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 ABSTRACT 
 

Power amplifiers are critical components in wireless communication systems 

that need to have high efficiency, in order to conserve battery life and minimise heat 

generation, and at the same time low distortion, in order to prevent increase of bit 

error rate due to constellation errors and adjacent channel interference. This thesis is 

aimed at meeting a need for greater understanding of distortion generated by power 

amplifiers of any technology, in order to help designers manage better the trade-off 

between obtaining high efficiency and low distortion. The theory proposed in this 

thesis to explain and predict the performance of power amplifiers, including distortion, 

is based on analysis of clipping of the power amplifier device current, and it is a 

major extension of previous clipping analyses, that introduces many key definitions 

and concepts. Distortion and other power amplifier metrics are determined in the form 

of 3-D surfaces that are plotted against PA class, which is determined by bias voltage, 

and input signal power level. It is shown that the surface of distortion exhibits very 

high levels due to clipping in the region where efficiency is high. This area of high 

distortion is intersected by a valley that is ‘L’-shaped. The 'L'-shaped valley is subject 

to a rotation that depends on the softness of the cut-off of the power amplifier device 

transfer characteristic.  The distortion surface with rotated 'L'-shaped valley leads to 

predicted curves for distortion versus input signal power that match published 

measured curves for power amplifiers even using very simple device models.  The 

distortion versus input signal power curves have types that are independent of 

technology.  In class C, there is a single deep null.  In the class AB range, that is 

divided into three sub-ranges, there may be two deep nulls (sub-range AB(B)), a 

ledge (sub-range AB(A)) or a shallow null with varying depth (sub-range AB(AB)).   
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CHAPTER 1                                                                                                           

INTRODUCTION 

1.1. Wireless Communication Systems 

The development of wireless communication is proceeding rapidly. Systems 

such as Wi-Fi based on CDMA (Code Division Multiple Access) [1][2], mobile 

phone based on GSM (Global System for Mobile Communication) [3][4] and mobile 

multimedia unit based on today’s 3G and future 4G [5] − [8] wireless systems are 

being developed. This constantly growing market drives an intense effort to develop 

improved wireless standards and system architectures, as well as reduce 

implementation costs by using low-cost technologies and higher level of integration. 

These systems contain a wireless transmitter and receiver that are called transceiver. 

A highly integrated transceiver system in one integrated circuit chip is called for in 

order to minimize cost and reduce size. 

The block diagram of a typical transceiver with transmitter and receiver chains 

is shown in Figure 1.1 [9] − [13]. All of the blocks shown are challenging analogue 

designs and are the subject of much current research, including low noise amplifier [9] 

− [16], variable gain amplifier (VGA) [17] − [19], mixers [9][14][20][21], transmitter 

and receiver low pass filters [9] − [13][22], switch [9][10][23], frequency synthesiser 

[9][10], power amplifier [9] − [16][21][24] − [47] and ADC-DAC [9][10][48] − [50]. 

The power amplifier is the subject of study in this thesis. 
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Figure 1.1 Typical architecture of wireless transceiver [9] − [13]. 

1.2. Power Amplifier Requirements 

The essence of the function of the power amplifier (PA), as shown for example 

in Figure 1.1, is to convert DC power from the battery or power supply into RF power 

in the antenna. The power amplifier is usually the most power hungry block in the 

transmitter, and therefore it is crucial to design it in order to preserve battery life and 

minimize heat generation. This can be achieved by designing the PA to have 

maximum efficiency, which may be defined as the ratio of power delivered to load to 

DC power consumption [47][51] − [54] 1.  

 out

DC

P
P

η =  (1.1) 

Power amplifiers are classified into different categories. The maximum efficiency is 

one of common methods [24][47]. Bias voltage and conduction angle [15][24][47] 

[52][53] are also used to classify PAs. This will be reviewed briefly in the next sub-

section.  

                                                 
1  The efficiency defined in (1.1) is drain efficiency. Efficiency is often defined as power added 

efficiency, ( )11out in
PA

DC

P p
G

P
η η −−

= = − , where Pin is input power and gain G = Pout/Pin. 
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Figure 1.2 (a) input power spectrum; (b) output power spectrum showing 3rd and 5th 
order distortion [65].  

Recently, many wireless communication systems adopt sophisticated 

modulation schemes such as QAM (Quadrature amplitude modulation) [55] − [57], 

QPSK (Quadrature Phase Shift Keying) [58] − [60], and BPSK (Binary Phase Shift 

Keying) [61][62] for high spectral efficiency and channel capacity in an environment 

of growing demand on available spectrum [63]. However, these modulation formats 

have signals with highly time-varying envelopes with high peak-to-average ratio [64]. 

With such a signal, nonlinearity in the PA, which is inevitable since the PA is based 

on a device that is nonlinear, has two very serious effects on system performance. 

Adjacent channel interference (ACI) is caused by 3rd and higher odd order 

intermodulation distortion (IMD2) products generated by the tones comprised of a 

modulated spectrum [47][54][65] − [70]. For the signal at the input of the PA, only 

the RF band signal exists, as shown in Figure 1.2(a) [65]. 3rd and 5th order 

intermodulation distortion products generated by PA nonlinearity cause adjacent 

channel interference in the PA output signal, as shown in Figure 1.2(b) [65]. Adjacent 

channel power channel power ratio (ACPR) is used to specify ACI, which quantifies 

out-of-band interference of wireless handsets [54][65][70]. ACI reduces the signal-to-

noise ratio (SNR) for the adjacent channel, thus increasing the bit error rate (BER) 

[71] − [73]. In order to prevent unacceptable level of interference between adjacent 

channels, wireless communication systems specify strict requirements on power 

transmitted into adjacent channels [47][54][65][70]. 

 
                                                 
2 IMD is defined to be the sideband components at mixing frequency[47]. 
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Figure 1.3 (a) Original symbol constellation; (b) Received Symbol constellation with 
effect of nonlinear distortion [69]. 

Third order distortion in the PA also results in constellation errors. The symbol 

constellation for a signal in a system before the PA [69] is shown in Figure 1.3(a). 3rd 

order non-linearity in the PA causes signal amplitude-dependent changes in PA gain 

and phase that corrupt the constellation as shown in Figure 1.3(b) [69]. This in-band 

distortion effect increases BER and is quantified using error vector magnitude (EVM) 

[47][54][65][69][70].  

Thus it is vitally important that PAs have simultaneously high efficiency and 

high linearity. Unfortunately these two requirements are contradictory. This leads to a 

trade-off which has been the subject of much study [74]. The PA is now looked at in 

more detail.  

1.3. Power Amplifier Circuit and Performance Overview 

The basic circuit of a power amplifier is shown in Figure 1.4 [67][75]. The PA 

is based around a device that is shown here as a field effect transistor, with input 

voltage vG, output voltage vD and output current iD. The input signal vin is coupled to 

the input terminal of the device via coupling capacitor CG. Inductor LG supplies the 

input signal bias voltage VGG that defines the class of operation for the PA 

[15][47][52][53]. The output terminal of the device is coupled to load resistor RL and 

biased from supply voltage VDD via a bias/matching circuit that may take several 
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Figure 1.4 Schematic of PA with bias/matching networks [67][75]. 

 
Figure 1.5 Bias/matching circuits, (a) simple; (b) tuned [54][76].  

different forms. Two common forms for the bias/matching circuit are shown in Figure 

1.5 [54][76]. In the simple circuit in Figure 1.5(a), the device output signal is coupled 

to the load resistor via CD and inductor LD provides bias current for the device output 

terminal [54][76]. In the circuit in Figure 1.5(b), LD and CD are designed to resonate 

in the PA operating frequency band to provide high impedance, but CD provides low 

impedance at harmonic frequencies [76] and LD provides device bias current. 

The device in the PA schematic of Figure 1.4 may be described by 

 ( ),D G Di f v v=  (1.2)    

This relationship is usually expressed in the form of a set of device output 

characteristics, as shown in Figure 1.6 [75], where iD is plotted against vD for a set of 

values of vG. Assuming ideal bias elements in Figure 1.4 (L → ∞, C→ ∞), the 

effective value of the load resistor in Figure 1.4, as seen at the output terminal of the 

device, may be represented by a linear relation and this may be represented in Figure 

1.6 as a load line. The value of VDD in Figure 1.4 affects the position of the load line 



CHAPTER 1 Introduction                                                                                                        6  

  
 
  

 
Figure 1.6 Device i −v curves load line and operation points for Class A, AB and B [75]. 

and the effective load resistance as seen at the output terminal of the device affects its 

slope. The value of VGG in Figure 1.4 determines the position of the quiescent or bias 

operating point on the load line. In response to the time dependent variation of the 

input signal vin in Figure 1.4, the dynamic operating point moves periodically up and 

down the load line about the quiescent operating point. 

The class of a PA is governed by the quiescent operating point that is set by 

VGG in Figure 1.4 and is designated by one or more letters. A number of cases are 

marked in Figure 1.6. For Class A operation, the operating point is in the middle of 

the load line. For Class B, the operating point is at the bottom of the load line where 

the device output current just reaches zero [47][54]. The device input voltage vG that 

makes the output current just zero is called the threshold voltage VT. So Class B 

operation is obtained for VGG = VT. PAs with operating points between those for 

Class A and B are designated Class AB [47][54], which is an operation range. 

Another class of PA is Class C [47][54]. For Class C, the quiescent operation point is 

set by putting VGG below VT. Since at this quiescent point, iD is zero, in the load line 

representation in Figure 1.6 the Class C operating point is on top of the Class B 

operating point and cannot be distinguished from it. In order to do that, we can 

generalise the representation in Figure 1.6 into three dimensions as proposed by the 

author in [75].  

The i − v curves in Figure 1.6 show iD of the PA device as a function of vD with 

vG a parameter. Rather than being expressed as a set of parametric curves, this 
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Figure 1.7 FET I /V curves and load line represented in 3 − D with gate operating points 
OPG [75]. 

 
Figure 1.8 Device transfer characteristic and quiescent operating point for Class A, B 
and C operation [75].  

relationship may be represented instead as a 3-D surface of iD as a function of vG and 

vD as shown in Figure 1.7. Since the relationship governed by the load resistor that 

gives the load line in Figure 1.6 is independent of vG, it is represented in 3-dimensions 

by a load plane that is parallel to the vG axis, as in Figure 1.7. Now since the PA 

circuit comprises both the device and the load resistor, the quiescent operating point 

and the dynamic operating point must lie on the intersection of the load plane with the 

device surface. This intersection gives an ‘S’− shaped curve in 3-D space, as shown 
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in Figure 1.7 [75]. Now all of the three operating points, including Class C, for which 

VGG < VT, may be represented distinctively, as shown in Figure 1.7. 

The device transfer characteristic is the dependence of device current iD on 

input voltage vG. It may be obtained by projecting the ‘S’− shaped intersection curve 

in Figure 1.7 onto the iD − vG plane, or equivalently, by viewing it along the vD axis, 

as indicated by the arrow. The resulting transfer characteristic is shown in Figure 1.8 

[75], together with quiescent operating points for Class A, B and C.  

The device transfer characteristic in Figure 1.8 may be approximated using a 

piece-wise linear approach, and this technique has been used to derive some basic 

results for PA efficiency [51][52]. In this approach, for vG ≤ VT, iD is treated as zero, 

for vG greater than a limit value vGL, iD is treated as constant, and for VT ≤ vG ≤ vGL, iD 

is treated as a linear function of vG. Device output currents for the cases of Class A, B 

and C using the piecewise linear model and a sinusoidal input voltage are shown in 

Figure 1.9 [47]. Note that only in the case of Class A can the device output current be 

 
Figure 1.9 PA device output current waveforms from [47][67], (a) Class A; (b) Class B 
and (c) Class C. 
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sinusoidal. However, in the case of non-sinusoidal device output current, use of the 

tuned bias circuit in Figure 1.5(b) will provide a very low impedance path to VDD for 

the harmonics of iD allowing just the fundamental component to pass to the load, 

generating a sinusoidal output voltage. 

Under the assumption of an ideal tuned bias circuit and piecewise-linear device 

model, and some other basic assumptions about signal amplitude [51][52], 

efficiencies of Class A, B and C amplifiers have been determined and the figures are 

given in Table 1.1 [47][51]3,4. It can be seen from Table 1.1 that in moving from 

Class A to Class C, i.e. for operating point moving to the left on the transfer 

characteristic in Figure 1.8, efficiency increases from 50 % to 100 %. This can be 

explained by the fact that the mean values of the current waveforms in Figure 1.9, 

which determine the PA DC supply current [75], reduce in going from Class A to 

Class C. 

However, as efficiency increases in going from Class A to Class C, the other 

critical performance parameter for the PA, nonlinearity, deteriorates [47]. This 

constitutes the problem of the great trade-off in PA design. In order to be able to 

optimise this trade-off, it is necessary to have a good understanding about PA 

efficiency and about PA nonlinearity. A lot of information is available in the literature 

about PA efficiency [47][51][52]. This thesis focuses specifically on understanding 

the nonlinearity of the PA.  

Table 1.1 Comparison of efficiency for PA operating classes [51] 

Efficiency Operating Class 
Maximum  In practice 

Class A 50% 30% 
Class AB 50% − 78.5% 30% − 60% 
Class B 78.5% 60% 
Class C 78.5 − 100% 70% 

 

                                                 
3 As well as Class A, B and C, PAs may also operate in Class D, E, F and S [47]. In Class D, E,F and S, 
the device operates as a switch and efficiency very close to 100% may be obtained at the cost of very 
poor linearity [47].    
4 Table 1.1 shows that PA efficiencies obtained in practice are somewhat below those calculated from 
the simple theory [51]. There are several reasons fot this including the non-zero knee voltage in the 
device i − v charatcteristics, VK in Figure 1.6.  
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1.4. Conclusions 

In this chapter, some background about the need for PAs in communication 

systems and their requirements has been presented. Also, some simple concepts 

concerning the basic operation have been reviewed. The next chapter will present 

background on advanced methods of analysing PAs, especially their nonlinearity 

performance. This background will lead to a statement of the motivation of this thesis 

and the layout of the remaining chapters.   



 
 

  
 
  

CHAPTER 2                                                                                               

BACKGROUND ON ADVANCED METHODS FOR 

DETERMINING PA PERFORMANCE 

2.1. Introduction 

In this chapter, advanced methods for determination of PA performance will be 

reviewed. The chapter begins with reviewing device current clipping analysis 

methods for deriving efficiency of PA. Then general methods of determining small-

signal PA distortion from derivatives of transconductance and output conductance 

will be considered. This is followed by methodologies for predicting large-signal 

distortion performance based on the actual device transfer characteristic. Finally, 

examples of published measured and simulated PA performance will be examined, 

leading to a statement of the aim of this research work and the layout of the remaining 

chapters.  

2.2. Simple Device Current Clipping Analysis [51] 

In this analysis, proposed by Pedro [51], the device input voltage is assumed to 

be sinusoidal and the device transfer characteristic is approximated by a piecewise 

linear function, as shown in Figure 2.1, which also shows the clipped output current 
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Figure 2.1 PA input voltage and output current with piecewise linear device transfer 
characteristic [51]. 

define the class of a PA. Conduction angles (2θ) of 2π, 3π/2, π, π/2 and 0 correspond 

to operating classes of A, AB, B, C and limit case of Class C, respectively. 

The 0th and 1st order Fourier series coefficients of device output current in 

Figure 2.1, which determine DC supply power and fundamental signal power in the 

load, are derived for a range of conduction angles. These quantities together with their 

ratio, which is efficiency according to (1.1), are calculated for various conduction 

angles and presented in the form of Table 2.1. Pedro uses these results to argue that 

Class C operation is not very attractive because, although efficiency is very high, 

output power is low, and there are other problems [51].  

Then the piecewise linear device transfer characteristic in Figure 2.1 is replaced 

by two other functions having a softer form of cut-off, one describing a FET and the 

other a BJT [51]. Pedro shows that DC power, output power and efficiency as 

functions of conduction angle are not much changed [51]. 

Table 2.1 Maximum output power, DC power consumption and efficiency [51]. 

2θ RL PDC PRFmax  ηmax (%) 
2π 2 VDD / Imax 0.5 VDDImax 0.25 VDDImax 50 

3π/2 1.88 VDD / Imax 0.44 VDDImax 0.26 VDDImax 60.1 
π 2 VDD / Imax 0.32 VDDImax 0.25 VDDImax 78.5 
π/2 3.22 VDD / Imax 0.16 VDDImax 0.15 VDDImax 94 
0 ∞ 0 0 100 
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Figure 2.2 Conduction angle definition for overdriven Class A PA [52]. 

Pedro then introduces a second turning point into the device transfer 

characteristic that gives a maximum output current limit, as shown in Figure 1.8 [51]. 

For this device model, Pedro takes the case of heavy overdrive, for which all classes 

of operation have the same device output current waveform, which is a square wave,  

and he derives an expression for efficiency. The idea of deriving PA performance by 

analysis of the clipped device output current waveform has been further developed by 

Cripps [52]. 

2.3. Device current Clipping Analysis with Symmetrical 

Clipping for Class A PA [52] 

In [52], Cripps presents a method to determine the performance of the 

overdriven class A PA by analysis of device current clipping. Here, the input signal is 

assumed to be a pure sinusoidal signal and the output current and output voltage 

waveforms are clipped waveforms with symmetrical clipping angles 2α, as shown in 

Figure 2.2. By determining 0th and 1st order Fourier series coefficients for the device 

current waveform, DC power and output power are derived as functions of input 

power.  

Output power and efficiency against input power for the overdriven Class A PA 

are shown in Figure 2.3. The output power gradually reaches the saturation level as 

current waveform clipping increases. At the 1-dB compression point, the efficiency is 

about 63%, which is similar to that for Class AB. At the 3dB compression point, 

efficiency is about 71%. Cripps shows that, as the input power increases, conduction 

angle reduces, leading to the increase in efficiency. The overdriven Class A PA
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Figure 2.3 Output power and efficiency of Class A PA with symmetrical clipping angles 
[52]. 

 
Figure 2.4 Input voltage and output current waveforms for Class AB PA with normal 
device level (- - - ) and overdriven (_____) [52]. 

provides an interesting trade-off between output power, efficiency and gain.  

However, the nonlinearity becomes worse. The above results naturally led Cripps to 

analysis of other classes with reduced conduction angle. 

2.4. Device Current Clipping Analysis with Unsymmetrical 

Clipping for any PA Class from A to C [52] 

The device input voltage and output current corresponding to Class AB case is 

shown in Figure 2.4 [52]. The dashed lines denote normal operation and solid lines 

denote overdriven operation with more extensive clipping [52]. The device current 
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Figure 2.5 Output power (____) and efficiency (- - -) of PA from [52] versus conduction 
angle (i.e. class) for different input signal power levels.  

waveforms are defined mathematically in three segments, cut-off, saturation and 

quasi-linear. In cut-off segment, the current is zero, in saturation segment, the current 

is at the maximum (Imax) and in the quasi-linear segment, the current waveform is part 

of a cosine waveform.  

Using these definitions of device current as a function of conduction angle in 

the three segments, DC and fundamental components of the device output current are 

obtained from Fourier series coefficients [52]. Output power and efficiency with 

different input power levels (0, 2, 4 and 6 dB) are plotted against conduction angle 

from 0 to 2π in Figure 2.5. Normalisation is adopted that makes the output power 0 

dB at conduction angle of 2π (Class A) when the normalised input power is 0 dB. 

The results in Figure 2.5 show some interesting conclusions. Reduction of 

conduction angle (going in the direction from Class A towards Class C) always 

increases efficiency. Increase in input power level may increase or decrease 

efficiency, dependenting on class. Reducing conduction angle, i.e. moving towards 

Class C reduces output power except for the case of high conduction angle and low 

power. Figure 2.5 is a very important result because it shows the dependence of two 

very important PA performance parameters, output power and efficiency, as a 

function of two independent variables, namely class (conduction angle) and input 

power level that are crucial parameters to choose in the design and operation of a PA.    

In sections 2.2 to 2.4, work that determines PA performance by analysis of 

device current clipping has been described. The analyses led to prediction of PA 
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output power and efficiency under certain assumptions. This thesis, however, is 

primarily about PA distortions, so methods of determining PA distortion are now 

reviewed. 

