tion Rule

RV BER (SD) CR BER (SD)

10 (2,4,5,6,7,8) 9.6% (0.7%) 7.9% (0.7%)

13 (1,4,6,8) 4.9% (0.8%) 6.4% (0.4%)

24 (4,5,8) 3.0% (0.5%) 3.4% (0.6%)

tection rate was 30%. This gives a BER of 35% which is much

higher than the results for the raw value and combination rule

methods in table 7.

6.5. Analysis of Select Descents of the Flight Data

In this section, 3 descents are studied to highlight how the

method provides information about the degree of abnormality

at various heights.

6.5.1. Descent 1 - Very steep descent.

The large negative region on figure 5 is caused by the very

steep descent of the aircraft. At 10000ft, the aircraft has just

24NM track miles to go compared to the average value of

40NM. This leads to high rates of descent, high airspeeds and

heavy speedbrake usage. Furthermore, at 2500ft and 2000ft,

10



Table 8: A Sample of Points of Interest on Descent 1.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

10000 DISTRAT 23.75 0 40.05

9000 DISTRAT 20.36 0 36.07

8000 DISTRAT 18.03 0 32.22

7000 DISTRAT 15.54 0 27.22

6000 DISTRAT 13.03 0 22.71

3000 IVV -3002 0 -973.36

2500 IVV -2368 1 -875.33

2000 IVV -1926 1 -798.40

1500 IVV -1507 1 -823.33

Table 9: Event List Descent 1.

Event Name Severity Level Height

High Descent Rate>2000ft 1 2935

High Speed 500-50ft 1 286

Figure 5: Descent 1 DAP

the aircraft has the speedbrakes deployed but with more than10

degrees of flap set, which is prohibited in the airline’s Standard

Operation Procedure (SOP). However, the aircraft manages the

descent well as seen by the largely positive region of flight after

1000ft. This is an example where a potentially unsafe approach

has been corrected and the lack of high severity level events

shows this. Nonetheless a flight safety officer would be inter-

ested in this descent as it may indicate a wider problem. See

table 9 for a list of events.

Table 11 shows some of the heights of interest for this flight.

Table 10: A Sample of Points of Interest on Descent 2.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

500 V-Vref 30.16 100 8.336

500 RODDIFF -139.9 5 4.87

500 Pitch -2.1 0 1.871

400 V-Vref 27.16 99 8.239

400 Pitch -2.5 0 2.002

300 V-Vref 27.16 100 7.914

300 RODDIFF -229.2 1 2.87

300 Pitch -0.7 1 2.073

Table 11: Event List Descent 2.

Event Name Severity Level Height

Pitch Low 1000-100ft 1 568

High Speed 500-50ft 3 284

Low Pitch at Touchdown 3 20

G Landing 1 0

6.5.2. Descent 2 - High speed event

At 10000ft the aircraft is 60NM from the runway at an air-

speed of 207kts. The average track miles to landing is 40NM

and the average indicated airspeed is 275kts. From the available

evidence the aircraft chose a shallow descent because of high

winds. Once the aircraft reaches a height of around 750ft, the

airspeed begins to increase and the pitch angle becomes nega-

tive. See table 11 for a list of events.

Table 10 shows some of the heights of interest for this flight.

The slightly negative region shown on the DAP (see figure 6)

resulted from the aircraft descending earlier than usual and at a

slower than average indicated airspeed. Whilst this is not un-

safe, it is unusual. However, the main point of interest is after

500ft. At 1000ft the aircraft satisfies the criteria for a stable ap-

proach but from 500ft, the airspeed has increased rapidly and

the pitch angle is negative. The impact of these parameters is

visible on the DAP.
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Figure 6: Descent 2 DAP

Table 12: A Sample of Points of Interest on Descent 3.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

2000 IAS 145 1 172

2000 Flap 25 98 8.52

1500 IAS 130 2 156

6.5.3. Descent 3 - Normal descent

This descent is smooth with an airspeed and a rate of descent

typical for this approach. Landing gear and flaps are deployed

at typical heights and by 1500ft, the aircraft is established on

the Instrument Landing System (ILS) with a normal speed. By

1000ft, the aircraft’s airspeed is around vref+ 8 kts with a rate

of descent appropriate for its groundspeed. The approach power

is set and flap 30 (landing flap) has been chosen.

Table 12 shows some of the heights of interest for this flight.

The DAP (see figure 7) is such that all data points are posi-

tive, highlighting that the descent has been conducted withthe

majority of parameters at the different heights within normal

ranges. Table 12 shows that some of the parameters at certain

heights were abnormal but their impact on the whole descent

was not enough to make the descent itself abnormal or for that

matter, any of the heights.

