
Modelling protein localisation and
positional information in subcellular

systems

A thesis presented for the degree of

Doctor of Philosophy of Imperial College

and the

Diploma of Imperial College

by

Filipe John Tostevin

Department of Mathematics

Imperial College

180 Queen’s Gate, London SW7 2AZ

APRIL 2008



2

I certify that this thesis, and the research to which it refers, are the product of my

own work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

Signed:



3

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by

the Author and lodged in the doctorate thesis archive of the college central library.

Details may be obtained from the Librarian. This page must form part of any such

copies made. Further copies (by any process) of copies made in accordance with such

instructions may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in Imperial College, subject to any prior agreement to the contrary,

and may not be made available for use by third parties without the written permission

of the College, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Imperial College registry.



4

Abstract

Cells and their component structures are highly organised. The correct function of

many biological systems relies upon not only temporal control of protein levels but

also spatial control of protein localisation within cells. Mathematical modelling allows

us to quantitatively test potential mechanisms for protein localisation and spatial

organisation. Here we present models of three examples of spatial organisation within

individual cells.

In the bacterium E. coli, the site of cell division is partly determined by the Min

proteins. The Min proteins oscillate between the cell poles and suppress formation of

the division ring here, thereby restricting division to midcell. We present a stochastic

model of the Min protein dynamics, and use this model to investigate partitioning of

the Min proteins between the daughter cells during cell division.

The Min proteins determine the correct position for cell division by forming a time-

averaged concentration gradient which is minimal at midcell. Concentration gradients

are involved in a range of subcellular processes, and are particularly important for

obtaining positional information. By analysing the low copy number spatiotemporal

fluctuations in protein concentrations for a single polar gradient and two oppositely-

directed gradients, we estimate the positional precision that can be achieved in vivo.

We find that time-averaging is vital for high precision.

The embryo of the nematode C. elegans has become a model system for the study

of cell polarity. At the one-cell stage, the PAR proteins form anterior and poste-

rior domains in a dynamic process driven by contraction of cortical actomyosin. We

present a continuum model for this system, including a highly simplified model of the

actomyosin dynamics. Our model suggests that the known PAR protein interactions
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are insufficient to explain the experimentally observed cytoplasmic polarity. We dis-

cuss a number of modifications to the model which reproduce the correct cytoplasmic

distributions.
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Chapter 1

Introduction

1.1 Subcellular organisation and protein localisation

The propagation of life through the reproduction of cells requires many processes for

which spatial location is important. The DNA replication machinery must form as a

complex. This must then locate the correct site to initiate replication. The replicated

chromosomes, plasmids and other organelles must be positioned appropriately for

division. The division machinery must be correctly localised and assembled. The

position of each of these elements relative to the others is important for the viability

of the cell.

Many of these positioning functions are carried out by the cellular cytoskeleton.

It has long been known that eukaryotic cells contain many highly ordered cytoskeletal

structures, including filaments of actin and tubulin [1]. The cytoskeleton gives cells

rigidity and function as tracks for motor proteins to carry vesicles to appropriate

locations within the cell. These filaments and motors are also involved in generating

the forces required for cell division, chromosome segregation and motility.

In recent years, our understanding of prokaryotic cells has been revolutionised.

We now know that many bacterial cells contain the proteins FtsZ and MreB, which

are homologues of the eukaryotic tubulin and actin proteins respectively [2, 3]. These

proteins form a cellular cytoskeleton and provide rigidity and shape to the cell. In-

terestingly, the roles played by these proteins are often reversed from eukaryotic cells.
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In bacteria, FtsZ forms the contractile division ring [4], a role played by actin in eu-

karyotes. MreB has been implicated in chromosome segregation and cell shape [5, 6],

which require tubulin in eukaryotes. Generally, prokaryotic cells can also display

remarkable levels of organisation and structure (see [7, 8] for recent reviews).

Spatial organisation is also important to enable cells to respond to external signals.

While a signal may be detected at the cell membrane by receptors, the appropriate

cellular response to this event may take place deep within the cell. If the signal

triggers activation of a particular gene, for example, this must be transmitted from

the membrane to activate transcription factors in the nucleus. Alternatively, the cell

may wish to move in response to an external stimulus, such as towards a nutrient

source. Then the machinery of cellular motility, be it the internal cytoskeleton or

an exterior flagellum or actin tail, must be organised in such a way that the cell can

move in the required direction. In order to accurately detect the direction of a signal,

localisation or clustering of receptors may also be required, as in bacterial chemotaxis

[9].

Protein localisation is not necessarily a static arrangement - a wealth of dynamic

phenomena has also been discovered within individual cells. The development of new

imaging techniques and in particular fluorescence microscopy has been key to our

growing understanding of dynamic processes. The staining techniques which were

previously used to study protein localisation required fixing and killing of cells. This

made it impossible to record multiple images of a single cell. Attempts could be made

to reproduce temporal dynamics by comparing images of different cells. However, it

remained possible that these differences were due to static cell-to-cell variability rather

than dynamics of a single copy of the system. With imaging of live cells it became

possible to visualise a time-course of localisation within a single cell.

These novel imaging techniques led to the discovery of many examples of dynamic

spatial localisation within single cells. Among the first dynamic patterns to be dis-

covered in bacteria was the Soj/Spo0J system in Bacillus subtilis. Once the parent

chromosome has been replicated, Spo0J accumulates at each nucleoid [10]. Soj is

seen to gather in these same regions, and to move between the two points at irregular

intervals [11], with a typical occupation time of tens of minutes at each position.
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These jumps may be a result of fluctuations due to the limited protein numbers [12].

The exact function of the Soj/Spo0J system is not well understood, although it is

thought to be involved in chromosome segregation. Even apparently static structures

can however also have dynamic behaviour. The FtsZ septal ring previously appeared

to be a fixed construction at midcell. However, FtsZ proteins are constantly being

exchanged between the “Z-ring” and the cytoplasm [13], and a larger helical structure

which extends along the length of the cell [14]. MreB filaments in Caulobacter ap-

pear to undergo a similar process of rearrangement from a helical distribution along

the cell length to a ring at the site of division [6]. This dynamic behaviour is by no

means limited to prokaryotic cells. The formation of two complementary domains of

PAR proteins in C. elegans, described in sections 1.5 and 4, is an example of dynamic

subcellular protein localisation in a multicellular organism.

Perhaps the best-studied example of dynamic protein localisation is the Min sys-

tem in the bacterium Escherichia coli. The function of this system is to precisely

locate the site for cell division to the middle of the parent cell, which is achieved

through the pole-to-pole oscillation of the MinCDE proteins [15, 16]. This system

will be discussed in more detail in section 1.3 and chapter 2. Mathematical modelling

has proven extremely valuable for our understanding of these dynamic subcellular sys-

tems, allowing us to probe mechanisms which cannot be readily tested experimentally,

and bringing together ideas from developmental biology and pattern formation.

1.2 Mathematical modelling

Traditional biological and biochemical experiments typically can reveal the complex

networks of interactions between proteins. In some cases, the quantitative study of

individual reactions is also possible and rates or saturation factors can be determined.

However, in a complex systems of nonlinear interactions with multiple feedbacks, the

dynamics of the system or the response to a particular condition may not be readily

apparent, meaning that intuitive explanations may be incorrect. Here mathematical

modelling plays a vital role as it allows us to qualitatively and quantitatively study

these systems and mechanisms in detail. Models also enable us to investigate the
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roles of particular components within the system. For example, it may be that in

a system where two reaction pathways are possible, that the global behaviour of

the system is dominated by one pathway over the other. This may not be obvious

without the quantitative description which modelling allows. Modelling can also

analyse mutations which have not been experimentally characterised, or the dynamics

of a protein or other reactant which has not been measured experimentally. In this

way, modelling allows us to make predictions and can then suggest new experiments

to test these predictions, which helps to advance our understanding of a system.

We will consider models in which the variables represent the concentrations of

reactants, and the model equations represent an approximation of the appropriate

interaction network. Models of this type are often written as ordinary differential

equations. In order to capture spatial phenomena, the densities of proteins must be

modelled as a function of both position and time, necessitating the use of partial

differential equations instead. Relocation of these proteins within the system must

also be introduced. Free diffusion is generally assumed as an effective description of

the motion. Models with this reaction-diffusion structure allow one to quantitatively

investigate the spatial density distributions of the various proteins and how these

quantities develop over time through the model dynamics.

Many of the dynamic models for biological patterning build from the complemen-

tary ideas of Turing [17] and Wolpert [18]. Wolpert introduced the idea of positional

information in biological systems being encoded in density gradients of proteins. If

the concentration of a protein varies with position, then by measuring the density

at a point, information about position relative to the source can be obtained. This

paradigm has traditionally been applied in developmental systems, where concentra-

tion gradients of morphogen proteins were initially observed. However, these ideas

can equally be applied in subcellular contexts. We will return to this type of system

in section 1.4 and chapter 3, where we estimate the potential accuracy of an example

of this type of mechanism.

In contrast to the static predetermined gradients of Wolpert, Turing suggested

that spatial patterns in biological systems could arise spontaneously due to a dy-

namic instability in a system which is driven out of equilibrium. This is an example
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of self-organisation [19] - the appropriate pattern forms inevitably and solely due to

interactions between components within the system - which is a particularly attrac-

tive property for biological mechanisms since it alleviates the requirement for a higher

level of regulation. One large class of models which use dynamic instability mecha-

nisms are the “activator-inhibitor”-type introduced by Gierer, Meinhardt and others

[20]. In these models, the system is driven by constant protein production, with one

protein enhancing and another inhibiting the levels of both. Models of this type have

been applied to such diverse phenomena as animal markings (e.g. [21]) and the de-

velopment of hair follicles [22]. More generally, pattern-forming systems in biology

typically feature short-ranged activation and longer-ranged inhibition, but not nec-

essarily through production and degradation reactions. Perhaps the most convincing

application of “Turing patterns” in biology are models of the Min protein oscillations

in E. coli, which will be discussed in more detail in section 1.3 and chapter 2. In

the majority of these models, the activation and inhibition effects take the form of

cooperative binding and dissociation reactions, with the total protein levels fixed.

Many subcellular components are present at extremely low copy numbers, from

one to a few copies of a gene or plasmid to a few hundred protein molecules. Added

to the fact that the biochemical reactions which are represented in mathematical

models are intrinsically random events between discrete reactants, this means that

fluctuation effects due to these low copy numbers may be highly significant. Stochastic

models which include these fluctuations can therefore be considered. In such models,

reaction rates are replaced by probabilities of moving between certain discrete states.

The introduction of noise can make stocahstic models more difficult to analyse than

the corresponding continuum model. However, the dynamic behaviour that these

models reveal can be significantly different from continuum models, allowing us to

probe the impact of noise in subcellular systems.

1.3 The Min system in E. coli

A well studied example of dynamical behaviour in bacterial systems is the Min system

in E.coli. The Min system consists of three proteins: MinC, MinD and MinE. These
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three proteins together direct cell division to mid-cell by preventing formation of the

septal ring in the remainder of the cell. MinC and MinD are observed to accumulate

at one cell pole [15, 16]. A MinE ring then forms at the medial end of this MinCD

region, and gradually moves towards the pole [23, 24]. MinC and MinD then gather

at the opposite pole. The period of these oscillation is approximately one minute.

The mechanisms by which these oscillations occur is relatively well understood.

MinD:ATP first binds to the cell membrane. In the absence of MinE, MinD is dis-

tributed evenly throughout the membrane [15]. The rate of MinD accumulation,

through cooperative binding or self-aggregation, increases with the amount of MinD

present [25]. MinD forms oligomers [26, 27], and can form a complex with either

MinC or MinE [28]. MinC inhibits polymerisation of FtsZ [29], preventing formation

of the “Z-ring” which forms the basis for the division machinery. MinD enhances

the effect of MinC by recruiting it to the membrane. MinC is co-localised with

membrane-bound MinD [16, 30]. However, MinC is not required for the oscillation of

MinD and MinE [15]. MinE is recruited to the membrane by MinD where it forms

a MinDE complex and, in the process, expels MinC from the membrane [25]. MinE

also stimulates ATP-hydrolysis of membrane-bound MinD, which causes dissociation

of MinD from the membrane. MinD:ADP then undergoes nucleotide exchange in the

cytoplasm to MinD:ATP.

There are a number of factors which make the Min system particularly susceptible

to modelling. There are a small number of components within the system which must

be incorporated into the model, essentially just the MinD and MinE proteins and the

cell membrane. There is a large amount of experimental evidence to suggest which

reactions are required within the model. For example we know that MinE will not

bind to the membrane in the absence of MinD, and MinD will not dissociate from the

membrane without MinE. The dynamics of the system are very regular, and so much

easier to quantify and reproduce than random relocations. Finally, in filamentous

E. coli cells, multiple regularly-spaced MinD bands form [15, 23, 24], suggesting that

the molecular interactions specify a particular oscillation wavelength. A characteristic

property of Turing patterns is the appearance of a typical length scale for the pattern

which is independent of the system size but is instead set by microscopic parameters.
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As a result of these features, a number of models [31-34] were devised which

reproduced pole-to-pole oscillations. Although these models differed in the details,

all were of reaction-diffusion-type, relying on a dynamical instability in the system.

This showed that the in vivo dynamics could be achieved without the need for any

additional elements in the system. It is possible for pole-to-pole oscillations to sponta-

neously begin simply due to the interactions between the proteins and their diffusive

motion. Since the development of these models, additional experimental evidence

has suggested that some details of these mechanisms are incorrect. The Meinhardt-

de Boer model [31] relies on continuous protein synthesis, which is not required in

vivo. In the model of Kruse [33], the formation of MinD polar regions relies on aggre-

gation of membrane proteins after binding. The model by Howard et al [32] included

reactions which have since been shown not to occur. Subsequent models have largely

been based on the reaction scheme of [34], which introduced nucleotide exchange for

cytoplasmic MinD.

The most dramatic new experimental result was that MinD formed helical fila-

ments along the cell on the membrane [35]. Subsequently a number of new models

[36-39] have been produced which attempt to incorporate this feature. In the Meacci-

Kruse model [36] the membrane occupancy is limited, and MinD accumulation is due

to self-aggregation once it has bound to the membrane. The model by Pavin et al

[38] is a three-dimensional stochastic model incorporating MinD polymerisation, but

it does not form the observed large scale helical filaments. The models by Drew et

al [37] and Cytrynbaum and Marshall [39] differ somewhat in that preferential polar

binding sites are specified, requiring that MinD filaments grow outward from the cell

poles. This and other assumptions, such as regulating polymer growth rate according

to length [37], are not required in other models. Unlike other models, the oscillations

in [39] are not due to a dynamic reaction-diffusion instability, but instead are built

in to the assumed polymerisation reactions.

In chapter 2 we describe one such model [40], which incorporates linear membrane

polymers of MinD. This model is also a stochastic particle model rather than the

continuous partial differential equation models which are more numerous. Stochastic

models have been proposed in the past [38, 41], and have a number of advantages.
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Since we are able to track individual particles rather than concentrations, it is easier

to incorporate membrane polymerisation. We can also include the structure of these

polymers, and hence vary binding probabilities according to the available binding

sites. By tracking individual particles the model naturally includes fluctuations due

to low protein copy numbers, which may have significant effects in vivo. It has been

shown that such fluctuations can drive oscillations in parameter regimes where the

corresponding continuum model is stable or bistable [41, 42], a strategy which may

be exploited by the cell.

While the actual reaction mechanisms have been studied, other behaviour of the

system has received little attention. This is an area where modelling can be of great

value, by directing experiments to search for predicted behaviour. It is perhaps sur-

prising that a system which has its function tied to cell division has not been studied

in detail during the division process. We therefore apply our model to investigate

how the Min system behaves during the process of division itself. We find that the

distribution of the proteins into the daughter cells is highly unequal, and it would be

interesting to see whether this feature is reproduced in experiments.

1.4 Noise in concentration gradients

It is widely believed that the Min system in E. coli is able to prevent formation

of the division ring near the cell poles because the averaged concentration over the

oscillation period is high near the poles and low at midcell [15, 19, 31-34, 40]. Other

bacteria also employ polar gradients to direct cell division to midcell, although without

pole-to-pole oscillations. B. subtilis produces MinC and MinD proteins but lacks

MinE, and therefore the MinCD complex accumulates simultaneousy at both poles

[43, 44]. MipZ is thought to play a similar inhibitory role in the bacterium Caulobacter

crescentus [45]. Since the concentrations of MipZ/MinCD are higher near the cell

poles, FtsZ accumulates near the cell centre. Below some critical threshold of MinCD

or MipZ concentration, enough FtsZ will presumably accumulate to form the division

apparatus. The locations where the concentration gradient crosses these thresholds

mark positions within the cell.
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The properties of intracellular protein gradients have been studied by Brown and

Kholodenko [46]. Recently a number of other gradients have been observed experi-

mentally in both prokaryotic and eukaryotic systems. The bacterial virulence factor

IcsA forms a polar gradient on the cell membrane of Shigella flexneri [47]. Similarly

to the MinC and MipZ division inhibitors in bacteria, cell division in eukaryotic cells

is also believed to be regulated by concentration gradients. For example, in fission

yeast, the protein Pom1p forms a cortical concentration gradient emanating from a

cell tip, thereby restricting the cell division protein Mid1p to the cell centre [48, 49].

Also in eukaryotic cells, gradients of the Ran and HURP proteins aid the formation

of the mitotic spindle by biasing microtubule growth towards the chromosomes [50-

54]. Gradients may also play a role in the localisation of Cdc42 activation, thereby

permitting a coupling between cell shape and protein activation [55, 56].

Prior to the discovery of these subcellular gradients, position determination by

concentration gradients had been considered in the context of developmental biol-

ogy [18]. The first experimental demonstration of this mechanism was the discovery

of the Bicoid gradient in the Drosophila embryo, which regulates the expression of

several genes along the anterior-posterior axis [57-59]. Many other morphogens have

now been discovered which specify cell fate in a concentration-dependent manner, in-

cluding different roles at different stages of development. Examples include Dpp and

Wnt, which pattern the Drosophila wing disk [60, 61], and Shh, which is involved in

patterning of the limbs [62, 63] and nervous system [64, 65] in vertebrates. Positional

information is vital for development, to ensure not just the production of the correct

tissue types but also their correct location relative to one another.

For a gradient mechanism to be biologically viable, position determination must

be precise and therefore robust to noise. Variability from one copy of the system

to another (e.g. from cell to cell or embryo to embryo) will certainly compromise

positional precision. Production and degradation rates can vary, for example, due to

different copy numbers of transcription factors or proteases. The physical size of the

system will also vary and this may affect proper positioning. Most previous analyses of

morphogen gradients have focused on robustness to changes in these extrinsic factors

[66-68] between different copies of the system. However, there will also be intrinsic
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noise affecting the gradient within a single copy of the system, for example due to

the unavoidably noisy nature of the biochemical reactions involved. This dissection

of the fluctuations into extrinsic or intrinsic mirrors that introduced into the analysis

of stochastic gene expression [69-71]. However, here intrinsic noise alters not only the

overall protein copy numbers (similar to [69]), but crucially also the spatiotemporal

protein distribution. Even if all extrinsic variation could be eliminated, intrinsic

biochemical noise would still lead to a fundamental limit to the precision of position

determination, in a similar way to limits on the precision of protein concentration

measurement [72, 73].

In chapter 3 we therefore examine the question of how precisely a concentration

gradient can specify positional information, and calculate the limits on positional pre-

cision for a simple, but biologically relevant, gradient formation mechanism with first

order reaction kinetics [74]. Quantitative measurements have suggested that concen-

tration gradients can specify position with remarkable precision. Using mechanisms

of this sort, division site placement in bacteria can achieve an impressive precision of

±1% of the cell length [75, 76]. The hunchback expression boundary in the Drosophila

embryo is localised to midcell within ±4% of the embryo length. Understanding the

fundamental limits to the precision of concentration gradients is therefore an impor-

tant issue in both developmental and cell biology.

1.5 Polarity in the C. elegans embryo

Another important example of spatial organisation is cell polarity, which is used by

many single cell organisms for a variety of functions. Many bacteria develop polar

flagella or other structures for propulsion, sometimes in response to a polar gradient as

described above [47]. The life-cycle of the bacterium Caulobacter crescentus features

two cell types, both of which are highly polarised [77]. This asymmetry is regulated

in part through localised phosphorylation and dephosphorylation of DivK at opposite

poles [78]. Under starvation conditions, B. subtilis can undergo polarised cell division

in order to create a spore [79, 80]. The eukaryotic budding yeast, Saccharomyces

cerevisiae, also has a highly polarised cell cycle. At cell division, the new cell bud
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forms adjacent to the previous division site [81, 82]. Cells can also become polarised

in response to an external signal. For example, during sporulation the polarity axis

of a budding yeast cell can be aligned to signals from another cell [82, 83].

Cell polarity can also play an important role in multicellular organisms. During

development, many cells become polarised as part of the processes of morphogenesis

[84, 85]. Epithelial cells become polarised in order to ensure tight junctions between

cells [86], forming a secure boundary between internal and external environments.

During the growth of neurons, polarity is essential for both cellular differentiation [87],

and later for growth of axons and the correct synaptic connections between cells [88,

89]. The establishment of polarity in the C. elegans embryo is highly representative

of more general properties of cell polarity. The PAR proteins involved are highly

conserved and determine cell polarity in diverse cell types and organisms [90-92].