2.5. Distortion, Derivatives and Soft Pinch-off Function [77]  

PA non-linearity is caused primarily by the non-linearity of the PA device 

transfer characteristic. It can be seen from the example transfer characteristic in 

Figure 1.8 that non-linearity is strongly dependent on operating point, which 

determines PA class. For example, for Class A operation, it is possible to avoid the 

strong nonlinearities that occur in the curve for vG = VT and for where iD saturates at 

high vales of vG. Third order intermodulation distortion (IMD3) that causes ACI and 

constellation errors in a communication system, is very sensitive to the trajectory of 

the device transfer characteristic, such as that in Figure 1.8. As a result, it has not 

been possible to come up with a device model transfer characteristic expression that 

can predict how IMD3 varies with PA input voltage amplitude for different classes of 

operation. In order to help towards solving this problem, the idea of using derivatives 

has been adopted [77][78]. 

For any bias voltage vG in Figure 1.8, the small-signal linear approximation 

consists in approximating the relationship using iD = gmvG, where gm is the gradient of 

the curve [77][78]. The small signal non-linear approximation for a given point on 

the device transfer characteristic is 

 2 3
1 2 3D G G Gi g v g v g v= + + +  (2.1) 

where, 

 1
!

i
D

i i
G

ig
i v

∂=
∂

 (2.2) 

is the ith order derivative of the iD versus vG relationship [77][78]. Note that the gi 

vary with bias point in Figure 1.8. They are referred to as bias-dependent small-signal 
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Figure 2.6 Plots of PA device drain current derivatives, (a) measured using dB scale; (b) 
predicted using Q-law model with soft pinch-off function (linear scale) [77][78]. 

derivatives, or just derivatives, for short. Derivatives describe the curvature of the 

transfer characteristic at any bias voltage and how the curvature is changing. The 

piece-wise linear device model transfer characteristic in Figure 2.1 has gradient 

discontinuities; therefore, its transconductance g1 has step discontinuities and g2 and 

g3 have spike discontinuities. The square law model, iD = K (vG − VT)2 is continuous, 

but its gm (g1) has gradient discontinuities, g2 has a step discontinuity and g3 has spike 

discontinuities [77]. Similar statements apply to the Q-law model where the power 2 

in the model expression becomes a constant Q [77][78]. 

The current iD = f (vG) and the first few derivatives for a real device [77][78] are 

shown in Figure 2.6(a) using a vertical scale in dB. It can be seen that the derivatives 

of the real device are continuous and finite. 

The poor match between the derivatives of a real device and the model 

derivatives has been largely overcome by introducing into the device model equation 

a function called the soft pinch-off function [77][79][80]. vG in the device model 

expression is replaced by 

 ( )' ln 1GS T STv V V
G T STv V V e −= + +  (2.3) 

This has the effect of making the model derivatives finite and continuous. For 

example, the derivatives for the Q-law model with Q = 1.7 using the soft-pinch-off 
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Figure 2.7 Derivative superposition amplifier architecture [77][78]. 

 
Figure 2.8 Comparison of measured derivatives g1, g2 and g3 for a 4-HEMT DS 
amplifier and for a single HEMT [77][78].  

function with VST = 0.07 are shown in Figure 2.6(b) using a linear vertical scale [77], 

providing a reasonable match with the measured derivatives in Figure 2.6(a). The 

soft-pinch function is used in all high quality device models [79][80]. As well as 

providing derivatives that are continuous, finite and realistic, it also provides correct 

modelling of the sub-threshold (or weak inversion) mode of device operation.  

Although the soft pinch-off function is a very important development, it must be 

remembered that derivatives describe small-signal nonlinearity. The PA is a large 

signal device and it has not been possible to model correctly the variation of 3rd order 

distortion with class over the full signal power range of interest. 

Some idea about large signal distortion behaviour can be obtained by the concept of 

time dependence of derivatives through a signal cycle [77][78]. This idea has been 

applied successfully in the context of an amplifier distortion reduction technique 

called derivative superposition that is now described. In the derivative superposition 



CHAPTER 2 Background on Advanced Methods for Determining PA Performance            19                        
 
 

  
 
  

 

Figure 2.9 3rd order derivatives for phase reversal form of derivative superposition 
[77][78]. 

 

Figure 2.10 Measured 1-tone C/I ratio for DS amplifier and single FET for different 
operating points [77][78]. 

approach, a number of devices are arranged so that their output currents add, as 

shown in Figure 2.7 [77][78]. Each device has the same AC input signal but its input 

bias voltage is independent. By choice of the device bias voltages and gate widths, it 

is possible to obtain cancellation between positive and negative parts of the device g3 

curves, leading to a region of very low small-signal 3rd order distortion, as illustrated 

in Figure 2.8 [77][78]. 

The extension of the derivative superposition idea to large signals is illustrated 

in Figure 2.9 [77][78]. In this case, the aim is not to obtain very low g3, but to ensure 

that for a chosen input voltage bias and amplitude, g3 has opposite signs for equal 

parts of the signal period [77][78]. This leads to a null in 3rd order distortion for a 

specific large signal amplitude. This can be seen as a peak in carrier-to-interference 

ration (C / I) in Figure 2.10 [77][78]. Thus the idea of time-dependent derivatives 
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allows some limited capability to predict and control a feature of the large-signal 

distortion behaviour of a PA. 

2.6. 2-D Talyor Series Representation for PA device [77][78] 

Change in the value of the load resistor of a PA affects small-signal distortion 

and some interesting work has been done on this [77][78]. Change of load resistance 

can be represented as a change of the slope of the load plane in the 3-D PA 

representation in Figure 1.7. This situation can be handled by replacing the iD (vG) 

expression (2.1) for small signal variations about a chosen operation point by the 2-

dimensional dependence [77][78], given by 

 

2 3
1 2 3

2 3
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2 2
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 (2.4)

where A5 is voltage gain with A = g1/(RL
−1 + gd1) and RL is the effective load 

resistance. In (2.4), g1 is the transconductance, g2 and g3 are 2nd and 3rd order 

transconductance coefficients. gd1 is the output conductance and gd2 and gd3 are non-

linear output conductance coefficients; the m terms are called mixing terms [77][78]. 

Equation (2.4) makes it possible to determine PA distortion as a function of effective 

load resistance for a given input signal bias voltage (i.e. class) for small signal 

variation about an operating point in Figure 1.7, for which the coefficients in (2.4) are 

treated as constants. In [81], nonlinearity for a PA in CMOS technology mainly due 

to transconductance and output conductance is analysed. The results may be 

expressed as 3-D plots of 2nd and 3rd order distortion versus load resistance and input 
                                                 
5 Here, only dominated term in drain current (iD) is considered, iD ≈ g1vGS in order to determine vDS. 
Therefore, the relationship between vGS and vDS is assumed to be linear. 
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Figure 2.11 2nd and 3rd order distortion levels in the saturation region versus bias and 
load resistance, (a) 2nd harmonic level; (b) 3rd harmonic level [82]. 

signal bias voltage (i.e. class), as shown in Figure 2.11[82]. The 3-D plots imply a 

deep null for 2nd and a shallow null for 3rd order distortion when plotted against load 

resistance. The predictions have been confirmed by measurements on a real PA, as 

shown in Figure 2.12 [82].  
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Figure 2.12 Measured distortion versus load resistance for a PA [82]. 

The ideas in section 2.5 and in this section have served to increase 

understanding about distortion in PAs. However, apart from the ability to predict a 

null in large signal 3rd order distortion in the modified derivative superposition 

method, these ideas really relate to small-signal distortion. But the PA is essentially a 

large signal device and prediction of distortion up to the edge of and beyond 

saturation is needed. In the next two sections of this chapter, techniques for obtaining 

large signal PA distortion are reviewed. 

2.7. Impulse Model for 3rd Derivative of Device Transfer 

Characteristic [83]  

The first method of predicting PA distortion is based on modelling the 3rd 

derivative of the PA device transfer characteristic using impulses. For example, the g3 

curve in Figure 2.6(b) could be modelled by impulses, one with a positive weighting 

just below vGS = VT and one with a smaller negative weighting just above VT. A g3 

derivative such as that in Figure 2.6 (b) corresponds to a device transfer characteristic 

with a single discontinuity around VT, as shown in Figure 2.1. In practice, PAs have 

load resistance that can be represented by a loadline or load plane, as shown in 

Figures 1.6 and 1.7. This causes device output current to saturate for high vG, as 

shown in the device transfer characteristic of Figure 1.8. This in turn causes 
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Figure 2.13 Transconductance characteristic, its piecewise linear approximation and an 
impulse model for the 3rd derivative [83]. 

 

Figure 2.14 Illustration of input signal peak transversing a g3 impulse and the 
corresponding current response [83].  

transconductance gm, or g1, to fall at high vG, as shown by the smooth curve in Figure 

2.13. The fall in g1 for high vG causes further positive and negative peaks in the g3 

characteristic.  

This first method of predicting PA distortion is based on a piecewise linear 

approximation to the transconductance, as shown by the angular trace in Figure 2.13. 

This implies a 3rd derivative of the device transfer characteristic that may be modelled 

as a superposition of impulses Ki as shown in Figure 2.13. The weighting of the 

impulses is related to the amount by which the gradient of the transconductance 

changes at the break points. For a given bias point, i.e. value of vG in Figure 2.13, as 

the amplitude of the input signal increases, so its peaks encounter more impulses, 

each of which generates a component, as shown in Figure 2.14. These current 
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Figure 2.15 (a) Simulated 3rd harmonices component of Class AB PA at VGS = 0.875V; 
(b) measured output power and IM3 of Class AB PA at VGS = 0.875V [83]. 

components contribute to large signal IMD3, which can be determined from their 

Fourier series. This method in [83] leads to prediction of large signal IMD3 behaviour 

for all classes of operation from Class A to C. An example of a curve of predicted 3rd 

order distortion versus input signal power is shown in Figure 2.15(a) for Class AB, 

together with a simulation using a good device model [83]. The technique gives some 

understanding of the relationship between a device transfer characteristic, via its 

transconductance and 3rd derivative characteristic and impulse model, and features in  

the distortion power sweep, such as the presence of nulls. 

Although, the impulse method can predict large signal PA distortion, it relies on 

measurement or simulation of the device transfer characteristic for a specific device 

and a decision on amplitude and position of every impulse (Ki) used to model it. Note 

that this impulse model method for predicting large signal distortion can predict only 

large-signal distortion. In Figure 2.15(a) [83], the small signal distortion obtained 

from the simulation is predicted by Volterra analysis6 [51][97]. The measured IMD3 

for the same PA is shown in Figure 2.15(b), confirming the shape of the IMD3 curve 

with its two nulls [83].  

The impulse modelling method of predicting PA distortion is essentially a 

numerical transformation between the device transfer characteristic (represented by 

its 1st derivative, or transconductance, curve in Figure 2.13), to PA large signal 

                                                 
6 Volterra analysis uses a closed form to express the response of a weak nonlinear system. 
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distortion (in Figure 2.15(a)) via the simplified impulse model for g3 in Figure 2.13. 

However, the method provides considerable insight, since starting from a chosen bias 

point (or class of operation) along the horizontal axis in Figure 2.13, as signal 

amplitude increases, its positive and negative peaks encounter impulses, which may 

be positive or negative, which give rise to the nulls, or absence of nulls, is the PA 

distortion curve (e.g. Figure 2.15(a)) [83]. In next section, three purely numerical 

methods [86][87][89] used to analysis IMD3 performance of PA will be reviewed.  

2.8. Numerical Methods for Analysing IMD performance 

[86][87][89] 

The method in [86] starts from the measured transfer characteristic of a 

LDMOS FET as shown in Figure 2.16. At every gate bias point along the horizontal 

axis, the output current can be represented using Taylor series expansion. The odd 

order coefficients of Taylor series are retained up to 11th order.  Since the excitation 

voltage for the transfer characteristic is gate bias voltage plus input signal, 

coefficients can be considered to be a function of gate-bias voltage. After simple 

mathematical replacement, the fundamental components and 3rd order IMD3 

components of the output current are derived as a function of gate bias voltage and 

input signal amplitude. Thus, the author of [86] can present a 3-D plot of 

IMD3 against input signal power and bias gate voltage (that defines PA class) and 

this is shown in Figure 2.17(a).  

 
Figure 2.16 Measured transfer function of LDMOS FET [86].   
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Figure 2.17 IMD3 surface and corresponding contour plot [86]. 

 

Figure 2.18 Measured output power and IMD3 power, and predicted IMD3 power [86]. 

The type of plot in Figure 2.17(a) is considered as an important development. 

The impact on PA performance of two key parameters that the PA designer has at his 

disposal, bias (i.e. class) and degree of backoff (i.e. input signal amplitude) can be 

clearly seen. Perhaps the amount of computation required has prevented wider use of 

this approach. Another advantage of the 3-D plot is that it provides a bird’s eye view 

that increases understanding. In the case of Figure 2.17(a), it can be seen that the 

surface of high IMD3 values is crossed by a deep valley. From the contour plot of 

IMD3 obtained from the 3D plot in Figure 2.17(b), it can be see that the valley is ‘L’-

shaped. It can be seen that for a certain bias voltage, referred to as Class AB in [86], 

below a certain input signal power level, one part of the valley is parallel to the input 

power axis. Such a condition is attractive and called in [86] a sweet spot. The IMD3 

sweet spot is determined by the sum of odd coefficients in the analysis. Figure 2.18 
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shows a prediction of IMD3 versus input signal power for a particular bias voltage 

obtained from the 3D plot in Figure 2.17(a) together with the measured curve. 

Although the position of the null is well predicted, this is not the case for the IMD3 

levels each side of the null. Thus in spite of the achievement in [86] of having 

identified the ‘L’-shaped distortion valley in Figure 2.17(a), the method still has some 

limitation. 

The next method of transformation from device transfer characteristic is 

described in [87]. In this method, a large-signal current source device model with 15 

parameters is obtained by empirically fitting to small-signal transconductance and 

measured pulsed and static drain current characteristics. Transconductance curve is 

fitted in four regions, including sub-threshold, quadratic, linear and compression 

regions. Large and small signal IMD behaviour is investigated using Fourier and 

Volterra series analysis, respectively [87][88]. Using this approach, the measured 

distortion-power sweep for a Class AB LDMOS PA is well predicted, including 

sweep spots [87]. In addition, device nonlinear parasitic capacitances are shown to 

affect the IMD sweet-spots [87]. 

The last method of transformation from nonlinear device transfer characteristic 

to PA distortion is presented in [89]. In this paper, GaAs MESFET distortion is 

predicted mathematically by combining Volterra series analyses for small signal and 

two sinusoidal input describing function (TSIDF) for large signal. TSIDF function 

includes the saturation shape of transfer characteristic in Figure 1.8. Using this 

method, good agreement was obtained between predicted and measured IMD3 for a 

PA using a MESFET device operated in Class AB and B. 

In sections 2.5 to 2.6 and in sections 2.7 to 2.8, techniques for predicting small-

signal and large-signal PA distortion, respectively, have been reviewed. All of these 

methods start from a description, or model, of the nonlinearity of the device, in the 

form of a transfer characteristic, a transconductance characteristic or a derivative. 

Thus these techniques are really transformations between the given non-linearity of a 

device and the resulting distortion behaviour of a PA incorporating that device. 

Before stating the aim of this present thesis, published measured PA distortion data is 

reviewed, in order to learn more about the nature of PA distortion characteristics. 
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2.9. Published Measured and Simulated Distortion Data 

Measured 3rd order intermodulation distortion (IMD3) and output power versus 

input signal power are given in [83] for a CMOS PA operating in four different 

classes. The gate bias voltage for the four classes is given in Table 2.2. Two are in 

Class AB, one is in Class C and one is in Class A. The Class AB cases are designated 

AB− and AB+, according to the value of the bias voltage. The measured output power 

and 3rd order IMD data for this PA from [83] is shown replotted in Figure 2.19. 

The drain voltage for the power MOSFET used in this PA is 3 V and the gate 

width is 1200 µm. The IMD data is measured using two sinusoidal signals spaced by 

1 MHz and centred at 950 MHz. The four distortion curves in Figure 2.19 exhibit 

quite different features. Even the curves for the two class AB cases are different, that 

for AB− having two nulls and that for AB+ having a ledge. For Class C, there is a 

single null and the curve for Class A is monotonic increasing. Before commenting 

further on this variation of characteristics, we consider other technologies. 

Table 2.2 PA bias voltage and operating classes for Figures 2.19 − 2.22. 

Technology Ref Bias voltage VGG (V) Class Figure 
0.675 C 
0.875 AB− 
1.1 AB+ 

CMOS 
measurement [83] 

2.0 A 

Figure 2.19 

0.9 C 
1.2 AB− 
1.3 AB+ 

LDMOS 
measurement [87]  

2.5 A 

Figure 2.20 

− 1.24 B MESFET 
measurement [89] − 0.61 AB Figure 2.21 

0.675 C 
0.875 AB− 

0.925 AB+ 

CMOS 
simulation 

 
[83] 

 
2.0  A 

Figure 2.22 
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Measured IMD3 and output power for an LDMOS PA operating in four 

different classes is given in [87]. The gate bias voltage for the four classes is given in 

Table 2.2. As for the LDMOS PA, two are in Class AB, one in Class C and one in 

Class A. The drain bias voltage is 20 V and the IMD3 test signal spacing is 1MHz 

centred at 100MHz. The measured IMD3 and output power for this PA from [87] for 

the four classes of operation are shown replotted in Figure 2.20. As for the CMOS PA 

just described, the Class C and Class A distortion curves have a single null and are 

monotonic, respectively. However, in this case, both of the Class AB curves have two 

nulls but the null spacings are very different. The AB+ case with the higher bias 

voltage has a much narrower null spacing. 

 

 

 
Figure 2.19 Measured IMD3 (o) and output power (*) for CMOS PA from [83] classes 
are (a) C; (b) AB−; (c) AB+ and (d) A. 
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Figure 2.20 Measured IMD3 (o) and output power (*) for LDMOS PA from [87]; classes 
are (a) C; (b) AB−; (c) AB+ and (d) A.  

 
Figure 2.21 Measured IMD3 (o) and output power (*) for MESFET PA from [89]; 
classes are (a) B; (b) AB+.  
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Figure 2.22 Simulated IMD3 for CMOS PA from [83] classes are (a) C; (b) AB−; (c) 
AB+; (d) A.  

Measured IMD3 and output power for a GaAs MESFET PA operating in two 

different classes, Class B and Class AB, is given in [89]. The gate bias voltage used is 

given in Table 2.2. Measured output power and IMD3 from [89] is shown replotted in 

Figure 2.21. The IMD3 test frequencies were spaced by 0.1 GHz at 2 GHz. An input 

matching network was tuned for maximum gain. An output matching network 

provided the optimum Cripps load [52] for the fundamental and a short circuit for the 

baseband and 2nd harmonic components. From Figure 2.21, it can be seen the IMD3 

curve for the Class B case has a single null. The IMD3 curve for Class AB has a 

slight ledge. 

For the CMOS PA, whose measured IMD3 and output power characteristics 

from [83] were shown in Figure 2.19, the authors of [83] give also simulated 

performance using a very high quality device model. However, the simulation 



CHAPTER 2 Background on Advanced Methods for Determining PA Performance            32                        
 
 

  
 
  

assumed a totally integrated PA with MOSFET gate width of 60 µm. The input signal 

bias voltages for the four different classes of operation considered are given in Table 

2.2. The method of analysis used for the computer simulation is harmonic balance 

[83]. The simulated output power and IMD3 for the CMOS PA in [83] are shown 

replotted in Figure 2.22. The characteristics are generally similar to those obtained 

from measurement in Figure 2.19, except that the nulls are much deeper. Having 

reviewed published distortion data for PAs of three different technologies, CMOS, 

LDMOS and GaAs MESFET, some conclusions can now be drawn. 

