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Research Timeline

e 2003 - 2006

— Adaptive resource-aware data stream
mining approach and techniques

— Algorithm Granularity (AG)
e Algorithm Output Granularity (AOG)
e Algorithm Input Granularity (AIG)
e Algorithm Processing Granularity (APG)

e 2007 - 2010
— Situation-aware data stream mining
— Fuzzy Situation Inference (FSI)
e 2008 - 2011
— Clutter-aware visualisation
— Adaptive Clutter Reduction (ACR)
e 2010 - 2012

— Distributed and collaborative mobile data
stream mining

www.portsmouth-guide.co.uk

I - Pocket Data Mining (PDM) _
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Agenda

e Introduction to Data Streams

e Earlier work
— Granularity-based Approach
- Situation-aware Data Stream Mining
— Clutter-aware Visualisation

e Pocket Data Mining
- Background on Mobile Software Agents
— PDM Architecture and Procedure
- Hoeffding Tree Agent Miner
— Naive Bayes Agent Miner
- Experimental Results

e Summary
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Introduction to Data Streams

e The advances in data acquisition hardware and the
emergence of applications that process continuous
flow of data records have led to the data stream
phenomenon.

e A data stream is a continuous, rapid flow of data
that challenge our state-of-the-art processing and
communication infrastructure.

e The general features of data streams are:
— Very high rate input data
— Read only once by an algorithm
— Real time processing demand
- Unbounded

- Time varying. *
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constrained Environments

e A wide range of data
streams are generated in or
sent to resource-
constrained computing
environments.

— Spacecrafts
— Wireless sensor networks
- PDAs and smartphones

Gregory Piatetsky kdnuggets ﬂ
Data gravity principle - the higger the data, the harder it is to move it,

50 logic need to come to big data #oriefr
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Research Issues

e Limited computational resources
e Limited bandwidth
e Limited screen realestate

e Change of the user’s context
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Our Approach
e Adaptability with regard to:
1 Visualization Library
. [:.j W1 W2 V3 Vin
— Computational resources %

middlewsre

Jojupy Bancsay

Library

majon

Data Stream Mining Algorithms
M1 M2 M3 | Mn

Adaptation Engine

— Visual clutter

Situation Manager

Context

® O o ®

— User’s situation g

7

e~ |/ ==/ (=) (==,



.. Iniversity of

Portsmouth

Granularity-based Approach

e Combining the three
possible granularity-based Computational Resource

adaptation, namely: - - -

- AIG: Algorithm Input

Granularity
— AOG: Algorithm Output X X }i
Granularity

Algerithm Granularity

— APG: Algorithm
Processing Granularity

8
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Situation-Aware Adaptation

H
A\ Situations
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v -t
— C%)ntextQ A\

Sensory-originated
data
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Situation Inferencing . (S (B (V)
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e Capture Application’s oz A IE==N] i}
“Situation” vv;

S

e Fuzzy Context Spaces

|
: Data stream mining algorithm
|
|

pramntnﬂalua
b o o e o o —— [ e |
e Enhance probabilistic situation | -Adwttnngneie) | ____________. ,
inferencing with fuzziness | et | vy | S |
| T i o
e Cope with changing situations | | |
| Controller i
| L i 4 |
e Cope with unknown situations | |
Resource Monitor Fuzzy Situation
(RM) ‘ Inference (FSI)
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Adaptive Clutter Reduction

Similar to resource-awareness and situation-awareness, we have developed a
novel way to automatically reduce the clutter

The new approach has many important applications (especially in disaster
management)
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Cﬂrlar}f 1. Le the informative level of the visualizer ? an c(v) be
the level of clutter on the screen. It 1s established that i(v) a c(v).

Corollary 2. Let p(v) be the level of perception of the wisualised results. It

s established that p(v) a Tlﬁ

Theorem At any point in time t, ACR based technique minimize(c(v))
while marimize(i(v), p(v))
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Adaptive Clutter Reduction
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“T~Tho is rich? He that is content. 7Who i= that? I'"obods™ - Benjarmin Franklin

Tech Y I . .t

HOME | HARDVOAWARE | BUSINESE | SO0OFTWWARE | CHIFPE | MOEBRILE | INTERINET | Z2CIENCE | SECURIT

Smartphones show disasters as they happen

For earthgquakes, riots and heart nh:-nlt-:-rlng
05 Jun 2011 1050 | By Anddres Petrow | Filed im B

—rmartphorns O Commerts

Tl Tusresest u reddit this! ElLike B Share -4
Computer Science geeks at the University of Portsmouth
hawve found a way of making smartphones show a disaster

unfolding in real-tirme on phone screens.