Polarity establishment in C. elegans is also coupled to actomyosin rearrangement,

another feature frequently found in polarised cells [93-95].

The C. elegans embryo has also become an important system for the study of

developmental regulation. Cell lineages are invariant, and the formation and fate of

each cell has been recorded [96]. The adult C. elegans worm consists of 959 cells

for a hermaphrodite, or 1031 cells for a male. During development growth, division

and apoptosis are highly spatially and temporally regulated at the level of individual

cells. The earliest stages of development are characterised by a series of asymmet-

ric division events [96-98]. The one-cell embryo P0 divides asymmetrically, with the

division plane shifted towards the posterior pole, to produce the large anterior blas-

tomere AB and the smaller posterior P1. AB divides along an axis perpendicular to

the anterior-posterior axis, producing A and B cells. P1 divides later and along the

anterior-posterior axis, producing the cells EMS and P2. The temporal control and

polarisation of these division events is not understood. This sequence of asymmetric

cell divisions produces cells which differ not only in size but also in their cytoplasmic

contents and gene expression. During the first cell cycle, P-granules and other cyto-

plasmic proteins which determine the germline are restricted to the posterior of P0, so

that after division they are present in P1 but not AB [97, 99, 100]. Early embryonic

cells must therefore be highly polarised in order to ensure the correct division plane
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and distribution of proteins to the following generation. The PAR proteins determine

polarity in the P0 cell by marking the anterior and posterior halves of the cell. PAR-3,

PAR-6 and PKC-3 (the anterior PAR proteins) occupy the cortex in the anterior half

of the cell. PAR-1 and PAR-2 (the posterior PAR proteins) form a complementary

posterior cortical domain [101]. PAR-4 and PAR-5 are uniformly distributed along

the cell. Similar asymmetries are also seen in later generations prior to asymmet-

ric cell divisions. The PAR proteins also regulate the position of cell division by

regulating microtubule forces between the cortex and mitotic spindle [102].

The cell polarity and asymmetric accumulations of PAR proteins are not simply

intrinsic to the embryo - in fact the establishment of polarity is a highly dynamic

process in response to a localised polarity signal. Goldstein and Hird [103] showed

that polarity was established after fertilisation, with the polarity axis determined by

the position of sperm entry near the future posterior pole. Three recent studies have

investigated further details of polarity establishment. Cuenca et al [104] showed that

the PAR domains form gradually in an approximately 7 minute window during the

30 minute period between fertilisation and cell division. Cheeks et al [105] linked

these dynamic PAR domains to flows of cortical and central cytoplasm which were

previously known to carry germline factors to the posterior pole [106]. Finally, Munro

et al [107] showed that the dynamic PAR domains and flows are due to contraction

of a network of cortical actomyosin towards the anterior pole.

The considerable complexity of these dynamics calls for a mathematical descrip-

tion of the system that can quantitatively investigate possible mechanisms of polari-

sation. While PAR proteins have been extensively studied experimentally in different

organisms, mathematical modelling of these systems has not previously been under-

taken. In chapter 4 we discuss such a model for polarity establishment in the one-cell

C. elegans embryo, which couples the known PAR protein interactions to a simple

model of actomyosin contraction. This model is able to reproduce the correct polari-

sation of the embryo cortex, but not the observed cytoplasmic polarity which is vital

for appropriate differentiation between daughter cells. This result suggests that our

understanding of cytoplasmic polarity may be incomplete. We therefore consider a

number of modifications enabled the model to generate the appropriate cytoplasmic
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polarity, and suggest experiments that could potentially distinguish between these

alternative mechanisms.
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Chapter 2

Min oscillations and segregation

during cell division

2.1 Introduction

In this chapter, we present a simple one-dimensional stochastic model that reproduces

many of the experimental observations of the Min oscillations. We allow the MinD

to form linear membrane-bound polymers along the cell length. However, as we will

see, oscillatory dynamics can be reproduced independent of many of the details of

the polymer structure. In our model we have therefore chosen a particularly simple

implementation of membrane polymerisation. We also assume that proteins incor-

porated into membrane-bound polymers are fixed in place and cannot diffuse. This

difference in mobility between the membrane and cytoplasm is crucial for enabling

pattern formation in our model.

Although the Min oscillations have been studied in detail, there have only been a

few comments describing oscillations in constricting and recently divided cells [15, 16].

We therefore use our model to investigate the Min system during these phases by

incorporating division at the centre of the cell into the simulations. We find that the

dynamics of the Min proteins during contraction of the Z-ring is generally consistent

with the available experimental observations: the pole-to-pole oscillations continue

for some time and then the dynamics changes sharply to independent oscillations on
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each side of the septum.

We also study the numbers of Min proteins that are found in the two daughter

cells. The numbers of Min proteins in each half of the parent cell vary greatly over the

pole-to-pole oscillation period, and we find that the protein numbers in the daughter

cells also vary from cell to cell over a similar range. This result suggests that the

number of Min proteins may fluctuate strongly from cell to cell, but also that there

may be other mechanisms for controlling protein numbers in vivo, such as the rates

of Min protein synthesis being regulated by the Min protein concentration levels.

2.2 The model

The E. coli cell is modelled in 1-dimension by dividing the length L into N discrete

intervals of width δx = L/N . Each interval i contains nip of each of the five protein

states in the model. These are cytoplasmic MinD:ADP (p = D : ADP), cytoplasmic

MinD:ATP (p = D : ATP), cytoplasmic MinE (p = E), membrane-bound MinD (p =

d), and membrane-bound MinDE complex (p = de). MinE is present as a homodimer

[108], so one MinE unit is actually a dimer rather than a single protein. Experiments

show that MinC is not required for the oscillations, so it is not included explicitly

in the modelling. Since MinC is co-localized with MinD in a MinCD complex, we

assume that the amount of membrane-bound MinC can be quantified by measuring

nid. In our simulations we use a fixed time step δt. Simulations begin with either

uniform initial protein distributions or random distributions without affecting our

results.

Membrane filaments are modelled by subdividing the cell membrane into Nc linear

arrays of nmax possible binding sites for each of the N discrete intervals. Each of the

Nc arrays extends along the length of the cell, allowing filaments to grow regardless

of the discretization boundaries in the cytoplasm. During the reaction steps, cyto-

plasmic molecules may bind to membrane sites contained within the interval they

currently occupy, as shown in figure 2.1. Each of these membrane sites influences

only its immediate neighbours on the membrane, and any molecules occupying neigh-

bouring sites are considered bound in a polymer chain. The dynamical behaviour is
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independent of the values of Nc and nmax provided the total number of membrane

binding sites per cytoplasmic site, Ncnmax, is maintained. This result suggests that

the overall number of MinD molecules that can bind to the membrane influences the

dynamical behaviour, but the number of filaments into which they are arranged does

not.

In this model we employ a particularly simple way to incorporate polymerisation,

with a minimal number of assumptions about the in vivo polymerisation and struc-

ture. Since we can reproduce the Min oscillations with this model, the exact details

of polymerisation appear not to be important for generating the experimentally ob-

served Min dynamics. In particular we include only the basic effects which any more

advanced polymerisation model must also contain, the most important of which is

reduced mobility for proteins which are membrane bound. In the model, once bound

to the membrane a molecule cannot move and is fixed in place until it dissociates from

the membrane. We have also tested the model with diffusion of isolated membrane

MinD with a similar diffusion constant to that in the cytoplasm. This change has no

effect on the behaviour of the model as the amount of isolated membrane MinD is

small compared to the amount of membrane MinD bound together into polymers.

All cytoplasmic proteins diffuse with diffusion constant D. The probability of a

molecule moving to the left or right,

nip → nip − 1, ni±1
p → ni±1

p + 1, (2.1)

in a time interval δt is Dδt/(δx)2.

MinD:ATP binds to the cell membrane:

niD:ATP → niD:ATP − 1, nid → nid + 1. (2.2)

Cooperative binding and self-assembly of MinD are simulated by using two different

rates for membrane attachment. If a MinD molecule is present on the membrane

and a neighbouring membrane site is empty, cytoplasmic MinD:ATP will bind with

probability σd,coopδt for each such site. MinD may also bind to any other empty site
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Figure 2.1: Schematic showing the model steps with one membrane filament (Nc = 1),
with nmax = 8: 1. MinD:ADP converts to MinD:ATP. 2. MinD:ATP binds to the
membrane. In this case, a MinD:ATP in cytoplasmic site A could bind at membrane
position Ae or Ah with probability σd,coopδt, or at Af or Ag with probability σd,spδt.
MinD:ATP in cytoplasmic site B could bind with the lower probability to each empty
site as there are no suitable sites for cooperative binding. 3. MinE binds to membrane
MinD with probability σeδt per binding site. 4. The MinDE complex dissociates,
giving cytoplasmic MinD:ADP and MinE. The complex would unbind from site Bg
with probability σdis,isoδt, since both neighbouring sites are empty; from Bb with
probability σdis,endδt; and from Ac with probability σdis,bulkδt, since both neighbouring
sites are occupied.

with a lower probability, σd,spδt. Since the binding rate is much higher if there is

already MinD on the membrane, polymer chains form as protein particles preferen-

tially bind to the MinD already present. In the model, MinD is not allowed to bind

cooperatively to the MinDE complex. If this reaction is allowed to take place at the

faster rate σd,coop, then oscillations do not occur. MinD is allowed to bind adjacent

to the MinDE complex, but at the slower rate σd,sp. We consider that MinE at the

end of a polymer blocks the tendency for self-assembly, but cannot completely block

MinD binding.

Cytoplasmic MinE may bind to a membrane-bound MinD molecule, with proba-

bility σeδt for each such site, forming the MinDE complex:

niE → niE − 1, nid → nid − 1, nide → nide + 1. (2.3)

Dissociation of the complex releases one MinD:ADP molecule and one MinE dimer
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into the cytoplasm:

nide → nide − 1, niD:ADP → niD:ADP + 1, niE → niE + 1. (2.4)

There are three rates for dissociation, depending on the position in the membrane ar-

ray. The fastest rate and hence highest probability, σdis,isoδt, is for isolated molecules

of the MinDE complex, which have no immediate neighbours on the membrane. The

complex unbinds from the end of a chain (i.e. if it has one empty neighbouring site)

with lower probability σdis,endδt, and from within a chain (neither neighbouring site

empty) with a still lower probability σdis,bulkδt. These slower rates result from the

existence of bonds to neighbouring units in the polymer chain. However, these dif-

ferent rates are not required for the oscillations, which can be achieved with a single

dissociation rate independent of position. This suggests that the cooperative binding

and reduced mobility introduced by polymerisation are more important in generating

oscillations than the details of disassembly. However, we still include these three rates

to take account of the polymer nature of the membrane proteins.

MinD is released from the membrane in the MinD:ADP form. Before it is able to

rebind it must undergo nucleotide exchange to the MinD:ATP form:

niD:ADP → niD:ADP − 1, niD:ATP → niD:ATP + 1. (2.5)

This occurs in an interval δt with probability σDT δt. This reaction step is also not

required for the oscillations, but its inclusion makes the model more robust to changes

in protein numbers.

2.2.1 Parameters

We use δx = 0.01µm and δt = 10−5s. We have checked that reducing δt by a factor of

10, or reducing δx by a factor of 4 while keeping L and the total number of membrane

sites constant, does not affect our results. We take Nc = 2 since observations suggest

that there are about two independent helical MinD filaments in living cells [35]. In our

model there is no interaction between different filaments, since they are likely to be
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spaced far apart on the cell membrane. MinD proteins have a length of approximately

5nm [27]. Assuming that during polymerisation there is some overlap or interlocking,

and that the helical filaments have a relatively large angle with the cell’s long axis [35],

we assume it takes 6 MinD molecules to span the δx = 0.01µm interval. Furthermore,

MinD polymers are likely to be double-stranded [27], and we have therefore taken

nmax = 2 × 6 = 12. However, we have observed oscillations for Ncnmax in the range

12-30 and Nc from 1 to 4, indicating a high degree of robustness in the values of these

parameters. For smaller Ncnmax values, MinD fails to form the high density polar

regions required for oscillation, instead filling the membrane uniformly. For larger

Ncnmax, large amounts of MinD are able to gather in small regions, and as a result

regions of high MinD concentration are not observed to extend long distances across

the cell.

Unless otherwise specified, simulations are performed with L = 3µm. The den-

sities used are ρD = 1000µm−1 MinD protein particles and ρE = 400µm−1 MinE

homodimers [109]. We use D = 2.0µm2s−1, from experimental measurements of the

diffusion rates of (unrelated) cytoplasmic proteins in E. coli [110]. The other pa-

rameters take the following values: σDT = 1s−1, σd,sp = 0.005s−1, σd,coop = 30s−1,

σe = 50s−1, σdis,iso = 10s−1, σdis,end = 0.3s−1, and σdis,bulk = 0.1s−1.

These values were chosen to fit the results of the model with experimental results,

particularly the oscillation period. Increasing σDT increases the period, since MinD

is able to rebind more quickly and will therefore rebind more times within one polar

zone before diffusing to the opposite pole of the cell. σdis,end controls the rate at

which MinD polar zones are disassembled, and hence also has a significant effect on

the period. However, the fundamental oscillatory dynamics are robust to significant

changes in each of the parameter values individually. For example, oscillations persist

if σd,coop or σe are changed by a factor of 2. The values of σdis,bulk, σdis,iso and σd,sp

have little effect on the dynamics, as long as σd,sp � σd,coop, although increasing σd,sp

or decreasing σdis,iso does lead to increased noise in the oscillatory pattern.
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Figure 2.2: Kymograph plots of protein densities for A membrane-bound MinD, and
B the MinDE complex; C shows the scale used.

2.2.2 Results

Pole-to-pole oscillations: Initially there is a transient period which lasts about one to

two minutes, during which pole-to-pole oscillations are established. After this time,

the oscillations are stable and persist over at least 90 minutes of simulated time.

In our model, MinD filaments tend not to grow out from the cell poles, instead the

MinD filaments grow from random sites in the half of the cell where the concentration

of MinE is lower. This is in contrast with experiment, where MinD polar regions often

grow from the cell pole towards midcell. This difference in behaviour is a general

feature of our model, independent of specific parameter values. In particular, it is

difficult to prevent binding away from the cell pole because the MinE levels are low

and roughly constant over this region. A more significant change to the model, such

as adding favourable binding sites near the cell poles, could perhaps overcome these

difficulties.

When a polymer has a chance to form in a region with little MinE, fast cooperative

binding means the polymer grows rapidly in both directions, towards the centre and

the pole of the cell. MinD polymers in regions with high MinE concentrations do not

grow to a significant length, as the MinE prevents further cooperative binding and

causes dissociation from the membrane. From figures 2.2 and 2.3 we can see that

near mid-cell there are a large number of small patches of MinD, which are short in

length and short-lived. These are quickly occupied by MinE and displaced from the
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Figure 2.3: Kymograph plot for occupancy of a single membrane filament with nmax =
12 and Nc = 2. Black areas are empty, gray shows MinD and white is the MinDE
complex.

membrane. Figure 2.3 shows that the pattern of each individual filament follows that

of both filaments taken together.

As MinE relocates from the other end of the cell by cytoplasmic diffusion, it will

tend to bind to the membrane at the first encountered region of elevated MinD con-

centration. Hence, as can clearly be seen in figure 2.2B, a tightly localised region

of high MinE concentration (the “MinE ring”) typically accumulates at the end of

the region of high MinD concentration. Since MinD forms polar zones, the MinE

ring is nucleated close to mid-cell and thereafter moves towards the pole, via de-

tachment, diffusion and reattachment, as the MinD region shrinks. Although the

different filaments are independent, they are disassembled simultaneously since MinE

binds equally to each.

Time-averaged concentrations: Oscillation cycles were identified as periods be-

tween the MinE ring reaching one cell pole. This was done manually by looking at

n1
de, identifying times where the occupancy was high for an extended period, and

defining the end of the cycle as the time when the occupancy dropped to below

Ncnmax/2. For each of the Min proteins, the membrane density as a function of posi-

tion was averaged over each oscillation cycle. Figure 2.4 shows the mean and standard

deviation of these profiles over a large number of oscillation cycles. We can see that

fluctuations in our stochastic model do not destroy the biologically important midcell

concentration minima for MinC and MinD.
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Figure 2.4: The time-averaged amount and oscillation-to-oscillation variability of A
MinD not including the MinDE complex, B total MinD and C MinDE present on
the membrane as a function of position along the cell.

The key result for cell division is that the concentration of MinC (which in our

model is quantified by nid) is maximised at the ends of the cell, suppressing Z-ring

formation at these locations. The total amount of membrane-bound MinD, including

the MinDE complex (nid+n
i
de), also has a minimum around the cell centre and maxima

at the cell ends. This result is in good agreement with experimental observations [36].

In our model, the average amount of membrane-bound MinE is roughly constant

along the length of the cell, although with large fluctuations. This contrasts with

other models which have a minimum [33, 34, 36, 38] or maximum [32] for membrane

MinE at the cell centre. This profile has not been measured experimentally. Such a

measurement could potentially distinguish between the various models.

Variation of period with protein numbers: Figure 2.5 shows that the oscillation

period increases with increasing MinD concentration, and decreases with increasing

MinE concentration. This is consistent with experimental observations [15]. The

range of periods supported in this model also covers that observed in vivo, where the
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Figure 2.5: Variation of oscillation period when varying A ρD with ρE = 400µm−1,
B ρE with ρD = 1000µm−1, and C ρD : ρE ratio. D Distribution of 96 periods for the
case with ρD = 1000µm−1 and ρE = 400µm−1. The distribution is similar in other
cases. In those cases where the observed period is less than about 100s, the standard
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Figure 2.6: Membrane occupancy in 8µm cells, showing both periodic and more
disordered dynamics. Plots on the left show membrane MinD. Plots on the right
show the corresponding MinDE complex distribution.

variation is likely due to the fluctuations in protein copy numbers between different

cells.

Oscillations occur for a fairly large range of ρD : ρE ratios, but cut off when the

ρD : ρE ratio drops below about 1.6. At these concentration levels, MinD filaments are

unable to grow to a significant length because they are removed from the membrane

too quickly. At the opposite end of this scale there is no sharp transition; increasing

ρD : ρE causes the polar zones to extend further into the opposite half of the cell.

Above the range shown in figure 2.5A, the “polar zone” effectively extends for the

whole length of the cell and MinE is unable to empty the membrane.

Filamentous cells: Observations of filamentous cells which are unable to divide

have revealed regularly spaced bands of MinD with accompanying MinE rings [15,

23, 24]. This is strong evidence in favour of a dynamic instability mechanism for

the oscillations, since the presence of bands supports the existence of a characteristic

wavelength for the dynamics independent of the cell length. Figure 2.6 shows the
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results of simulations of our model performed in longer cells. In some cases, periodic

oscillations with a number of MinD bands are observed, with the number of bands

increasing with the cell length. In other cases, several regularly spaced bands form,

but these all advance towards the same cell pole. In these cases the dynamics is more

disordered. Such disordered behaviour has not yet been reported experimentally.

However our model predicts that, while periodic behaviour may be seen over some

intervals of up to 10 minutes, many filamentous cells will also have periods of irregular

dynamics or switch between single and double banded oscillations. Such irregularity is

perhaps not surprising given the stochastic nature of our model, and would certainly

be interesting to search for experimentally.

Variation of period with length: Figure 2.7 shows the variation of oscillation period

with cell length, while keeping the protein concentrations constant so the total protein

number increases proportional to L. Over the range 1µm ≤ L < 6µm, where only

single banded pole-to-pole oscillations are observed, the period remains approximately

constant as the length is varied. The available experimental evidence [36] suggests

that any change in the period with length in vivo is much smaller than the variation in

period at constant length, which is presumably due to concentration levels differing

between individual cells. When multiple oscillation bands are observed in longer

cells, beginning at about L = 6µm, their period is similar to that of the pole-to-pole

oscillations in shorter cells. In the case of disordered behaviour it is more difficult to
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identify a characteristic period in the observed dynamics. However, the dynamics is

often dominated by the bulk of the MinD sweeping regularly from one pole to the

other, and we use this to find the dominant period of oscillation. For example in the

lower panels of figure 2.6, t = 230s to t = 530s would be considered to be one period.

The period of this type of oscillation increases linearly with cell length, in contrast

to the roughly constant period observed for L < 6µm.

During the sweeping pole-to-pole motion in filamentous cells, MinD typically

forms short bands at intervals of 3 − 4µm with an accumulation of MinE at one

end. MinD dissociates from this short filament predominantly in the region where

MinE is present, and tends to rebind cooperatively at opposite end. This leads to

the ordered and approximately constant movement of narrow MinD bands across the

cell, as seen in figure 2.6. The dynamics changes somewhat as the MinD band ap-

proaches the cell pole. The boundary prevents MinD binding at the former leading

edge, leaving only the shrinking edge of the MinD region as a preferential binding

site. Therefore, the overall binding rate in this region increases, slowing the net dis-

sociation rate of MinD. This effect can be seen in figure 2.6, where it appears that

shrinking of a MinD band slows down as it approaches the poles. Similar behaviour

can also be seen when two MinD bands travelling in opposite directions meet, and in

the regular dynamics of figure 2.6. The polar MinD zones which form in this way are

similar to the continuous polar zones between the cell pole and the MinE ring which

appear in shorter cells. These polar zones have a characteristic time associated with

their disassembly regardless of cell length.