For Class C PAs (CMOS − Figure 2.19(a) and Figure 2.22(a); LDMOS − 

Figure 2.20(a)), the distortion power sweep always exhibits a single null. For Class A 

PAs (CMOS − Figure 2.19(d) and Figure 2.22(d); LDMOS − Figure 2.20(d)), the 

distortion power sweep always increases monotonically. For Class AB PAs, two 

types of behaviour are observed. For CMOS (Figure 2.19(b) and Figure 2.22(b) and 

for LDMOS (Figure 2.20(b) and (c)), there may be two nulls in the distortion power 

sweep. The alternative Class AB distortion power sweep behaviour is a ledge. This is 

exhibited for the CMOS PA in Figures 2.19(c) and 2.22(c) and for the GaAs 

MESFET PA in Figure 2.21(b). 

The conclusion from these published results of PA data is that across all three 

technologies (CMOS, LDMOS and GaAs), the form of the distortion power sweep in 

Class AB has just two types (double null and ledge), in Class C has a single type 

(single null) and in Class A has single type (monotonic increasing). Against the 

background of this surprising uniformity of PA distortion characteristics across three 

different technologies, the aim of this thesis can now be stated. 

2.10. Project Motivation and Organisation of Thesis 

It has been seen that there appear to be just four types of distortion power sweep 

curve for a PA of any technology, namely double null (with variable null spacing), 

single null, ledge (with variable width and depth) and monotonically increasing. This 

fact suggests strongly that there might be a theory that can explain distortion in PAs 

that is technology-independent. 
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The methods of predicting large signal PA distortion reviewed in sections 2.7 

and 2.8 do predict the observed forms of distortion power sweeps, but their starting 

point is a set of coefficient values that describe device current, transconductance or 

3rd derivative over a range of operating points. Thus these methods fall short of a 

general technology-independent theory to explain PA distortion. 

Perhaps the greatest insight on PA distortion is given by the methods of time-

dependent g3 derivative and the impulse model for the 3rd derivative, reviewed in 

sections 2.5 and 2.7, respectively. With these methods, it is possible to see, starting 

from a particular bias point, i.e. PA class, how increase of signal amplitude can bring 

in components of opposite sign, producing distortion nulls. However, both methods 

are based on a particular device characteristic, and therefore lack full generality. The 

project described in this thesis was aimed at developing a general theory for distortion 

in PAs that is technology independent. In order to develop such a general theory, it is 

necessary to know the cause of distortion in PAs. This cause is not hard to find. 

Consider the PA device output current waveforms for different classes of 

operation in Figure 1.9. All of these waveforms, apart from that for Class A, are 

heavily clipped sinewaves that have high levels of harmonics. For example, for the 

case of Class C, the sinewave in Figure 1.9(c) has a 3rd harmonic to fundamental ratio 

of 0.584 or − 10.758 dB. PAs are usually operated with a tuned load 

matching/coupling network as in Figure 1.5(b), in which case, the harmonic 

components of the device current are ideally shorted to VDD and only the fundamental 

component flows in the load. However, any idea that this solves the problem is 

fallacious. It is shown in Appendix A, for a nonlinear device described by a 

polynomial, that 3rd order intermodulation distortion (IMD3) tone level relative to 

wanted signal tone level is the same as 3rd harmonic level relative to fundamental. 

Therefore when the PA whose output waveforms for sinusoidal input signal are as 

shown in Figure 1.9 is operated with narrowband multi-tone signals, the level of 

IMD3 components generated will be at the same high level as the harmonic 

components in Figure 1.9. Moreover, these IMD3 components generated at high level 

will be close in frequency to the input signals, and therefore they will not be shorted 

to VDD by the tuned-circuit in Figure 1.5(b) but rather will flow straight into the load 

resistor. The idea that device current clipping is the major cause of distortion in PAs 



CHAPTER 2 Background on Advanced Methods for Determining PA Performance            34                        
 
 

  
 
  

is supported by the fact that such clipping is independent of the technology of the 

device used to realise the PA, just as the types of distortion characteristics of real PAs 

are technology-independent. 

The project described in this thesis sought to develop a theory of device current 

clipping in order to explain the observed distortion characteristics of real PAs. The 

project is aimed therefore at a major extension of the device current clipping analysis 

methods reviewed in sections 2.2 to 2.4. The PA device current clipping theory 

developed in this thesis starts from key definitions and concepts (in Chapter 3), 

derives results that are independent of device model (Chapter 4), considers the linear 

and square law device models (Chapters 5 and 6), introduces a model that is 

transitional between linear and square law (Chapter 7) and compares predicted PA 

performance with published measured data (Chapter 8), before presenting conclusions 

and ideas for further work (in Chapter 9). 

 



 

  
 
  

CHAPTER 3                                                                                                     

DEVICE CURRENT CLIPPING THEORY  

3.1. Introduction 

In this chapter, some key definitions and concepts that relate to how clipping 

effects operate in a PA are given in order to provide a rigorous basis for a theory. 

These concepts lead towards a simple system model for a PA with clipping that will 

allow considerable development of the theory in subsequent chapters.  

In order to be able to propose a satisfactory general theory for PA performance 

based on device current clipping, it will clearly be necessary, at the beginning of this 

chapter, to attempt to identify different types of clipping and to define associated 

clipping angles. These clipping angles must be related to conduction angle, which is 

used in the literature. It will be necessary to identify different PA input signal power 

ranges where different mathematical conditions apply and the critical transition point 

that divides them. Conduction angle at this transition point will be used in order to 

provide an unambiguous definition of the class of a PA. 

3.2. Definitions 

3.2.1. Input Voltage vG, Output Current iD, Knee and Cut-off Clipping 

A typical PA with input signal bias network LG and CG, bias network A, and 

output matching load coupling network B is shown in Figure 3.1. Under the 
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Figure 3.1 Circuit diagram of PA, A: Drain current feed circuit; B: Load coupling 
matching circuit. 

assumption that LG and CG are asymptotically large, that VGG is a DC voltage and that 

vin is an AC voltage, we have 

 G GG inv V v= +  (3.1) 

The input signal is assumed to have the form  

 cosGin ov v tω=  (3.2) 

Hence 

 cosGG GGv V v ϕ= +  (3.3)  

where φ = ωot. VGG is termed input signal bias voltage and Gv  is termed peak value 

of the input voltage ( Gv  ≥ 0).  

Consider Figure 3.2(a), which shows the device input voltage waveform vG 

(bottom left), output current waveform iD (right) and the device vG to iD transfer 

characteristic. The waveforms correspond to a class C amplifier with about 6 dB of 

backoff7 [84]. The transfer characteristic in Figure 3.2 (a) is assumed to be such that 

                                                 
7 It can be calculated from ( ) ( )20log peak T GL Tv V v V⎡ ⎤− −⎢ ⎥⎣ ⎦

.  Here, peakv is the peak value of input 

signal.  
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Figure 3.2 vG and iD waveforms with device transfer characteristic (a) case of single cut-
off clipping, class C; (b) case of double clipping, class A. 

for vG≤ VT, output current is zero. This effect causes clipping of iD that we denote cut-

off clipping. For vG ≥ vGL, drain current reaches a limit value iDL causing a form of 

clipping of iD, which we denote device knee clipping. The case where both types of 

clipping occur is illustrated in Figure 3.2(b), which is for the case of a Class A 

amplifier overdriven by about 2 dB. The case where only cut-off clipping occurs in 

Figure 3.2(a) is referred to as single clipping and the case, where there is device knee 
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clipping as well as cut-off clipping as in Figure 3.2(b) is referred to as double clipping. 

The device transfer characteristic in Figure 3.2 is shown as linear, but other forms of 

device model will be considered in Chapters 5, 6 and 7. The device model 

characteristic in Figure 3.2 is termed linear here, but is referred to in [52] as the ideal 

non-linear model8.  

Cut-off clipping is dependent on the input voltage and the device threshold 

voltage VT. Knee clipping, on the other hand, depends on the intersection of the load 

line of the PA with the outer edge of the triode region part of the device iD−vD 

characteristic, where iD saturates (the knee point), as shown in Figures 1.6 and 1.7. It 

is therefore dependent on many factors including load resistance and supply voltage. 

In this thesis, whatever the class of a PA, the load line is assumed to be chosen so that 

the maximum output current is set to a value which is safely below the maximum 

limit but sufficiently high that current swing is adequate. Hence iDL in Figure 3.2 is 

treated as a constant. This same assumption is made in the earlier clipping analyses in 

[51][52]. Once iDL in Figure 3.2 is set in this way, the corresponding value, vGL, for 

the input voltage is determined from the device transfer characteristic.  

It follows from these considerations that it is possible to consider the iD 

waveforms in Figure 3.2 to be generated from clipped versions of the input voltage, 

vG. This is illustrated in Figure 3.3, which is a redrawing of Figure 3.2, but showing 

clipped input voltage vGC in place of vG. Note that when the concept of clipped input 

voltage is introduced, the form of the device transfer characteristic for vG < VT and vG 

> vGL becomes irrelevant. So the transfer characteristic is shown in Figure 3.3 only for 

the range VT ≤ vG ≤ vGL. The concept of clipped input voltage allows us to separate 

the clipping effect from the device model as represented in the system block diagram 

of Figure 3.4. Although simple, the concept of clipped input voltage allows a more 

elegant mathematical description of the PA and can generate some interesting 

preliminary results that are independent of device model, which will be presented in 

Chapter 4. Note that the clipped input voltage in Figure 3.4 is hypothetical and does 

not exist in the actual circuit of Figure 3.1. 

                                                 
8 Since all device models considered in these thesis will have cut-off and knee clipping, they are in a 
sense all non-linear. But we prefer to denote the model in Figure 3.2 as ‘linear’ because it is linear for 
VT ≤ vG ≤ vGL. 
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Figure 3.3 vGC and iD waveforms with device transfer characteristic (a) case of single 
cut-off clipping, class C; (b) case of double clipping, class A. 

 
Figure 3.4 Illustration of concept of clipped device input voltage as a PA system model. 



CHAPTER 3 Device Current Clipping Theory                                                                        40               
 
 

  
 
  

3.2.2. Knee Clipping Angle, Cut-off Clipping Angle and Conduction Angle 

Angle 2α in Figure 3.3 is denoted as the knee clipping angle. It can be seen 

from Figure 3.2 that knee clipping occurs for 

 G GL GGv v V≥ −   (3.4)  

From Figures 3.2(b) and 3.3(b), knee clipping angle is given by,  

 cos GL GG

G

v V
v

α −=  (3.5) 

In the case of, where Gv  < vGL − VGG, there is no knee clipping and α = 0. Since in 

practice VGG < vGL, knee clipping angle is governed by the constraint 0 ≤ 2α ≤ π. 

Angle 2β in Figure 3.3 is denoted as the cut-off clipping angle. For cut-off 

clipping, two cases should be considered. If VGG ≥ VT (as in Figures 3.2(b) and 

3.3(b)), then cut-off clipping occurs for, 

 G GG Tv V V≥ −   (3.6)  

If VGG ≤ VT (as in Figures 3.2(a) and 3.3(a)), cut-off clipping occurs for, 

  G T GGv V V≥ −  (3.7) 

In both cases, cut-off clipping angle as a function of peak input voltage is given by,  

 cos GG T

G

V V
v

β −=  (3.8) 

In the case, where VGG ≥ VT and (3.6) applies, then β is governed by 0 ≤ 2β ≤ π. 

When VGG ≥ VT and (3.6) does not apply, then β = 0 and it may be said that there is 

no clipping. In the case, where VGG ≤ VT and (3.7) applies, then β is governed by π ≤ 

2β ≤ 2π. When VGG ≤ VT and (3.7) does not apply, then  β = π ( 2β = 2π) and the vGC 

waveform may be described as fully clipped at which point it vanishes.   
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Conduction angle is commonly used in discussions about PA operation [51][52]. 

It is only during cut-off clipping that the PA device is not conducting current, and 

therefore conduction angle is given by,   

 ( )2γ π β= −    (3.9) 

Hence,  

 cos cos
2
γ β= −  (3.10) 

Substituting (3.8) into (3.10), conduction angle is given by  

 cos
2

T GG

G

V V
v

γ −=  (3.11)  

Equation (3.11) showing dependence of PA conduction angle on device bias 

voltage and amplitude of input signal is very important. The effect of clipping as 

input signal amplitude changes is now considered, beginning with same key 

definitions. 

3.2.3. Full Power Point, Saturation and Quasi-linear Input Power Ranges   

Full power point (FPP) is defined as the critical transition point at which knee 

clipping just starts to occur, i.e. at which knee clipping angle α changes from zero to 

a non-zero value. Clipped input voltage waveforms for PAs of different classes at the 

FPP are illustrated in the upper part of Figure 3.5. Since what is commonly referred to 

as a class C PA [52] can have conduction angle anywhere between π (class B) and 0 

(limit case of class C), here, it is designated as class BC. This emphasises that it is 

actually a range, like Class AB, rather than a precisely defined single class, like Class 

A or B.  

Now the power range of a PA may be sub-divided. The range above the FPP is 

termed the saturation range. The range below the FPP is termed the quasi-linear 
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Figure 3.5 Clipped input voltage vGC and input voltage vG for PAs of different class at 
the FPP. 

range [52], because it is over this range that the closest approach to linear behaviour 

is sought. In the saturation range, double clipping occurs, but in the quasi-linear range, 

only cut-off clipping occurs. For the clipped input voltages for different classes of PA 

in the upper part of Figure 3.5, the actual input voltage waveforms with the input 

signal bias voltage are shown in the lower part of the figure. Conditions on VGG for 

the four cases are given in Table 3.1. The fact that for the four classes (A, AB, B and 

BC), input signal bias voltages are so different leads to quite different behaviour 

patterns when input power is reduced. 

This difference of behaviour is illustrated in Figure 3.6, where the FPP 

conditions for the four PA classes from the top row of Figure 3.5, are shown in the 

Table 3.1 VGG and γF conditions for operation of PAs in different classes and class 
ranges. 

Class Class range VGG FPCA   γF  
A  VGG = (vGL + VT)/2 2π 
 AB VT < VGG < (vGL + VT)/2 π ≤ γF ≤ 2π 

B  VGG = VT π 
 BC VGG < VT 0 ≤ γF ≤ π 
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Figure 3.6 Clipped input voltage waveforms for different classes and power levels. 

second column. The effect of reducing power below the FPP for different classes is 

shown in the third and subsequent columns of Figure 3.6. For class A and B, as the 

signal level is reduced, the waveshape does not change. There is a single mode of 

behaviour denoted region R0 for class A, as there is no clipping, and region R1 for 

class B, as there is single clipping. For class AB, however, there is a critical second 

transition point where the signal becomes a sinewave. For Class BC, there is also a 

critical second transition point, but at that point the signal becomes zero. This 

difference between Class AB and BC can be understood from the lower part of Figure 

3.5 by imagining that the amplitude of the input signal is reduced for the two cases. 

Reducing the PA input signal amplitude beyond the second transition point leads to a 

further region in Figure 3.6 (region R0) for Class AB, where the sinewave amplitude 

reduces. For Class BC the signal remains zero, and, since in this region, the knee 

clipping angle 2β in Figure 3.3(a) is 2π, the signal is fully clipped and the region 

denoted Rf as shown in Figure 3.6. 
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The first column of Figure 3.6 shows the clipped gate voltage for gate voltage 

amplitude about 3 dB higher than the FPP. The region above FPP, where double 

clipping occurs is denoted R2. In the limit as gate voltage amplitude is increased, the 

waveforms for all classes converge to a square wave with peak-to-peak amplitude vGL 

− VT and therefore become identical. 

The definition of FPP as it has been given provides a boundary between the 

saturation and quasi-linear power range. For input voltage amplitude above the FPP, 

the peak-to-peak value of output current must remain constant, so the fundamental 

component of output current can increase only by a few dB due to change in 

waveshape. On the other hand, below the FPP, it is obvious that peak output current 

must change strongly with input signal amplitude. 

The function of a boundary between the saturation and quasi-linear power 

ranges is normally performed by the 1 dB compression point, but 1 dB compression 

point does not have the mathematical properties needed here. The definition of FPP, 

on the other hand, is mathematically straightforward and allows this theory to be 

developed in an elegant way as will be shown in Chapter 4.   

3.2.4. Full Power Conduction Angle and Class Definition 

In the literature [51][52], the class of a PA is defined using conduction angle. 

However, (3.11) shows that conduction angle γ is dependent on PA input voltage 

amplitude Gv . This is a difficulty that can create considerable confusion about the 

class that a PA is actually operating in. However, this problem may be overcome by 

introducing an important definition. Full power conduction angle (FPCA), γF, is 

defined as the conduction angle γ, according to (3.11), but specifically at the full 

power point as defined in section 3.2.3. The concept of FPCA allows a strict formal 

definition of the class of a PA. The class definitions and corresponding values of γF 

are given in Table 3.1.  

From Table 3.1, the point γF = π rads divides the entire class range from A to C 

into two ranges that are denoted here as the AB class range and the BC class range. 

The definition of the class of a PA using the conduction angle at the full power point 

(γF) is a key idea that makes possible the mathematical development that will begin in 

Chapter 4. The definition of PA class may differ slightly from that based on 1 dB 
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Figure 3.7 System model for PA biased on clipping. 

compression point, but no alternative to the FPP and γF as a basis for a very general 

mathematical approach, such as will be presented here, has been found. 

3.3. Equivalent System Model for Predicting PA Performance 

 In section 3.2.1, it has been shown that the clipping effects that occur in a PA 

may be regarded as being applied to the PA input voltage and this concept led to the 

system representation in Figure 3.4 that models part of the PA operation. Figure 3.4 

may now be completed by extending it to the form shown in Figure 3.7, where 

Fourier series coefficients for the output current of the device are included. Assuming 

a single tone sinusoidal input voltage, the first order Fourier series coefficient gives 

the output signal power and gain. From the zero and first order coefficients, efficiency 

is obtained. From the third order coefficient, 3rd order distortion is derived. Different 

device models will be introduced and the corresponding Fourier coefficients will be 

derived in later chapters. Before this, some fundamental results that are independent 

of device model will be developed in the next chapter.   

3.4. Conclusion 

In this chapter, important foundations for a comprehensive theory of PA device 

current clipping have been laid. Some key definitions have been given and an 

equivalent block diagram model for the PA system behaviour has been proposed. 

Firstly, two types of clipping, cut-off and knee clipping, have been identified. It 

has been shown that the clipped device output current may be considered to be 
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generated from a clipped version of the device input voltage. Then mathematical 

expressions for general cut-off and knee clipping angles were derived and related to 

conduction angle. Full power point (FPP) was defined as the point where knee 

clipping just starts to occur. The power range above FPP is denoted the saturation 

range, whereas that below the FPP is denoted the quasi-linear range. The effect of 

reducing and increasing input signal power with respect to the FPP for different 

classes of PA was considered. It was found that there were large changes in 

conduction angle and changes of state between no clipping, single clipping, double 

clipping and full clipping. The difficulty in formal definition of the class of a PA due 

to variation of conduction angle with input voltage amplitude was solved by 

introducing the concept of full power conduction angle, γF, which is the conduction 

angle at the FPP.  

This idea led to a proposal of a system block diagram model for predicting PA 

performance that will form the basis for the approach in this thesis. This diagram 

includes the concept of considering clipping to be applied to the device input voltage, 

which is key to this theory. It also includes aspects that will be considered in future 

chapters, such as the form of the device model and the derivation of Fourier series 

coefficients of the device output current waveform in order to obtain PA performance 

prediction. 

Key aspects of the fundamental theory have been laid in this chapter. In the next 

chapter, the theory will be developed to obtain some preliminary results that are 

independent of the form of the device model.       



 

  
 
  

CHAPTER 4                                                                                                   

RESULTS THAT ARE INDEPENDENT OF DEVICE MODEL 

4.1. Introduction 

In the last chapter, an equivalent block diagram model for PA system 

performance has been proposed based on the key definitions and concepts developed. 

The system model includes the device model. However, at this stage it is possible to 

derive some very important results that are independent of device model. These 

results are interesting and useful in themselves and also will provide a good 

foundation for the introduction of device models in the following three chapters. 

The results in this chapter include the device input bias voltage for any class of 

operation, the amplitude of the input signal that corresponds to the full power point 

and the precise way in which clipping and conduction angles vary with class and 

input signal amplitude.   