They'we developed an application and prototype, which
currently allowws a range of different uses such as allowing
docs to monitor heart patients’ ECGS right through to helping
coppers in the central contral unit to see where each P plod
IS N an emergency.

Dr FMohamed Saber, of the Lniversity of Portsmouth’'s Schoaol
of Tomputing, and geseks from Monash University hawve also said that the app can also be used in a natural
disaster. One example given was to help those co-ordinating rescue efforts to use an electronic map on their
phone =creens with clusters showing which areas are worst affected.

They said that because such information would constantly update as the disaster
ngh;rgg:tsegpvg:ivith unfold=s, the clusters would adjust automatically In size and scale as new clusters
the lateot Inte mE formed to stop the phone screen becoming over-crowded with information.

HeonBE processor

And the researchers are blowing their own trumpets claiming that this is the first
=Set more powerful,

intelligent, efficient time anyone has managed to develop a "clutter-aware visualisation for mobile data
sereer architecture mining that auvtomatically considers the amount of information presented on screen
solutiaon and dyrnamically adjusts the way this infarmation is presented ta avoid confusion

and enhance ease of understanding. ™

They added that a lot of work had gone into making the application usable and interactive.
"The need for an application that knows when information overload is a threat is very important,” they added.
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PDM: Pocket Data Mining

e Pocket Data Mining (PDM) is our
new term describing collaborative
mining of streaming data in mobile
and distributed computing
environments.

e With continuous advances in
computational power and
communication abilities for
smartphones and tablet computers;
and

e The sheer amounts of data streams
that we subscribe to or acquire using
the onboard sensing capabilities

e There is an unprecedented opportunity
to perform complex data analysis tasks Source: Lane, N.D.; Miluzzo, E.; Hong Lu; Pecbles, D.

Choudhury, T.; Campbell, A.T.; , "A survey of mobile

' that can benefit mobile users 5h;?gei sgn_siingr"_ggmi_ Tiuiniciation_sziMfigaZinel tecE,
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Technology Enablers

e This can be realised with the help of several established areas
of study including:
data stream mining;

mobile software agents; and

14
programming for small devices
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Wh a t i s a M o b i I e A g e n t ? Multi-agent distributed application

= A software program
= Moves from machine to machine under JADE LAVER
|| | | |

its own control

= Suspends execution at any point in
time, transport itself to a new machine JADE
and resume execution JNAVILAYER

= Once created, a mobile agent “ ﬂ “
autonomously decides which locations

to visit and what instructions to

perform
= Continuous interaction with the agent’s
originating source is not required =
= HOW? Internet Wireless environment
o ;?é:)rl‘ltczcg;:pecmed through the JADE Architecture
= Specified through a run-time
modifiable itinerary 17
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PDM Architecture and Procedure

Tkt Algorithm 1 PDM's collaborative data mining workflow

Task Initiatior: Form an ad hoc network of mobile phones;
Task Initiatior: start MRD agent;
MRD: Discover data sources, computational resources and techniques;
MRD: Decide on the best combination of techniques to perform the task,
MRD: Decide on the choice of stationary AMs and deploy mobile AMs;
Task Initiatior: start MADM agent with schedule provided by the MRD;
for i = 1 to i = number of AMs do

repeat

AM;: mine streaming data,

= " until Use of the model by MADM

1 A "ee
—
end for
18

= For Example
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PDM Agents

e (Mobile) agent miners (AM): these
agents are either distributed over
the network when the mining task
is initiated or are already located
on the mobile device.

e Mobile data stream mining

e Mobile agent resource discoverers
(MRD): these agents are used to
explore the available
computational resources,
processing techniques, and data
sources.

= Mobile cloud

e Mobile agent decision makers
(MADM): these agents roam the
network consulting the mobile
agent miners to collaborate in
reachlng the final decision.

a Sooo SN o
S oot
080 ©.23°5
© o 8608%°0
o © ©088% % oo
eature 1

| Ensemble learning Source: Polikar 2008~
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Agent Miners (AMs)

e We have used two stream classifiers, namely:

- Hoeffding trees
e Known for its statistically guaranteed accuracy

- Incremental Naive Bayes

e Known for its computational efficiency and
simplicity

20
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Simple Weighted Majority Voting of the MADM

Y = 1.75 (0.55+0.65+0.55)

X=1.80(0.95+0.85)

AM Weight Class
(Accuracy)

0.55

0.65

0.55

0.95

u & W N =
X X| < =<| <

0.85
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Experimental Study
e Datasets
Test Number Dataset Number of Attributes Number of Instances
1 kn-vs-kr 36 1988
2 spambase 57 1999
3 waveform-500 40 1998
4 mushroom 22 1978
5 infobiotics 1 20 = 200000
6 infobiotics 2 30 =~ 200000

e Fach AM has access to 20%, 30%, or 40% of
the features (random vertical partitioning).