The results of figure 2.7 can therefore be explained by the qualitatively different

dynamics which are observed in different situations. In filamentous cells, MinD bands

move across the cell at approximately constant speed. This type of motion scales with

cell length, giving the linear increase in period for the disorder dynamics. However,

the linear variation intersects the L-axis at approximately L = 4µm. MinD bands in

long cells travel less than the full length of the cell, because they form slightly away

from the previously occupied pole and because as these MinD bands approach the

cell pole a continuous polar zone is formed. So we can consider the oscillation period

in long cells to be made up of two parts: the time to disassemble the polar zones,
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which is the oscillation period in short cells, plus the time taken for the MinD bands

to travel twice across about (L− 4)µm of the cell.

2.3 Oscillations during cell division

Now that we have established that our model reproduces the in vivo behaviour of the

Min system, we use the model to investigate the Min dynamics during cell division.

We investigate two mechanisms to simulate the closing septum, and examine how the

Min oscillations are altered both during this process and once the daughter cells have

separated. In particular we would like to study the distribution of the numbers of the

Min proteins in each daughter cell, as this has not yet been measured experimentally.

Model A: Let t be the time since invagination began and T be the total time

from when invagination begins to when there is no longer a cytoplasmic connection

between the daughter cells. Over a length, 2l, centred at x = L/2, we assume that

the invagination of the cell membrane causes “compression” of the cytoplasm, making

diffusion more difficult. As a result of this compression, diffusion decreases to zero

in this region by time T , and unless otherwise stated we assume that this decrease

occurs quadratically with time. In model A, we therefore employ a reduced diffusion

probability, D′(t)δt/(δx)2, in the region L/2− l ≤ x ≤ L/2 + l with

D′(t) = D0

(
T − t
T

)2

, (2.6)

and where D0 is the cytoplasmic diffusion constant in the rest of the cell.

Model A provides a simple way to implement the division process. However it is

perhaps unrealistic to assume that diffusion is reduced equally over the whole range

2l, particularly as there is little clear evidence for this “compression” of the cytoplasm.

This model also neglects the importance of the direction of diffusive motion, whether

towards or away from the septum and into a narrower or wider region. We therefore

also investigate a second, possibly more realistic, model.

Model B: Figure 2.8 shows a schematic of this mechanism. Let y be the distance

from the outer edge of the narrowing region measured towards the centre. We assume
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that the cell radius decreases linearly with y, and that the radius closes linearly with

time:

r(y, t) = r0

(
1− y

l

t

T

)
. (2.7)
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Figure 2.8: Schematic of the Model B septal region.

Equation (2.7) discretizes to give

ri(t) = r0

(
1− i− 1

w

t

T

)
, i ≥ 1. (2.8)

where w is the number of sites in the contracting region and i is the site number

counting from the polar end of this region. The presence of the −1 in the numerator

simply reflects a choice in the discrete model of precisely where the invagination

begins in space. The probability of diffusing into the next site towards the cell centre

is assumed to vary with the ratio of the cross-sectional areas Ai, where Ai ∝ r2
i ,

since the narrowing cell radius may restrict the mobility of protein particles close to

the membrane. This is equivalent to reducing the diffusion probability towards the
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Figure 2.9: Kymograph plots showing MinD oscillations in a dividing cell, for A
model A and B model B. The division process begins at the point marked t = 0 and
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septum from site i to site i+ 1, Di(t)δt/(δx)2, according to

Di(t) = D0
Ai+1(t)

Ai(t)

= D0

(
1− i

w
t
T

)2(
1− i−1

w
t
T

)2 , i = 1, . . . , w. (2.9)

The probability of diffusion away from the septum is unchanged at D0δt/(δx)2.

Unless otherwise stated we use T = 300s and l = 0.1µm (estimated from [4]) or

w = 10.

2.3.1 Results

Oscillations are initially unaffected as diffusion through the septum is reduced. Then

at some later time diffusion through the septum cuts off sharply. After this time the

two daughter cells are effectively independent, even though there remains a connection

through the cytoplasm. This cut-off time varies between models but is approximately

independent of the density distributions at t = 0. In model A, pole-to-pole oscilla-

tions cease relatively quickly, after approximately one minute. In model B, where

the diffusion rate is on average greater because of the additional spatial variation,

oscillations continue with little obvious alteration for about 270 seconds.

At the centre of the cell there is a region where the membrane remains empty,
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Figure 2.10: Comparison of the division models A and B, showing the distributions
of the fraction of A MinD molecules and B MinE molecules from the parent cell, and
C of ρD : ρE ratios, in the daughter cells.

which appears at about the time when pole-to-pole oscillations are disrupted. Possibly

the reduced diffusion probability makes it less likely that any proteins will be able to

enter these sites, and thus reoccupy the membrane. For model A this includes about

half of the contracting region, as can be clearly seen in figure 2.9A. At t = T the

empty central region is quickly reoccupied because we restore the diffusion rate to D0

(except at x = L/2) and proteins can once again access these sites. For model B, the

empty region extends only over a few sites at the centre of the cell and appears much

later during division. Again this is due to the greater diffusion rates in model B.

Protein numbers in the daughter cells vary from 85% to 15% of the total in the

parent cell for both MinD and MinE. This range is the same as the variation in protein

numbers in each half of the parent cell during normal pole-to-pole oscillations. Figure

2.10 compares the daughter cell distributions between the two models. In both cases,

the MinE distribution peaks at high and low concentrations. In model A, an equal

distribution into the two daughter cells is never observed. The ρD : ρE ratios in
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Figure 2.11: Points show the fraction of MinE from the parent cell in each daughter
cell plotted against the fraction of MinD in the same cell. After division, these
fractions are of course constant for each daughter cell. Circles represent model A,
and crosses model B. The gray lines show the fraction of each protein in one half of
the parent cell as a function of time during pole-to-pole oscillations. This is slightly
disordered due to fluctuations. The dashed line indicates ρD : ρE = 1.6. Daughter
cells to the left of this line do not have pole-to-pole oscillations.

daughter cells are also similar in the two models. Only the MinD distribution shows

a significant difference between the two models. In model A, all concentrations are

approximately equally likely. In model B, however, copy numbers in the daughter cells

between 25-35% and 65-75% of the total from the parent cell are strongly favoured

and a 50%-50% split is never observed.

The ρD : ρE ratio in daughter cells ranges from about 1.3 to 6. Those daughter

cells with ρD : ρE < 1.6, approximately 20% of the total produced in our simulations,

cannot support pole-to-pole oscillations because MinD is unable to form sufficiently

long filaments on the membrane. This is consistent with our results in section 2.2.2.

All daughter cells with ρD : ρE > 1.6 did have Min oscillations. However when the

protein copy number is low, polar zones are less dense and fluctuations become more

significant in the dynamics.

If we plot the fractions of MinE and MinD in the same half of the parent cell as a

function of time as pole-to-pole oscillations take place, the result is a cycle as shown
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Figure 2.12: As for figure 2.11, but with data added for different w and T values and
different functional time dependences.

in figure 2.11 (gray lines). During the division process, the Min protein dynamics

are of course altered. Hence, as can be seen in Figure 2.11, the data points showing

the fraction of the proteins ending up in the daughter cells lie on another closed loop

which is similar, though not identical to, the cycle of the parent cell. We can also see

that both models A and B produce daughter cells with protein fractions that lie on

the same closed loop.

2.3.2 Robustness

The results presented above appear to be general and are qualitatively the same under

a number of changes (discussed below) to the division models. No systematic trends

were observed when varying any of the parameters in either of the models. In fact

when additional data from these perturbed models is added to the data from figure

2.11, all the data points continue to lie on the same loop (see figure 2.12).

Width of contracting region: Increasing w means that the pole-to-pole oscillations

of the parent cell are disrupted sooner, because the cumulative probability of diffusion

from one half of the cell to the other is reduced. Conversely, if w is reduced oscillations

in the parent cell will continue later into the division process. However there is no
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obvious effect on the protein numbers in the daughter cells when w is increased to 20

or reduced to 5.

We have also tested the case where diffusion is reduced only when crossing from

one half of the cell to the other, a limiting case of our earlier models. The observed

distribution of protein numbers into the daughter cells is again the same.

Form of time-dependence: We have tested model B with r(y, t) decreasing quadrat-

ically with t, and model A with linear time dependence. Again the behaviour is

qualitatively the same. The time at which oscillations cease is earlier if the diffusion

probability decreases more rapidly with t, and later if the diffusion probability de-

creases more slowly. However the distributions of the Min proteins into the daughter

cells are unaffected.

Division time, T : Again the distribution of Min proteins into the daughter cells

showed no systematic changes. The time at which the oscillations in the parent cell

ceased appeared to vary linearly with T , suggesting that oscillations were disrupted

when a minimum threshold for the diffusion probability was reached. T = 150s and

T = 450s were tested in addition to T = 300s.

Stochastic vs. continuous models: We also implemented a similar mechanism to

model A into continuous partial differential equation models adapted from [32] and

[34]. The results obtained were qualitatively the same as those shown above. This

indicates that the observed behaviour is not a result of the stochastic nature of our

model.

2.4 Discussion

In this chapter we have introduced a model for the Min protein oscillations, incorpo-

rating both membrane polymerisation and stochasticity. As we have seen, the model

is able to account for much of the observed Min dynamics. While the model pre-

sented above was limited to one dimension, Krstić et al performed simulations of a

three-dimensional version of this model [111]. The three-dimensional model with the

parameters listed above also displayed pole-to-pole oscillations, although with reduced

fidelity and higher levels of noise than observed in our one-dimensional simulations.
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This could potentially be improved by varying parameters. Nevertheless, this shows

that the results presented above are not specific to the one-dimensional geometry we

have considered, but that the mechanism proposed is more generally viable.

We have also applied our model to the dynamics of the Min proteins during cell

division and found that diffusion alone is insufficient to equalise the protein copy

numbers between the two daughter cells. Previous experimental observations of con-

stricting cells [15, 16] have suggested that oscillations of the Min proteins continue

unaffected well into the division process. After this time, oscillations occur separately

between each pole and mid-cell, and continue once the daughter cells have separated.

These features are reproduced in our simulations - oscillations cut off sharply at some

time during the closing of the septum, after which the daughter cells are effectively

independent even though they have not yet completely separated. However the ex-

perimental data available on this aspect of the Min dynamics are limited. There have

been no experiments looking systematically and quantitatively at protein dynamics

in large numbers of cells undergoing the division process. We hope that future ex-

periments will investigate the partitioning of the Min proteins and follow the Min

oscillations into the daughter cells. Although the results we have presented appear

to be general and independent of the division mechanism, it is possible that other

models would produce different behaviour. This provides potentially another way to

test these models against experimental observations and each other.

Our simulations suggest that the distribution of the Min proteins is very often

unequal and often largely skewed to one daughter cell. The variation of periods

observed in vivo also leads us to believe that there is some variation of copy number

between cells. However, in the most extreme cases of our simulations, Min oscillations

are not supported in the daughter cells. Wild-type E. coli without pole-to-pole Min

oscillations have not been reported in the literature. It may be that our model

cannot reproduce oscillations at the extremes of the range where they can occur in

vivo. However, in these cases the period of oscillation would probably lie well outside

the range typically observed. This suggests that, at least in these extreme cases, some

additional way of regulating protein numbers in the daughter cells may be required.

For most cytoplasmic proteins that are present in high numbers, diffusion effec-
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tively distributes them evenly throughout the cell so that at division the number in

each daughter cell is roughly equal. The dynamics of the Min proteins, however,

means that the distributions are normally skewed greatly towards one end of the cell.

From our simulations we conclude that diffusion through the septum is not by itself

able to equalise the Min protein numbers in each daughter cell.

Recently, Sengupta and Rutenberg [112] performed a similar analysis of Min pro-

tein partitioning during divsion with the continuum model of Huang et al [34]. Their

results were quantitatively similar to those presented above, with oscillations absent

from at least 15% of daughter cells. They suggest that through a coupling of septal

closure to the “phase” of the Min oscillation it is possible to ensure that both daugh-

ter cells have viable oscillations even if the distribution of Min proteins is unequal.

Hoewever, our stochastic model suggests that triggering the initiation of division at

a particular point in the Min oscillation cycles will not guarantee appropriate par-

titioning. Between the initiation of contraction of the division ring and the time

the Min proteins are partitioned just before septal closure there will be a significant

delay. Over this time, fluctuations in the oscillation period cause the phase of the

oscillation in the stochastic model to drift relative to the corresponding continuum

model. Since the time taken for the division ring to contract is much longer than the

oscillation period, we found in our simulations that the phases at the initiation of

contraction and at septal closure were essentially uncorrelated. In principle the cou-

pling between division and Min oscillations could also occur at a later stage, with the

contracting ring waiting for the correct Min distribution before completing division.

Such a mechanism appears unlikely, since these delays in contraction are not observed

experimentally. An alternative would be some form of active transport through the

closing septum. This also appears unlikely, and there is certainly no experimental

evidence for such a mechanism. It therefore seems improbable that the protein num-

bers are regulated by the division mechanism itself, which leaves open the possibility

that levels are corrected shortly after division.

In our simulations, those cells which did not have Min oscillations had a ρD :

ρE ratio below 1.6. This could be rectified by producing more MinD shortly after

division. Additionally those cells with a very low copy number of both proteins had
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small and low-density polar zones, where fluctuations had a much more significant

impact on the pole-to-pole oscillations, leading to a much less pronounced MinD

mid-cell concentration minimum. These cells would also benefit from increased copy

numbers of both proteins. This could be achieved if the production rate of the Min

proteins is controlled according to their concentrations, without needing a direct

trigger from the division event. The production of the Min proteins has yet to be

studied experimentally, so it is not known which, if any, factors affect their production

rates.

Previous studies [113, 114] have found that there is no evidence for cell-cycle

dependent protein synthesis in E. coli, including cell division proteins such as FtsZ

and FtsA. For proteins involved in the division machinery such as FtsZ, a constant

production rate is sufficient for these proteins to be equally distributed at cell division.

The majority of FtsZ is cytoplasmic and so the concentration throughout the parent

cell would be largely equalised by diffusion. The remaining FtsZ is located at the

septum in the “Z-ring”, and proteins in this structure could easily be equally divided

between the daughter cells.

However, as described above, the situation for the Min proteins is likely to be

rather different. Potentially the concentration levels of the Min proteins may feedback

to their production (or even degradation) rates, so that, for example, their rates of

synthesis increase whenever their concentrations are low. After division some cells

would therefore have a burst of protein synthesis, but this would not be directly

triggered due to the cell having recently divided. As the cell continues to grow the

same mechanism could also keep the Min protein concentrations roughly constant. In

future experiments it will be interesting to thoroughly test some of these possibilities.
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Chapter 3

Intrinsic Fluctuations in

Concentration Gradients

3.1 Introduction

The Min system functions by producing a time-averaged concentration gradient which

is minimal at mid-cell. Concentration gradients are also employed in many other

biological systems for finding positional information. However, intrinsic low copy

number fluctuations will limit the potential accuracy of such systems. In this chapter

we consider some simplified models of gradient formation, and calculate a limit to the

potential precision of these systems due to intrinsic low copy number noise.

We first consider a system with a single planar morphogen source and linear degra-

dation, thereby producing an exponentially decaying average concentration profile.

While this model is very simple, it remains biologically relevant in both developmen-

tal and intracellular contexts. Gradients of Bicoid, Wingless and Dpp in Drosophila

and IcsA in Shigella have been quantitatively measured and shown to fit this expo-

nential decay profile on average to high accuracy [47, 115, 116]. We then calculate

the expected distribution of positions where a noisy gradient crosses a concentration

threshold. With typical cellular copy numbers of order a thousand proteins, these

systems will be unable to identify the correct threshold position from a single mea-

surement. In order to achieve reliable position determination the concentration must
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be averaged over time. The effect of time-averaging depends strongly on the number

of spatial dimensions in the system. We show that by averaging measurements, even

with only the few hundred protein copies typically present in a subcellular system,

precision in position determination of a few percent of the system size can be achieved,

a result we verify by computer simulations. Furthermore, we find that the precision

of position determination is maximised when a particular choice of the gradient decay

length is made. We also show that the precision possible after a certain averaging

time is independent of the detector size (i.e. the volume over which the density mea-

surement is made) in a one-dimensional system and very weakly dependent on the

detector size in two dimensions.

In our analysis we will simply postulate the existence of a well-defined critical

threshold, where the gradient sharply switches a downstream signal from on to off.

Clearly any real gradient cannot act as such a sharp switch – in reality a certain

amount of smearing is inevitable. Furthermore, there will be additional noise in

the process of actually measuring the concentration due both to the binding of the

gradient proteins to the receptor molecules [72, 73], and also to the downstream

reactions that process this incoming signal [69-71, 117-119]. In general, the noise of

the output signal of a processing network can be written as the sum of a contribution

from the noise in the input signal plus a contribution from the reactions that constitute

the processing network. We assume here that the detector and the processing network

are ideal and do not add any noise to the gradient input signal. As a result, our

calculated variation constitutes a lower bound; any real gradient signalling system

will inevitably have a lower precision.

We also consider the ability of gradients from two poles to identify the centre

of the system, as in the MipZ and Pom1p gradients which regulate the position of

cell division in Caulobacter and fission yeast respectively [45, 48, 49]. As before,

we find that the precision of the system can be optimised by a particular choice of

the decay length. However, if the threshold position is set at the system centre,

time-averaging improves precision more slowly than in the single-source model. For

subcellular gradients we find that a few thousand copies of the gradient proteins may

therefore be required for high precision. Our results strongly constrain the possible
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concentrations of gradient proteins in two gradient systems.

Gradient systems with interactions have also been proposed theoretically for the

control of hunchback positioning in Drosophila [67, 68, 120]. In these systems, two

opposite polar gradients are formed by different proteins which react and cause the

inactivation or degradation of one another. We find that this mechanism typically

is able to locate the central position more precisely that the two non-interacting

gradients described above.

3.2 A simplified gradient model

We consider a protein gradient which is used to determine a particular position along

the length of a cylindrical system. We will let d be the spatial dimension of the system.

We choose the x-axis along the long axis of the system. Position in the remaining

coordinates is denoted by the vector y. The system length is L, and the size of the

system in the remaining directions is taken to be L⊥. For d = 2, periodic boundary

conditions are appropriate in the y-direction, so L⊥ = 2πr, where r is the system

radius. Otherwise, zero-flux boundary conditions are used throughout. A source on

the x = 0 plane produces proteins at rate J per unit area, which then diffuse with

diffusion constant D, and are degraded uniformly at rate µ. Neglecting fluctuations,

the protein concentration ρ(x,y, t) will be described by

∂ρ

∂t
= D∇2ρ− µρ+ Jδ(x). (3.1)

If L � λ =
√
D/µ, the characteristic decay length of the gradient, we find that, at

steady state, the density is

ρ(x) =
Jλ

D
exp (−x/λ) . (3.2)

Symmetry dictates that the average density is independent of y. Gradients with the

form (3.2) have been found to accurately fit quantitatively measured concentration

profiles in both developmental [115, 116] and subcellular [47] systems.

While we have outlined the model in terms of production and degradation, (3.1)



3.2 A simplified gradient model 48

could equally apply to other mechanisms in which the active protein originates in

a single location, but deactivation occurs uniformly throughout the system. The

same equation would therefore describe a protein which is phosphorylated by a polar-

localised kinase and dephosphorylated by a uniformly distributed phosphatase, or

a protein which is activated by being injected into the membrane at a pole and

deactivated when it dissociates. These biochemical details do not affect the behaviour

of the model.

We suppose that signalling is active where the local gradient protein concentration

is above some threshold value, ρT , and inactive otherwise. The average concentration

profile for a single gradient, (3.2), suggests that the system will be divided into a region

0 ≤ x < xT where signalling is active, and a region xT ≤ x ≤ L where signalling is not

active, with ρT = ρ(xT ). However, noise in the local protein concentration will cause

this threshold position to fluctuate. This noise may come from intrinsic fluctuations

in the diffusion, injection and decay processes, or from extrinsic factors which produce

systematic changes in the boundary position when comparing one copy of the system

to another. Here we consider only intrinsic biochemical fluctuations.

Protein production and degradation events are considered to be single molecule

reactions with a fixed probability per unit time, and hence will be Poisson processes.

We also assume that the hopping of proteins in or out of a particular region of space

is governed by Poisson statistics, thereby generating a diffusive process for molecular

transport. Since the system is linear, the instantaneous fluctuations in molecular

number, n, within a volume (∆x)d centred on the position (x,y) should also obey

Poisson statistics, with 〈
n(x)2

〉
− 〈n(x)〉2 = 〈n(x)〉 . (3.3)

In terms of protein density, this becomes

〈(∆ρ(x))2〉 =
〈
ρ(x)2

〉
− 〈ρ(x)〉2 =

〈ρ(x)〉
(∆x)d

. (3.4)

This relation can also be established using more elaborate field theoretic techniques

(see [121]). From this expression for the variation in the density we can compute the

width of the threshold position distribution by expanding about the average threshold



Chapter 3. Intrinsic Fluctuations in Concentration Gradients 49

position xT . To leading order, this width is given by

w0 =
∆ρ(xT )

| 〈ρ′(xT )〉 |
=

√
λD

J(∆x)d
exp (xT/2λ) , (3.5)

where ρ′(xT ) denotes the first derivative of the density at x = xT .