Figure 7: Descent 3 DAP

7. Discussions of Method and Results

7.1. Discussion of Method

The benefits of such a method are that firstly abnormalities

can be detected and individual descents can be ranked against

others. Phase 2 outputs can be stored and over time, this his-

torical information could prove very valuable in assessingany

changes in the act of descending. It could be affected by very

cold or very hot weather or there could be differences between

early descents and later descents resulting from changes tothe

standard operating procedures. All of this information canbe

utilised to improve the responses of the maintenance teams and

the flight safety officers. The ability of the one class SVM to

interpret abnormal data in the training set is important because

whilst it may be possible to obtain faults with which to test

on, there might be examples of unusual data which contains no

faults but they are still different to normal approach conditions.

The ability to handle this unseen data is very important. An-

other benefit is that the magnitude and sign of the SVM output

allows descents to be directly compared and this can be use-

ful in assessing any differences over a period of time. There are

also very few parameters to be optimised. If the Gaussian kernel

is used then a grid search can be used to optimiseσP1, σP2, νP1

andνP2. The P1 parameters are those of the individual SVMs

for phase 1 and the P2 parameters are those for the single SVM
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in phase 2.

There are however some disadvantages. Firstly, it is not intu-

itively clear how to choose the number of heights. However, the

results show that more heights led to a smaller BER. It is clear

that significant domain knowledge will be needed in order to

understand which heights could be informative and the features

necessary to record at each height.

7.2. Discussion of Results

Looking at the results for the artificial data experiment (see

tables 3 to 5), it is clear that the combination rules providethe

lowest BER compared to the raw values. This is in part because

the combination rules are better able to describe the shape of

the profile created from the phase 1 SVM outputs for each oc-

currence. Furthermore, some of the raw values are likely to be

redundant due to the artificial nature of the data in that the ab-

normal occurrences contain outlier data at every sample point;

thus making it easier for the classifier to successfully discrimi-

nate between normal and abnormal occurrences.

It is also unlikely that abnormal occurrences of a descent will

be abnormal at every sample point, thus making them harder in

principle to detect.

In the flight data experiment (see table 7), the BERs for the

raw value method and the combination rule method are closer

and in fact there is little difference between the two methods

as the combination rule method is significantly lower with 10

heights, the raw value method is significantly lower with 13

heights and there is no significant difference with 24 heights.

The results for the artificial data set (see tables 13 to 15) are

illuminating in terms of the best combination rules to choose.

For the experiments with just 2 features at each sample point,

the rules appear roughly the same number of times. This sug-

gests that with so little discriminative information, it isa diffi-

cult classification problem, which is also confirmed by the high

BER values. When 5 features are used, rule 2 (standard de-

viation) appears the least often. This is probably because all

the normal occurrences have nearly all positive sample point

outputs whereas the abnormal occurrences will have nearly all

negative outputs. Hence the standard deviation may be similar

between the two sets. Rules 1 and 8 (sum and ratio) appear the

most often. This could be due to the fact that they incorporate

information about the normal (positive outputs) and the abnor-

mal (negative outputs) into a single figure whereas rule 3 (max

rule) for example only makes a statement about the normal sam-

ple points. For 10 features, rules 2, 4 and 6 (standard deviation,

min, positive sum) appear the least often. The fact that rule4

appears the least often is unusual given that a low minimum is

an indication of an abnormality or unusual behaviour. How-

ever, given that the outlier data will be similar for each sample

point (since they were generated from the same Gaussian pa-

rameters), the minimum may not stand out very much.

Another point to make is that although there were 8 rules

available, the classifier never needed more than 6 rules to

achieve the best BER and usually 2 or 3 was enough. In some

cases one rule was enough but this is likely to be because of the

artificial nature of the data.

It is important to note that there are some important differ-

ences between the artificial data and the flight data. Whilst the

artificial abnormal occurrences had abnormalities at nearly all

of the sample points, this was not the case for the flight data.In

fact some normal flights had abnormalities at some heights but

in the opinion of the flight data experts, these were not enough

to make the label of those descents abnormal. Similarly, de-

scents that were regarded as abnormal often had regions of nor-

mal flight. For this reason, it is not surprising that rule 8 isone

of the best rules in the 3 experiments (see table 13). It is able

to consider the impact of the negative and positive regions in

terms of number and magnitude and is therefore ideal for de-

tecting abnormalities. Rule 4 is also prominent because a low
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Table 13: Best BER and Combination Rules for the Artificial Data Experiment