22
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PDM with Naive Bayes
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PDM with a Heterogeneous Setup
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PDM Potential Applications

e Mobile ECG analysis 5oL B e e
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e Mobile social media analysis ... E
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h BreakingNews
i8] Passenger on Boston-bound flight

subdued after trying to open
emergency exit mid-flight - WHDH

DesignNewz
108 New: Amazing lllustration Design by

Sachin Teng bit.ly/m1nrzQ
o= engadget
, . Google I/0 2011 Day 2 Keynote
comin' atcha tomorrow! Be ready!
engt.co/ijhLt1
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MakeUseOf
The 15 Toughest Tech Questions

e Mobile policing
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PDM Demonstration
YouTube video link:
http://www.youtube.com/watch?v=MOvIYxmttkE

Pedhet Deta Mnng - YouTube Gl
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Editinfo Editvideo Editannotabons. Edft capbons/subtites AusoSwao Insight stats. Promote
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ate SOL Compare
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Making News

Research at the Universty

Smert use of modée phone power

Tue, Jan 18, 2011

For e frat tme ot phoems e idied POx 00k be ued By poles ey 15 help toke Crimen Tetter e mery

o

Latest News > 23 Jan 11 - Smartphones ‘could
o« Tevolutionise crime scene investigation'

Recent adwances n
smartphone technology
could improve police crime-
scene imestigations, said
Dr Mohamed Gader of
Portsmouth University

Presenting at a Artiicia
Irteligence conference in
Amas, France he s3id that
the meaty processing power
in smariphones, coupled
wih its netecrking abilities
and high-spec cameras
C0uid aliow imestigatons 0
gain faster, greater insight
ko crme-scenes

Phanes coud source fngerrints and othar data focaly, and commuricate with othar phones, 28
without e need 10 sent anything back to a central computer for processing
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Summary

e Pocket data mining has been the outcome of
earlier developments started in 2003.

e PDM is a mobile agent based framework for
distributed and mobile ad-hoc data stream
mining.

e PDM has proven its applicability experimentally
with Hoeffding trees and Naive Bayes classifiers.

e Many potential applications can benefit from
PDM.
29

e~ |/ ==/ (=) (==,



University of
D@

Portsmouth

Main References

® Gaber M. M., Data Stream Mining Using Granularity-based Approach, a book chapter in Foundations of
Computational Intelligence - Volume 6, (Eds.) Abraham A., Hassanien A., Carvalho A., and Snase V.,
Volume 206/2009, pp. 47-66, ISSN 1860-949X (Print) 1860-9503 (Online), ISBN 978-3-642-01090-3,
Springer Berlin/Heidelberg, Germany, 2009.

® Gaber M. M., and Yu P. S., A Holistic Approach for Resource-aware Adaptive Data Stream Mining,
Journal of New Generation Computing, ISSN 0288-3635 (Print) 1882-7055 (Online), Volume 25, Number 1,
November, 2006, pp. 95-115, Ohmsha, Ltd., and Springer Verlag.

® Haghighi P. D., Krishnaswamy S., Zaslavsky A., Gaber M. M., Reasoning About Context in Uncertain
Pervasive Computing Environments, Daniel Roggen, Clemens Lombriser, Gerhard Trdster, GerdKortuem,
Paul J. M. Havinga (Eds.): Smart Sensing and Context, Third European Conference, EuroSSC 2008, pp. 112-
125, Zurich, Switzerland, October 29-31, 2008. Proceedings. Lecture Notes in Computer Science 5279
Springer 2008, ISBN 978-3-540-88792-8.

® Gaber M. M., Krishnaswamy S., Gillick B., Nicoloudis N., Liono J., AlTaiar H., Zaslavsky A., Adaptive
Clutter-Aware Visualization for Mobile Data Stream Mining, Proceedings of the IEEE 22nd
International Conference on Tools with Artificial Intelligence (ICTAI 2010), pp. 304-311,Arras, France, 27-29
October, 2010.

® Stahl F., Gaber M. M., Aldridge P., May D., Liu H., Bramer M., and Yu P. S, Homogeneous and
Heterogeneous Distributed Classification for Pocket Data Mining, LNCS Transactions on Large-Scale
Data- and Knowledge-Centered Systems, Springer-Verlag, 2011.

More available at: http://gaberm.myweb.port.ac.uk/publications.htm

30

e~ |/ ==/ (=) (==,



University of
D@

Portsmouth

Our Books in the Area
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