We identify (∆x)d as the size of the region in which the concentration is being

measured. For subcellular gradients involved in positional information, this volume

will be determined by the size of an individual receptor or protein with which the

gradient protein interacts, an example being the interaction between the MinCD and

FtsZ proteins in B. subtilis. The size of the detector, ∆x, will then be on a molecular

scale. This conclusion still holds even if the gradient proteins bind cooperatively to

the “detection” protein/receptor due to the close physical proximity of the bound

molecules. In contrast, however, the cellular length scale will be much larger, 1µm

or bigger. Such small detector sites will lead to very low average occupancies, and

hence to large density fluctuations. To quantify this, we consider the examples of

IcsA in Shigella and Pom1p in fission yeast. Since both proteins are localised to the

cell membrane, we consider systems with d = 2.

A cell will typically have a few thousand copies of IcsA [122], forming a gradient

with λ ≈ 0.5µm [47]. We take the detector size to be ∆x = 0.01µm, consistent with

an interaction between IcsA and actin nucleation proteins. For diffusion on the cell

membrane, we take D = 1µm2s−1. On the membrane of a cell of this size, there

would be approximately LL⊥/(∆x)2 ∼ 105 potential detector sites, many more than

the typical copy number. Even near to the source pole, detector sites will typically

be unoccupied. A detector region at a distance x = 0.5µm from the highly-occupied

pole will have average occupancy of 〈n〉 ∼ 10−1. In the cytoplasm of a similarly sized

bacterium, the number of potential detector sites will be ∼ 106, again much larger

than the protein copy numbers typically supported by bacteria.

Similar estimates can be made for single polar gradients in fission yeast (L =

10µm, L⊥ = 6µm), such as for Pom1p [48, 49]. Here we assume a total of 2000 protein

copies (this concentration has not yet been measured but this number is plausible
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[49]). We also take D = 1µm2s−1 and a decay length of λ = 2µm, parameters that

are approximately consistent with the Pom1p gradient imaged by Padte et al [49].

We again assume that ∆x = 0.01µm corresponding to a molecular sized detector, as

would be the case if the gradient protein interacted with other membrane proteins

(such as Mid1p) [48, 49]. The typical occupancy of a ∆x = 0.01µm site is then

〈n〉 ∼ 10−2 at x = 2µm from the source.

Average detector site occupancies that are very much less than one ensure that

the threshold concentration must necessarily be less than one protein per site. Since

most regions will be devoid of any copies of the protein, a single instantaneous mea-

surement of the protein density cannot give a good estimate of the local average

concentration. Additionally, multiple positions where the concentration crosses ρT

will be observed simultaneously in such a measurement since the concentration will

be above the threshold everywhere there is a protein molecule present, and below

the threshold where there is no protein molecule. In order to reliably determine

the average concentration profile the system must therefore integrate the measured

concentration over time.

3.2.1 Time averaging

The noisy concentration profile provided by the gradient protein forms the input signal

that is then time-averaged by a downstream signal processing network. In general,

the mechanism for time averaging is provided by the lifetimes of the states in the

processing network. For instance, in the case of gene expression, fluctuations in the

occupancy of the promoter by a gene regulatory protein can be filtered by the lifetime

of the mRNA transcript, provided that lifetime is much longer than the timescale of

fluctuations in the promoter occupancy [71, 73]. Similarly, for subcellular gradients,

as in Shigella, fluctuations in the gradient can be filtered by the lifetime of activated

receptors/detector proteins or their downstream products. Provided this time scale

is much longer than the sub-millisecond timescale of the gradient fluctuations, then

good time-averaging can be achieved. Importantly, the reactions in the downstream

network not only time-average the noise of the input signal, but also add further noise
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to the signal [69-71, 117-119]. Here, we focus exclusively on noise in the concentration

gradient and do not model the downstream reactions explicitly, but simply assume

they are noiseless and model them with an effective averaging time. In essence we

assume that the detector and the network that the process the gradient signal are

ideal and do not add further noise, and are thus able to time-average the gradient

signal in the best possible way. Our results thus provide a lower bound to the output

noise set by the Poissonian fluctuations of the signalling molecules.

If we were to average over N independent measurements of the density, we would

expect the error in this average to decline as N−1/2. If we can take independent

measurements at intervals of τind, then averaging over a time-interval τ we would

expect to take Nτ = τ/τind independent measurements of the concentration. We

would then expect that the fluctuations in the concentration will decrease according

to 1/
√
Nτ . In reality, measurements will generally be taken at much shorter intervals

than this. This will lead to correlations between consecutive measurements. For a

series of correlated measurements taken at time intervals δt over a period 0 ≤ t ≤ τ ,

with τ � δt, the expected error for the time-averaged concentration at position

x = (x,y), (∆ρ(x, τ))2, is given by [123]

(∆ρ(x, τ))2 =
δt

τ
(∆ρ(x, 0))2

[
1 +

2

δt

∫ τ

0

(
1− t

τ

)
C(t)dt

]
, (3.6)

where (∆ρ(x, 0))2 is the variance of a single measurement,

(∆ρ(x, 0))2 =
〈
ρ(x, 0)2

〉
− 〈ρ(x, 0)〉2 , (3.7)

and C(t) is the normalised density correlation function,

C(t) =
〈ρ(x, t)ρ(x, 0)〉 − 〈ρ(x, 0)〉2

〈ρ(x, 0)2〉 − 〈ρ(x, 0)〉2
. (3.8)

We therefore define the timescale τind to be

τind(τ) = 2

∫ τ

0

(
1− t

τ

)
C(t)dt, (3.9)
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and assuming τind � δt we recover

∆ρ(x, τ) = ∆ρ(x, 0)

(
τind(τ)

τ

)1/2

. (3.10)

For large enough values of τ we can therefore interpret τind as the time-interval re-

quired for successive measurements to be independent.

The correlation function C(t) will be determined solely by the reaction-diffusion

dynamics of the proteins in the model. For pure diffusion, we expect:

Cdiff (t) ∼

1 for t� (∆x)2

D(
(∆x)2

Dt

)d/2
for t� (∆x)2

D

. (3.11)

On time scales t � (∆x)2/D the system remains perfectly correlated as there has

been insufficient time for particles to hop away to neighboring sites. However, for

t � (∆x)2/D, an algebraically decaying correlation function is found, characteristic

of diffusion. Adding decay to the system simply alters the correlation functions by a

multiplicative factor of exp(−µt). We therefore have

C(t) ∼ e−µt

1 for t� (∆x)2

D(
(∆x)2

Dt

)d/2
for t� (∆x)2

D

. (3.12)

This can now be used in (3.9) to find the leading order contributions to τind. In the

biologically relevant limits where τ � (∆x)2/D and 1/µ� (∆x)2/D, and assuming

λ . L so that boundary effects can be neglected, the leading order terms are found

to have the following forms:

d = 1 τind ∼
(∆x)l

D
(3.13)

d = 2 τind ∼
(∆x)2

D

(
ln

(
l2

(∆x)2

)
+ constant

)
(3.14)

d ≥ 3 τind ∼
(∆x)2

D
. (3.15)
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In d = 3 or greater we find the mean-field result, in which diffusion rapidly removes

any correlations between density measurements. However, in d = 2, density correla-

tions decay away more slowly, leading to the appearance of logarithmic corrections.

The length scale l represents the maximum distance over which density correlations

persist, which is approximately set by the maximum distance over which particles can

diffuse in time τ . For τµ � 1, l ∼
√
Dτ is determined purely by diffusion. Protein

decay effectively caps the possible l at longer time-scales, so for τµ � 1 we have

l ∼ λ. In one dimension, density correlations persist much longer, since diffusion is

far more restricted, and so these correlations have a large effect on time-averaging.

3.2.2 Two- and three-dimensional systems

With the instantaneous width and the appropriate averaging time for density mea-

surements, we can now determine the effective limiting width of these time-averaged

measurements. Here we will restrict ourselves to the two- and three-dimensional

systems which are of most biological importance. The system will have dimension

d = 2 if the gradient is restricted to the membrane, or d = 3 if the gradient is in the

cytoplasm.

From (3.10), we see that the uncertainty in density measurements goes as

∆ρ(x, τ) = ∆ρ(x, 0)

(
τind(τ)

τ

)1/2

. (3.16)

Combining this with (3.5), we have

w(τ) =
∆ρ(xT , τ)

| 〈ρ′(xT )〉 |
=

∆ρ(xT , 0)

| 〈ρ′(xT )〉 |

(
τind(τ)

τ

)1/2

(3.17)

= w0

(
τind(τ)

τ

)1/2

. (3.18)

For long averaging times, τ � 1/µ, the width determined from time-averaged mea-
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surements will be

w(τ) = k2d

[
λ

τJ
exp (xT/λ)

(
ln

(
λ2

(∆x)2

)
+ α

)]1/2

(3.19)

in d = 2, and for d = 3

w(τ) = k3d

[
λ

τJ(∆x)
exp (xT/λ)

]1/2

, (3.20)

where k2d, k3d and α are constants.

As we have discussed above, ∆x will be set by the concentration detection mech-

anism. However, in a subcellular context, ∆x also sets the highest possible resolution

of the system. Once w ≈ ∆x the cell cannot resolve the target position with any

higher precision. Equation (3.19) suggests that in d = 2, precision depends only very

weakly on the detector size, through the logarithmic correction factor. Reducing the

detector size will increase the number of independent measurements made in a given

averaging time. However, since fewer proteins will be measured by each detector over

one averaging period, reducing ∆x will therefore increase the instantaneous density

fluctuations. In d = 2 these two effects will largely cancel. Hence, even if we have

over/underestimated the detector volume, this will have little effect on the precision

of two dimensional gradients, such as IcsA in Shigella or Pom1p in fission yeast. In

three dimensions, however, w varies as (∆x)−1/2. Since increasing ∆x reduces w in

both d = 2 and d = 3, an optimal strategy would be to choose ∆x to match the

desired precision in order to minimise the required averaging time.

Intriguingly, from equations (3.19) and (3.20) we find that there exists an optimal

decay length such that precision is maximised. This result can be understood as

follows: for fixed xT , and for λ � xT , the value of | 〈ρ′(xT )〉 | tends to a constant

J/D, independent of xT . However, as λ increases, 〈ρ(xT )〉 increases and therefore

the absolute size of the fluctuations in the density also increases. Therefore, for large

and increasing values of λ, w ∝ 〈
√
ρ(xT )〉/|〈ρ′(xT )〉| must be increasing. Now if λ is

small (λ � xT ) and decreasing, when computing the width ∝ 〈
√
ρ(xT )〉/|〈ρ′(xT )〉|

the presence of the square root means that the numerator decreases much more slowly
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than the denominator. Hence the width must again increase as λ is decreased for small

λ. Combining these results for small and large λ, the width must have a minimum,

optimum value as a function of λ. This occurs at λ = xT in d = 3. In d = 2, the

optimal decay length is given approximately by

λ ≈ xT

(
1− 1

ln(xT/(∆x))

)
, (3.21)

where we have retained the first order logarithmic correction.

Simulations

In order to examine the biological impact of equation (3.19) we again consider the

Pom1p membrane gradient in fission yeast [48, 49], using the parameters described

earlier. Simulations of this example system were performed with on average 100

proteins in the system on a two-dimensional square lattice with Nx = L/δx sites in

the x-direction and Ny = L⊥/δx sites in the y-direction, where δx = 0.01µm is the

lattice spacing. The detector size ∆x was normally set equal to δx except for cases

where the detector size was varied, in which case ∆x was set to be a multiple of δx.

Zero-flux boundaries were implemented at x = 0 and x = L, and a periodic boundary

was used to connect y = 0 with y = L⊥. A fixed time step, δt = 2.5 × 10−5s, was

chosen so that for the given diffusion constant the total probability of diffusion out

of a site in all directions approached 1. However, a timestep 5 times smaller was

also tested with no effect on any of the results. For each x = 0 site, particles were

injected at each time step in a Poisson process with mean j = Jδxδt. Diffusion and

decay were also treated as Poisson processes, with hopping and decay probabilities

of Dδt/(δx)2 and µδt per particle respectively. Simulations were initialised with the

mean number of particles in the system, JL⊥/µ for the one-gradient model or twice

this value for the two-gradient model, with a probability distribution that followed

the average density distribution.

The mean occupancy for each detector site was calculated over the averaging pe-

riod, τ . For each site this mean occupancy was compared with each neighbouring

site. If one occupancy was above the threshold and the other below, this boundary
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was identified as a threshold crossing position. This process was repeated for many

averaging periods, ranging from 105 repeats for short averaging times to 500 repeats

for very long averaging times, to generate a distribution of crossing positions through-

out the system. Threshold crossings in both the x- and y−directions were observed.

We found that the distributions as a function of x−position of these two types of

crossing were the same. For each row of sites, x = 0 to x = L at fixed y, the mean

(“measured threshold”) and root-mean-squared deviation (“width”) of the threshold

distribution from many averaging periods were calculated independently.

The standard parameter values used in the simulations were as follows: L = 10µm,

L⊥ = 6µm, D = 1µm2s−1, µ = 0.25s−1, J = 4.17µm−1s−1, ∆x = 0.01µm, xT = 2µm.

To generate the data collapse in figures 3.1C and F, simulations were also performed

with: D = 0.5µm2s−1; J = 6.25µm−1s−1; ∆x = 0.02µm; µ = 1s−1; µ = 0.11s−1;

xT = 1µm; xT = 3µm.

Results

Figures 3.1A and B show how the measured threshold position, x̄, and width, w, vary

with averaging time. For long averaging times the simulation data gives excellent

agreement with (3.19), with the constants k2d = 0.40±0.02 and α = 2.5±0.8. Figure

3.1C shows the w ∼ τ−1/2 behaviour predicted in (3.19), and figure 3.1D confirms

that the width has a minimum as a function of λ. The simulation results are consistent

with the position of the minimum predicted by (3.21). Figure 3.1E shows that the

distribution of measured threshold positions is Gaussian to a good approximation.

Since the averaging timescale τind in a subcellular system is of order ∼ 10−4s,

time-averaging over a period of minutes can achieve great precision even with very

few copies of the gradient protein. With the parameter values given above, equation

(3.19) predicts that the position xT = 2µm can be located to within ±0.5µm within

an averaging time τ = 60s even if the system contains on average only about 20 copies

of the protein. ±0.1µm precision can be achieved in the same averaging time with

around 400 copies of the protein, a remarkably high level of precision for such a low

concentration. In vivo Pom1p gradients may be formed by a few thousand protein
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Figure 3.1: Simulation results for our simple gradient model in 2d. A Variation of
the estimated threshold position with averaging time, with xT = 2µm and λ = 2µm.
B Variation of the width as a function of averaging time. C Data collapse of the
width at large τ for a range of parameter values. Full line shows the prediction
of equation (3.19) with k2d = 0.40 and α = 2.5. D w(τ) as a function of decay
length, with xT = 2µm. Results for three different averaging times are shown: ×:
τ = 10s; ◦: τ = 15s; and +: τ = 22.5s. The full line shows the prediction from
equation (3.19). At large λ the simulation results deviate from the prediction since
the assumption that L� λ is no longer valid. E Plot of the probability distribution
for measuring the threshold at position x with an averaging time τ = 45s. The full
line shows a normal distribution. F Scaling of the cross-over time, τ×, according to
equation (3.25). In figures A, B and E the standard parameter values given in the
text were used. In figures C and F, ∗ indicates the standard parameter values. For
the other data sets one parameter value was changed as follows: ◦: D = 0.5µm2s−1;
�: J = 6.25µm−1s−1; ×: ∆x = 0.02µm; •: µ = 1s−1; +: µ = 0.11s−1; �: xT = 1µm;
O: xT = 3µm.
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copies, allowing for even greater precision.

However, we can see in figure 3.1B that for averaging times of less than about a

second, the simulation results are not consistent with (3.19). In this regime both w

and x̄ are equal to λ. As discussed above, at very short averaging times the presence

of a particle at any position will cause the time-averaged concentration to be above ρT

at that point and hence generally will generate a threshold crossing. The probability

distribution of threshold measurements, p(x), will therefore follow the probability

distribution of particles. Assuming L� λ we have

p(x)dx = λ−1 exp(−x/λ)dx. (3.22)

The cell will on average estimate the threshold position to be

x̄ =

∫ L

0

xp(x)dx ≈ λ, (3.23)

and measurements will be distributed about this position with variance

w2 =

∫ L

0

(x− x̄)2p(x)dx ≈ λ2. (3.24)

The system is therefore unable to resolve the correct threshold position at these short

time scales if this is different from λ. Associated with the average concentration at

the threshold is a length scale, l ∼ ρ
−1/d
T , the typical distance between proteins at this

position. The average time for a protein to diffuse this distance will scale as l2/D. In

two dimensions, this time is given by

τ× ∼ (〈ρ(xT )〉D)−1 = (Jλ)−1 exp(xT/λ). (3.25)

Since τ× is the timescale on which a diffusing particle first arrives at xT , if τ � τ×

there will generally be no particles detected at xT in the averaging period. The

system therefore cannot reliably estimate the mean concentration at xT , and hence

cannot precisely identify the threshold position. For averaging times much greater

than τ×, on average at least one particle will be detected at xT . The time-averaged
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concentration profile will then approach (3.2), and x̄ will approach xT . Hence τ×

determines the cross-over time between the two observed regimes of constant w and

w ∝ τ−1/2. Figure 3.1F shows that the scaling in equation (3.25) is also reproduced in

our simulations. For the parameter values above, τ× = 0.3s, and for a more realistic

copy number of 1000, τ× = 0.03s. These timescales are extremely short compared

to cell cycle timescales, but do nevertheless show that some sort of time averaging is

probably essential: a single instantaneous measurement is unlikely to provide precise

positional information. In fact, as we have seen, averaging over much longer times

(tens of seconds) may be necessary if very high (1%) precision is required.

Note that in section 3.2.1 we predicted that there would be another regime at

short averaging times τµ� 1, where the width goes as

w(τ) = k2d

[
λ

τJ
exp (xT/λ)

(
ln

(
Dτ

(∆x)2

)
+ α

)]1/2

. (3.26)

This is not observed in the simulations shown above because, at short times τ � τ×,

we enter the constant w ∼ λ regime. For the parameter values used, the transition

from w ∼ λ at τ � τ× ≈ 0.3s to the long time behaviour (3.19) for τ � 1/µ ≈ 4s

overwhelms the small logarithmic effect. The cross-over in the behaviour of w at τ×

appears as a result of comparing density measurements to a fixed threshold. However,

when considering fluctuations in the underlying density itself this threshold is not

important, so there is no such cross-over. The short-time behaviour predicted in

equation (3.26) is therefore observable in the fluctuations in the protein density, as

shown in figure 3.2. If the production rate J were increased significantly, the τ× ∝ J−1

and 1/µ timescales could be separated further and the ln τ scaling may then affect

the positional accuracy of the system. However, even in this case, the logarithmic

variation in (3.26) is intrinsically weak, and will likely have a negligible effect in a

biological context.

Simulations of the model in three dimensions were also performed. Similar be-

haviour was observed in this case, and equation (3.20) gave good agreement with the

observed width at long averaging times. This is shown in figure 3.3.
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Figure 3.2: Uncertainty in time-averaged density measurements at short av-
eraging times. The dashed line indicates the expected long time be-

haviour ∆ρ(xT , τ) ∼ ∆ρ(xT , 0)
(

(∆x)2

Dτ

(
ln
(

λ2

(∆x)2

)
+ α

))1/2

. The full line in-

cludes the logarithmic τ -dependence expected at short times, ∆ρ(xT , τ) ∼

∆ρ(xT , 0)
(

(∆x)2

Dτ

(
ln
(

Dτ
(∆x)2

)
+ α

))1/2

. The standard model parameters were used.

3.2.3 One-dimensional results

One-dimensional systems of this type are less likely to be biologically important than

the two- and three-dimensional systems discussed previously. While biological gra-

dients often determine position along one dimension, it is harder to find examples

where the proteins themselves are confined to a one-dimensional space. Nevertheless,

these one-dimensional systems show several interesting features which differ from the

results in higher dimensions.

In one dimension, for large τ averaging time takes the form

τind ∼
(∆x)λ

D
. (3.27)

The time-averaged width is therefore given by

w(τ) = k1d

√
λ2

Jτ
exp(xT/2λ). (3.28)

We can therefore see that in one dimension the potential accuracy of the system is

fully independent of the detector size, ∆x, provided w � ∆x. The optimal decay

length is now λ = xT/2, significantly different from the optimal λ ≈ xT which is seen
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Figure 3.3: Data collapse of the width at large τ in d = 3 for a range of parameter
values. Full line shows (3.20) with k3d = 1.2. The parameter values are as follows:
∗:L = 10µm, L⊥ = 6µm, D = 1µm2s−1, µ = 0.25s−1, J = 25µm−2s−1, ∆x = 0.01µm,
xT = 2µm; ◦: as ∗ except D = 0.5µm2s−1; ×: as ∗ except ∆x = 0.02µm; �: as ∗
except µ = 0.11s−1; +: as ∗ except µ = 0.11s−1, J = 10µm−2s−1.

in higher dimensions. Figure 3.4A and B show that these results are reproduced in

simulations.