with 10 Heights

Number of

Features

Cov. Matrix

Multiplier

Combination Rule CR BER

2 1.25 (1,2,3,6,7,8) 28.5%

2 1.5 (1,2,3,4), (2,3,4,7), (2,3,4,8) 10.5%

2 2 (3,8) 10.5%

5 1.25 (1,4,6), (4,6,7), (4,6,8) 27.5%

5 1.5 (3,5,7), (3,7,8) 20%

5 2 (3,8) 5.5%

10 1.25 (8) 20.5%

10 1.5 (1,3,5,7) 10.5%

10 2 (1,5), (5,8) 0%

Table 14: Best BER and Combination Rules for the Artificial Data Experiment

with 20 Heights

Number of

Features

Cov. Matrix

Multiplier

Combination Rule CR BER

2 1.25 (1,6), (4,6), (5,6), (6,7), (6,8) 31%

2 1.5 (7,8) 18.5%

2 2 (1,7) 5.5%

5 1.25 (1,2,8), (5,6,8) 24.5%

5 1.5 (1) 8%

5 2 (3,4,7) 1%

10 1.25 (1,8), (7,8) 12%

10 1.5 (1,3) 1.5%

10 2 (2,5) 0%

minimum will almost certainly indicate the presence of a sig-

nificant abnormality.

Table 16 shows the average BER for all appearances of each

rule for each height experiment with the flight data. For all

experiments rule 8 produces the lowest average BER which is

consistent for reasons already explained. Rule 3 produces the

highest average BER for all experiments which is in contrast

with the artificial data results. However, it highlights that even

an abnormal flight can have many normal heights (hence a sim-

ilar maximum to a normal descent) and therefore it strugglesto

discriminate between the normal and abnormal descents.

Table 15: Best BER and Combination Rules for the Artificial Data Experiment

with 50 Heights

Number of

Features

Cov. Matrix

Multiplier

Combination Rule CR BER

2 1.25 (1,3,4,5,7) 22.5%

2 1.5 (1,2,3,7,8) 5%

2 2 (1,2,4,5), (2,4,5,7), (4,5,6,7) 0.5%

5 1.25 (1,5,8) 15%

5 1.5 (1,3,7), (1,3,8) 4.5%

5 2 (1), (7), (8) 0%

10 1.25 (1) 4%

10 1.5 (7) 0%

10 2 (7) 0%

Table 16: Best Average BER for each Combination Rule for the Flight Data

Experiment. H stands for heights.

CR Num-

ber

Average BER (10

H)

Average BER (13

H)

Average BER (24

H)

1 21.6% 19.2% 14.3%

2 21.6% 19.3% 13.8%

3 23.4% 21.0% 16.5%

4 21.5% 19.1% 13.8%

5 21.4% 19.2% 14.2%

6 22.0% 19.7% 14.7%

7 22.3% 20.0% 15.2%

8 21.1% 18.7% 13.6%
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Table 17: Average Correlation for each Combination Rule overall SVM pa-

rameters for 24 Heights in the Flight Data Experiment

Combination Rule

Number

Average Correlation (St

Dev)

Average BER (St

Dev)

1 0.774 (0.170) 14.3% (9.2%)

2 0.661 (0.287) 13.8% (9.3%)

3 0.301 (0.115) 16.5% (9.8%)

4 0.667 (0.238) 13.8% (8.8%)

5 0.667 (0.201) 14.2% (9.6%)

6 0.687 (0.238) 14.7% (9.7%)

7 0.622 (0.174) 15.2% (9.3%)

8 0.758 (0.188) 13.6% (8.9%)

7.2.1. Analysis of Second Phase Features

Table 17 shows the average degree of correlation between

each of the second phase features. The average correlation be-

tween rules can be computed by considering the correlationsfor

each permutation of phase 1 SVM parameters. Let values for

one rule be denoted byX = {xi |1 ≤ i ≤ N} and let the values for

the other rule be denoted byY = {yi |1 ≤ i ≤ N}. Then the linear

correlation between the two variables is given by

Correl(X,Y) =

N
∑

i=1
(xi − x) (yi − y)

√

N
∑

i=1
(xi − x)2

√

N
∑

i=1
(yi − y)2

(12)

It highlights that whilst rule 3 (maximum) has very low cor-

relation with any rule, inclusion of this rule significantlyraises

the average BER. This demonstrates that it is not a useful rule

because even abnormal descents can have high maximums.

Table 18 shows the average BERs and average best BERs

when using a certain number of rules. As is perhaps expected,

using more rules reduces the average BER but interestingly 6

is the optimum number in terms of best average BER. This re-

flects the complexity of the dataset. However, due to the high

correlation between many of the features, the lowest BER is

achieved with only 3 rules (see table 10).