4.2. Device Bias Voltage 

PA class is determined by γF, or conduction angle γ at the FPP condition. The 

FPP is the borderline between single clipping (or in the case of Class A no clipping) 

and double clipping where the inequality (3.4) becomes an equality: 

 G GL GGv v V= −   (4.1) 
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Setting γ = γF in (3.11) and substituting (4.1) into it, the FPCA as a function of input 

signal and the bias voltage can be derived, 

 cos
2
F T GG

GL GG

V V
v V

γ −=
−

 (4.2) 

Rearranging (4.2), VGG as a function of γF is given  

 
cos

2
1 cos

2

F
T GL

GG
F

V v
V

γ

γ

−
=

−
 (4.3) 

In order to make prediction results from the theory as general as possible so that they 

can be applied to any practical PA, from this point, normalisation is applied to the 

input voltage. The normalisation is such that the maximum input voltage, vGL in 

Figures 3.2 and 3.3, is set to be VT + 2 V. With this method of normalisations, the 

peak-to-peak clipped input voltage at the FPP is 2 V for a PA of any class and the 

peak clipped input voltage, GCv , is 1 V.  

Adopting this normalisation and rearranging (4.3), the effective gate bias 

voltage VGGe is obtained, 

  2cos
2

cos 1
2

GGe GG T

F

F

V V V

γ

γ

= −

=
−

 (4.4) 

A plot of VGGe as a function of γF is shown in Figure 4.1. When γF = π (class B), 

VGGe = 0 which implies that the DC bias voltage VGG is equal to the threshold voltage 

VT. When γF = 2π (class A), VGGe is 1 V, half of the maximum limit value, as 

expected. When γF < π (BC class range), the PA needs a large negative DC bias 

voltage, which has been recognised in [52].  

The extrapolation function, to be discussed next, is a function that is 

fundamental to the theory of PA behaviour that is to be presented. 
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Figure 4.1 Input voltage varies with the conduction angle. 

4.3. Extrapolation Function 

The extrapolation function (Fe) is defined as the ratio of the peak amplitude GCv  

of the clipped PA input voltage vGC to the peak amplitude Gv  of the input voltage vG, 

 GC
e

G

vF
v

=  (4.5) 

Gv  is defined in (3.3) and in Figure 3.3. GCv  is defined as half of the peak-to-peak 

value of the clipped input voltage vGC. For the four types of clipping identified in 

Chapter 3, no clipping and single, double and full clipping, the clipped input voltage 

and the definition of GCv  is illustrated in Figure 4.2. In order to evaluate (4.5), it is 

helpful to define the maximum and minimum values, vGCmax and vGCmin of the clipped 

input voltage, shown on the right side of each waveform in Figure 4.2. If there is no 

knee clipping, then vGCmax = VGG + Gv ; otherwise, vGCmax = vGL. If there is no cut-off 

clipping then vGCmin = VGG − Gv ; otherwise vGCmax = VT. Note that case of full 

clipping shown in Figure 4.2(d), where VGG + Gv  is smaller than VT, for the clipped 
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Figure 4.2 Clipped PA input voltage in three cases; (a) no clipping; (b) single clipping; 
(c) double clipping; (d) full clipping. 

input voltage waveform vanishes and GCv  = 0. From Figure 4.2, it is evident that in 

all four cases, 

            max min2 GC GC GCv v v= −  (4.6) 

The concepts of vGCmax and vGCmin can be used to unite (3.5) and (3.8) in a form 

that applies in all four cases in Figure 4.2. 

 maxcos GC GG

G

v V
v

α −=   (4.7) 

 mincos GG GC

G

V v
v

β −=   (4.8) 

Rearranging (4.5) - (4.8) leads to 

 ( )1 cos cos
2eF α β= +  (4.9) 
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This expression for the extrapolation function in terms of knee and cut-off clipping 

angles underlies the further results that will be obtained in this chapter. Some idea of 

the significance of the extrapolation function may be gained from Figure 3.5. From 

(4.5), Fe is the ratio of GCv  to Gv  in Figure 3.5. But whereas Figure 3.5 shows 

waveforms for all classes only at the FPP, Fe in (4.9) applies not only to all classes 

but to all types of clipping and therefore to all power levels.   

In the special case of the quasi-linear range of PA operation that includes the 

FPP, α = 0, and the extrapolation function becomes, 

 ( )1 1 cos
2eLF β= +  (4.10) 

Then from (3.9), β may be expressed in terms of conduction angle,  

 1 1 cos
2 2

eLF γ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (4.11) 

This expression will be applied in order to derive some very important results in the 

following sections. 

4.4. Amplitude of PA Input Voltage Corresponding to FPP for 

Any Class of PA 

From (4.5), PA input voltage amplitude may be expressed in terms of the 

amplitude of the hypothetical clipped input voltage, by: 

 GC
G

e

vv
F

=  (4.12) 

Using normalisation, as described in section 4.2, for vG, then, at the FPP, GCv  in (4.12) 

becomes 1 V. The value of Gv  at the FPP, denoted GFv , is obtained by substituting 

(4.11) into (4.12) and by setting γ = γF,   
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Figure 4.3 Regions of PA operation defined in Gv − γF space in the terms of 
clipping. (a) using units of V for Gv ; (b) using units of dBV for Gv . 

 2

1 cos
2

GF
F

v γ=
−

 (4.13) 

A plot of GFv  versus γF is shown by the solid line in Figure 4.3(a). This shows that for 

a Class B PA (γF = π), the input voltage needed at the FPP is double that for class A 

(γF = 2π). For class BC (0 ≤ γF ≤ π) considerable input voltage amplitudes are required 

as γF is reduced in this range. As indicated in Figure 4.3(a), (4.13) constitutes a 

boundary between the region of the plot (R2) corresponding to the saturation range of 

operation where there is double clipping and the quasi-linear region (R1) where there 

is single clipping. Since the GFv  curve in Figure 4.3(a) relates input signal amplitude 

at the full power point to γF, in Figure 4.3(a) and in subsequent graphs it will be 

labelled as the FPP contour.    
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4.5. Subdivision of Quasi-Linear Region 

It can be seen from Figure 3.6 that the second transition point that occurs in the 

quasi-linear region for class range AB and BC corresponds to a change from single 

clipping to no clipping or to full clipping, respectively. This point is defined by the 

inequalities (3.6) and (3.7) governing the occurrence of cut-off clipping becoming 

equalities, 

 ( )GT GG Tv V V= ± −  (4.14) 

where GTv is the input voltage amplitude corresponding to the second transition point 

and the ‘+’ and ‘−’ signs are for VGG ≥ VT (AB class range) and VGG ≤ VT (BC class 

range), respectively. Substituting for VGG in (4.14) in terms of γF using (4.3), the cut-

off clipping boundary is given by 

 

( )
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1 cos
2

cos
2

1 cos
2

F
T GL
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F

F
T GL

F

V v
v V
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γ
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−
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=

−

 (4.15) 

Normalising vG by setting vGL =VT + 2 V,  

 
2cos

2
1 cos

2

F

GT
F

v

γ

γ=
−

 (4.16) 

Equation (4.16) is plotted in Figure 4.3(a) using a dashed line. For the BC class 

range (γF ≤ π), (4.16) defines the boundary between single clipping (R1) and the 

region (Rf) of full clipping (no conduction); for the AB class range (γF ≥ π), it defines 

the boundary between single clipping (R1) and no clipping (R0). Thus, the entire Gv  
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− γF space in Figure 4.3(a) is divided into four distinct regions depending on the type 

of clipping that occurs. Figure 4.3(a) quantifies what was shown in Figure 3.6. For 

sufficiently high input voltage amplitude, PAs of all classes operate in region R2. As 

input voltage is reduced, the Class A PA goes directly into the R0 region at the FPP. 

All other classes go into the R1 region at the FPP. Then for even lower input voltage, 

PAs in the AB class range go from region R1 into region R0, of no clipping and those 

in the BC class range from region R1 into region Rf of full clipping.   

Figure 4.3(a) shows that for all classes of PA except class A, the FPP is 

bordered in the quasi-linear region by a region of single clipping. This region is 

critically important for PA performance, especially IMD, as will be shown. Figure 

4.3(b) shows the data from Figure 4.3(a) but using a scale for input signal amplitude 

Gv  in units of dBV. Gv at the FPP for classes A and B is now 0 dBV and 6 dBV, 

respectively. The axes of Figure 4.3(b), input signal amplitude, Gv , and PA class, γF, 

are the two key parameters, which critically affect all aspects of PA performance. 

Thus, from this point in this thesis, Figure 4.3(b) will be used as a base on which to 

present 3-D plots of PA performance metrics.  

It can be observed that the expression for GTv  in (4.16) is just the magnitude of 

the effective gate bias voltage in (4.4). This may be simply explained by the fact that 

at the border line between single clipping and either no clipping or full clipping, the 

input signal amplitude GTv  is equal to ± (VGG − VT), according to (4.14).   

4.6.   Peak Clipped Gate Voltage versus Input Signal Amplitude 

and Class 

The peak value of the clipped input voltage waveform, GCv , as illustrated in 

Figure 4.2 is now investigated as a function of independent variables γF (PA class) 

and Gv (input signal amplitude) i.e. as a function of the variables of Figure 4.3(b). For 

the single clipping region R1, α = 0, and the peak clipped gate voltage may be written, 

using (4.5) and (4.10) as 
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( )1 1 cos
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    (4.17) 

Nonlinearity arises, in general, from the dependence of cosβ on Gv according to 

(3.8). GCv  as a function of γF is given by substituting for cosβ using (3.8) and then for 

VGG using (4.3),  
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 (4.18) 

Normalising vG by setting vGL = VT + 2V leads to,  
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 (4.19) 

A 3-D plot of GCv  versus Gv  and γF for region R1, according to (4.19), is shown 

in Figure 4.4. The units for GCv are dBV and Gv and γF coordinates that form the base 

for the plot are the same as in Figure 4.3(b). The four regions of Figure 4.3(b) and the 

contours dividing them, FPP and GTv , can be clearly seen in Figure 4.4. Now consider 

how the remaining regions (R2 and R0) in Figure 4.4 may be plotted.  

At the FPP, which is the boundary between regions R1 and R2, substitution of 

Gv  = GFv  according to (4.13), into (4.19) gives GCv  = 1. This applies for Gv  > GFv , as 

can be seen in Figure 3.6. The boundary between regions R1, R0 and Rf occurs 

for Gv = GTv  given by (4.16). Substituting Gv = GTv  from (4.16) into (4.19) gives for γF 

≥ π (‘+’ sign in (4.16)) Gv = GCv , and for γF  ≤ π (‘−’ sign in (4.16)) GCv = 0. This 
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Figure 4.4 Clipped peak input signal versus FPCA γF and input signal amplitude Gv . 

allows the plot in Figure 4.4 to be completed for the remaining regions R2, R0 and 

RF.  

The PA system model in Figure 3.7 shows that the effect of clipping, that can 

be considered to be applied to the PA input signal, is an inescapable underlying factor 

affecting PA performance. Thus, features from Figure 4.4 can all be observed in the 

output power characteristics of a real PA. These features include, in the quasi-linear 

range, the linear behaviour for class A and B, reduction in slope in region R1 in the 

AB class range (γF  ≥ π) and increase in slope in region R1 in the BC class range (γF  ≤ 

π).  

The device model and Fourier series blocks in the system model of Figure 3.7 

modify these fundamental aspects of PA performance, as will be shown when device 

models will be introduced in Chapters 5, 6 and 7. 
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4.7. Clipping and Conduction Angles versus Input Signal 

Amplitude and Class 

In the R2 region, in which knee clipping occurs, using (3.5) and (4.3) , the knee 

clipping angle is given by  
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    (4.20) 

The knee clipping angle below the FPP is always zero. Normalising the gate voltage 

(4.20) becomes 

 2arccos
1 cos

2
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 (4.21) 

Using (3.8) and (4.3), the cut-off clipping angle in the R1 and R2 regions is given by 
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Normalising the gate voltage by setting vGL = VT + 2V gives, 
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The cut-off clipping angle in region R0 is β = 0 and in region Rf is β = π rads. The 

values of the clipping angles α and β in all four regions of Figure 4.3 are summarized 

in Table 4.1.  

Substituting (4.23) into (3.9), conduction angle, with normalisation, is given by  
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 (4.24) 

Figure 4.5(a), (b) and (c) show α, β and γ from (4.21), (4.23) and (4.24) as a function 

of input signal amplitude Gv  and γF, respectively. 

 

Table 4.1 Clipping angles in four clipping regions. 

Region Clipping  α β 
R2 Double (4.21) (4.23) 
R1 Single 0 (4.23) 
R0 No 0 0 
Rf Full 0 π 
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Figure 4.5 Clipping angles and conduction angel versus FPCA γF and input signal 
amplitude Gv . (a) α; (b) β; (c) γ.   
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Figure 4.6 Contours of constant conduction angle (γ) versus input signal amplitude 

Gv and FPCA  γF.   

From Figure 4.5(a), α is zero except in the R2 region, as expected. As the input 

signal increases, α increase up to a limit of π/2. From Figure 4.5(b), β keeps constant 

at 0 in the R0 region. In the Rf region, β is π. In the R2 region, as Gv increases, 

β reaches a limit of π/2. This limit is approached from 0 in the class AB range (γF ≥ π) 

and from π in the class BC range (γF ≥ π). From Figure 4.5(c), conduction angle γ 

decreases for class A (γF = 2π rads) from 2π to π rads in the saturation region R2 has 

been observed in [52].  

The dependence of conduction angle on input signal power is further 

emphasised in Figure 4.6, which shows a contour plot of constant γ values derived 

from Figure 4.5(c) plotted against input signal amplitude Gv and full power conduction 

angle, γF. The distinction between conduction angle γ and full power conduction angle 

γF is critical to the approach developed in this work. Note in Figure 4.6 that 

conduction angle is equal to full power conduction angle only on the FPP contour. 

Figure 4.6 shows that conduction angle does not change with input signal power for 

class A in the quasi-linear region (γ = γF = 2π) rads, or for class B in all regions (γ = γF  
= π) rads. However for γF close to π rads in the quasi-linear region and for γF close to 
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zero or 2π rads in the saturation region, the change in γ with signal power is very 

considerable and approaches π rads. 

4.8. Conclusions 

In this chapter, some preliminary mathematical results independent of device 

model have been presented. The possibility of obtaining such results flows from the 

idea, proposed in Chapter 3, of regarding clipping as being applied to the PA device 

input voltage.   

First, an expression for device input signal bias voltage was derived as a 

function of full power conduction angle γF, which defines the class of the PA. A plot 

of this expression confirmed the very large negative bias needed for a PA in the BC 

class range with small γF, mentioned in [52]. Then, the extrapolation function, which 

underlies the mathematical description of the clipping effect in PAs, has been 

introduced and evaluated as a function of clipping and conduction angles. The 

extrapolation function was used to determine the amplitude of PA input voltage 

corresponding to FPP for any class of PA. It made it possible to plot the FPP as a 

contour in a graph of input signal power versus full power conduction angle γF, i.e. 

PA class, and it constitutes a boundary between the regions of the plot corresponding 

to the saturation and quasi-linear operation regions. Then, the quasi-linear region was 

subdivided into regions with single clipping, no clipping and full clipping. Thus, the 

space with dimensions of input voltage amplitude and γF (or class) was divided into 

four distinct regions, governed by four types of clipping (double, single, full and none) 

that had been identified in Chapter 3. Expressions for peak clipped input voltage as a 

function of input signal amplitude and class were determined and a 3-D plot showing 

this dependence was produced. Many characteristics of the output power of a real PA 

as a function of class and input power were already evident in that plot. Finally, 

expressions for clipping and conduction angles as functions of input signal amplitude 

and class were derived. 3-D plots show the very significant variation of these angles 

with input signal power. 
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Key aspects of the device current clipping theory for PAs have been laid in the 

last two chapters. The understanding of clipping effects and preliminary mathematical 

results now provide a platform for the introduction of device models, and this will be 

done in the next three chapters.     



 

  
 
  

CHAPTER 5                                                                                                           

LINEAR DEVICE MODEL AND PA PERFORMANCE  

5.1. Introduction 

The last two chapters proposed a comprehensive device current clipping theory 

for PA behaviour and derived some preliminary results that are independent of device 

model. In this chapter and the following two chapters, the device model block in the 

PA system diagram of Figure 3.7 will be introduced. This chapter is devoted to 

introducing the linear device model and using Fourier series to derive PA 

performance metrics.  

The chapter begins by laying some mathematical foundations for what follows. 

The linear device model is described and the Fourier coefficients of the resulting 

output current derived analytically. Then PA metrics will be evaluated 

mathematically and presented as 3-D plots. This will lead to an assessment of the 

linear model with respect to how the predicted PA metrics compare with published 

metrics.  

5.2. General 

5.2.1. Assumptions 

As stated in Chapter 3 (section 3.2.1) and illustrated in Figure 3.2, the models 
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Figure 5.1 Transfer characteristic for the linear device model showing normalisation.  

that are considered in this thesis are DC models subject to some simple constraints. 

These are:  

1) For PA input voltage vG equal to or less than device threshold voltage VT, the 

device output current iD is zero, as illustrated again in Figure 5.1. 

2) Device output current is limited to a maximum value iDL, as in Figure 5.1. The 

value of PA input voltage for which iD reaches its limit is denoted vGL. 

Just as PA input voltage was normalised in Chapter 4 (section 4.2), the output current 

is now normalised. The limit value of iD, iDL, is set to be 2A. The normalised limit 

value of device output current and the corresponding normalised value of device input 

voltage are given in brackets in Figure 5.1. With this normalisation, for any class of 

PA at the FPP, the peak-to-peak output current is 2 A and the peak-to-peak clipped 

input voltage is 2V. Thus, at the FPP, the peak clipped input voltage amplitude GCv  is 

1 V and the peak output current Di  is 1 A, where peak output current is defined as 

one half of the peak-to-peak value.  

It is obvious from the way in which device output current is derived from the 

input voltage via a transfer characteristic, as illustrated in Figure 3.2 that both the 

positive and negative peaks of the output current waveform will have even symmetry.

In order to make the whole waveform an even function, the φ = 0 reference for the 

device input voltage may be chosen as the value corresponding to the positive peak 

value, as shown in Figure 5.2(a). This allows some simplifications in deriving the 

Fourier series coefficients, as will be shown in the next sub-section. 
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Figure 5.2 (a) Illustration of the φ = 0 reference point showing one period of input 
voltage waveform; (b) illustration of the three ranges of the drain current waveform. 

Now consider device output current. If there is no clipping, then φ = 0 and φ = π 

correspond to the maximum and minimum of the current waveform that results from 

the device input voltage waveform of Figure 5.2(a). If there is clipping (cut-off, knee 

or both), then φ = 0 and φ = π correspond to the mid-points of the clipped parts of the 

current waveform, as shown in Figure 5.2(b). Angles α and β may be regarded as 

knee and cut-off clipping angles for a half-period of the even-symmetric waveform. 

In general, the device output current waveform can be divided into three ranges, 

as shown in Figure 5.2(b). 

Range 1:  = 2                                              0Di ϕ α≤ ≤  (5.1) 

Range 2:  depends on device model    Di α ϕ π β≤ ≤ −  (5.2) 

Range 3: 0                                       Di π β ϕ π= − ≤ ≤  (5.3) 

These three ranges, 1, 2 and 3, correspond to the three parts of the device 

transfer characteristic in Figure 5.1, namely vG > vGL, VT ≤ vG ≤ vGL and vG < VT, 

respectively. Device output current in ranges 1 and 3 is independent of device model. 

Only in range 2, does the choice of model affect the current waveform. 
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5.2.2. Fourier Series 

Fourier series [90] can be used to represent a periodic signal f(t) with period T0 

in terms of a DC component, fundamental component with frequency ω0 = 1/T0 and 

harmonic components at frequency kω0, [90]  

 ( ) ( )0 0 0
1

cos sink k
k

f t F F k t K k tω ω
∞

=
= + +∑  (5.4) 

where   

 ( ) 2
0  0

1
2

F f t d
π

ϕ
π

= ∫  (5.5) 

 ( ) 2

 0

1 coskF f t k d
π

ϕ ϕ
π

= ∫  (5.6) 

 ( ) 2

 0

1 sinkK f t k d
π

ϕ ϕ
π

= ∫  (5.7) 

1,2k n=  

As mentioned above, PA output current f(t) = iD(φ) has been defined to be an 

even periodic function and this makes the coefficients Kk always equal to zero. 