In one-dimension, the early time regime τµ � 1 is readily observable. Here the

time-averaged width is given by

w(τ) = k1d

(
λ
√
D

J
√
τ

)1/2

exp(xT/2λ). (3.29)

The change between w ∼ τ−1/2 and τ ∼ τ−1/4 can readily be seen in figure 3.4C.

As in two-dimensions, there will be a crossover period at which time-averaging

begins to improve positional accuracy. In general, this will be set by the typical time

between proteins reaching the detector site. As before, we can identify a diffusive

timescale for proteins to visit the detector site,

τdiff ∼
l2

D
∼ D exp(2xT/λ)

J2λ2
. (3.30)

However, there is an additional constraint on the time between proteins visiting the

detector site. The average flux across the site at position xT will be

JxT
= −D∂ρ

∂x
|xT

= J exp(−xT/λ). (3.31)
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In order to achieve this flux, the typical time between proteins reaching xT cannot be

longer than

τflux ∼
1

JxT

∼ exp(xT/λ)

J
. (3.32)

The typical time between particles visiting the detector site will be the shorter of

these two timescales. The crossover time at which time-averaging affects the measured

width, τ×, will therefore be set by τflux when

τdiff > τflux (3.33)

D exp(2xT/λ)

J2λ2
>

exp(xT/λ)

J
(3.34)

D exp(xT/λ)

Jλ2
> 1 (3.35)

This condition can be written in a number of different ways, such as ρTλ < 1, or

in terms of the average number of proteins in the system, N = J/µ < exp(xT/λ).

Therefore, we would expect to observe this regime when protein densities are ex-

tremely low. When the density is low, the diffusive timescale underestimates the

frequency with which proteins visit the detector site. When ρT < 1/λ, proteins may

in fact typically be closer to the detector site than 1/ρT , because the curvature of

the concentration profile has been neglected. Figure 3.4D shows simulation results

confirming the appearance of this additional timescale.

Why is the second timescale not observed in two dimensions? The constraint on

the flux across the target position must also apply in higher dimensions. In d = 2,

the diffusive timescale is

τdiff ∼
l2

D
∼ exp(xT/λ)

Jλ
. (3.36)

The flux across a single detector site is

−D∂ρ

∂x
|xT

(∆x) = J(∆x) exp(−xT/λ), (3.37)

giving a timescale of

τflux ∼
exp(xT/λ)

J(∆x)
. (3.38)
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Figure 3.4: Simulation results for a single gradient in one dimension. A Scaling
collapse for w(τ) as a function of τ , confirming (3.28). The fitting constant was
k1d = 1. B Variation of w with λ, showing the optimal decay length at λ = xT/2 for
xT = 2µm. Results are shown for: ×: τ = 20s; ◦: τ = 45s; and +: τ = 90s. The
full line shows equation (3.28). C The switch between the τ−1/2 and τ−1/4 regimes
predicted by (3.28) and (3.29). D The appearance of the τflux crossover timescale in
one dimension. The × trace is representative of a parameter combination for which
the τdiff cross-over applies. Parameters: For panels A and C, ∗ indicates the standard
parameter values of L = 10µm, ∆x = 0.01µm, D = 1µm2s−1, λ = 2µm, J = 25s−1,
xT = 2µm. For the other data sets one parameter value was changed as follows: ◦:
D = 0.5µm2s−1; �: J = 2.5s−1; ×: ∆x = 0.02µm; •: λ = 1µm; +: λ = 3µm; �:
xT = 1µm; O: xT = 3µm. In B, the standard parameters were used. Parameters in
D are as for A, but with 4: J = 10s−1, λ = 1µm; and ◦: J = 10s−1, λ = 0.5µm.
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Thus for any λ > ∆x the diffusive timescale is dominant in higher dimensions.

3.2.4 Two non-interacting gradients

In order to reliably locate the centre of a system, the mechanism responsible must

incorporate information about the overall system size so that the identified position

can scale correctly. A single gradient characterised by a fixed decay length cannot

achieve this. We therefore examine a system where protein gradients are produced by

sources at both ends, and where the central position is identified as a concentration

minimum.

We therefore modify our earlier model by adding an additional planar source

at x = L. This addition is appropriate for modelling cell division inhibitors, such

as MipZ in Caulobacter, that are injected into the membrane near both cell poles.

However, our model would apply equally if the two sources are of different repressor

proteins (as may be the case in fission yeast [48, 49]), although we do assume that J ,

D and µ are the same for both gradients. In this scenario, signalling activity will be

determined by the total concentration. Without fluctuations, this will be described

by
∂ρ

∂t
= D∇2ρ− µρ+ Jδ(x) + Jδ(x− L). (3.39)

The steady-state solution is now

ρ(x) =
Jλ

D

cosh((x− L/2)/λ)

sinh(L/2λ)
, (3.40)

which has the expected minimum at x = L/2.

We then suppose that the cell compares the concentration to a threshold value

corresponding to the minimum of the average profile, ρmin = ρ(L/2) = ρT . Positions

where the concentration is at or below the threshold are identified as being at the

centre of the cell. While the average steady-state density profile would never extend

below ρmin, fluctuations ensure that the concentration in the region around the centre

spends a significant amount of time at or below the threshold. Around point(s)

where 〈ρ(x)〉 = ρT , noise in the protein concentration will lead to a distribution of
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threshold crossing positions. We consider an expansion of the density fluctuations

about xT = L/2, giving, to leading order

∆ρ(xT ) =
1

2
|〈ρ′′(xT )〉|w2, (3.41)

since any first order term proportional to 〈ρ′〉 vanishes at xT = L/2. The width is

therefore given by

w2 =
2∆ρ(L/2)

〈ρ′′(L/2)〉
. (3.42)

Substituting in (3.40) gives

w0 =

(
4Dλ3 sinh(L/2λ)

J(∆x)d

)1/4

. (3.43)

As for a single gradient model, for systems in d = 2 or d = 3 dimensions, the

typical occupancy of the threshold region will be much less than one. For example, if

we take the parameter values considered previously for the Pom1p gradient in fission

yeast, with 2000 protein copies, the average occupancy of a detector site at x = L/2

will be 〈n(L/2)〉 ∼ 10−3. We assume here that Pom1p forms a gradient from both

poles. In fact it may only form a single gradient with another hitherto unidentified

protein forming the second polar gradient [48, 49]. However, as discussed earlier, this

detail does not affect our calculations. As a second example, MipZ in Caulobacter

(L = 2.5µm, L⊥ = 2µm) is typically present at about 1000 copies, and forms two polar

gradients with a decay length λ ≈ 0.25µm [45]. The average occupancy at the centre

of this system would be approximately 〈n(L/2)〉 ∼ 10−3. Averaging measurements

of the concentration over time is therefore required in both cases to obtain precise

positional information. Since the width now goes as (∆ρ)1/2, as shown in (3.42), we

expect

w(τ) = w0

(τind
τ

)1/4

=

k̃2d

[
λ3

τJ
sinh(L/2λ)

(
ln
(

λ2

(∆x)2

)
+ α̃

)]1/4

in d = 2

k̃3d

[
λ3

τJ(∆x)
sinh(L/2λ)

]1/4

in d = 3
, (3.44)
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where k̃2d, α̃ and k̃3d are constants. Averaging proceeds much more slowly than

previously, with a τ−1/4 dependence. This follows directly from the vanishing of

the first derivative at the average threshold position. In d = 3, and for λ � L,

equation (3.44) predicts that w will be minimised when λ ≈ L/6 is chosen. In d = 2

logarithmic corrections again alter this result slightly, with the optimal decay length

now occurring at

λ ≈ L

6

(
1− 1

3 ln(L/6(∆x))

)
, (3.45)

where we have included the leading logarithmic correction. This result arises for

similar reasons as in the single gradient model. For the Pom1p gradient imaged by

Padte et al [49], the decay length is observed to be 1 − 1.5µm, comparable to this

optimal decay length of about 1.5µm for a 10µm cell.

We simulated our model as described previously for the single gradient model

in two dimensions with representative parameter values for fission yeast membrane

gradients. In addition to the source at x = 0, particles were also added at x = L in an

identical but uncorrelated process. We used µ = 0.36s−1 chosen to give λ = 1.67µm,

and J = 6µm−1s−1 giving on average 200 protein copies in total. Figure 3.5 shows

the results of these simulations. Again we observe two distinct regimes. At averaging

times longer than about a second, there is excellent agreement with equation (3.44),

as we can see in figure 3.5C. Data are shown with D = 0.5µm2s−1; µ = 1s−1; µ =

0.25s−1; J = 9µm−1s−1; ∆x = 0.02µm; L = 7.5µm; L = 15µm and ∆x = 0.02µm.

Fitting to the simulation results we find k̃2d = 0.63± 0.02 and α̃ = 2.5± 1.0. Figure

3.5D confirms the existence of the optimal decay length in our simulations. At short

averaging times, the width tends to a constant value. This value can be estimated as

in the single gradient model, by considering the probability distribution of particles,

p(x)dx =
cosh((x− L/2)/λ)

2λ sinh(L/2λ)
dx. (3.46)

The symmetry of the system means that x̄ will always fluctuate about L/2, as shown
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Figure 3.5: Two gradient model in 2d. A The mean threshold position fluctuates
about L/2 due to the symmetry of the system. B Variation of the width w as a
function of averaging time. C Data collapse of the width as a function of averaging
time, at long times, for a range of parameter values. The full line shows (3.44) with
k̃2d = 0.63 and α̃ = 2.5. ∗ indicates the standard parameter values. For the other data
sets parameter values were changed as follows: ◦: D = 0.5µm2s−1; �: J = 9µm−1s−1;
×: ∆x = 0.02µm; •: µ = 1s−1; +: µ = 0.25s−1; �: L = 7.5µm; O: L = 15µm and
∆x = 0.02µm. D Plot of width as a function of decay length for averaging times
×: τ = 30s; ◦: τ = 45s; and +: τ = 60s. The full line shows the prediction from
equation (3.44). E Scaling collapse of the width at short averaging times, given by
(3.47). Parameter values are as in C.
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in figure 3.5A. The width in this regime will be given by

w2 =

∫ L

0

(x− L/2)2 p(x)dx = 2λ2 +
L2

4
− λL coth(L/2λ), (3.47)

which is also reproduced in simulations (figure 3.5E).

Since the width decays as τ−1/4 for this system, longer averaging times and/or

higher protein copy numbers are required than in the single gradient model to achieve

high precision. Intrinsic biochemical noise may therefore strongly constrain systems

of this type. In order for the yeast-membrane gradient considered above to achieve

precision of ±5% of the cell length after averaging for one minute, about 800 protein

copies are required. Therefore, in the absence of any other positioning mechanisms,

the Pom1p gradient will require ∼ 1000 protein copies or more to precisely direct the

location of cell division. We estimate that the MipZ gradient in Caulobacter, with

1000 protein copies, would be able to locate the cell centre to within ±5% of L after

approximately τ = 2s. However, since precision only improves as τ−1/4, averaging

over τ = 20 minutes would be required for the same system to achieve ±1% accuracy.

Similar results are also observed in one dimension. The time-averaged width is

given by

w(τ) = k̃1d

(
4λ4 sinh(L/2λ)

Jτ

)1/4

, (3.48)

which is again independent of ∆x, and leads to an optimal length scale λ ≈ L/8.

Note that the source of the τ−1/4 scaling in (3.48) is different from that in (3.29). By

analogy with (3.29), a regime in which w ∼ τ−1/8 is also possible for two oppositely

directed gradients in one dimension.

3.2.5 Discussion

Noise in biochemical processes within a cell will lead to fluctuations in protein con-

centration gradients, and hence also to variation in the position where these gradients

cross a particular threshold value. These fluctuations therefore place a limit on the

potential precision of position determination mechanisms relying on concentration

gradients alone. In subcellular systems with protein copy numbers in the thousands,
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this noise will be sufficiently large that position cannot be determined reliably from a

single measurement of the density profile. In order to determine position to within a

few percent, a precision achieved by some subcellular systems, the protein concentra-

tion must be averaged over time. For a single subcellular membrane gradient, we have

seen that by averaging over a period of a minute, excellent precision can potentially

be achieved with only a few hundred protein copies. This remarkable precision is due

to the sub-millisecond diffusive time-scale on which time-averaging occurs. Precise

identification of the cell mid-plane by gradients emanating from both poles requires

longer averaging times or higher copy numbers, since larger fluctuations result from

the vanishing first derivative of the average concentration at the system centre. Intrin-

sic biochemical noise may therefore be a strong constraint on subcellular two-gradient

positioning systems, dictating that the copy numbers be sufficiently high to suppress

fluctuations.

So far we have focused almost exclusively on fluctuations in subcellular gradients,

however our results are also applicable to developmental biology. Here the appropri-

ate length scales are usually much longer, on the order of hundreds of micrometers

in Drosophila. Moreover, the gradients affect patterns of gene expression through the

binding of gradient molecules to DNA regulatory sequences inside individual nuclei.

For example Bicoid, for which exponential gradients have been quantitatively mea-

sured in Drosophila [115], is thought to bind cooperatively to hunchback regulatory

DNA. In this case we again expect molecular-scale effective measuring volumes, with

∆x ∼ 0.01µm being a reasonable order of magnitude. We next assume purely Poisson

statistics for the fluctuations: this is a stronger assumption than for our earlier sub-

cellular gradients, as there will be additional complications arising, for example, from

the import/export of morphogens from nuclear compartments. However, if diffusive

noise is dominant then Poisson statistics will be retained and we can expect our earlier

analysis to apply, although with one important distinction. Instead of ∆x setting the

maximal possible precision, this will now be set by the size of individual nuclei (prior

to cellularisation), since we expect relatively homogeneous gene expression within a

single nuclear volume. A single nucleus in Drosophila has a length scale of around

10µm, still much smaller than the decay length of the gradient of λ ∼ 100µm, al-
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lowing for high precision gene expression [115]. Using the Drosophila Bicoid gradient

as an example, we use L = 500µm, L⊥ = 100µm, and estimate D = 10µm2s−1 and

µ = 10−3s−1, giving λ = 100µm, consistent with experiment [115]. Assuming a high

copy number of 107 per embryo (we are not aware of experimental constraints on

this figure), gives J ∼ 1µm−2s−1. For a single gradient in three dimensions, we find

that about a 5 minute averaging time is required to bring the error down to plus or

minus a single nuclear length. For a two gradient model in three dimensions, longer

averaging times on the order of an hour are required to reduce the centre-finding

positional error to plus or minus about 2 nuclear lengths. Since gene expression may

need to be controlled on shorter timescales than this, other designs, for example using

interacting gradients [67, 68], may be required for high precision centre finding (see

also below). The effects of the optimum gradient length scale will also be interesting

to probe in a developmental biology context. However, our simple analysis may be

complicated by the multiple roles played by many morphogens: for example, Bicoid

not only activates hunchback, but it also helps to regulate pair-rule genes, such as

Even-skipped. Nevertheless, it is interesting to note that the Bicoid gradient length

scale λ ∼ 100µm [115] is not too far away from the L/6 optimum for a two gradi-

ent case, and in a single gradient context will offer maximal precision well into the

anterior half of the embryo.

Up to this point we have only considered systems with first order degradation.

Morphogen gradients with nonlinear decay have also been proposed [66]. This non-

linearity will lead to non-Poissonian density fluctuations, which may significantly

change the observed behaviour. England and Cardy [124] have previously calculated

the response of a gradient with nonlinear decay to one source of biochemical noise,

namely a fluctuating production rate. However, they calculated the change to the

average gradient, while fluctuations about this average may also be important. It

would certainly be of interest to compare the performance of linear and nonlinear

degradation mechanisms in more detail.

Throughout this analysis we have assumed that the gradient protein concentration

fluctuates about a steady-state profile, and hence averaging over a longer time will

give a more precise estimate of the average profile. For a subcellular system, the
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steady-state gradient will develop over timescales of less than about a minute, due

to the micrometer length scales involved. This timescale is short compared to the

cell cycle time, which ranges from tens of minutes up to many hours. For this reason

we expect that subcellular gradients will be in steady-state and therefore that our

analysis will be directly applicable. However, in developmental biology, the effective

lifetimes will likely be much longer, and the gradient may take hours to fully reach

steady-state. Moreover, a number of developmental biology systems are known to

respond to a morphogen gradient that has not reached steady-state [125-127]. A

further complication is the possibility of gradient formation by non-Fickian diffusion

[128], where there is no steady-state at all. The model considered above does not

take into account time-varying average gradients. If the average gradient is evolving,

a longer averaging period will not necessarily lead to improved precision. Clearly,

more work will be required to understand how such dynamically evolving systems are

able to yield precise positional information and filter out fluctuations. Nevertheless,

we do note that two gradient systems of the kind analysed here are naturally able

to locate the system centre even without being in steady-state, due to the symmetry

of the system [67]. The positional variations in such a non-steady-state scenario will

not be the same as calculated here, but our analysis does form a first step towards

the analysis of these more complex systems.

3.3 Two interacting gradients

Centre-finding mechanisms with interactions have also been proposed [67, 68]. We

now consider the case where two morphogens, A and B, are produced at opposite

poles, and interact to inactivate one another. The concentration profile will now

consist of oppositely directed gradients with a reaction front where the two gradi-

ents meet. The effective gradient will be steep around the system centre due to the

interaction between the two gradients. These mechanisms may therefore be able to

achieve greater precision for mid-point determination than the noninteracting mech-

anism considered above.

For convenience we define the system in one dimension on the domain −L/2 ≤
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x ≤ L/2. Protein A is produced at rate J at x = −L/2. Protein B is produced at

the same rate at x = L/2. The diffusion constants and degradation rates, D and µ

respectively, for the two proteins are taken to be the same. The dynamic equations

for the densities of A and B in the absence of noise are

∂ρA
∂t

= D∇2ρA − µρA − νρAρB (3.49)

∂ρB
∂t

= D∇2ρB − µρB − νρAρB. (3.50)

The chemical system A + B → ∅, which is equivalent to this gradient model but

with µ = 0, has been studied extensively [129-133]. By analogy with this system, we

can identify two components which affect the positional precision of this model. First,

there will generally be a range over which there is a significant concentration of both

A and B as the proteins diffuse around one another without reactions. The reaction

front will have the approximate form R(x) ≈ ρA(x)ρB(x). For small reaction rates

this component will dominate the uncertainty in position, and the front will have

the mean-field width as reported by McHale et al [68], w ∼ (D2/Jrν)1/3, where Jr is

the flux of particles into the reaction region. The second contribution to positional

uncertainty comes from fluctuations in the position, or “wandering”, of the centre

of the reaction front. This effect will dominate when the reaction rate is sufficiently

large that the densities of A and B near the reaction front are low. In this case there

will be a single well defined position at which reactions occur at a particular time,

but this will move due to diffusion of particles. Some biological systems, where the

particle flux is relatively small but the reactions between proteins are fast, may be in

this regime. We will therefore estimate the positional uncertainty due to wandering

of the reaction front by considering the large reaction rate limit.

To calculate the width of the distribution of front positions associated with this

wandering, we follow the approach of Barkema et al [133]. It is convenient to consider

an effective difference field, ψ, which is defined in a quantum field theory for this model

[132]. ψ is on average the same as 〈ρA〉− 〈ρB〉, although importantly the fluctuations
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in ψ are not the same as those in ρA − ρB. From the field theory, ψ follows

∂ψ

∂t
= D

∂2ψ

∂x2
− µψ + η(x, t). (3.51)

The term η(x, t) represents the reaction noise, and satisfies

〈η〉 = 0, 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′)R(x). (3.52)

where R(x) is the reaction front profile. The steady state solution to (3.51) with

appropriate boundary conditions is

ψ0(x) = −J0λ

D
sinh(x/λ). (3.53)

where J0 = J/ cosh(L/2λ). Now we expand ψ in terms of the mean field solution,

ψ0, plus a Fourier series expansion which represents the effects of the reaction noise

on the density. Modes which couple most strongly to the reaction noise will be large

at x = 0. Far from the reaction front, ψ should follow the mean-field solution and

there should be no additional contributions from noise at the reaction front. We

therefore retain only Fourier modes which are maximal at x = 0, and which vanish

at x = ±L/2:

ψ = ψ0 +
∞∑
n=0

χn(t) cos

(
(2n+ 1)πx

L

)
. (3.54)

Since we are considering the limit of fast annihilation reactions, A and B proteins

cannot simultaneously be present at the same location without reacting. The reaction

front is therefore localised to a single position, R(x) ≈ J0δ(x). Substituting into (3.51)

we find

χn(t) =
2
√

2J0

L

∫ t

0

dτξ(τ) exp

[(
(2n+ 1)2π2D

L2
+ µ

)
(τ − t)

]
, (3.55)

with

〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′). (3.56)
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In the long-time limit, the fluctuations in ψ are given by

〈
ψ(0, t)2

〉
− 〈ψ(0, t)〉2 =

8J0

π2D

∞∑
m=0

∞∑
n=0

1

(2m+ 1)2 + (2n+ 1)2 + 2L2

π2λ2

. (3.57)

This sum is divergent due to contributions from terms with large m and n. The

L/λ term is constant, and hence can be neglected when these large m and n terms

dominate. We can find an approximate solution by truncating the sum at some large

n,m ∼ K. This cutoff K takes the value cL/wi, where wi is the reaction front width

due to wandering, and c is a dimensionless fitting parameter. By truncating the

right hand side of (3.57) in this way we are neglecting Fourier modes with wavelength

shorter than wi. Fluctuations on such short length scales are contained entirely within

the reaction front, and hence do not contribute to the front width. The resulting

variance in ψ is

(∆ψ)2 =
〈
ψ(0, t)2

〉
− 〈ψ(0, t)〉2 ∼ J0

πD
ln(cL/wi). (3.58)

Finally as before we can using a first order expansion to estimate wi,

wi =
∆ψ

|ψ′(L/2)|
, (3.59)

which is now given by the solution to

w2
i =

D

πJ0

ln

(
cL

wi

)
. (3.60)

Simulations of this system were performed in the infinite reaction rate limit. If A

and B particles occupy the same position after any time increment, an equal number

of each are removed until only one species is present at each site. The distribution

of these reaction events by position determines the front profile. Figure 3.6 shows

these distributions as a function of x/wi. We can see that the front position has an

approximately Gaussian distribution with width given by equation (3.60). The above

result reproduces the observed width well for parameter values which give λ . L/4

and wi . λ/4. If w becomes comparable to λ, the approximation that the ψ profile
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Figure 3.6: Probability distribution of position of reaction front. The solid line shows
a normal distribution. Standard parameter values are: L = 10µm,∆x = 0.01µm,D =
1µm2s−1, λ = 1µm, J = 1000s−1. These parameters were varied by setting L =
7.5µm; D = 0.5µm2s−1; λ = 0.5µm; J = 2000s−1; J = 750s−1.

is linear near the front position, which is implicit in (3.59), is no longer valid. If λ

becomes too large relative to the system size, the front is able to wander away from

x = 0. In the case of µ = 0 the reaction front is not constrained to lie near the centre

of the system, since any linear profile with dψ0

dx
= −J/D is a valid solution to (3.51).