Table 18: Average BER for a set number of Combination Rules usedover all

SVM parameters for 24 Heights in the Flight Data Experiment

Number of Rules

Used

Average BER (St

Dev)

Average Best BER (St

Dev)

1 23.3% (10.8%) 9.7% (11.6%)

2 17.9% (5.7%) 6.1% (3.7%)

3 15.7% (3.6%) 4.9% (2.0%)

4 14.5% (2.5%) 4.3% (1.2%)

5 13.7% (1.8%) 4.1% (0.8%)

6 13.1% (1.3%) 4.0% (0.6%)

7 12.6% (0.8%) 4.1% (0.4%)

8 12.1% (n/a) 4.3% (n/a)

8. Conclusion

In this paper, a method that demonstrates two different ways

to combine one class classifiers to identify abnormalities in air-

craft descents and rank multiple descents has been introduced.

The results show that on artificial data, using combination rules,

rather than the raw SVM outputs, achieves a lower BER for all

experimental parameters as shown in 2. It also highlights that

there is no optimum set of combination rules to achieve a low

BER on artificial data. However, of the combination rules, rules

1, 7 and 8 (sum, sum of negatives and ratio) appear the most of-

ten. Rules 1 and 8 are able to assess both positive and negative

regions so it is not surprising that they perform well whilstrule

7 is useful given that the abnormal occurrences are designedto

be abnormal at each sample point.

The experiments on the real world flight data set produced

results different to those from the artificial experiment. This

is due to the fact that for abnormal descents, abnormalitiesare

unlikely to occur at every height. The results demonstrate that

rules 4 and 8 (minimum and ratio) perform well on a difficult

dataset. Both are included in the best set of rules for each choice

of heights.

Although the combination rule method is no worse statisti-

cally than the raw value method, it does have an added advan-
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tage. The dimensionality of the feature space for the 2nd phase

SVM is equal to the number of heights. This means that for

large numbers of heights, the training set would need to con-

tain task instances numbering at least an order of magnitude

larger if classifying via the raw-value method. If the combina-

tion rule method is used, the dimensionality remains the same

which means the training set does not need to be as large.

Section 6.5 demonstrates that the method can accurately

identify abnormalities and assess their impact in the form of

the DAP which allows the user to easily to assess any points

of interest. By collecting historical data, the user can identify

if there are any changes at any of the heights and perform the

appropriate actions.

For future work, it is intended to investigate whether different

heights are needed for different runway approaches and whether

there is an optimum number of heights that produces the best

BER.

Acknowledgment

This work was supported by EPSRC Industrial CASE

Voucher Number 06001600. The authors would like to thank

Flight Data Services Ltd for their collaboration with this work.

References

[1] B. Li, M.-Y. Chow, Y. Tipsuwan, J. Hung, Neural-network-based motor

rolling bearing fault diagnosis, Industrial Electronics,IEEE Transactions

on 47 (2000) 1060 –1069.

[2] S. Nandi, H. Toliyat, Condition monitoring and fault diagnosis of elec-

trical machines-a review, in: Industry Applications Conference, 1999.

Thirty-Fourth IAS Annual Meeting. Conference Record of the1999

IEEE, volume 1, IEEE, pp. 197–204.

[3] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas, Recent developments

of induction motor drives fault diagnosis using ai techniques, Industrial

Electronics, IEEE Transactions on 47 (2000) 994 –1004.

[4] A. Widodo, B.-S. Yang, Support vector machine in machine condition

monitoring and fault diagnosis, Mechanical Systems and Signal Process-

ing 21 (2007) 2560 – 2574.

[5] N. Saravanan, V. Siddabattuni, K. Ramachandran, Fault diagnosis of spur

bevel gear box using artificial neural network (ANN), and proximal sup-

port vector machine (PSVM), Applied Soft Computing 10 (2010) 344–

360.

[6] E. Zio, P. Baraldi, G. Gola, Feature-based classifier ensembles for diag-

nosing multiple faults in rotating machinery, Applied Soft Computing 8

(2008) 1365–1380.

[7] S. Rajakarunakaran, P. Venkumar, D. Devaraj, K. Rao, Artificial neu-

ral network approach for fault detection in rotary system, Applied Soft

Computing 8 (2008) 740–748.

[8] S. Bouhouche, M. Yahi, J. Bast, Combined Use of Principal Component

Analysis and Self Organization Map for Condition Monitoring in Pickling

Process, Applied Soft Computing (2010).

[9] A. Saxena, A. Saad, Evolving an artificial neural networkclassifier for

condition monitoring of rotating mechanical systems, AppliedSoft Com-

puting 7 (2007) 441–454.

[10] M. Markou, S. Singh, Novelty detection: a reviewpart 1:statistical ap-

proaches, Signal Processing 83 (2003) 2481–2497.

[11] M. Markou, S. Singh, Novelty detection: a reviewpart 2:neural network

based approaches, Signal Processing 83 (2003) 2499–2521.

[12] J. Shawe-Taylor, P. Bartlett, R. Williamson, M. Anthony, Structural risk

minimization over data-dependent hierarchies, Information Theory, IEEE

Transactions on 44 (1998) 1926 –1940.
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