Furthermore, in (5.5) and (5.6), the integration range may be taken from 0 to π and 

result doubled [91]. The DC component of  iD(φ) then becomes 

  ( ) 
0  0

1
DF i d

π
ϕ ϕ

π
= ∫  (5.8) 

and the fundamental (k = 1) and harmonic (k > 1) components are 

 ( ) 

 0

2 cosk DF i k d
π

ϕ ϕ ϕ
π

= ∫  (5.9) 

Device output current, iD(φ) in (5.8) and (5.9), exists in three different ranges, 

as defined in (5.1) − (5.3) and in Figure 5.2(b). Hence the integration ranges may be 
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split accordingly. Since iD(φ) is zero in range 3, this range makes no contribution to 

the total integration. Therefore, (5.8) and (5.9) become 
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1 2
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DF d i d

I

α π β
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α
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∫ ∫
 (5.10) 

where, I0 given by  
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and 
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∫ ∫
 (5.12) 

where, Ik given by   

 ( ) 

 

2 cos  K DI i k d
π β

α
ϕ ϕ ϕ

π
−

= ∫  (5.13) 

Since the first terms in (5.10) and (5.12), which are independent of device 

model, have now been evaluated, in what follows, only expressions (5.11) and (5.13) 

that are model dependent need to be evaluated. 

5.3. Linear Device Model 

5.3.1. Model Description  

The linear device model is given by,  
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 ( )D G Ti G v V= −  (5.14) 

With normalisation of vG and iD such that iD = 2 A when vG = VT + 2 V, then G = 1 

AV−1. The normalised form of the linear device model is,  

    D G Ti v V= −  (5.15) 

A graph of the model transfer characteristic has been used for illustration in Figures 

3.2 and 3.3 and is shown also in Figure 5.1. Substituting for vG from (3.3) into (5.15), 

device output current is given by 

 
( ) cos

cos

GD GG T

GGGe

i V V v

V v

ϕ ϕ

ϕ

= − +

= +
 (5.16) 

Effective device bias voltage, vGGe, is given as a function of FPCA γF by (4.4),  

 
2cos

2
cos 1

2

F

GGe
F

V

γ

γ=
−

 (5.17) 

In the four regions of PA operation, R0, R1, R2 and Rf, defined in Figure 4.3, 

the knee and cut-off clipping angles α and β, needed in (5.10) − (5.13), were given in 

Table 4.1, which is repeated in Table 5.1 with formulas. Equation (5.16) together with 

(5.17) and Table 5.1 will be used in the following sections to derive DC, fundamental 

and third harmonic components for the output current of the device. 

Figure 5.3 shows three waveforms that are a cosinewave, a half-wave rectified 

cosine wave and a square wave, respectively. The three waveforms represent PA 

device output current assuming a linear device model in three interesting cases. The 

first is Class A PA at the FPP (Figure 3.6: 1st row, 2nd column). Figure 5.3(b) is class 

B PA at the FPP (Figure 3.6: 3rd row, 2nd column). Figure 5.3(c) is PA of any class 

with the limiting case of very large saturating input voltage amplitude. The DC, 

fundamental and third harmonic components, F0, F1 and F3 for these three waveforms 

are given in Table 5.2 [91].  
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Figure 5.3 Three specific cases of device output current waveforms, (a) Class A at FPP; 
(b) Class B at FPP; (c) saturated (any class).  

Table 5.1 Clipping angles in four clipping regions 

Region Clipping  α β 

R2 Double 
2arccos

1 cos
2
F

Gv γ∧ ⎛ ⎞
−⎜ ⎟

⎝ ⎠

 
2cos

2arccos
1 cos

2

F

F
Gv

γ

γ∧

−

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 

R1 Single 0 
2cos

2arccos
1 cos

2

F

F
Gv

γ

γ∧

−

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 

R0 No 0 0 

Rf Full 0 π 

Table 5.2 DC, fundamental and third harmonic components for waveforms in Figure 
5.3 [91]. 

Signal F0 F1 F1 (dB) F3 F3 (dB) α β 
Sine 1 1 0 0 − ∞ 0 0 

Half sine 2/π 1 0 0 − ∞ 0 π/2 
Square 1 1.273 2.098 0.424 − 7.444 π/2 π/2 
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Table 5.2 also gives F1 and F3 in dB units. The corresponding knee and cut-off 

clipping angles α and β are also given.  The values F0, F1 (dB) and F3 (dB) will be 

used to confirm Fourier coefficient results in the following sections. The three 

waveforms in Figure 5.3 will be referred to as test waveforms A, B, and C, as 

indicated in Table 5.1. 

5.3.2. DC and Fundamental Fourier Coefficients for Device Output Current 

The DC component of device current, F0 is given by (5.10) that contains the 

integral I0 given in (5.11). Substituting model equation (5.16) into (5.11), then 

 

( )

( ) ( )

 
0  

1 cos

11 sin sin

GGGe

G
GGe

I V v d

vV

π β

α
ϕ ϕ

π

α β β α
π π

−
= +

⎡ ⎤= − + + −⎢ ⎥⎣ ⎦

∫
 (5.18) 

The expression for DC component of the device output current, F0, follows by 

introducing the model independent term from (5.10) and using (5.17) and the α and β 

values in Table 5.1. This makes it possible to plot DC component of the device 

current as a 3-D plot against FPCA γF and input signal amplitude Gv  and the plot is 

shown in Figure 5.4(a). Points corresponding to the test waveforms ‘A’, ‘B’ and ‘C’ 

in Figure 5.3, are indicated in Figure 5.4(a) and gives values of 1.00, 0.63 and 1.00, 

respectively, which agree well with Table 5.2. It can be observed that for any value of 

Gv , the DC component falls as γF is reduced. For a Class A PA, for which γF = 2π, and 

for a Class AB PA in region R0, the DC component of the device current is invariant 

with Gv . In other regions, the DC component always falls as Gv  is reduced. 

The fundamental component of the device output current, F1, is given by 

substituting k = 1 in (5.12) and (5.13).  Substituting (5.16) into (5.13), the integral, I1 

is given by,  
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Figure 5.4 Harmonic components of device output current versus Gv  and FPCA γF, (a) 
DC component, (b) fundamental component.  

  

( )

( ) ( ) ( )

 
1  

2 cos cos

2 1 1sin sin 1 sin 2 sin 2
2

GGGe

GGe
G

I V v d

V v

π β

α
ϕ ϕ ϕ

π

β α α β α β
π π π

−
= +

⎡ ⎤
= − + − + − +⎢ ⎥

⎣ ⎦

∫
 (5.19) 

By introducing the model independent term from (5.12) with k = 1, and using 

(5.17) and Table 5.1, the fundamental component of device output current as a 

function of γF and Gv  is obtained and its 3D plot is shown in Figure 5.4(b). At ‘A’, 
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‘B’ and ‘C’ points in Figure 5.4(b), the F1 values are 0.00, 0.00 and 2.10 dB that 

agree with values in Table 5.2. 

It is interesting to compare amplitude of the fundamental component of the 

device output current in Figure 5.4(b) with the plot for the amplitude of the clipped 

device input voltage in Figure 4.4. With a linear model, the device output current 

waveform is essentially the same as the clipped input voltage waveform and the 

differences between the plots arise only from the Fourier series coefficient. At the 

FPP in Figure 5.4(b), there is now a smooth transition between the saturation and 

quasi-linear power ranges as beyond the FPP, in the saturation region, the 

fundamental component in Figure 5.4(b) now increases by a few dB. Below the FPP, 

the surface in Figure 5.4(b) is essentially very similar to that in Figure 4.4, which has 

already been discussed in section 4.4.5, including the features of linear behaviour in 

region R0 and for Class B γF = π, and a varying gradient in region R1, which is ≤ 1 

for γF ≥ π (class range AB) and ≥ 1 for γF ≤ π (class range BC).    

5.3.3. 3rd Order Fourier Coefficient versus Clipping Angles 

It is shown in Appendix A that the level of IMD3 that causes ACI and 

constellation errors in a PA, relative to the wanted signal for a multi-tone input signal 

is the same as the level of 3rd harmonic relative to fundamental for single tone 

excitation. Therefore the 3rd order Fourier series coefficient of the device output 

current waveform is of special interest. As will be shown, the 3-D plot of F3 against γF 

and Gv  has an interesting surface that varies between very high and very low values. 

For these reasons, analysis of F3 is approached in a different way than that adopted 

for F0 and F1. Thus, in this section, F3 is evaluated for the general case of a clipped 

waveform that has a fixed peak-to-peak amplitude and that is defined by its clipping 

angles α and β. A plot of F3 versus γF and Gv  will be obtained in the following section 

(5.3.4). The peak-to-peak waveform amplitude assumed in this section is 2 A. 

A peak-to-peak current waveform amplitude of 2 A implies a peak amplitude 

Di  of 1 A. The corresponding peak clipped input voltage GCv  must be 1 V. 

Relationship between input voltage amplitude and amplitude of clipped input voltage 

was derived in section 3.2.2 via the extrapolation function as in (4.5), 
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where, the extrapolation function is given by (4.9). Setting GCv  = 1 in (5.20) and 

substituting for Fe using (4.9), Gv  is given by  

 2
cos cos

Gv
α β

=
+

 (5.21) 

This expression applies to any device model, including the linear model.  

For the linear device model, the third harmonic component of the device output 

current, F3, is given by substituting k = 3 in (5.12) and (5.13).  Substituting the linear 

model equation (5.16) into (5.13), the integral, I3, is given by,    

 ( ) 
3  

2 cos cos3  GGGeI V v d
π β

α
ϕ ϕ ϕ

π
−

= +∫  (5.22) 

After the integration, I3 is given by,  
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3 2 2
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 (5.23) 

In order to derive F3 as a function of α and β, we do not express VGGe as a function of 

γF using (5.17) but rather use (3.8). Then Gv  in (5.23) is substituted for using (5.21),   

   ( )3
sin 4 2sin 2 6sin 2 3sin 4 8sin 3 cos

6 cos cos
I β β α α β α

π α β
− − − −=

+
 (5.24) 

Introducing the model independent term from (5.12) with k = 3, then F3 is given by  
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Figure 5.5 Third harmonic components (a) versus clipping angles; (b) versus Gv  and 
FPCA γF. 

A plot of F3 against α and β is shown in Figure 5.5(a). By definition α + β ≤ π, 

and the range of the plot has been restricted accordingly. A very significant feature of 

this plot is that a deep valley crosses the surface. When α = 0, the valley gives a deep 

null at β = π/2. Once α increases above 0, the null at β = π/2 shifts into the range of β 
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> π/2. This can be understood from mathematical analysis. A deep null occurs for F3 

= 0, as this corresponds to 20log(F3)  − ∞. Therefore, in (5.25), a null occurs only if 

the following condition is satisfied, 

 
( ) ( )sin 2 cos 2 1 sin 2 cos 2 1 0

cos cos 0

α α β β

α β

− + − =

+ ≠

 (5.26) 

It is obvious that when α = 0, β = π/2 satisfies (5.26). Now consider the case of α > 0. 

For α ≠ 0 and β ≠ 0, it is always true that cos2α − 1 < 0, cos2β − 1 < 0. Since these 

terms have the same sign, it is necessary in order to satisfy (5.26) that sin2α and 

sin2β have opposite signs. Since [ ]2/,0 πα ∈ , then sin2α > 0. Therefore, when α ≠ 0, 

the null can only occur where sin2β < 0.  Since 0,β π⎡ ⎤∈ ⎣ ⎦ , then 2β > π. Thus the null 

occurs for β > π/2 for α > 0.  

Having obtained the plot of F3 for the fixed amplitude clipped device current 

waveform as a function of its clipping angles and explored its feature of a deep valley, 

F3 is now derived as a function of γF and Gv . 

5.3.4. 3rd Order Fourier Coefficient Versus γF and Gv   

The third harmonic component of device output current as a function of FPCA 

γF and input signal amplitude Gv  may be derived by starting from the integral I3 in 

(5.23), introducing the model independent term (5.12) with k = 3, and then using 

(5.17) and Table 5.1 in order to substitute for α, β and VGGe. The corresponding 3D 

plot is shown in Figure 5.5(b). At the ‘A’, ‘B’ and ‘C’ points in Figure 5.5(b), the F3 

values are − Inf, − Inf, − 7.44 dB that agree with Table 5.2. 

The plot of F3 versus γF and Gv  in Figure 5.5(b) is crossed by a deep valley but, 

unlike that in Figure 5.5(a), the valley has a sharp bend in it. We refer to this valley as 

the ‘L’-shaped valley. The four clipping regions in Figure 4.3, R2, R1, R0 and Rf, can 

be clearly seen in Figure 5.5(b) as indicated. A result of great practical significance is 

that for all γF except γF  = 2π (class A), and γF  = π (class B), the FPP is bordered in 
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the quasi-linear power region by the region R1 where distortion is very high. Now the 

relationship between the plots in Figure 5.5(a) and (b) is considered.    

In the quasi-linear region, knee clipping angle α = 0, as shown in Figure 4.5(a). 

Therefore distortion in this region is governed by the cross-section through the 

surface of Figure 5.5(a) for α = 0, i.e. by the curve corresponding to the front edge of 

the surface. This curve has a null at β = π/2. From Figure 4.5(b), for γF = π, β  remains 

at π/2 through the whole of the quasi-linear power range. Therefore, for γF = π, i.e. for 

a class B PA, the null at β = π/2 for α = 0 in Figure 5.5(a) must manifest itself as a 

deep valley throughout the whole of the quasi-linear range, as indeed is the case in 

Figure 5.5(b). This part of the ‘L’-shaped valley in Figure 5.5(b) will be referred to as 

the class B part of the valley. A null in distortion that is maintained over a wide range 

of input signal power is referred to as a sweet spot [51]. 

Figure 5.5(b) shows that at the FPP, i.e. at the beginning of the saturation range, 

this valley turns sharply to the left into the BC class range. This feature can be 

predicted from Figure 5.5(a) by the following argument. Figure 4.5(a) shows that, at 

the FPP, α starts to increase from zero. In Figure 5.5(a), the condition for the valley 

as α increases above zero, is that β > π/2, as has also been proved mathematically in 

the previous sub-section. From Figure 4.5(b), in the R2 region, β approaches its limit 

value of π/2 by increasing from 0 in the AB class range and by decreasing from π in 

the BC class range. It follows that at the FPP, the valley must cross the surface 

through the BC class range and therefore turn to the left. This part of the ‘L’-shaped 

valley in Figure 5.5(b) that is above the FPP and turns into the BC class range will be 

called the class BC part of the valley. Figure 5.5(b) shows that although there is no 

valley in the AB class range, there is a ledge where rate of change of distortion 

becomes less once the FPP is crossed and the quasi-linear range begins. 

In section 5.3.6, 2-D plots of distortion versus input signal power for different 

PA classes will be obtained from the 3-D plot in Figure 5.5(b). But firstly, 3-D plots 

of gain and efficiency will be presented.  



CHAPTER 5 Linear Device Model and PA Performance                                                   77  
 

  
 
  

5.3.5. Gain and Efficiency 

In section 5.3.2, DC and fundamental components of device output current were 

derived, and shown as 3-D plots in Figure 5.4. This section will derive further PA 

metrics based on those results.  

Gain is defined as the ratio of the fundamental component of the output current 

to the peak input voltage,  

 1
N

G

FG
v

=  (5.27) 

The gain is normalised because Gv  is normalised and F1 is the fundamental 

component of a normalised current. With this method of normalisation for the gain, a 

class A PA at the FPP has a GN value of 0 dB. Denormalisation of GN in order to 

apply it to practical PAs is discussed Appendix B.   

Using (5.12) with k = 1 and (5.19), gain is given by 

 ( ) ( )24sin 1sin sin 1 sin 2 sin 2
2

GGe
N

G G

VG
v v

α α ββ α α β
π π π π

+= + − + − − +  (5.28) 

VGGe and α, β are given as function of γF and Gv by (5.17) and Table 5.1, respectively.  

The 3-D plot of gain versus FPCA γF and input signal amplitude Gv  is shown in 

Figure 5.6. It is constant (at 0 dB) only in the R0 region where there is no clipping 

and it falls to zero in the Rf region. Normalised gain is − 6 dB at the FPP for class B 

and falls to much lower values in the R1 region in the BC class range. For all classes, 

above the FPP in the saturation (R2) range, gain reduces approximately linearly as the 

input voltage increases but the output current saturates.     

PA efficiency is defined, in general, to be   

 1 11
2

D D

DD DD

i v
I V

η =  (5.29) 

where η is drain efficiency, 1Di  and 1Dv  are fundamental Fourier components of 

device output current and voltage, respectively, and IDD and VDD are supply current 
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Figure 5.6 Gain versus input signal amplitude Gv  and FPCA γF. 

and voltage, respectively. It is shown in [51][52] that IDD = Di , where Di  is average 

value of the output current. For load resistance RL, (5.29) then becomes 

  
2

11
2  

D L

D DD

i R
i V

η =  (5.30) 

For maximum efficiency, PA design should be such that VDD lies in the middle 

of the range of vD. In this case and assuming zero knee voltage, then  

 1 1D DDD LV v i R= =  (5.31) 

As current in (5.30) is normalised, then at the FPP for a class A PA, 1Di  = 1 A, 

and (5.31) implies that VDD = RL. In this case, (5.30) becomes 
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2

D

D

i
i

η =  (5.32) 

In terms of Fourier series coefficients for normalised current, (5.32) is 
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Equation (5.31) assumes that the vD waveform is symmetrical [52] and this can 

be satisfied by biasing the device via a parallel tuned circuit as in Figure 1.5(b) that 

acts as a short- circuit to harmonic components of device output current. 

Substituting (5.18) and (5.19) with their corresponding model independent term 

form (5.10) and (5.12) (with K = 1) into (5.33), η is given by 
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⎣ ⎦

   

  (5.34) 

Substituting for VGGe using (5.17) and for α and β using Table 5.1, efficiency can be 

expressed as a function of FPCA γF and input signal amplitude Gv . The corresponding 

3-D plot is shown in Figure 5.7(a). It yields the classical results of 50% for class A 

and 78.5% for class B at the FPP. For class A, the efficiency increases from 50% at 

the FPP to a limit of 80% above the FPP. This is called the overdriven class A mode 

as proposed in [52]. However, Figures 5.5(b) and 5.6 clearly show severe penalties of 

considerable increase in distortion and reduction of gain associated with this mode of 

operation. In practice, efficiency is less than that predicted in Figure 5.7(a) because of 

the effect of the device knee voltage. It can be seen from Figure 5.7(a) that the 

efficiency has a maximum with respect to Gv  in the BC class range and for part of the 

AB class range. The path of the maximum is shown by the contour plot 

corresponding to the 3-D plot in Figure 5.7(a) that is shown in Figure 5.7(b). It can be 

seen that the maximum efficiency for all classes occurs well above the FPP (in the R2 

region). 
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Figure 5.7 Efficiency versus input signal amplitude Gv  and FPCA γF (a) 3-D plot; (b) 
contour plot. 

5.3.6. Power Sweeps 

3-D plots have been given for the fundamental and 3rd harmonic of device 

output current, gain and efficiency versus Gv  and γF, in Figures 5.4(b), 5.5(b), 5.6 and 

5.7(a), respectively. It is usual to plot these PA performance metrics against Gv , to 

produce so-called power sweeps. We now derive such power sweeps by taking cross-

sections, or slices, from the 3-D plots parallel to the Gv  axis for specified values of γF.  

The γF values for all power sweeps for the linear device model are the same and are 

given in Table 5.3. In all power sweeps, full power point is indicated by the symbol                       
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       Table 5.3 Values of γF for PA performance power sweeps in Figures 5.8 − 5.11. 