The addition of degradation provides an effective restoring force which acts to localise

the front to x = 0. However, for large λ this effect is weak, and our assumption that

the front R(x) ∼ δ(x) is located at x = 0 breaks down.

In general, for equivalent parameter values, wi is smaller than the width we would

expect in an equivalent non-interacting system. For the parameter values used in

figure 3.6, we find wi ∼ 0.26µm. For two non-interacing gradients we would have

w0 ∼ 0.43µm. Note that due to the mutual degradation of proteins, the copy num-

ber in the interacting system will be much lower than in the non-interacting system.

We might expect this reduction in copy number to increase density fluctuations. In

contrast to the non-interacting system, where the midpoint is marked by a minimum

of the concentration profile, in this case the effective concentration profile 〈ψ(x)〉 is

steep near the interface. The system is therefore still able to resolve position accu-

rately. This example is biologically somewhat unrealistic because the system under

consideration is one-dimensional, and the production rates are very large. Neverthe-

less, by introducing reactions between the two gradients, the precision of the system

can potentially be increased.
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Chapter 4

Establishment of Embryonic

Polarity in C. elegans

4.1 Introduction

Experimental screens for defects in asymmetric divisions and division timing in the

early C. elegans embryo identified a group of seven PAR proteins, along with a num-

ber of other factors such myosin, its regulators, and several cytoplasmic proteins

[100, 134, 135], which are required for correct cell polarity. In C. elegans the PAR

proteins consist of PAR-1 through PAR-6, plus PKC-3. The PAR proteins are largely

conserved in other organisms, such as Drosophila and mammals, and have been found

to regulate cell polarity in diverse cell types, including epithelial cells and neuroblasts

[90-92]. PAR-3, PAR-6 and the atypical protein kinase C PKC-3 form a conserved

group which frequently associate with the cortical cytoskeleton and with CDC-42

[90, 92, 95]. PAR-1 and PAR-4 are conserved kinases, although their substrates are

not known. PAR-5 is a 14-3-3 protein; these typically contain multiple binding sites

for other phosphorylated proteins. The RING-finger protein PAR-2 is the only C.

elegans PAR protein which is not found in other organisms.

The polarity establishment process is summarised in figure 4.1A [104, 105, 107].

Initially the PAR proteins and cortical actomyosin are uniformly present throughout

the embryo. Fertilisation by the sperm causes actomyosin to contract towards the



Chapter 4. Establishment of Embryonic Polarity in C. elegans 77

anterior pole. PAR-3, PAR-6 and PKC-3 (the anterior PAR proteins) are restricted

to this shrinking anterior domain. PAR-1 and PAR-2 (the posterior PAR proteins)

accumulate in this newly vacated posterior cortical region. Here we present a math-

ematical model of this polarity establishment process.

The PAR protein interactions and random diffusive motion can be readily de-

scribed by a system of nonlinear reaction-diffusion equations. However, the dis-

tributions of the PAR proteins are also influenced by the dynamics of the cortical

actomyosin network, with increased anterior PAR protein binding to regions with en-

hanced actomyosin concentrations. The dynamics and regulation of the actomyosin

network is highly complex, potentially involving actin polymerisation, myosin motor

activity, cross-linking proteins and interaction with the cell membrane. Many of these

effects and interactions are not well understood. We therefore construct a highly sim-

plified model of actomyosin contraction that reproduces the experimental results on

cellular length scales, while neglecting smaller-scale details that do not significantly

affect the global protein distributions. We couple this description to our reaction-

diffusion model, thereby enabling us to calculate the contractile actomyosin density

and PAR protein distributions.

Initially, we develop a simple model that includes only the previously reported

interactions between the PAR proteins together with diffusion and actomyosin con-

traction. We find that these interactions allow us to reproduce many features of the

PAR system that are observed in vivo, including the polar cortical domains and the

cortical dynamics in par mutant phenotypes. However, this model is unable to cor-

rectly reproduce the polarised distributions of the PAR proteins in the cytoplasm and

the resulting polarity of cytoplasmic components such as MEX-5/6 [104], which are

vital for the different development of the two daughter cells. We consider a number

of ways in which the model can be modified to better capture the observed cytoplas-

mic polarity. We also suggest experiments that can test these possible mechanisms.

Finally we also predict that, while contraction of the actomyosin network is crucial

for the establishment of polarity, the motion of PAR proteins in the resulting corti-

cal and cytoplasmic flows is of lesser significance, provided cytoplasmic diffusion is

sufficiently fast.



4.2 An initial model of the PAR system 78

Figure 4.1: A Summary of PAR dynamics in wild-type embryos. Shown are the PAR
distributions before, during, and after actomyosin contraction. Arrows indicate the
direction of cortical actomyosin flow. The anterior pole is to the left. B Summary of
the reaction scheme for the basic model in equations (4.1-4.4) and (4.9). For clarity,
actomyosin and the spatial aspects of the model are not shown.

4.2 An initial model of the PAR system

4.2.1 PAR interactions

We first construct a mathematical model of the previously reported interactions be-

tween the PAR proteins. To simplify our model somewhat we separate the PAR

proteins into anterior and posterior groups, as PAR protein types within each group

are normally colocalised within the embryo [136-138]. The variable A will represent

the densities of the anterior PAR proteins PAR-3, PAR-6 and PKC-3, that have been

suggested to form a complex [137, 138]. We will let P represent the densities of the

posterior PAR proteins PAR-1 and PAR-2, although it is not known whether PAR-1

and PAR-2 interact directly. The PAR proteins can be cortically-localised (Am, Pm)

or in the cytoplasm (Ac, Pc). Reactions between proteins within each group tend to
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promote association - all of the anterior proteins are required for the cortical local-

isation of PAR-6 and PKC-3 [104, 137, 138], and PAR-2 may enhance the cortical

localisation of PAR-1 [136]. Interactions between the two groups tend to be antagonis-

tic, and mutual negative feedback from the localisation of each group onto the other

has been proposed to explain in part the segregation of the PAR proteins into an-

terior and posterior domains [104]. The shared properties of association/antagonism

by members of each group make it advantageous to model the PAR system at the

level of the anterior/posterior protein groups, rather than modelling each protein type

separately. A model of the latter type would be significantly more complex, but with

little additional predictive advantage.

Crucial to the polarity establishment process is rearrangement and contraction of

the cortical actomyosin network towards the anterior pole [107]. The density of this

contractile actomyosin domain is represented in our model by a. Levels of actomyosin

that remain at the posterior cortex are much lower than those at the anterior [107, 139]

and cortical ruffling is eliminated at the posterior, suggesting that the observed global

contraction is largely driven by the anterior domain. Consequently, we do not include

this posterior actin domain in the model. Since the embryo is polarised only along

the anterior-posterior axis, we restrict the model to one dimension.

Both the anterior and posterior PAR proteins dynamically associate with the

cortex [105]. We will assume that this cortical dynamics is the result of both diffusion

of cortical proteins and exchange of proteins between the cortex and cytoplasm. We

further assume that the anterior PAR proteins associate at an increased rate with the

contractile actomyosin region, consistent with the observation that during polarity

establishment in posterior par mutants, the anterior PAR proteins are restricted to

the anterior cortex [104]. It is not known whether the anterior PAR proteins associate

directly with the actomyosin cytoskeleton itself. The cortical localisation patterns of

myosin and PAR-6 are slightly different but highly correlated [107]. This enhanced

association may be due to the presence of CDC-42, which is required for maximal

cortical localisation of the anterior PAR proteins [140, 141], or some other difference

between the cortical actomyosin in the anterior and posterior domains. In addition

to spontaneous dissociation, PKC-3 phosphorylates PAR-2 [142] and we assume this
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promotes removal of the posterior PAR proteins from the cortex. We also allow PAR-

1 to stimulate dissociation of the anterior PAR proteins from the cortex, possibly

through phosphorylation of PAR-3. Evidence for this reaction has been found in

PAR homologues in other species [143], and a similar process has been proposed to

occur in C. elegans [142]. In this way, cortical localisation of one group acts to exclude

the other, and hence provides an effective positive feedback to its own accumulation.

The cortical exclusion reactions likely require the 14-3-3 protein PAR-5 [104]. We do

not model PAR-5 explicitly since it is uniformly localised throughout the cortex and

cytoplasm [144]. We also do not include PAR-4, since its interactions with other PAR

proteins and its effect on their distributions is not known.

Figure 4.1B summarises the interaction network. Our model consists of reaction-

diffusion equations for the PAR protein interactions. The PAR proteins are also

coupled to a simple model of cortical actomyosin contraction by incorporating en-

hanced cortical binding of the anterior PAR proteins in the presence of contractile

actomyosin. The resulting equations are

∂Am
∂t

= Dm∇2Am + (cA1 + cA2a)Ac − cA3Am − cA4AmPm (4.1)

∂Ac
∂t

= Dc∇2Ac − (cA1 + cA2a)Ac + cA3Am + cA4AmPm (4.2)

∂Pm
∂t

= Dm∇2Pm + cP1Pc − cP3Pm − cP4AmPm (4.3)

∂Pc
∂t

= Dc∇2Pc − cP1Pc + cP3Pm + cP4AmPm (4.4)

The first term on the right hand side of (4.1-4.4) represents undirected protein diffu-

sion. The remaining terms describe the various reactions in the model. (cA1 +cA2a)Ac

represents cortical association of the anterior PAR proteins, which is enhanced in the

presence of contractile actomyosin. The density of actomyosin, a, is calculated from

our actomyosin model, as described in the next section. Similarly, Pc associates with

the cortex through the cP1Pc term. cA3Am and cP3Pm give spontaneous dissociation

of the anterior and posterior PAR proteins. The terms cA4AmPm and cP4AmPm rep-

resent competitive exclusion of the cortical A and P groups. Since these binding and

dissociation terms represent exchange between the cytoplasm and cortex, they appear
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in the equations for both cortical and cytoplasmic densities with opposite signs. Note

that the above model does not incorporate production or degradation of the PAR

proteins.

4.2.2 Modelling actomyosin contraction

In the model described above, actomyosin dynamics feeds back onto the PAR dis-

tributions through the varying density of contractile actomyosin. As the anterior

actomyosin network contracts its density increases, leading to enhanced binding of

the anterior PAR proteins. In order to quantify this effect, we now need to construct

a simplified model of the actomyosin activity. Such a model will enable us to cal-

culate the density of actomyosin in the contractile region, while neglecting detailed

actomyosin dynamics which do not affect the PAR distributions on a cellular scale.

We emphasise that the polarisation of the actomyosin cytoskeleton is crucial in our

model in order to break the symmetry of the system. If the actomyosin dynamics are

removed, no spatial variation in the PAR protein densities can develop.

We assume that the actomyosin network is initially under tension. A polarization

cue from the sperm [103, 145] is believed to cause a down-regulation of the actomyosin

network near the posterior pole. While it is possible that the polarity signal also af-

fects the PAR proteins directly, this effect is not necessary in our model for polarity

establishment. Once the symmetry of the network has been broken in this way, the re-

maining network is unstable and contracts towards the anterior. We therefore choose

to model the effective dynamics of the actomyosin network as an elastic medium. The

convergent flows of myosin observed in kymographs are consistent with such a global

contraction model [107]. To introduce positive feedback from the anterior PAR pro-

teins onto contractility [107], we will allow the elastic properties of the system to vary

depending on Am. We simplify the elastic model further by assuming that, rather

than Am altering the local elastic properties, the properties of the actomyosin network

as a whole depend only on the total amount of Am in the contractile region, and that

the actomyosin network contracts uniformly. This is a reasonable assumption, since,

in our simulations, the density of Am in the anterior contractile domain is relatively
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constant, varying by only up to 20% from the average in this region. However, in

reality, actomyosin contraction is non-uniform on short length scales, giving rise to

dynamic features such as cortical ruffling and pseudocleavage. Nevertheless, we find

that our coarse-grained model gives good agreement with measurements of the corti-

cal dynamics over cellular length scales. The assumption of homogeneity also makes

the model much simpler to analyse and allows us to easily compute the contraction

dynamics. Relaxing this assumption would require significantly more complex model

while not giving qualitatively different behaviour at a cellular scale.

The resulting dynamical equations are simply those of a uniform spring. In the

subcellular environment viscous forces dominate over inertial forces. The motion of

the spring will therefore be overdamped, and we neglect the second-order term in the

equation of motion. In this limit of large damping, the dynamics of the spring are

determined by four physical quantities: the Young’s modulus, E, which is the ratio

of the applied stress to the resulting strain; the cross-sectional area, Ã; the damping

coefficient, γ, which determines the rate of energy dissipation; and the natural length,

Λ, the length of the spring when no force is applied. Assuming that Ã and γ are

constant as the spring expands and contracts the length of the spring, l(t), will be

given by
dl

dt
= vl(t) = − ε

Λ
(l(t)− Λ) (4.5)

where ε = EÃ/γ. Clearly assuming a constant Ã is a crude approximation for the

actomyosin network, an approximation that will become less accurate close to the

embryo poles. Nevertheless, our model captures the essence of the contraction process

at the cellular scale and agrees well with the experimentally observed actomyosin

dynamics.

During contraction, the density of a simple spring remains uniform along the

spring’s length. In modelling the cortical actomyosin network in this way, we therefore

require that the density of contractile actomyosin is uniform across the contractile

domain of length l(t),

a(x, t) =

a0
L
l(t)

0 ≤ x ≤ l(t)

0 l(t) < x ≤ L
(4.6)
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where a0 is the actomyosin density at t = 0. Beyond the end of this domain we assume

that there is no contractile actomyosin present, i.e. a = 0. Initially, the contractile

actomyosin network occupies the entire cortex, i.e. l(0) = L. The position of the

posterior end of the contractile actomyosin domain at a later time is calculated from

(4.5).

The presence of the anterior PAR proteins appears to enhance actomyosin con-

tractility through an unknown mechanism [107]. From (4.5) we see that this could

take place through two effects. First, increased Am may allow the actomyosin net-

work to contract to a shorter final length, acting to reduce Λ. This effect is essential

to achieve the different sizes of anterior domains that are seen in different mutants.

Secondly, Am may act to change ε, altering the stiffness of the actomyosin network

for a fixed natural length. In our model, the best agreement with experiment (with

the exception of MEX-5/6 mutants, as discussed below) is achieved when ε remains

constant, and where the effect of Am is to vary only the natural length, according to

Λ(t) = Λ0 + Λ1m(t) (4.7)

with m(t) representing the contractile activity stimulated by the anterior PAR pro-

teins. As discussed above, we take m(t) to depend on the total amount of Am in the

contractile region, given by

m(t) =
1

L

∫ l(t)

0

Amdx (4.8)

The assumption of linearity in equation (4.7) is not specifically required to reproduce

the correct dynamics. With a suitable rescaling of Λ1 and the introduction of satu-

ration of m(t) (i.e. m(t) tends to a constant) when Am is large, quadratic or higher

functions can be used with similar results.

With this model the magnitude of the local velocity at a given time, determined

by the spring dynamics, is zero at the anterior pole and increases linearly towards the

posterior until the end of the anterior actomyosin domain. The rate of contraction

slows as a spring approaches its natural length, so the speed of the posterior end of
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the actomyosin region decreases over time. Both these properties appear consistent

with experimental observations of the cortical actomyosin contraction pattern [107].

The similar and partially redundant CCCH finger proteins MEX-5 and MEX-6 are

an important part of the signalling pathway that links PAR polarity to asymmetric

gene expression [100]. Surprisingly, the cytoplasmic MEX-5/6 proteins, which become

polarised in response to PAR polarity, were also found to affect polarity establishment

[104, 105]. Disrupting MEX-5/6 reduces the size and rate of expansion of the posterior

PAR-2 domain. MEX-5/6 have been implicated in controlling protein degradation

[146], and other finger motif proteins are thought to regulate RNA levels or translation

rates [100, 147-150]. It is therefore possible that MEX-5/6 affect actomyosin dynamics

indirectly by regulating the levels of other factors that interact with the cytoskeleton.

Consistent with this mechanism, the reduced rates of contraction in cells depleted of

MEX-5/6 could be achieved in our actomyosin model by reducing the parameter ε.

Note that our simple model does not include actin polymerisation or depolymeri-

sation reactions. While these processes may play a role in actomyosin reorganisation,

the defects observed in nmy-2 depleted cells [104, 135] suggest that the observed PAR

dynamics is largely due to myosin-driven contraction. It is however possible that the

actin turnover rate dictates the spontaneous dissociation rate of the anterior PAR

proteins (although it is not clear whether the anterior PAR proteins actually asso-

ciate directly with the actin cytoskeleton). It appears unlikely that such a mechanism

operates for the posterior PAR proteins, which are localised in regions of lower actin

density.

4.2.3 Simulations

Since in vivo concentrations of the PAR proteins are not known, we model concen-

trations in arbitrary units of protein numbers per unit length, chosen such that the

densities in the are scaled to around 1µm−1. Simulations of equations (4.1-4.4) were

initialised with uniform concentrations a = 1µm−1, Ac = 0µm−1, Am = 1µm−1,

Pc = 1µm−1, Pm = 0µm−1. The dynamic equations for the anterior and posterior

PAR proteins were integrated numerically on a lattice with spacing δx = 0.2µm and
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with a fixed time interval of δt = 10−3s. Smaller values were also tested and found

not to alter the behaviour of the system, showing that any numerical instability was

not significant. Simulations were run for 10 minutes with vl(t) set to zero, to allow

the system to reach steady-state. This point is marked as t = 0 in figures. The t = 0

state in the wild-type simulations is Ac ≈ 0.4µm−1, Am ≈ 0.6µm−1, Pc ≈ 0.6µm−1,

Pm ≈ 0.4µm−1. The t = 0 densities are different in the various mutant simula-

tions, depending on the particular change to the dynamic equations. In each case

there exists only one physical steady-state, so the choice of initial conditions is not

significant.

Actomyosin contraction was initiated t = 0. At each subsequent time step the

contractile actomyosin activity, m(t), and natural length, Λ(t), were calculated from

equations (4.8) and (4.7) respectively. These values were then used in equations (4.5)

and (4.6) to find vl(t) and the updated l(t) and actomyosin density. The reaction and

diffusion terms were calculated with an explicit discretisation scheme.

Parameter values were constrained to fit the dynamics observed in FRAP experi-

ments [105]. Otherwise, different parameter combinations were tested manually and

selected by inspection to best match the wild-type and mutant behaviour. The qual-

itative model behaviour in wild-type simulations was robust to at least a 50% change

in each reaction parameter individually. Parameters for the actomyosin network were

selected to match the three cases of wild-type, par-1 and par-3 mutants. The follow-

ing parameter values were used: L = 50µm, a0 = 1µm−1, Λ0 = 42.5µm, Λ1 = 27µm2,

ε = 0.4µms−1, Dm = 0.25µm2s−1, Dc = 5µm2s−1, cA1 = 0.01s−1, cA2 = 0.07µms−1,

cA3 = 0.01s−1, cA4 = 0.11µms−1, cP1 = 0.08s−1, cP3 = 0.04s−1, cP4 = 0.13µms−1.