Class γF (π) 
A 2 

AB1 1.3 
AB2 1.1 

B 1 
BC1 0.9 
BC2 0.8 

 
Figure 5.8 Predicted power sweeps from Figure 5.4 (b), (a) AB class range; (b) BC class 
range. 

 ‘ * ’. All power sweeps are presented as two graphs ((a) and (b)) that cover the AB 

and BC class ranges separately; the curve for Class B (γF = π) occurs in both graphs. 

Figure 5.8 shows the power sweeps for output power obtained from Figure 5.4(b). 

Due to the normalisation used in this thesis, the output current at FPP for Class A is 0 

dBA when the input voltage is 0 dBV. The output power curve for class B appears 

parallel with that for class A but shifted by 6 dB [52] on the Gv  axis. The 

performance of class B can regarded to be linear behaviour, like Class A as 

mentioned in [52]. At the FPP, output power is the same for class A and B and 

slightly higher for class AB. The change of slope below FPP for class AB is due to 

cut-off clipping in the R1 region. For class BC, output power reduces very 

nonlinearly as input power is reduced and becomes zero when entering the Rf region. 
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Figure 5.9 Predicted gain-power sweeps from Figure 5.6, (a) AB class range; (b) BC 
class range. 

After the FPP, output current for all classes tends to be saturated at the same level of 

2.1 dBA. 

Figure 5.9 shows sweeps for normalised gain obtained from Figure 5.6. For 

classes A and AB in R0 region, gain is 0 dB. For class B, gain in the quasi-linear 

range is – 6 dB. For class AB in the R1 region, the slope changes due to cut-off 

clipping. For class BC, gain drops quickly at both low and high input power. In the 

BC class range, maximum gain is close to the FPP. 

Figure 5.10 shows efficiency sweeps obtained from Figure 5.7(a).  For class A, 

efficiency is 50% at the FPP and it approaches a limit of about 80% under heavy 

overdrive. The efficiency for class B is 78.5% at FPP. The maximum efficiency for 

class BC1 and BC2 in Figure 5.10(b) is around 90%. As conduction angle γF is 

reduced towards zero, the iD pulse narrows. This reduces the DC component of iD, but 

at the same time reduces the fundamental component 1Di , preventing a rapid approach 

of η to a limit value of 100%. As conduction angle is reduced in the BC class range, 

efficiency at the FPP reduces. The maximum efficiency at the FPP is that for class B 

at 78.5%. 
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Figure 5.10 Predicted efficiency-power sweeps from Figure 5.7, (a) AB class range; (b) 
BC class range. 

 

Figure 5.11 Predicted IMD-power sweeps from Figure 5.5(b), (a) AB class range; (b)  
BC class range. 

Summarising Figures 5.8 – 5.10, class A has highest output power and gain 

across all power levels, but low efficiency, especially at the FPP. Class BC has high 

efficiency at high input power, but suffers from low output power and gain. 

Figure 5.11 shows slices of the 3rd order distortion 3-D plot in Figure 5.5(b). 

Class A and B have no distortion at the FPP and below. For class AB range, there is a 

ledge that becomes higher and narrower as γF increases. In the BC class range; there 

is a deep null that shifts to higher power with γF decreasing. There is a ledge below 

the bull that, at the same time, becomes higher and narrower. 
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5.4. Assessment of Linear Model   

The 3-D surface in Figure 5.5(b) is similar to that predicted for a PA based on a 

LDMOS device in [86] using small-signal bias-dependent derivatives obtained from 

measurement of the LDMOS devices, as reviewed in section 2.11 and shown in 

Figure 2.17. However, the valley in Figure 2.17 from [86], appears more ‘L’-shaped 

than that in Figure 5.5(b) because it is plotted against VGG rather than against γF.  

Compared with [86], the present work has same distinctive features. It shows 

clearly that the class BC part of the ‘L’-shaped valley is above the FPP and therefore 

caused by knee clipping. It also shows that the ‘L’-shaped valley is not a feature of 

the model of the particular device used but is a fundamental property of a PA that is 

due to single and double clipping of the device current waveform and can be 

predicted by means of Fourier series for even the simplest possible device model, i.e. 

for one that is linear and for which meaningful derivatives do not exist. Practical 

confirmation in [86] of the predicted distortion surface derived is limited to part of 

one distortion-power sweep in the vicinity of a predicted null. The existence of the 

null is verified but this falls far that of a verification of the form of the whole 

distortion surface. But the apparent similarity between Figure 5.5(b) and the predicted 

distortion surface for the LDMOS device in Figure 2.17 from [86] suggests that the 

transfer characteristic of the LDMOS device in [86] must be behaving in a rather 

linear fashion.  

Figure 5.11 shows that, for the linear device model, the clipping theory predicts 

a single null in the distortion-power sweep in the class BC range and a ledge in the 

class AB range. 

If the predicted distortion surface in [86] could be confirmed by detailed 

measurements, then similar distortion power sweeps would be expected for the 

LDMOS PA in [86]. However, it is necessary to make comparison not only with the 

rather linear device in [86] but also with other published data. PA designs using 

CMOS, LDMOS and GaAs MESFET technologies reported in [83][87][89] and 

reviewed in section 2.9 exhibit a wide variety of 3rd order distortion-power sweep 

curves, as shown in Figures 2.19, 2.20 and 2.21. Especially, in the AB class range a 

double null is frequently seen. 
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Thus, although clipping theory and the linear device model predict the ‘L’-

shaped valley predicted in the distortion surface for the rather linear LDMOS PA in 

[86], the clipping theory and linear device model cannot replicate the distortion power 

sweeps for PAs using less specialised devices. In order to predict the double null in 

the distortion power sweep in the AB class range, it is necessary to consider use of 

models other than the linear model used so far, and this approach will be followed in 

the following chapter.    

5.5. Conclusion 

 In this chapter, one PA device model has been introduced, namely the linear 

device model. For this model Fourier series coefficients of the device current 

waveform have been evaluated used in order to derive PA performance metrics, 

including output power, efficiency, gain and 3rd order distortion. Results have been 

presented in the form of 3-D plots and power sweeps obtained from them. The linear 

model was studied first because it is the simplest model and it exemplifies the effect 

of clipping is a pure way.  

The 3-D graphs of output power, gain and efficiency versus input voltage 

amplitude Gv  and FPCA γF, reveal some interesting results. These include the very 

rapid reduction of output power and gain as FPCA γF is reduced in the BC class range 

and the rapid reduction of efficiency as Gv  is reduced in the BC class range. Similar 

results can be found in a general way in the literature [83][87], but the systematic way 

in which PA performance metrics are presented as 3-D plots versus Gv  and γF is very 

revealing and allow fully informed choice of PA class and degree of back-off to be 

made in a practical PA design. Another result that emerged was the maximum in 

efficiency with respect to Gv  in the BC and in part of the AB class range. Although 

the surfaces of output power, gain and efficiency are interesting, the far more 

interesting result is the surface of 3rd order distortion. The surface shows very high 

distortion in the R2 and R1 regions, above and below the FPP, respectively. This high 

distortion region is crossed by a deep valley that is ‘L’-shaped. Below the FPP, in the 

quasi-linear input power range, the valley is parallel to the Gv  axis and yields a 
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distortion-power sweep for Class B (γF = π) that has no distortion, i.e. it has a sweet 

spot. This part of the valley is caused by single clipping. At the FPP, the deep valley 

turns sharply to the left into the BC class range. Hence, in the BC class range, 

distortion-power sweeps with a single deep null at high power are predicted. This part 

of the valley is caused by double clipping. In the AB class range, there is no valley, 

but only a ledge close to the FPP. Hence, distortion-power sweeps throughout the AB 

class range are predicted to have a ledge. 

The ‘L’-shaped valley predicted in the distortion surface of a PA with a linear 

device model due to device current clipping is very similar to the published distortion 

surface for a PA with a LDMOS device predicted from the device transfer 

characteristic. However, there is insufficient measured data in that publication to 

confirm the existence of the ‘L’-shaped valley. A more serious problem is that other 

published data for CMOS, LDMOS and GaAs MESFET PAs shows measured 

distortion sweeps with two deep nulls for the AB class range and a single deep null 

for Class B, and these distortion power sweeps are inconsistent with the ‘L’-shaped 

valley predicted by clipping theory using the linear model. 

This assessment of the linear model calls for a necessarity to investigate the 

performances of other kinds of device model. The square law device model is used 

and is of interest because it approximately describes devices with relatively longer 

channel lengths. In next chapter, the square law model will be investigated.  

 
 
 



 

  
 
  

 

CHAPTER 6                                                                                                    

SQUARE LAW DEVICE MODEL AND PA PERFORMANCE 

6.1. Introduction 

The last chapter presented an analysis of PA performance with the linear device 

model. However, the predicted sweep of 3rd order distortion versus input signal power 

did not exhibit the double null in the AB class range which is often seen in published 

PA data due to device current clipping. This chapter is focused on investigating 

performance of PAs with the square law model.  

The analysis on the square law model follows the same method as that used in 

Chapter 5 for the linear model. 3-D plots of output power, gain, efficiency and 3rd 

order distortion will be presented. Comparison between PA performance with the 

linear and square law models will lead to assessment of both models and inspire 

speculation on how the device model modifies the effect of clipping and determines 

PA performance. This will set the direction for the following chapter.  

6.2. Model Description  

The square law device model expression is,  

 ( )2
D G Ti K v V= −  (6.1) 
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Figure 6.1 Transfer characteristic for the linear and square law device models showing 
normalisation.  

where, K is a transconductance factor. Normalising iD and vG as for the linear model, 

K = 1/2 AV−2 and we have 

 ( )21
2D G Ti v V= −  (6.2) 

The transfer characteristic is shown in Figure 6.1, as curve ‘SL’. Substituting for vG 

using (3.3), (6.2) becomes, 

 ( )21 cos
2

GD GGei V v ϕ= +  (6.3) 

For the linear device model, the three waveforms shown in Figure 5.3 were 

used as test points for the Fourier series coefficients. They corresponded to a Class A 

PA at the FPP, Class B PA at the FPP and heavily overdriven PA (any class), 

respectively. The waveforms for these conditions using the square law model are 

shown in Figure 6.2. Figure 6.2(c) is identical with Figure 5.3(c). Figure 5.3(a) 

describes iD = (1+cosφ)2/2 ((6.3)) with VGGe = 1 V and Gv  = 1 V). Figure 5.3(b) 

describes iD = 2cos2φ, truncated to the range − π/2 to π/2 (VGGe = 0 and Gv  = 2 V in 
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Figure 6.2 Three specific cases of device output current waveforms, (a) Class A at FPP; 
(b) Class B at FPP; (c) saturated (any class). 

((6.3)). The Fourier series coefficients for the test waveforms and other relevant data 

are given in Table 6.1. 

6.2.1. DC and Fundamental Fourier Coefficients for Device Output Current 

We use the same methods as used for the linear model in Chapter 5. For DC 

component of the device current F0 is given by (5.10) and the integral I0 is given by 

(5.11). Substituting model expression (6.3) into (5.11), I0 for the square law model is,  

 

Table 6.1  DC, fundamental and third harmonic components for waveforms in Figure 
6.2. 

Test F0 F1 F1 (dB) F3 F3 (dB) α β 
A 0.50 1.00 0.00 0.00 − ∞ 0 0 
B 0.50 0.84 − 1.43 0.34 − 9.38 0 π/2 
C 1.00 1.273 2.10 0.42 − 7.44 π/2 π/2 
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2
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∫
 

  (6.4) 

  

 
Figure 6.3 Harmonic components of device output current versus Gv  and FPCA γF, (a) 
DC component; (b) fundamental component.  
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The fundamental component of the device output current, F1, is given by substituting 

k = 1 in (5.12) and (5.13). The integral, I1, in (5.13) is given by,  

 

( )

( ) ( )

2 
1  

22

1 cos cos  

1 sin 2 sin 2
2

sin 3 sin 3 9 sin sin
sin sin  

12

GGGe

GGGe

GGGe

I V v d

V v

V v

π β

α
ϕ ϕ ϕ

π

β απ β α
π

β α β α
β α

−
= +

⎡ ⎛ ⎞+= − − − +⎢ ⎜ ⎟
⎝ ⎠⎣

⎤− + −
⎥− +
⎥⎦

∫

 (6.5) 

F0 and F1 follow from (6.4) and (6.5) by introducing the model independent terms 

from (5.10) and (5.12) (with k = 1), using (5.17) and the α and β expressions in Table 

5.1. DC and fundamental components are plotted versus Gv and γF in Figure 6.3(a) 

and (b).  

From Figure 6.3(a), the DC component approaches 0.5 when γF = 2π (class A) 

and input signal amplitude becomes small. As input signal amplitude increases, DC 

component increases for any class of operation. Compared with DC component of the 

linear model in Figure 5.4(a), the effect of the nonlinear model can be clearly 

observed in the case of class A; for γF = 2π for the linear model, the DC components 

is constant at 1.00. This implies that model non-linearity of drain current has a 

significant effect. For the test point ‘C’ in Table 6.1 and Figure 6.2, the waveform 

becomes a square wave for any model. Therefore, the Fourier series coefficients are 

the same for any model; however the limit is approached rather gradually in Figure 

6.3(a). At test points A and B in Figure 6.3(a), the values of F0 are 0.50 and 0.50, 

which compare well with the expected values in Table 6.1. 

From Figure 6.3(b), the fundamental component is roughly similar to that for 

the linear model in Figure 6.3(b), except that F1 falls more rapidly for γF < 2π. This 

can be seen by comparing the surfaces in the region γF = π. The comparison will be 

shown more clearly by power sweeps to be presented in section 6.2.5.  
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Figure 6.4 3rd harmonic component of drain current versus, (a) clipping angles; (b) 

Gv and FPCA γF.  

6.2.2. 3rd Order Fourier Coefficient Versus Clipping Angles 

First, F3 as a function of clipping angles α and β is derived for a constant 

amplitude waveform by following the same method as for the linear model in section 

5.3.3. Substituting (6.3) into (5.13) (with k = 3), the integral I3 is given by,   

 ( )2 
3  

1 cos cos3  GGGeI V v d
π β

α
ϕ ϕ ϕ

π
−

= +∫  (6.6) 
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After the integration, I3 becomes, 

2 2
3

sin 3 sin 3 sin 5 sin 5 sin sin sin 3 sin 32
3 10 2 3

sin 4 sin 4 sin 2 sin 2                                                        
2

G GGe

GGGe

I v V

V v

β α β α β α β α
π π π π

β α β α
π π

⎛ ⎞− − − −= + + + −⎜ ⎟
⎝ ⎠

⎛ ⎞+ ++⎜ ⎟
⎝ ⎠

  

  (6.7) 

Substituting (3.8) and (5.21) into (6.7), in order to eliminate VGGe and Gv , leads to   

 
( )3 2

2

4 sin 3 sin 3 sin 5 sin 5 sin sin
6 20 4cos cos

sin 3 sin 3 sin 4 sin 4 sin 2 sin 2  cos cos
3 4 2
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π α β

β α β α α ββ β

⎡ − − −= + + +⎢⎣+

⎤⎛ ⎞− + +− + ⎥⎜ ⎟
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 (6.8) 

 

Introducing the model independent term from (5.12) (with k = 3), F3 as a 

function of clipping angles is given by,   

( )
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  (6.9) 
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F3 versus α and β is shown plotted in Figure 6.4(a). Compared with the 

corresponding plot for linear model in Figure 5.5(a), the deep valley has shifted to the 

right for low α value. For the linear model plot in Figure 5.5(a), the valley caused a 

null for α = 0 at β = π/2 that caused a sweet spot in Figure 5.5(b) that was a dominant 

feature of the PA behaviour in the quasi-linear region of operation. Since there is no 

null at β = π/2 for α = 0 in Figure 6.4(a), this means that there can be no class B sweet 

spot in the case of the square law model. This will be verified by deriving F3 as a 

function of Gv  and γF in the next section. 

6.2.3. 3rd Order Fourier Coefficient Versus  γF and Gv   

The third harmonic component of device output current as a function of FPCA 

γF and input signal amplitude Gv  may be derived from (6.7) by introducing the model 

independent term (5.12) with k = 3, and using (4.4) and Table 5.1. The result is shown 

as a 3-D plot in Figure 6.4(b). At the ‘A’, ‘B’ and ‘C’ points in Figure 6.4(b), the F3 

values are − Inf, − 9.38, − 7.44 that agree with Table 6.1.  

As expected from Figure 6.4(a), the valley giving the class B sweet spot for the 

linear model (in Figure 5.5(b)) no longer exists in Figure 6.4(b). In the BC class range 

(γF ≤ π), the plots in Figures 5.5(b) and 6.4(b) for the two models are similar having a 

valley that is parallel to the FPP in the saturation range. This is not surprising as the 

plots in Figures 5.5(a) and 6.4(a) become similar β ≤ π/2 as α increases above zero. 

However, for the square law model, instead of having a ledge naming through the AB 

class range, as in Figure 5.5(b), there is a deep valley that is a continuation of the 

class BC valley. The fact that F3 surfaces for both models are crossed by a deep 

continuous valley is interesting and will be discussed in section 7.2.2.  

6.2.4. Gain and Efficiency 

PA gain, as defined in (5.27) and using the F1 expression based on (6.5) as 

discussed in section 6.2.1, is shown in Figure 6.5. Above the FPP, the gain reduces as 

does that in Figure 5.6 for the linear model. In contract to the linear model, the gain 

falls in R0 region for the square law model when γF < 2π. 
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Figure 6.5 Gain versus input signal amplitude Gv  and FPCA γF. 

 

 
Figure 6.6 Efficiency versus Gv  and FPCA γF, (a) 3-D plot; (b) contour plot.  
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The efficiency for the square law model, as defined in (5.33), and using F0 and 

F1 expressions derived in section 6.2.1, is shown in Figure 6.6(a). This appears to be 

similar to that for the linear model in Figure 6.6(a), except that efficiency falls more 

rapidly with reducing Gv  for all classes. As for the linear device model, the efficiency 

has a maximum with respect to Gv . The path of the maximum is shown more clearly 

in contour plot of Figure 6.6(b). 

6.2.5. Power Sweeps  

For the square law device model, 3-D plots of fundamental and 3rd harmonic of 

device output current, gain and efficiency have been given in Figures 6.3(b), 6.4(b), 

6.5 and 6.6(a), respectively. Sweeps of output power, gain and efficiency obtained 

from these 3-D plots are shown in Figures 6.7, 6.8 and 6.9. The γF values for these 

sweeps for the square law model are given in Table 6.2. 

Comparing the output power plots in Figure 6.7 with these for the linear model 

in Figure 5.8, the following statement can be made. Except for Class A, the output 

power at the FPP for the square law model is reduced significantly. In class AB, the 

change from region R0 to R1 is less abrupt, and there is an increase in slope rather 

than reduction in slope. The output power in class BC range of the square law model 

follows the same features as that of the linear model except that gain is reduced more. 

The slope of the gain curve in Class B is 2, showing very nonlinear behaviour. 

Gain sweeps for the square law model in Figure 6.8 shows major differences 

from the linear model results in Figure 5.9. Due to the nonlinearity of the model, 

small signal gain in the class AB range depends on γF, and peaks close to the FPP. 

These differences suggest the model effect on PA performance is significant.  

Table 6.2 values of γF for PA performance power sweeps in Figures 6.7 − 6.10. 

Class γF (π) 
A 2 

AB1 1.2 
AB2 1.05 

B 1 
BC1 0.9 
BC2 0.8 
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Figure 6.7 Predicted power sweeps from Figure 6.3 (b), (a) AB class range; (b) Class BC 
range. 

 
Figure 6.8 Predicted gain sweeps from Figure 6.5 (a), (a) AB class range, (b) BC class 
range. 

PA efficiency sweeps for the square law model in Figure 6.9, show the 

efficiency for Class A at the FPP point has increased from 50% to 68%. The 

efficiency for Class B at the FPP point is less changed at 74%. Maximum efficiency 

at the FPP now occurs for Class AB1, rather than for Class B in Figure 5.9. Class A 

now has the highest efficiency in the low power range. Class AB and B are better in 

the high power range. 

The 3-D plot of 3rd order PA distortion using the square law model was shown 

in Figure 6.4(b). Distortion sweeps obtained from this plot are shown in Figure 6.10. 