4.2.4 Wild-type dynamics

Figure 4.2 shows simulation results for the model described above as kymographs for

the cortical density of actomyosin together with the cortical and cytoplasmic densities

of the anterior and posterior PAR proteins. Initially, both anterior and posterior PAR

proteins are present in the cytoplasm and at the cortex and are uniformly distributed

along the cell length, as seen in experiment [104]. Levels of Am and Pc are slightly
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Figure 4.2: Wild-type simulation results for the model given by equations (4.1-4.4)
and (4.9). Kymographs showing the densities of: a, contractile actomyosin; Am,
cortically-localised anterior PAR proteins; Pm, cortically-localised posterior PAR pro-
teins; Ac, anterior PAR proteins in the cytoplasm; Pc, posterior PAR proteins in the
cytoplasm; and M , cytoplasmic MEX-5/6. The time marked as zero indicates the
initiation time of actomyosin contraction. The greyscale is shown for each panel.
Densities are presented in arbitrary units of µm−1.

higher than Ac and Pm respectively. In our model, actomyosin contraction generates

an anterior region where binding of the anterior PAR protein is enhanced, and leaves

a posterior region where cortical association of the anterior PAR proteins is greatly

reduced. This eases the dissociation of the posterior PAR proteins at the posterior

of the embryo, and hence the posterior PAR proteins become associated with the

cortex at high levels here. The competition between the anterior and posterior PAR

proteins means that each group excludes the other, thereby creating positive feedback

allowing the density of whichever group is in the majority to increase. These reactions

therefore give rise to the stably-polarised cortical distributions of the PAR proteins.

Actomyosin contraction continues until ultimately the contractile domain is restricted

to the anterior half of the embryo. Rapid initial contraction means that actomyosin

quickly retracts to about 60% of the cell length within 3 to 4 minutes. The time to

fully contract to mid-cell is approximately 8 minutes in our simulations, consistent

with the time for which cortical and cytoplasmic flows are observed in vivo [105].

The resulting cortical distributions show good agreement with experiment [104]. The
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maximal velocity, at the posterior end of the contractile actomyosin region, is initially

peaked at about 15µm per minute, but rapidly drops to below 5µm per minute. These

speeds are comparable with reported flow speeds during contraction of 5− 8µm per

minute [105-107].

4.2.5 Mutant phenotypes

Actomyosin dynamics and PAR localisation in cells depleted of the different par pro-

teins have previously been characterised experimentally [104, 105, 107]. We have

simulated the effects of the various mutants by making appropriate changes to the

reaction scheme, discussed below. The results of these various changes are shown in

figure 4.3.

In par-3 mutants, PAR-6 and PKC-3 cannot associate with the cortex [104, 137,

138]. In these cells, the posterior PAR proteins are uniformly distributed throughout

the cortex [104, 136], and actomyosin is cleared only from a small region around

the posterior [107]. We model this mutant by preventing the remaining anterior

PAR proteins from associating with the cortex, setting cA1 = cA2 = 0. This greatly

suppresses actomyosin contraction, as shown in figure 4.3. Since the anterior PAR

proteins cannot associate with the cortex, PAR-1 and PAR-2 are not excluded and

hence accumulate uniformly at high levels, as seen in experiments. In our model,

actomyosin contracts to approximately 85% of the embryo length, comparable to the

experimentally measured actomyosin domain size of approximately 80% [107].

par-6 and pkc-3 mutants have similar phenotypes to par-3 mutants [104, 107].

PAR-6 is required to localise PKC-3 to the cortex [137] and (according to our model)

thereby stimulate cortical exclusion of PAR-1 and PAR-2. In the absence of PAR-6,

PKC-3 remains in the cytoplasm while PAR-3 is seen to associate with the cortex at

lower levels than in wild-type embryos [151]. Similarly, in the absence of PKC-3, PAR-

6 cannot become cortically localised [104, 138], while PAR-3 is again weakly detected

at the cortex [137, 138]. We assume that cortical association of the remaining anterior

PAR proteins is disrupted in these mutants, possibly due to the loss of interaction

between PAR-6 and CDC-42 [140, 141]. We modelled both par-6 and pkc-3 mutants
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Figure 4.3: Cortical protein distributions in simulations of par mutant phenotypes.
Simulations of equations (4.1-4.4) and (4.9) were performed with modifications to
represent depletion of the different PAR proteins, as described in the text. The
greyscale indicated on the right was used for all panels.

by allowing A to associate with the cortex at a reduced rate, reducing cA1 and cA2

by a factor of 4. In addition, we prevent Am from excluding Pm, since cortical PKC-

3 is required for this reaction. This was achieved by setting cP4 = 0. We found

that the model behaviour was then similar to the par-3 simulations described above

for the posterior PAR proteins and actomyosin. The posterior PAR proteins are

again uniformly distributed throughout the cortex, as observed experimentally for

PAR-2 [104]. Quantitative measurements of the extent of actomyosin contraction in

these mutants have not been reported. The different localisation patterns of PAR-

3 and PAR-6/PKC-3 means that our assumption that the anterior PAR proteins

function as a group is no longer valid. In implementing these mutants with the above
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changes we slightly underestimate the density of cytoplasmic PAR-6/PKC-3, since we

assume that these proteins are removed from the cytoplasm when A associates with

the cortex. However, in our model, PKC-3 only interacts with the posterior PAR

proteins when cortically localised, while PAR-6 has no direct effect on the posterior

PAR proteins. We can therefore simply interpret A as the density of PAR-3 in these

mutant simulations.

In par-1 mutants, the anterior PAR domain retracts beyond mid-cell [104]. In our

model, PAR-1 stimulates dissociation of the anterior PAR proteins. We simulate the

par-1 mutant by removing the competitive exclusion of Am by Pm, cA4 = 0. PAR-

2 is still able to associate with the cortex as in the wild-type [104, 136], although

in our model it cannot stimulate exclusion of Am. According to our model, since

the anterior PAR proteins are not actively excluded from the cortex, higher levels

accumulate, which stimulates greater actomyosin contraction, as shown in figure 4.3.

PAR-2 appears at the cortex at reduced levels relative to wild-type, due to faster

exclusion by PKC-3. The actomyosin network and anterior PAR domain rapidly

contract to mid-cell and ultimately occupy approximately the anterior 45% of the

embryo. Our model therefore produces the correct qualitative change relative to the

wild-type dynamics for the anterior PAR domain, although the size of this domain

is slightly larger in our model than is observed experimentally [104]. The extent

of the actomyosin network in par-1 mutants has not been reported. The initial

rapid contraction of the anterior PAR domain appears somewhat faster than observed

experimentally, where contraction beyond mid-cell takes approximately 6 minutes

[104].

In par-5 mutants the anterior and posterior PAR domains are seen to overlap

[104, 144]. We assume that PAR-5 interacts with phosphorylated cortically-localised

proteins and causes their dissociation. We therefore model this mutant by removing

the competitive dissociation reactions between the cortical proteins, setting cA4 = 0

and cP4 = 0. This reproduces the overlapping domains of anterior and posterior

PAR proteins observed experimentally, as shown in figure 4.3. The posterior PAR

proteins remain uniformly localised, while the anterior PAR proteins become mostly

restricted to an anterior cortical domain. These observations appear consistent with
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experimental data [104], although the anterior PAR asymmetry appears somewhat

more pronounced in our model than in experiments. In our simulations, par-5 mu-

tants show similar actomyosin contraction to par-1 mutants. We are not aware of

experimental measurements of the extent of actomyosin contraction in par-5 mutants.

Quantitative measurements of the PAR dynamics in par-5 mutants are also compli-

cated by the fact that the morphology of the cortex is much more irregular than in

wild-type embryos [104].

Experiments in par-2 mutants suggest that actomyosin contraction is slightly

reduced relative to wild-type, although not as dramatically as in anterior PAR protein

mutants [107]. Experimental measurements of the anterior PAR-6 domain in par-2

mutants range from 50% [107] to 63% [104] of the cell length. PAR-2 has been

suggested to promote cortical association of PAR-1 [136]. We model this by reducing

the cortical association rate of P , cP1, by a factor of 3. However, this effect alone is

not sufficient to reproduce the observed dynamics. The reduced association rate of

P leads to reduced cortical exclusion of Am, and hence the anterior domain contracts

beyond mid-cell in a similar way to the par-1 mutant. This is qualitatively different

from the reduced actomyosin contraction and expanded anterior PAR domain that

are observed experimentally. Better agreement with the experimental dynamics can

be achieved if, in addition to the reduced binding of PAR-1, we assume that PAR-

1 is now more effective at excluding the anterior complex from the cortex than in

the wild type. For example, PAR-2 may restrict access of PAR-1 to the appropriate

phosphorylation sites on the anterior PAR proteins by binding to PAR-1, or because

of crowding at the cortex. We included this effect by increasing the parameter cA4 by

a factor of 4. Now even though PAR-1 is present at the cortex at lower levels, it is still

able to effectively reduce the amount of Am present. This result is shown in figure

4.3, where the anterior actomyosin and PAR domain both occupy approximately 60%

of the embryo. The size of the anterior PAR domain is therefore comparable to

experimental measurements [104, 107].

In summary, our model gives generally good agreement with the experimentally

observed mutant phenotypes for the cortical PAR protein distributions. This agree-

ment is especially encouraging given the great simplicity of the model.
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4.2.6 Cytoplasmic polarity

A key feature of development in the early C. elegans embryo is the polarisation

of cytoplasmic protein distributions, which leads to the asymmetric segregation of

cytoplasmic proteins between daughter cells. The different cytoplasmic composition

of these daughter cells leads to differentiation in development and cell fate. At the

one-cell stage P-granules are restricted to the posterior, where they subsequently mark

germline precursor cells [97]. Moreover, as the cortical PAR domains form, MEX-5/6

become restricted to the anterior cytoplasm [100, 104]. The cytoplasmic distribution

of the posterior PAR proteins also appears polarised, with a higher density at the

posterior [104]. PAR-1 has been suggested to negatively regulate MEX-5/6 activity,

consistent with these proteins having oppositely polarised distributions [104]. It is

therefore important to test whether our model is able to account for this cytoplasmic

polarity.

We added an additional equation to the model to describe the cytoplasmic densi-

ties of MEX-5/6, M , as follows:

∂M

∂t
= Dc∇2M + cM1 − cM2M − cM3PcM (4.9)

We assume that MEX-5/6 are uniformly produced at rate cM1 and degraded spon-

taneously at rate cM2. We also allow MEX-5/6 to be degraded by Pc through the

cM3MPc term, consistent with negative regulation by PAR-1 [104]. For our simula-

tions, we used the following parameter values: cM1 = 0.1µm−1s−1, cM2 = 0.02s−1,

cM3 = 0.135µms−1. Simulations were initialised with M = 1µm−1, and the MEX-5/6

density at t = 0 was M ≈ 1µm−1.

Kymographs of the cytoplasmic protein densities resulting from the model equa-

tions (4.1-4.4) and (4.9) are shown in figure 4.2. As actomyosin contracts towards

the anterior, the cytoplasmic distribution of the anterior PAR proteins also becomes

polarised, with higher densities in the posterior cytoplasm. The posterior PAR pro-

teins and MEX-5/6 are largely uniformly distributed, but with a slight increase in Pc

at the anterior and M at the posterior. The cytoplasmic PAR distributions therefore

have the opposite polarity to the cortical distributions. Hence, in our model, the
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cytoplasmic PAR-1, PAR-2 and MEX-5/6 polarities are the opposite of those ob-

served experimentally. The model also produces a polarised cytoplasmic distribution

of the anterior PAR proteins, whereas experimentally the cytoplasmic PAR-6 density

appears uniform [104].

This behaviour is a result of the model structure and cannot be rectified by simply

changing values of the model parameters. The anterior PAR proteins bind preferen-

tially in the anterior, causing depletion of Ac in the anterior relative to the posterior

of the embryo. Dissociation of Am is also faster in the posterior than in the anterior

due to exclusion by Pm, which tends to further increase levels of Ac in the posterior

part of the embryo. Similarly, dissociation of Pm is faster in the anterior of the em-

bryo, where levels of Am are high, than in the posterior. This leads to higher levels

of Pc in the anterior. We conclude that the simple model considered thus far cannot

explain the observed cytoplasmic distributions of the PAR proteins and the restric-

tion of MEX-5/6 to the anterior cytoplasm. However, modifications to the model

which correct these discrepancies may yield additional insight into the behaviour of

the system.

4.3 Modifications to the basic model

4.3.1 MEX degradation by cortical PAR-1

While the cytoplasmic density of PAR-1 is higher in the anterior of the embryo than

in the posterior in our model, the total density of cytoplasmic and cortical PAR-1 is

higher at the posterior. Therefore, if cortical PAR-1 were able to affect MEX-5/6,

the correct MEX-5/6 distribution could be produced even without the appropriate

cytoplasmic PAR polarity. While there is no evidence that MEX-5/6 is present at the

cortex, such an effect could occur if MEX-5/6 were to localise to the cortex transiently.

This mechanism can be tested by introducing a cortical population of MEX-5/6 in

addition to the cytoplasmic density, and allowing degradation of cortical MEX-5/6

to be induced by Pm rather than Pc. However, in order to effectively reverse the

polarity of the cytoplasmic MEX-5/6 distributions, a significant proportion of the
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total MEX-5/6 (about 10%) would have to be located at the cortex at any time. This

mechanism therefore does not appear to be consistent with the available experimental

evidence, especially as the cytoplasmic anterior and posterior PAR protein polarities

remain incorrect.

4.3.2 Cortical and cytoplasmic flows

So far we have only coupled actomyosin contraction to PAR localisation indirectly,

through the density of actomyosin. However, the actomyosin dynamics may also

directly affect the localisation of the anterior PAR proteins, as cortical PAR-6 appears

to move with the cortical actomyosin network [107]. Actomyosin contraction may also

drive large-scale cytoplasmic flows, which carry cytoplasmic granules and vesicles [105,

106] thereby potentially affecting the cytoplasmic localisation of the PAR proteins.

While our simple model shows that the motion of the PAR proteins in these flows is

not necessary for the establishment of cortical polarity, it is possible that these flows

contribute to cytoplasmic polarity by localising the posterior PAR proteins to the

posterior of the embryo. We should therefore test these possible effects of introducing

cortical and cytoplasmic flows. We model the motion of PAR proteins in cortical and

cytoplasmic flows by adding advection to each of the model equations,

∂Am
∂t

= − ∂

∂x
(Amv) +Dm∇2Am + (cA1 + cA2a)Ac − cA3Am − cA4AmPm(4.10)

∂Ac
∂t

= − ∂

∂x
(Acvc) +Dc∇2Ac − (cA1 + cA2a)Ac + cA3Am + cA4AmPm (4.11)

∂Pm
∂t

= − ∂

∂x
(Pmv) +Dm∇2Pm + cP1Pc − cP3Pm − cP4AmPm (4.12)

∂Pc
∂t

= − ∂

∂x
(Pcvc) +Dc∇2Pc − cP1Pc + cP3Pm + cP4AmPm (4.13)

∂M

∂t
= − ∂

∂x
(Mvc) +Dc∇2M + cM1 − cM2M − cM3PcM (4.14)

where v(x, t) and vc(x, t) are velocity fields for the cortical and cytoplasmic flows

respectively.

The appropriate velocity field, v, in the contracting actomyosin region can be

calculated directly from our actomyosin model. We consider the conservation equation
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for actomyosin,
∂a

∂t
= − ∂

∂x
(av). (4.15)

Since the density, a, remains uniform over 0 ≤ x ≤ l(t), ∂a
∂t

must be the same

everywhere in this region. This requires that ∂v
∂x

also be uniform as a function of x.

Finally, we can integrate and use the boundary conditions v(0, t) = 0 and v(l(t), t) =

vl(t) to find

v(x, t) = vl(t)
x

l(t)
0 ≤ x ≤ l(t), (4.16)

as we would expect for a uniform spring. The remaining cortical and cytoplasmic

flows are not given by our actomyosin model, so we will simply assume approximate

forms for these flows. Other choices were also tested, and did not significantly alter

the dynamics. We take the anterior-directed flow in the posterior cortex to be

v(x, t) = vl(t)
L− x
L− l(t)

l(t) < x ≤ L. (4.17)

This ensures that v is continuous at x = l(t), and that the flow speed goes to zero

at the posterior pole. It is also in general agreement with experimental observations

[105]. We choose the cytoplasmic flow velocity in our model to be fastest near mid-

cell, with the maximal flow velocity proportional to the maximal flow speed of the

cortex:

vc(x, t) =

−kvl(t)
x
L/2

0 ≤ x ≤ L/2

−kvl(t)L−xL/2
L/2 < x ≤ L

. (4.18)

These forms are broadly consistent with experimental observations [105], where it

appears that cytoplasmic flow speeds are reduced near the poles. k is a parameter

chosen to match the cytoplasmic velocity to that observed experimentally; we used

k = 4/7.

The advection of the PAR proteins was simulated with a first-order difference

scheme, by calculating the flux between each pair of lattice sites. The change in
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Figure 4.4: Model dynamics with advection of PAR proteins. Simulations of the
wild-type model were performed with the modified model equations (4.10-4.14).

density at each lattice site due to advection is given by

∆ρi =

−
δt
δx

(viρi − vi−iρi−1) if vi > 0

− δt
δx

(viρi+1 − vi−iρi) if vi < 0
. (4.19)

Here vi represents the velocity at the boundary between sites i and i+ 1. Boundary

conditions were applied to ensure that v(0) = v(L) = 0. Since the flows are relatively

slow and smooth (|(δt)vi| � δx), and unidirectional, we find that this discretisation

scheme remains well-behaved. A centred-difference scheme was also tested, with no

change in the results.

The wild-type model dynamics with advection of the PAR proteins are shown in

figure 4.4. During the early part of the polarity establishment process, we can identify

dynamic features in the PAR distributions which are the result of the advection of

these proteins. As we would expect, cytoplasmic flows carry the cytoplasmic PAR

proteins into the posterior, generating a transiently higher density of Ac and Pc. Cor-

tical flows also lead to a narrow, high-density, band of Pm near the interface of the

anterior/posterior PAR cortical domains. However, the stable polarised distributions

that form at late times are unchanged. Assuming sufficiently fast cytoplasmic diffu-

sion (Dc larger than about 1µm2s−1), the system reaches a steady-state determined
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Figure 4.5: Simulations of par mutants with cortical and cytoplasmic flows. The
greyscale indicated on the right was used for all panels.

by diffusion and the protein interactions, whose timescales are short compared to the

timescales over which cortical and cytoplasmic flows occur. We therefore conclude

that movement of the PAR proteins in cortical and cytoplasmic flows likely cannot

account for cytoplasmic polarity in the embryo, and moreover, the flows lead to only

minor transient changes in the cortical PAR distributions.

For completeness, simulations of the par mutants were also performed with cor-

tical and cytoplasmic flows of the PAR proteins. As in the wild-type simulations,

the establishment of polarity and the final PAR distributions were unaffected in all

mutants. However, the dynamics in par-1 and par-5 mutants in particular showed

some transient differences during the early phase of the contraction dynamics. In the

model without advection, the intitially cortical anterior PAR proteins do not move

with the actomyosin domain as it contracts into the anterior. The total levels of Am in
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the contractile region therefore decrease gradually as contraction takes place. If corti-

cal flows are added the rapid advection overwhelms protein diffusion, so Am proteins

are carried with the actomyosin domain and remain confined within the contractile

region. Contraction therefore occurs more rapidly and to a greater extent than in

the model without flows. However, once the flow velocity decreases these additional

proteins can once again diffuse out of the anterior region. This reduces levels of Am,

and leads to the slight re-expansion of the anterior domain which can be seen in figure

4.5.

4.3.3 Competitive degradation

The incorrect cytoplasmic polarity of the basic model appears in part because rapid

competitive exclusion of cortical proteins increases the cytoplasmic density in the

wrong half of the embryo. This effect can be overcome if proteins which are excluded

from the cortex are not returned to the cytoplasmic pool, but instead are rapidly

degraded. We therefore introduce into the model competitive degradation of the

two PAR groups, perhaps due to the known phosphorylation reactions. We also

add competitive degradation between the cytoplasmic Ac and Pc groups to further

enhance the cytoplasmic polarity. To ensure stable levels of the various PAR proteins,

homogeneous production (and spontaneous degradation) in the cytoplasm are also

introduced. The resulting model equations are

∂Am
∂t

= Dm∇2Am + (cA1 + cA2a)Ac − cA3Am − cA4AmPm (4.20)

∂Ac
∂t

= Dc∇2Ac − (cA1 + cA2a+ cA6)Ac + cA3Am + cA5 − cA7AcPc (4.21)

∂Pm
∂t

= Dm∇2Pm + cP1Pc − cP3Pm − cP4AmPm (4.22)

∂Pc
∂t

= Dc∇2Pc − (cP1 + cP6)Pc + cP3Pm + cP5 − cP7AcPc (4.23)

∂M

∂t
= Dc∇2M + cM1 − cM2M − cM3PcM (4.24)

cA5 is a constant production term for the anterior PAR proteins. Production of P is

similarly controlled by cP5. cA6 and cP6 are spontaneous degradation rates for Ac and
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Pc respectively. cA7AcPc and cP7AcPc represent competitive degradation reactions

between the anterior and posterior PAR proteins in the cytoplasm. Since we assume

that cortical interactions lead to protein degradation, the cA4AmPm and cP4AmPm

terms have been removed in (4.21) and (4.23) respectively.