Compared with the linear model curves in Figure 5.11, the ledges in the class AB 
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Figure 6.9 Predicted efficiency sweeps from Figure 6.6 (a), (a) AB class range, (b) BC 
class range. 

 
Figure 6.10 Predicted IMD power sweeps from Figure 6.4 (b), (a) AB class range, (b) 
BC class range. 

range have become deep nulls that are above the FPP. For class B, as expected, there 

is now no sweet spot, but instead a deep null above the FPP, and a region of very high 

distortion in the quasi-linear range. Generally, distortion levels for the square law 

model are very high compared to those for the linear model in Figure 5.11.    

6.3. Assessment of the Linear and Square Law Device Models  

As mentioned in Chapter 2, IMD3 power sweep for PAs in the literature exhibit
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a wide variety of behaviour patterns. In the BC class range (0 < γF ≤ π), IMD3-power 

sweeps for practical PAs exhibit a single null. The single null was the form of 

distortion-power sweep predicted due to drain current clipping in Figure 5.11(b). For 

the square law device model, it can be seen from Figure 6.10(b) that, in this class 

range, the form of the distortion power sweep is similar. Thus, in the BC class range, 

the change of device model from linear to square law does not change the general 

form of the predicted distortion-power sweep. In the AB class range (π ≤ γF ≤ 2π), 

distortion-power sweeps for real PAs exhibit a wide variety of forms including the 

double null, the single null and the ledge. The linear model was able to predict the 

ledge but neither the double null nor the single null (Figure 5.11). However, it can 

now be seen from Figure 6.10 that the square law model only predicts a single null in 

the class AB range and neither the ledge nor the double null. Thus, neither of the two 

simple models that has been considered so far can predict observed distortion sweeps 

for real PAs in the AB class range. It can be concluded that the form of the distortion-

power sweep for a PA in the AB class range is very sensitive to device model, which 

is not the case for the BC class range. In order to correctly predict the distortion 

characteristics of real PAs, we will need to study in detail the relationship between 

the distortion surfaces obtained using two simple models in Figures 5.5(b) and 6.4(b) 

and this will lead us to consider, in the next chapter, a more flexible form of device 

model. 

6.4. Conclusion 

In this chapter, the square law device model and a full analysis of PA output 

power, efficiency, gain and 3rd order distortion obtained using it were presented. 

The difference between DC components of output current of the linear and 

square law models, shown as a 3-D plot versus Gv  and γF, demonstrated the effect of 

the model on performance of PAs. For fundamental component, the slope of output 

power versus input power is rather different, except for Class A case. The case of 

Class B showed nonlinearity that decreases output power in low power range. For two 

Class AB cases, the gain expansion effect has been presented after the linear increase 
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range and below saturation. Therefore, the efficiency sweeps for two models present 

distinctive features.   

However, the most significant result was the distortion performance comparison 

for two models. For the linear model, there is a deep null for class B for the quasi-

linear range, a ledge for class AB and a valley in the BC class range. For the square 

law model, the valley in the 3rd order distortion extends from the BC class range 

straight across into the class AB range rather than making a turn into Class B. The 

common feature between the two models is that the valley appears in the 3rd order 

distortion surface. But the difference is the position of valley, especially in the class 

AB range. It would illustrate an important result that the clipping results in the 

appearance of the valley, whereas the model transfer characteristic determines the 

path of the valley. The mechanism understanding the different performance of two 

models will be presented in the next chapter. 

However, the linear and square law models are two extreme cases of device 

transfer characteristics. They cannot realistically represent the characteristics of real 

devices. In next chapter, more flexible models will be investigated, which can present 

the features of real devices. Because 3rd order distortion characteristics have shown 

significant change due to the different device transfer characteristics, the investigation 

will be focused on 3rd order distortion in the following chapter. 

 

 
 
 
 
 



 

  
 
  

CHAPTER 7                                                                                      

TRANSITIONAL DEVICE MODELS AND PA 

PERFORMANCE 

7.1. Introduction 

In Chapters 5 and 6, the PA device current clipping theory of Chapter 3 and 4 

was used to derive the key PA performance parameters that are determined by device 

output current clipping, namely, output power, gain, efficiency and 3rd order 

distortion, for two types of device model, the linear one and the square law. All PA 

performance parameters have been plotted as 3-D surfaces as a function of FPCA γF, 

that defines PA class, and input signal amplitude, Gv . The surfaces for output power, 

efficiency and gain have similar general forms for the two device models, and differ 

only in the degree of slope of the surface. For 3rd order distortion, on the other hand, 

the situation is different. Although both models produce a very high level of 

distortion in the double and single clipping regions, R2 and R1, which is crossed by a 

deep valley, the valley path is quite different for the two models. For the linear model, 

the valley is ‘L’-shaped, but for the square law model the valley traverses the surface 

in a smooth curve. This difference leads to quite different distortion-power sweep 

predictions for the two models. 

The ‘L’-shaped valley obtained for the linear model is quite similar to that 

observed in the literature for a LDMOS device whose transfer characteristic is 
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approximately linear [86]. But most PA devices, including those based on CMOS and 

GaAs technologies, have quite different distortion-power sweeps that exhibit a variety 

of features depending on class, including single null, double null and ledge. This wide 

variety of distortion characteristics could be predicted from the 3-D distortion surface 

for neither the linear nor the square law model. 

The purpose of this chapter is to try to derive a device model that can predict 

the wide variety of distortion characteristics of real PAs. This task is begun by trying 

to explain the reason behind the very great change in distortion characteristics 

obtained for the linear and for the square law device model.    

7.2. Relationship between Linear and Square Law Model   

Distortion Surfaces 

7.2.1. Objective  

3-D plots of 3rd order PA distortion for the linear and square law device models 

that are now studied were derived in chapters 5 and 6 as Figures 5.5(b) and 6.4(b), 

respectively, and they are shown again in Figure 7.1(a) and (b). In both cases, a deep 

valley crosses the entire surface. The path of the valley is similar in the BC class 

range. But the path of the valley is quite different for Class B and in the AB class 

range. The path of a valley is shown most clearly by contour plots and contour plots 

   



CHAPTER 7 Transitional Device Models and PA                                                           103 

  
 
  

 
Figure 7.1 3rd order distortion 3-D plots for (a) linear device model, (b) square law 
model. 

 
Figure 7.2 3rd order distortion contour plots for (a) linear device model; (b) square law 
model. 

corresponding to the 3-D plots in Figure 7.1(a) and (b) are shown in Figure 7.2(a) and 

(b), respectively. In order to try to understand why the position of the valley has 

changed in the way shown clearly in Figure 7.2, some general properties of such 

valleys will be derived.   

7.2.2. Principle of Valley Continuity 

On each side of a deep valley in a distortion plot that is expressed in dB units, 

the original Fourier coefficient must have opposite signs since, in the valley, the 
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Figure 7.3 Permissible and impermissible conditions on a deep valley, (a) permissible; (b) 
and (c) impermissible. 

Fourier series coefficient is zero. Thus valleys divide such plots into regions with 

opposite signs. The need for each region to have a unique sign imposes some general 

constraints on the path of a valley. 

1) A valley may cross an entire surface dividing it into two regions where the 

Fourier series coefficient has opposite signs, as shown in Figure 7.3(a). 

2) There are no restrictions, in general, on the way in which such a valley may 

turn or bend. 

3) A valley can never terminate in the middle of a surface because then no 

unique set of suitable signs exists, as illustrated in Figure 7.3(b). A valley can 

never split into two valleys, as is illustrated in Figure 7.3(c), for the same 

reason. 

The fact, that in both contour plots in Figure 7.2, the valley crosses the entire surface, 

is consistent with the principle of valley continuity. Understanding the effect of 

device model on distortion is approached by introducing a new definition. 

7.2.3. Idea of Effective Threshold Voltage 

The transfer characteristics for the linear and square law device models that 

were shown in Chapter 6 as Figure 6.1 are shown again in Figure 7.4. For the linear 

model, the on-set of conduction at the cut-off point (vG = VT) is abrupt, but for the 

square law model, it is gradual. For a square law model device operated with large 

signal amplitudes, the curved characteristic that occurs around iD = 0 must be less 

significant in determining iD than the shape of the curve for higher values of iD. Hence, 

PA behaviour with a square law device model may be approximated by that for a 



CHAPTER 7 Transitional Device Models and PA                                                           105 

  
 
  

 

Figure 7.4 Explanation of effective threshold voltage, with transfer characteristics for 
linear device model ‘L’ and square law model ‘SL’.  

linear model with an effective threshold voltage VTE that is significantly higher than 

the actual VT, as shown in Figure 7.4. 

The idea of extrapolating the high − iD part of the iD curve in this way is not a 

precise concept. In order to approximately match large iD behaviour for the square 

law model, it would strictly be necessary to increase G in the linear model equation 

(5.14) as well as increase VT, as Figure 7.4 shows that the gradient of the model 

transfer characteristic is increased. Thus the concept of effective threshold voltage is 

rather empirical and is based on the idea that the effect of shift of VT on distortion, 

which effects clipping behaviour, is the most significant factor. The usefulness of the 

concept will be shown in due course.  

By using the concept of effective threshold voltage, the effect of a nonlinear 

device model on clipping and conduction angle can be approximately evaluated. 

From (3.8), increase in VT to VTE will reduce cosβ. This corresponds to an increase in 

the effective value of β. It can be shown from (3.9) that this causes a reduction in 

effective conduction angle γ. The result that the square law model reduces the 

effective conduction angle may be reached in an alternative way by considering the 

idea of effective conduction angle more directly, in the context of the device current 

waveform. 
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Figure 7.5 Relationship between effective conduction angle (ECA) and conduction angle 
(CA) showing device current waveforms for linear (L) and square law (SL) device 
models. 

7.2.4. Idea of Effective Conduction Angle 

Figure 7.5 shows a sketch of two device output current waveforms, one for a 

linear device model and one for a square law model. The conduction angles for both 

waveforms are the same, so iD reaches zero at the same time instants. However, in the 

case of the square law model, the current pulse is significantly narrower. In an 

informal way, the main part of the pulse may be extrapolated to the φ axis, in order to 

define an effective conduction angle, ECA. For the square law model, ECA is always 

less than CA. Thus, the conclusion is the same as that reached in section 7.2.3 using 

the concept of effective threshold voltage, namely that use of the square law device 

model reduces effective conduction angle γ below the actual conduction angle. 

7.2.5. Significance of Change in Effective Conduction Angle 

The task is best approached through the contour plot of constant values of 

conduction angle γ versus input signal amplitude Gv  and FPCA γF which was derived 

in chapter 4 (section 4.7) as Figure 4.6, and is shown again in Figure 7.6. 

The clear distinction made between γF that defines PA class, and γ for a given 

class (value of γF) that varies with Gv , is key to the approach developed in this thesis. 

In general, for any class of PA, i.e. value of γF, γ is equal to γF only at the FPP. The 
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Figure 7.6 Contours of constant conduction angle (γ) versus input signal amplitude Gv  
and FPCA γF. 

value of γ varies with Gv  above the FPP in the R2 region and below the FPP in the R1 

region; the only exception is Class B, for which γ = γF = π for all input signal 

amplitudes. Thus, the effect of using the square law device model in reducing the 

effective conduction angle, as was shown in the previous subsections, cannot be 

simplistically interpreted simply as a change in the class of a PA. It must be 

interpreted within the framework of the constant γ contours in Figure 7.6. 

Consider now a 3-D plot of some PA performance parameter, such as distortion, 

versus input signal amplitude Gv  and FPCA γF when a linear device model is assumed. 

Consider further, a feature of the PA performance surface that occurs for particular 

values of Gv  and γF. From the contour plot in Figure 7.6, the value of γ at the values 

of Gv  and γF corresponding to that feature may be obtained. If now a square law 

model is assumed that reduces the effective value of γ, then the feature must now 

occur at a point to the right of the original point on a new γ contour for a higher value 

of γ such that the reduction of effective γ due to the square law model yields the 
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original γ value. This approach can now be applied in order to explore the relationship 

between the distortion surface in Figures 7.1(a) and (b). 

7.2.6. Relationship between Distortion Surfaces              

Consider the Class B part of the valley in the distortion contour plot of Figure 

7.2(a) for the linear device model. We showed in section 5.3.4 that the class B valley 

in Figure 7.2(a) follows the γ = π contour in Figure 7.6 in the quasi-linear region, i.e. 

up to the FPP. Consider now the effect of introducing a nonlinear device model, the 

square law model. 

From the argument in section 7.2.5, we would expect the same feature to occur, 

but for a higher value of conduction angle γ. Therefore the valley should now follow a 

contour for γ > π in Figure 7.6. Thus it should rotate clockwise and become curved. In 

the limit of extreme non-linearity, the valley would end up following the γ = 2π 

contour. We can see from Figures 7.6 and 4.3(b) that the valley would then be 

following the boundary between the R1 and R0 regions. Since there is no distortion in 

the R0 region for either model (see Figure 7.2), at that point the valley will have 

effectively disappeared into the R0 region, where there is no distortion.  

Consider now the class BC part of the valley in Figure 7.2(a). The principle of 

valley continuity of section 7.2.2 requires that this part of the valley cannot terminate 

in the middle of a surface. Therefore it must extend to keep its connection with the 

rotated class B valley. The result is that, for a highly nonlinear model, the class BC 

valley must extend right across the surface. The rotation and curving of the class B 

part of the valley until it disappears into the no-distortion R0 region and the extension 

of the class BC part of the valley as described would lead precisely to the surface 

features in Figure 7.2(b). 

The relationship between the 3-D distortion surfaces obtained with the linear 

and square law models has been explained in general terms by introducing the 

concepts of effective threshold voltage and effective conduction angle. Although this 

is a contribution to general understanding, it is necessary to remember what was 

shown in Chapters 5 and 6, that neither of these distortion plots can predict the 

distortion-power sweeps of real PAs. Next, the ideas that have been introduced will 
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Figure 7.7 Transfer characteristics for linear device model ‘L’, square law model ‘SL’ 
and transitional model ‘T’.  

be developed further in order to try to arrive at an idea for a type of model that can 

predict the distortion behaviour of real PAs. 

7.3. Idea of Transitional Device Model 

Consider a  general kind of device model 9whose transfer characteristic lies 

between those for the linear and square law models, as exemplified by curve ‘T’ in 

Figure 7.7, where ‘T’ denotes transitional model. Because the effective threshold 

voltage for the transitional model lies between VT and VTE, the reduction of the 

effective value of γ due to model non-linearity will be less severe than that for the 

square law model. Therefore the class B part of the distortion valley would be 

expected to not follow the γ = 2π contour in Figure 7.6, but rather to follow an 

intermediate curve, such as that for γ = 7π/6 or 4π/3.  

The shape of the whole distortion valley expected, including the extension of 

the class BC valley to meet up with the rotated class B valley, as required by the 

                                                 
9 The square law model is normally inaccurate, expecially for short-channel FET in high-frequency. In   
[77], reducing power of the Q-law model from 2 to 1.7 has been demonstrated to describe second and 
third order derivatives more realistically.  
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Figure 7.8 Sketch of rotated valley and slices for distortion sweeps, (a) division of AB 
class range; (b) sub-division of AB( B ) class range. 

principle of valley continuity, is sketched in Figure 7.8(a). In the following section, 

the implications for distortion sweeps of the rotated ‘L’-shaped valley in Figure 7.8(a) 

will be fully explored. But it can be noted already, that a power sweep for the γF 

values γF2 and γF3 in Figure 7.8(a) will certainly cross the deep valley twice and 

therefore yield the double null which is frequently observed in the distortion 

characteristic of real PAs operating in class AB, and which cannot be obtained from 

the linear and square law model distortion surfaces in Figure 7.1. 
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7.4. Sub-divisions of the AB Class Range 

7.4.1. Principal Sub-division 

In section 3.2.4, the total range of PA class, from γF = 0 (limit case of Class C) 

to γF = 2π (Class A) was subdivided into the AB and BC class ranges, based on 

different clipping behaviour. Based on the hypothesis of the rotation of the ‘L’-

shaped valley, as sketched in Figure 7.8(a) and which will be verified in later sub-

sections of this chapter, it is now possible to make a further sub-division within the 

AB class range. 

First, the value of γF corresponding to the ‘corner’ of the ‘L’-shaped valley in 

Figure 7.8(a) is termed a transition FPCA γFT1. It provides a natural way of sub-

dividing the AB class range that is mathematically precise and has tremendous 

practical engineering significance. The parts of the AB class range to the left and right 

of γFT1 are denoted AB(B) and AB( B ) class ranges, respectively as indicated in 

Figure 7.8(a). AB(B) denotes part of AB class range adjacent to Class B and AB( B ) 

denotes part of AB class range away from Class B. Superimposed on the sketch of the 

rotated valley in Figure 7.8(a) are lines representing distortion-power sweeps for 

different values of γF in the AB(B) class range.  

The lower limit of the AB(B) class range is for γF = π (class B). For this value 

of γF, there is a null in the saturation region for high input power. For lower power, 

the valley becomes parallel to the Gv  axis, causing a sweet spot, but for very low 

input power only.  

The upper limit of the AB(B) class range, γF = γFT1, is characterised by a single 

null, which is the convergence in the limit of two nulls that come from the class B and 

BC parts of the rotated valley. At this precise point, the direction of the valley 

becomes parallel to the Gv  axis as the valley turns. Therefore, this deep null is 

expected to be unusually wide, and it will be referred to as the wide null. Each side of 

the wide null, the original F3 function has the same sign.  

For the range between γF = π and γF = γFT1, the ‘L’-shaped valley is crossed 

twice in distortion sweeps and that gives rise to two deep nulls. The spacing between 

the nulls reduces as γF increases in this range. For example, choosing γF in Figure 
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7.8(a) to be γF2 and γF3 will give rise to double nulls, with wide and narrow input 

power spacing, respectively. 

7.4.2. Subdivision of AB( B ) Class Range     

Consider Figure 7.8(b) that shows the AB( B ) class range in Figure 7.8(a) in 

more detail. It has been shows that there is a deep null in the distortion sweep at the 

transition point γF = γFT1. For distortion-power sweeps in the part of the AB( B ) region 

close to γFT1, the null at γFT1 must produce a minimum. This minimum cannot be a 

deep minimum, because the deep valley turns back on itself at γF = γFT1 and does not 

exist for γF > γFT1, as has been explained. The feature that occupies the part of the 

AB( B ) range close to γF = γFT1 is referred to as a shallow valley. The part of the 

AB( B ) range close to γF = γFT1 where there is a shallow valley is denoted the AB(AB) 

class range. As γF increases above γFT1, the depth of the shallow valley will gradually 

reduce. The signs of F3 each side of this shallow valley are the same.  

In the part of the AB ( B ) class range close to γF = 2π (Class A), there must be a 

ledge, as is the case for the linear model and is visible in Figure 7.2(a). This part of 

the AB ( B ) class range is denoted the AB(A) class range, as shown in Figure 7.8(b). 

Hence, the AB ( B ) class range may be divided into sub-ranges AB(AB) and 

AB(A), according to whether there is a shallow null or a ledge, respectively. The 

dividing point between the two sub-ranges is denoted a second transition FPCA, γFT2, 

as indicated in Figure 7.8(b). For γF ≤ γFT2, where there is a shallow valley, the slope 

of the distortion surface with respect to Gv  suffers a change in sign. For γF ≥ γFT2, 

there is no such change of sign. The transition point γFT2 may thus be precisely 

defined, mathematically. The subdivision of the AB ( B ) class range into regions of 

shallow valley and ledge is obviously of considerable practical engineering 

significance. 

Thus, it can be seen that the rotated ‘L’-shaped valley concept could in 

principle, predict the wide variety of IMD3-power sweep types that are observed in 

practical PAs in the class AB region, including the double null, single deep null, 

single shallow null and ledge. The following sections will introduce some examples 

of transitional device models and derive the distortion performance obtained from 

them in order to test the speculative ideas and concepts that have been proposed. 