Since we have added production and degradation, the total protein levels can be

altered by changing these parameters. In par mutants the degradation reactions can

be disrupted, leading to different protein expression levels from wild-type. If levels

of A increase significantly it would be possible for the natural length, Λ(t) given by

(4.7) and (4.8), to become negative. Since this situation is unphysical, to remove this

possibility we introduce saturation of m(t) when levels of Am are high,

m(t) =
1
L

∫ l(t)
0

Amdx

1 + σ
L

∫ l(t)
0

Amdx
. (4.25)

In simulations of this model we used the following parameters values: L = 50µm,

Λ1 = 42.5µm, Λ1 = 60µm2, σ = 1.75µm, ε = 0.35µms−1, Dm = 0.25µm2s−1, Dc =

5µm2s−1, cA1 = 0.008s−1, cA2 = 0.072µms−1, cA3 = 0.032s−1, cA4 = 0.008µms−1,

cA5 = 0.1µm−1s−1, cA6 = 0.08s−1, cA7 = 0.35µms−1; cP1 = 0.064s−1, cP3 = 0.032s−1,

cP4 = 0.16µms−1, cP5 = 0.08µm−1s−1, cP6 = 0.06s−1, cP7 = 0.016µms−1. With these

parameters, the densities at t = 0 are Ac ≈ 0.3µm−1, Am ≈ 0.7µm−1, Pc ≈ 0.7µm−1,

Pm ≈ 0.3µm−1, M ≈ 0.9µm−1. Simulation results for the wild-type are shown in

figure 4.6. The data show correctly polarised distributions of Pc and M , and a slight

anterior gradient of Ac.

Mutant simulations were also performed with this model, implemented as follows:

• par-1 : We assume PAR-1 causes cortical and cytoplasmic degradation of the

anterior PAR proteins and MEX-5/6. We therefore simulate this mutant by

setting cA4 = 0, cA7 = 0, and cM3 = 0.

• par-2 : As for the basic model, we simulated this mutant by reducing the binding

rate of PAR-1, cP1, by a factor of 3 and increasing cA4 by a factor of 4.

• par-3 : As in the initial model, we prevent the anterior PAR proteins from
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Figure 4.6: Wild-type simulation results for the model with competitive protein degra-
dation.

associating with the cortex, cA1 = cA2 = 0.

• par-5 : We assume PAR-5 is required for exclusion and degradation of cortical

proteins. As in the initial model, we incorporated this effect by setting cA4 = 0

and cP4 = 0. However, we assume that PAR-5 is not required for cytoplasmic

degradation reactions. These reactions were therefore left unchanged.

The results of mutant simulations are shown in figure 4.7. In all cases, the extent

of the anterior domain is consistent with experimental observations [104, 107]. The

timescales for contraction are also consistent with experiment, except in the case of

par-1 for which contraction again appears slightly faster than observed experimentally

[104]. In addition to altered localisation patterns, the exclusion and degradation rates

will also differ in the mutants as compared to the wild type, leading to very different

expression levels, as shown in figure 4.8. In our simulations we see up to a five-fold

change relative to wild-type, although this value is highly dependent on the model

parameters.

With these modifications, the model is able to reproduce the appropriately po-

larised cytoplasmic distributions, and can also give good agreement with all experi-

mentally observed mutant phenotypes. However, in order to generate the observed

polarised distributions the PAR proteins would have to be rapidly turned over. The
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Figure 4.7: Results for simulations of par mutants in the competitive degradation
model. The greyscale indicated on the right was used for all panels.

posterior PAR proteins, for example, must be displaced from the cortex on a timescale

of minutes – otherwise Pm would remain uniform as the anterior PAR proteins are

restricted to the anterior. If the displaced proteins are immediately degraded, this

implies lifetimes also on the order of minutes. Such a rapid synthesis rate would be

extremely energetically expensive to maintain.

4.3.4 Cytoplasmic cytoskeletal asymmetry

The polarisation of the embryo cortex is driven by rearrangement of the cortical acto-

myosin network. It is possible that the generation of cytoplasmic polarity is similarly

driven by cytoskeletal rearrangement. PAR-2 is able to localise to the pronuclei or

spindle and has been suggested to interact with microtubules [104, 152]. During the
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Figure 4.8: Protein levels in par mutants in the competitive degradation model.
Shown are the total amounts of A and P at t = 0 and at t = 10 minutes, normalised
by the amount at t = 0 in the wild-type simulations.

period of PAR polarity establishment, microtubules form primarily in the posterior

part of the embryo as the pronuclei migrate and meet in the posterior [104, 141]. If

the posterior PAR proteins are colocalised with the microtubules, this could effec-

tively confine these proteins to the posterior cytoplasm. There is also evidence that

cytoplasmic actin becomes largely restricted to the anterior [139]. If the cytoplasmic

anterior PAR proteins are colocalised with the cytoplasmic actin, through a similar

mechanism to their preferential localisation to the anterior cortex, this could help to

confine the cytoplasmic anterior PAR proteins to the anterior cytoplasm. Hence, this

effect could neutralise the posterior polarity for Ac found in our initial model, and

thus lead to a uniform distribution for Ac, as observed experimentally.

To test this mechanism, we modify the basic model in equations (4.1-4.4) to in-

troduce a second cytoplasmic state for the anterior and posterior PAR groups, Ai

and Pi respectively. These variables represent proteins associated with the cytoplas-

mic cytoskeleton which are partly immobilised and also unable to bind to the cortex.

We assume that the local cytoplasmic actin density consists of two contributions, a

constant component which is uniformly distributed throughout the embryo, and a

varying component which moves with the cortical actomyosin network and has den-
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sity proportional to a(x, t). We therefore take the local cytoplasmic actin density

to be proportional to (1 + caa(x, t)). As a simple estimate, we assume that the mi-

crotubule density is inversely related to the density of actomyosin, with the form

(1 + caa(x, t))−1. However, our results are not specific to these particular choices for

the cytoskeletal densities. We allow anterior and posterior cytoplasmic PAR proteins

to associate with the appropriate cytoplasmic cytoskeletal constituent at a rate pro-

portional to the effective cytoskeletal density. Binding to the cytoskeleton will restrict

diffusion of Ai and Pi, so we assume the same diffusion constant, Dm, as for cortical

proteins. The resulting equations are

∂Am
∂t

= Dm∇2Am + (cA1 + cA2a)Ac − cA3Am − cA4AmPm (4.26)

∂Ac
∂t

= Dc∇2Ac − (cA1 + cA2a)Ac + cA3Am + cA4AmPm − cA5(1 + caa)Ac + cA6Ai

(4.27)
∂Ai
∂t

= Dm∇2Ai + cA5(1 + caa)Ac − cA6Ai (4.28)

∂Pm
∂t

= Dm∇2Pm + cP1Pc − cP3Pm − cP4AmPm (4.29)

∂Pc
∂t

= Dc∇2Pc − cP1Pc + cP3Pm + cP4AmPm −
cP5

1 + caa
Pc + cP6Pi (4.30)

∂Pi
∂t

= Dm∇2Pi +
cP5

1 + caa
Pc − cP6Pi (4.31)

∂M

∂t
= Dc∇2M + cM1 − cM2M − cM3(Pc + Pi)M (4.32)

We simulated these equations with parameters ca = 5µm, cA1 = 0.013s−1, cA2 =

0.091µm−1, cA5 = 0.003s−1, cA6 = 0.06s−1, cP1 = 0.096s−1, cP5 = 0.04s−1, cP6 =

0.04s−1, and the other parameters unchanged from the initial model. The t = 0

state in the wild-type simulations is Ac ≈ 0.3µm−1, Am ≈ 0.6µm−1, Ai ≈ 0.1µm−1,

Pc ≈ 0.5µm−1, Pm ≈ 0.4µm−1, Pi ≈ 0.1µm−1, M ≈ 1µm−1.

Figure 4.9 confirms that this mechanism is able to suitably polarise the distribu-

tions of cytoplasmic P and MEX-5/6 and to generate a uniform cytoplasmic distribu-

tion of A, whilst retaining the cortical polarity of the basic model. For this mechanism

to be effective a significant fraction of the cytoplasmic PAR proteins must be in the
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Figure 4.9: Simulation results for the model with partial immobilisation of the cyto-
plasmic PAR proteins. Ai and Pi represent the densities of the partly immobilised
cytoplasmic forms of the anterior and posterior PAR proteins respectively. In this
case, approximately half of the cytoplasmic posterior PAR proteins were in the im-
mobile form.

immobile forms. We found that in order to reverse MEX-5/6 polarity, a ratio of partly

immobilised to total cytoplasmic P of at least 0.25 was required in the posterior of

the embryo. Simulations of the par mutants were also performed with this model,

as described previously. In all cases, the behaviour of this model was essentially the

same as the simple model (4.1-4.4) and (4.9).

4.4 Discussion

We have presented a mathematical model that couples interactions between the PAR

proteins to actomyosin contraction, and largely reproduces the observed phenomenol-

ogy of the PAR system at the one-cell stage of the C. elegans embryo. The cortical

protein distributions in the wild-type and in par -depletion mutants can be explained

through the currently understood reactions of cortical association and competitive ex-

clusion. Our model also confirms that polarisation of the cortical actomyosin network

is crucial for the correct establishment of polarity, restricting PAR-3/PAR-6/PKC-3

localisation to the anterior, which in turn leads to polarisation of PAR-1 and PAR-2

proteins. However, we predict that motion of the PAR proteins in flows that result
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from this contraction are not required to achieve the correct protein distributions,

since the model performs well without the inclusion of these effects.

The simple model considered here is consistent with the experimentally reported

interactions and with a mutual exclusion mechanism for the cortical PAR proteins

proposed previously [104]. However, reproducing the correct cytoplasmic polarity of

the PAR proteins is not straightforward. This issue has received surprisingly little

attention, and the processes by which cytoplasmic polarity is generated are not un-

derstood. Regulating cytoplasmic polarity through MEX-5/6 and other CCCH-finger

proteins is a vital function of the PAR system, crucial for the correct development of

the different daughter cells. Our modelling clearly shows that the establishment of

the correct cortical polarity is not sufficient to guarantee the appropriate cytoplasmic

polarity of PAR-1/PAR-2 and MEX-5/6. We therefore considered a number of pos-

sible mechanisms by which the correct cytoplasmic polarity could be achieved, and

experiments should be able to directly test, and distinguish between, these different

mechanisms.

Intuitively, it would appear likely that the posterior-directed cytoplasmic flow

would play a role in establishing cytoplasmic asymmetry. The flow of cytoplasmic

material may carry with it the posterior PAR proteins, leading to a polarised dis-

tribution of these proteins in the cytoplasm. Our model suggests that this transient

polarity would be difficult to maintain once these cytoplasmic flows cease. Diffusion

of the PAR proteins in the cytoplasm together with cortical binding and exclusion

reactions would then rapidly disrupt the earlier PAR-1 and PAR-2 distributions. Ex-

perimentally the cytoplasmic distributions appear to remain stably polarised between

pseudocleavage and cell division [104]. However, we have assumed throughout that the

Pc proteins are able to diffuse rapidly within the embryo cytoplasm (Dc = 5µm2s−1).

The impact of the cytoplasmic flow on the final PAR distributions increases when

diffusion of the Pc proteins is slow. For example, if the Pc proteins cannot diffuse

freely (Dc less than about 1µm2s−1), then the cytoplasmic flows may significantly

contribute towards the polarised distributions of PAR-1 and PAR-2. It would there-

fore be interesting to measure the mobility of the PAR proteins in the cytoplasm,

for example by FRAP analysis, as a test of this conclusion. The posterior-directed
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cytoplasmic flows cannot, however, account for the cytoplasmic distributions of the

anterior PAR proteins or of MEX-5/6.

A competitive degradation model is able to reproduce the correct cytoplasmic

and cortical dynamics. However, the necessary protein turn-over rates are so fast

that this mechanism appears less likely. A number of relatively simple experiments

should be able to show conclusively whether this mechanism is actually used in vivo.

It is not clear whether the PAR proteins are in fact translated during the one-cell

stage of development. Photobleaching of an entire embryo with fluorescently labelled

PAR proteins, and observing recovery, could indicate whether the rate of protein

production was sufficiently fast for the mechanism proposed above to be viable. Al-

ternatively, blocking translation in the embryo would lead to a rapid decrease in PAR

protein levels. We would expect these differences to be readily observable in exper-

iments. This prediction contrasts strongly with predictions from our other models

which suggest that PAR protein translation/degradation are not required at all for

polarity establishment.

We have suggested that cytoplasmic asymmetry of the cytoskeleton may drive

the establishment of cytoplasmic protein polarity in parallel to the establishment of

cortical PAR polarity. The anterior PAR proteins could potentially be retained in

the anterior by a polarised distribution of cytoplasmic actin, and microtubules could

similarly localise the posterior PAR proteins to the posterior cytoplasm. Our model

also suggests that the observed uniform distribution of the anterior PAR proteins

is in fact the result of a balance between two competing effects. The asymmetric

binding and dissociation reactions included in our basic model tend to produce a

posteriorly-polarised cytoplasmic distribution. However, binding to an anterior po-

larised distribution of cytoplasmic actin largely cancels this effect, leading to a uniform

cytoplasmic distribution of the anterior PAR proteins, in agreement with experiment.

Important evidence in favour of this mechanism would be confirmation of the asym-

metric cytoplasmic actin distribution suggested in [139]. Disrupting the cytoplas-

mic actomyosin components without affecting cortical contraction would be difficult.

However, experiments to probe the role of microtubules would be possible without

affecting cortical polarity. If microtubules are indeed responsible for retaining the
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posterior PAR proteins in the posterior cytoplasm, we would expect the cytoplasmic

polarity of PAR-1 and PAR-2 to be reversed if microtubule polymerisation could be

appropriately disrupted. This mechanism can potentially explain cytoplasmic polar-

ity during the pronuclear migration period, when the distribution of microtubules is

biased towards the posterior of the embryo. However, it is still not clear how polarity

would be maintained after pronuclear meeting, when the distribution of microtubules

becomes more uniform.

The models discussed above include a highly simplified description of the acto-

myosin network. While a detailed model of actomyosin activity may give a more

mechanistic description of the contraction dynamics and smaller-scale phenomena

such as cortical ruffling and pseudocleavage, we were able to capture the correct dy-

namics at the cellular scale important for cell polarity. The good agreement between

the model and experiment supports the use of such a coarse-grained model, and shows

that a more detailed model is not necessary to explain the polar organisation of the

PAR proteins. Our model does not, however, explain the secondary flows that are

observed after pseudocleavage in par mutant embryos. In par-2 mutants, actomyosin

and the anterior PAR proteins flow back towards the posterior pole [104, 107]. In

par-1 and par-5 mutants, the actomyosin distribution after pseudocleavage has not

been reported, but the anterior PAR domain expands towards the posterior in both

cases [104]. The slight re-expansion which is observed in figure 4.5 should not be

identified with these posteriorly directed flows, as it during too soon after the initia-

tion of polarity establishment and cannot account for the full extent of these posterior

flows, nor for the dynamics in par-2 mutants. It is therefore possible that our sim-

ple elastic model breaks down in this regime. A spring model in which the natural

length is altered after pseudocleavage could potentially reproduce the correct PAR

dynamics. However, it is not clear how the natural length in such a model should

be determined. Munro et al [107] suggested that PAR-2 prevents re-expansion of the

anterior domain after pseudocleavage by suppressing myosin binding. It is not clear

why such a mechanism is not effective in par-1 and par-5 mutants, where PAR-2

is present at the cortex but posterior expansion of the anterior domain is observed.

Alternatively, an inhomogeneous model including the posterior density of actomyosin
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together with myosin binding and unbinding reactions could potentially describe this

behaviour.

It is not clear whether actomyosin contraction in the wild-type embryo specifically

targets the mid-embryo position, whereby the boundary between the anterior and pos-

terior domains scales with embryo length, as occurs, for example, in the hunchback

expression boundary in the Drosophila embryo [115]. Our model does not specifically

self-organise to identify the mid-cell position – this must be achieved through appro-

priate parameter choices. However, scaling with embryo length can be achieved if

the natural length in our actomyosin spring model is taken to be proportional to the

embryo length. This can be achieved if the PAR protein and actomyosin densities

remain constant as a function of embryo length. It would certainly be interesting to

test the scaling properties of the anterior domain experimentally.

The model presented here deals specifically with the one-cell C. elegans embryo.

One of the striking features of the PAR system is its conservation between different

cell types and organisms [90-92]. In many cases cell polarity and actin reorganisation

are linked [93, 94, 107], although we are not aware of any other examples where

polarity establishment is accompanied by such large-scale rearrangement of cellular

material. Our model suggests these secondary cytoplasmic flows are not required to

achieve the correct polarity, and that segregation of the actomyosin network together

with competitive interactions between the PAR proteins are the keys to establishing

PAR polarity. Some aspects of the model may therefore be directly applicable in

other contexts.
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Chapter 5

Conclusion

We have presented and discussed three mathematical models applied to specific sub-

cellular processes. In chapter 2 we considered a stochastic model of the pole-to-pole

Min oscillations in E. coli [40]. The model relies on a dynamic instability in the

network of protein reactions together with diffusive dynamics to drive these oscilla-

tions. We investigated possible roles for polymerisation, and studied for the first time

partitioning of the Min proteins during cell division, finding that the partitioning is

generally highly uneven. In chapter 3 we considered limits to positional precision

in concentration gradients [74]. The instantaneous density fluctuations in gradients

in vivo may be so large that estimating position from density measurements will be

unreliable. Time-averaging is required in order to achieve reliable position determi-

nation. Finally, in chapter 4 we described a model of PAR polarity in C. elegans. We

have considered a plausible interaction network which is able to reproduce much of

the observed phenomenology, and where this model fails we have suggested modifi-

cations which allow the model to capture more of the experimental behaviour. We

also investigated roles for actomyosin contraction, showing that this was required to

generate different anterior and posterior domains, but that cortical and cytoplasmic

flows are not necessary for the establishment of polarity.

There are numerous differences in structure and behaviour between the various

models. The model of Min oscillations and the model of PAR polarity both deal

with the generation of spatial localisation in an initially uniform system. However,
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the mechanisms by which this is accomplished are very different. In the case of

Min oscillations, spatial organisation arises spontaneously due to dynamic instability.

Establishing PAR polarity requires the driving force of actomyosin contraction, which

imposes spatial inhomogeneity on the system. In the gradient systems considered

in chapter 3, the symmetry of the system was also broken by the predetermined

gradient. In both the Min and gradient models we included important stochastic

effects, whereas for the PAR proteins we considered only a continuum description of

the system. This diversity in models is ultimately driven by the variety of biological

systems under consideration. The construction of a model must be tailored to the

particular system of interest. However, it is also due in part to the questions which

the models are seeking to investigate.

In constructing models of biological systems there are broadly two distinct ap-

proaches. The first is a search for completeness and the inclusion of all the inter-

actions and details which are known about a system. This can be an advantage in

systems which are well studied and in which parameters such as reaction rates have

been quantified. In these cases, such models can yield quantitative predictions about

the detailed system behaviour. Of the models discussed here, the model of Min os-

cillations in chapter 2 includes the most detailed description of the system, with all

known interactions and protein species, and the introduction of membrane structure.

This model built on a range of previous work [31-34] which had shown that a dynamic

instability mechanism was able to reproduce the observed dynamics. The reactions

in this system are relatively well understood. The model presented here was therefore

focused on aspects of the system which had not previously been considered, such as

the dynamics during cell division.

However, in systems where there is more uncertainty, increasing levels of com-

plexity can obscure the fundamental properties and key features of the system while

adding little benefit. In such cases, models may have a more reductionist approach,

seeking to represent the system in terms of a minimal number of components and

effective interactions. Such models have the advantage of simplicity, and can allow

for a more intuitive understanding of the system. The model of the PAR proteins in

chapter 4 lies much closer to this approach. This was the first attempt at modelling
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these phenomena, in a system where there is still considerable uncertainty about spe-

cific reactions. Many details of the interaction network are not well understood. The

model was therefore focused on more basic questions, such as whether the proposed

mechanisms and interaction network were viable. We therefore considered the system

at a highly coarse-grained level and simplified the included reactions somewhat by

considering only the anterior and posterior protein groups, also neglecting stochastic

effects due to low protein copy numbers. However, the necessity of reducing com-

plexity may mean that these simplified models are unable to reproduce the finer

details of the system behaviour. Our basic actomyosin model, for example, cannot

account for more detailed features of the experimentally observed dynamics, such as

the smaller-scale cortical ruffling.

The goal of our analysis of gradient models of chapter 3 was not to study a specific

example system, but instead to understand more general properties of concentration

gradients. In many ways, these models are more abstract than the other examples pre-

sented. We therefore selected simple but widely applicable mechanisms for gradient

formation. This also has the advantage of making analytic calculations straightfor-

ward, whereas for more complex systems of non-linear interactions this may not be

the case.

Although we have come to understand some of the mechanisms behind these

subcellular spatial phenomena, through the use of experimental observations and

computer simulations, it is often not clear why biological systems have developed

in this way. Again, the Min system in E. coli is a prime example. It is not known

why E. coli has such an extravagant mechanism for regulating cell division while other

bacteria, such as B. subtilis (which lacks MinE) and Caulobacter, employ much simpler

accumulations of division inhibitors at both cell poles [45, 153] without oscillations.

Similar questions can be asked of the early stages of C. elegans development. The

embryos of other organisms also become polarised at early stages of development,

but without such dramatic symmetry breaking in the cytoskeleton or cytoplasmic

flows [93, 154]. The answers to these questions and many others must await further

biological insight.
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