CHAPTER 7 Transitional Device Models and PA                                                           113 

  
 
  

7.5. Transitional Device Models 

7.5.1. Q – Law Model  

The Q-law model is given by  

 ( )Q
D G Ti K v V= −  (7.1) 

The Q-law model has been used as a starting point from which advanced models for 

GaAs MESFETs have been developed [92]. Applying the same normalisation method 

for iD and vG as that used for the linear and square law models in chapters 5 and 6, iD 

is set to be 2A when vG is VT + 2V. Then, in (7.1), K = 2(1−Q) AV−Q. Thus the 

normalised form of (7.1) is 

  ( )12
QQ

D G Ti v V−= −  (7.2) 

When the transition parameter Q is 1, the expression is identical to that for the linear 

model in (5.15). When Q is 2, it becomes the square law expression of (6.2). When Q 

lies between 1 and 2, a transitional transfer characteristic between linear and square 

law forms is expected.   

7.5.2. Velocity Saturation Model  

The velocity saturation model is given by   

 
( )

( )

2

1
G T

D
G T

v V
i K

v Vθ

−
=

+ −
 (7.3) 

This form of model is commonly used to represent the effect of carrier velocity 

saturation in a device, in which case θ is termed the velocity saturation parameter [93]. 

Normalising iD to be 2A when vG is VT + 2V, then, in (7.3), K = θ + 1/2 AV−2. Thus 

the normalised form of (7.3) is 
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v V
i

v V
θ

θ

−
= +

+ −
 (7.4) 

When the transition parameter θ approaches infinity, the model approaches the linear 

model of (5.15) and when θ equals zero, the model becomes the square law model of 

(6.2). Note that θ in (7.4) is not necessarily used to represent the velocity saturation 

effect in a device. It is now regarded simply as a transition parameter in the model 

equation. 

7.5.3. Comparison of Transitional Models 

Plots of iD versus vG for the Q-law model from (7.2) and for the velocity 

saturation model from (7.4) are given in Figures 7.9(a) and (b), respectively. The 

 
Figure 7.9 Transfer characteristics for transitional models, (a) Q-law model, (b) velocity 
saturation model. 
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range of Q-values and θ-values used is stated in the figure. The limiting cases of the 

linear model (Q = 1, θ → ∞) and square law model (Q = 2, θ = 0) are included, 

exactly or as close approximations. 

It can be seen from Figure 7.9 that both transitional models produce a smooth 

curve that can change in a continuous fashion between the linear and square law 

curves. The curves in Figure 7.9 may be linearly extrapolated, in the way shown in 

Figure 7.4, and this will lead to a wide range of values of effective threshold voltage, 

VTE. Thus both models appear to satisfy the requirements for a transitional model, as 

discussed in section 7.3 and sketched in Figure 7.7. 

However, there are some differences between the sets of curves for the two 

models in Figures 7.9(a) and (b) that follow from their defining expressions. In the 

limiting case Q = 1 and θ → ∞, both models give a linear relationship between vG and 

iD. However, if we exclude the linear case, i.e. applying restrictions Q > 1 and θ < ∞, 

(7.4) shows that the relationship between vG and iD for the velocity saturation model 

 
Figure 7.10 Comparison of transitional models for Q = 1.45 (−−) and θ = 0.30 (- -), (a) iD, 
(b) first derivative, (c) second derivative, (d) third derivative. 
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always tends towards a linear one for large vG, which is not the case for the Q-law 

model of (7.2). This effect can be observed in Figure 7.9, by taking a pair of Q and θ 

values that give roughly the same transitional curve overall, such as Q = 1.4 and θ = 

0.3. For this case, the linearizing effect in the upper half of the curve can be clearly 

seen in Figure 7.9(b), whereas that part of the corresponding curve in Figure 7.9(a) is 

more curved. Thus although both models satisfy the requirement of being transitional 

models, they also do have individual features. 

More precise comparison between the Q-law and velocity saturation model 

transfer characteristics in Figure 7.9 may be made by plotting curves for particular Q 

and θ values on the same graph and also by comparing their small-signal bias-

dependent derivatives, as shown in Figures 7.10 − 7.12. Since both models have 

derivatives with step or spike discontinuities for vG = VT and for vG = vGL, only the 

intermediate range VT < vG < vGL is plotted. In Figures 7.10 and 7.11, a value for the 

transition parameter θ of 0.3 was set, corresponding to the middle of the transition 

 
Figure 7.11 Comparison of transitional models for Q = 1.58 (−−) and θ = 0.30 (- -), (a) iD, 
(b) first derivative, (c) second derivative, (d) third derivative. 
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Figure 7.12 Comparison of transitional models for Q = 1.8  (−−) and θ = 0.05 (- -), (a) iD, 
(b) first order derivative, (c) second order derivative, (d) third order derivative. 

range in Figure 7.9(b), and two alternative Q-values of 1.45 and 1.58, respectively, 

were chosen. It can be seen from Figure 7.10 that, for Q = 1.45, the iD values from the 

two models agree well at moderate iD values but not for low iD values. For Q = 1.58, 

it is clear from Figure 7.11 that the model iD values agree well for low iD values. 

However, whether the fit of iD is good at low or at moderate iD values, the small 

signal bias-dependent derivatives for the two models differ considerably, especially 

the 3rd derivative. This point is emphasised further in Figure 7.12, which shows the 

comparison for a θ value of 0.05, quite close to square law. It can be seen that choice 

of Q = 1.8 gives a good fit of iD for all iD values. However, in spite of this, there are 

considerable differences in the 3rd derivatives. 

It is clear from Figures 7.10 and 7.11, that for θ = 0.3, a choice of Q = 1.45 

(Figure 7.10) would lead to much closer values of effective threshold voltage for the 

two models than Q = 1.58 (Figure 7.11), since effective threshold voltage is governed 
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by moderate and high iD values, and is relatively independent of the shape of the 

curve for low values of iD. Figure 7.12 shows that for θ = 0.05, the choice of Q = 1.8, 

that provides close iD matching at all iD levels, will give good matching of effective 

threshold voltages also. 

These observations suggest that models with the same effective threshold 

voltages may have transfer characteristics that are not particularly well matched 

around the cut-off point. They also may have quite different small signal bias-

dependent 3rd derivative characteristics.   

7.5.4. Fourier series Coefficients for Transitional Models 

The 3rd order Fourier series coefficients F3 of the drain current waveforms for 

the two transitional models can be derived by substituting (7.2) and (7.4) into the 

integral expression I3 in (5.13) with k = 3, which in turn is substituted into (5.12). 

However, in contrast with the cases of the linear and square law models considered in 

Chapters 5 and 6, the integrals I3 obtained from both (7.2) and (7.4) do not have 

closed-form solutions. Therefore, numerical integration using MATLAB is employed 

for these transitional models. For every point in the Gv  and γF space, one period of the 

drain current waveform iD as a function of φ = ωot is evaluated and the Fourier series 

coefficient determined numerically. The MATLAB program used to accomplish this 

task is the same program as that used to verify the analytically derived Fourier 

coefficients in Chapters 5 and 6. 

7.6. Examples of 3-D Distortion Plots  

Examples of 3-D PA 3rd order distortion plots using transitional device models, 

obtained as described above, are given in Figures 7.13 and 7.14 for the Q-law and 

velocity saturation models, respectively. The curves in Figures 7.13(b) and 7.14(b) 

are for Q = 1.8 and θ = 0.05, respectively, and are therefore towards the square law 

end of the transition range (for square law characteristic, Q = 2 and θ = 0). The curves 

in Figures 7.13(a) and 7.14(a) are for Q = 1.45 and θ = 0.3, respectively, and are close 

to the middle of the model transition range, as can be seen from the model transfer 
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characteristics in Figure 7.9. The reason for the choice of these precise values for Q 

and θ will be explained in section 7.7.  

Some important conclusions can be drawn from the 3-D distortion plots in 

Figures 7.13 and 7.14. The hypothesis in section 7.3, using the concepts of effective 

threshold voltage and effective conduction angle that a transitional model will rotate 

and make curved the class B valley, of the linear model shown in Figure 7.1(a), as 

predicted, is clearly shown to be true. Secondly, the amount of rotation and curvature 

increases for models that are closer to the square law model, as is the case in Figures 

7.13(b) and 7.14(b). Thirdly, the extension of the class BC part of the valley to meet 

up with the rotated and curved class B part of the valley, as required by the principle

   

 
Figure 7.13 3-D plot of 3rd order distortion for the Q-law transitional model, (a) Q = 1.45 
and (b) Q = 1.8. 
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Figure 7.14 3-D plot of 3rd order distortion for the velocity saturation transitional 
model, (a) θ = 0.3 and (b) θ = 0.05. 

of valley continuity of section 7.2.2, is clearly confirmed. Fourthly, we can see that 

the effect on the valley in Figures 7.13(a) and 7.14(a) is similar. Also, the effect in 

Figures 7.13(b) and 7.14(b) is similar. Note that the transfer characteristic and 

derivatives of the models used in Figures 7.13(a) and 7.14(a) are given in Figure 7.10 

and those used in Figures 7.13(b) and 7.14(b) in Figure 7.12. We did note in section 

7.5.3 that the effective threshold voltages for the models in Figure 7.10 were similar 

and those for the models in Figure 7.12 were similar. However, the corresponding 

models have very different 3rd derivatives and, in Figure 7.10, the model transfer 

characteristics differ considerably near cut-off.  These considerations suggest that the 
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effective threshold voltage of a device is a more important factor affecting PA 

distortion than the precise form of the small signal bias-dependent 3rd derivatives or 

the precise shape of the transfer characteristic near cut-off. 

 Finally, it can be observed from Figures 7.13 and 7.14 that distortion is not 

zero in the R0 region, where there is no clipping. This is because the transitional 

model equations, (7.2) and (7.4), unlike the equations for the linear and square law 

models, (5.15) and (6.2), have 3rd derivatives that, in general, are not zero. However, 

Figures 7.13 and 7.14 show that distortion due to this effect is relatively small, and 

that distortion is principally determined by the high levels of distortion in the R1 and 

R2 regions of the Gv  − γF plane that are due to clipping.   

7.7. Examples of Distortion Contour Plots 

Contour plots show the path of a deep valley more clearly than 3-D plots. 

Contour plots corresponding to the 3-D plots of Figures 7.13 and 7.14 are given in 

Figures 7.15 and 7.16, respectively. From these figures, the value of γF that 

corresponds to the ‘corner’ of the valley, denoted γFT1 in Figure 7.8(a), can be 

determined quite precisely. Figures 7.15 and 7.16 reveal the principle that has been 

behind the choice of Q and θ values in Figures 7.13 − 7.16. This is that γFT1 in the 

lower plots of these figures has been set to be 1.5π and in the upper plots, it has been 

set to be 1.2π. 

Since the plots in Figures 7.15(a) and 7.16(a) have the same γFT1 values, and 

those in Figures 7.15(b) and 7.16(b), have the same γFT1 values, then we should 

expect that the upper end-points of the curved and rotated class B parts of the deep 

valleys must occur at the same point in the Gv − γF plane. It can be seen from Figures 

7.15 and 7.16 that this is the case.  

Consider now the lower end-points of these parts of the valleys in Figures 7.15 

and 7.16. It can be seen from Figure 7.6 that, for very small input signal amplitude, 

all of the constant γ contours approach the same limit value, namely γF = π. It follows 

that irrespective of transition model type and the value of the transition parameter, 
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Figure 7.15 Contour plot corresponding to Figure 7.13, (a) Q = 1.45; (b) Q = 1.80. 

 
Figure 7.16 Contour plot corresponding to Figure 7.14, (a) θ = 0.30; (b) θ = 0.05. 

and the effect of these on effective conduction angle, the rotated and curve class B 

part of the deep valley is expected to tend to follow the line γF = π as signal amplitude 

is reduced. The contour plots in Figures 7.15 and 7.16 are consistent with this limit 

case.  

Thus, we confirm that the two end-points of the rotated curved class B part of 

the valley in Figures 7.15(a) and 7.16(a) are the same, and likewise for Figures 7.15(b) 

and 7.16(b). We recall that the device models in Figure 7.10 that produced the 

distortion plots in Figures 7.15(a) and 7.16(a) have similar effective threshold 

voltages. The same comment applies to the models in Figure 7.12 that produced the 
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Figure 7.17 Contour plot of 3rd order distortion for Q-law model with Q = 1.58.               

distortion plots in Figures 7.15(b) and 7.16(b). Thus we see that models with similar 

effective threshold voltages lead to similar γFT1 and similar end points for the curved 

and rotated class B parts of the distortion valley. 

Consider now the model characteristics in Figure 7.11, where Q was raised 

from Q = 1.45 used in Figure 7.10 to Q = 1.58, in order to give best matching of the 

iD curves near the cut-off point, but leading to very different values for effective 

threshold voltage. The distortion contour plot for the Q = 1.58 model is shown in 

Figure 7.17. It can be seen that γFT1 has changed from γFT1 = 1.2π in Figures 7.15(a) 

and 7.16(a) to around 1.4π. Thus is it confirmed that models with dissimilar effective 

threshold voltages lead to end points of the rotated curved Class B part of the 

distortion valley that are also dissimilar. It follows that neither modelling the precise 

shape of the device transfer characteristic in the cut-off region nor matching the small 

signal bias dependent 3rd derivative of current are the most critical factors for 

distortion prediction. Device current clipping is the dominant cause of distortion in 

PAs, and the key device model parameter that governs clipping is effective threshold 

voltage. This has important implications for modelling of devices for distortion 

prediction.  

In spite of the fact that the end-points of the rotated and curved class B part of 

the deep valleys in Figures 7.15(a) and 7.16(a), and in Figures 7.15(b) and 7.16(b), 

are the same, yet the valleys are different. The difference is that the valley paths for 
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the Q-law model in Figure 7.15 are more curved than the corresponding valley paths 

for the velocity saturation model in Figure 7.16. 

The fact that different transition models that produce the same γFT1 have 

different degrees of curvature of the shifted class B part of the deep valley implies 

that the valleys can not simply be following constant γ contours in Figure 7.6. The 

reason that this might be so could be understood as follows. 

Consider the device current waveform for a linear and for a nonlinear model in 

Figure 7.5. Since the difference between the waveforms is due to device nonlinearity, 

it is clear that if the signal amplitude is changed, the degree of nonlinearity of the 

nonlinear model will also change and the effective conduction angle will change too 

with respect to the actual conduction angle. 

The implications of this argument may be understood in Figure 7.6. At high 

signal power close to the FPP, the effective conduction angle for the device output 

current waveform must determine the corner point, γFT1, of the L-shaped valley. 

However, as signal amplitude is reduced, effective conduction angle will change and 

this must change the γ contour that is being followed. Hence, models whose effective 

conduction angles vary with respect to signal amplitude in different ways may have 

rotated valleys in their distortion plots with different degrees of curvature, even 

though their γFT1 values are the same. This has implications for device modelling that 

will be discussed later.    

7.8. Distortion Contour Plots for Complete Range of Transition 

Parameters 

Contour plots of distortion for the Q-law and velocity saturation transitional 

models are given for a wide range of values of transitional parameters in Figures 7.18 

and 7.19. The values used for the transitional parameters are the same as those used 

for the transfer characteristic plots of Figure 7.9. In Figures 7.18 and 7.19, the first 

plot (Figures 7.18(a) and 7.19(a)) is the limiting case where the transitional models 

behave as the linear model and the last plot (Figures 7.18(f) and 7.19(f)) is the other 
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Figure 7.18 Contour plots of 3rd order distortion for the Q-law model versus FPCA and 

input signal amplitude, (a)-(f), Q = 1, 1.2, 1.4, 1.6, 1.8, 2. 

 

limiting case where they behave as the square law model. The contour plots in 

Figures 7.18 and 7.19 show a number of things. 

Firstly, the theory presented in section 7.2 to explain the relationship between 

the linear and square law model distortion plots in Figure 7.2 is confirmed. Figures 

7.18 and 7.19 make it clear beyond question that the class B part of the deep valley, 

that is parallel to the Gv  axis for the linear model in Figure 7.2(a), progressively 
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Figure 7.19 Contour plots of 3rd order distortion for the velocity saturation model 
versus FPCA and input signal amplitude. (a)-(f), θ = 39, 1, 0.6, 0.3, 0.06, 0.006. 

rotates clockwise and becomes curved and then eventually disappears into the no-

distortion R0 region when the models become square law in Figure 7.2(b). 

Secondly, the plots in Figures 7.18 and 7.19 show that, whereas the linear and 

square law models produce no 3rd order distortion in the R0 region where there is no 

clipping, this is not the case for the intermediate plots (b) to (e). However, this 

distortion due to the model characteristic is less than the distortion in the R1 and R2 
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regions that is due to clipping. Even using a transitional device model, the primary 

factor causing distortion is device current waveform clipping.  

7.9. Distortion − Power Sweeps 

3rd order distortion power sweeps for a PA may be obtained from a distortion 

surface, as in Figure 7.13, by taking a vertical cross-section, or slice, parallel to the 

Gv  axis, for the corresponding class, or value of γF, as was done is Chapters 5 and 6 

for the linear and square law models. The distortion-power sweeps for the Q-law and 

the velocity saturation transitional device models are given in Figures 7.20 and 7.21, 

respectively.  

The transitional model parameters chosen, Q = 1.4 and θ = 0.3, are in the 

middle of the transition ranges and close to the values used in Figures 7.13 (a), 

7.14(a), 7.15(a) and 7.16(a). The γF values used may be divided into ranges, as shown 

in Table 7.1. The distortion-power sweeps in Figures 7.20 and 7.21 are in three parts, 

(a), (b) and (c), which correspond with the ranges for γF given in Table 7.1; ranges 

Table 7.1 FPCA γF values used for distortion power sweeps using Q-law model in Figure 
7.20 and velocity saturation model in Figure 7.21. 

                                 γF / π Range Curve 
Q-law model Velocity saturation model 

A 2.00 2.00 AB(A) 
AB(A) 1.36 1.34 

AB(AB)1 1.26 1.24 
AB(AB)2 1.20 1.20 AB(AB) 

AB(T1) 1.19 1.18 

AB(B)1 1.13 1.13 
AB(B)2 1.10 1.06 

AB(B) 

B 1.00 1.00 

BC1 0.94 0.94 BC 

 

BC2 0.87 0.86 
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Figure 7.20 Distortion power sweeps for Q-law model with Q = 1.4, (a) AB(A) and 
AB(AB) class ranges; (b) AB(B) class range; (c) BC class range.  

AB(A) and AB(AB) are plotted together. Since the sweeps for Q-law and velocity 

saturation models in Figures 7.20 and 7.21 have many similar features, we first make 

points that apply for both models and discuss differences later. In all sweeps in 

Figures 7.20 and 7.21, the FPP is indicated by the symbol ‘*’. 

Distortion power sweeps for the AB(A) and AB(AB) class ranges are plotted in 

Figures 7.20(a) and 7.21(a) and begin with Class A. For class A, distortion is not zero 

at the FPP and in the R0 region, as it was for the linear and square law models 

(Figures 5.11(a) and 6.9(a)). As described in section 7.4.2 in the AB(A) range there is 

a ledge and in the AB(AB) range there is a shallow null. These two cases are 

exemplified by curves AB(A), AB(AB)1 and AB(AB)2, in Figures 7.20(a) and 

7.21(a), respectively. The second transition point in the AB class range, γFT2 in  
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Figure 7.21 Distortion power sweeps for velocity saturation model with θ = 0.3, (a) 
AB( B ) class ranges; (b) AB(B) class range; (c) BC class range.  

Figure 7.8(b), lies between the AB(A) and AB(AB)1 curves. The last curve in Figures 

7.20(a) and 7.21(a) is the curve for the end of the AB(A) range, AB(T1) and it is 

repeated in Figures 7.20(b) and 7.21(b). 

Distortion power sweeps for the AB(B) class range are given in Figures 7.20(b) 

and 7.21(b). The range starts from γ = γFT1 with curve labelled AB(T1), which marks 

the boundary between the AB(AB) and AB(B) class ranges and which has a wide and 

deep null, as predicted in section 7.4. As γF is reduced from this point, the wide deep 

null splits into two deep nulls whose separation increases; this can be understood by 

looking at Figures 7.8(b), 7.13(a) or 7.15(a). The wide deep null for curve AB(T1) 

can be seen as a merging, that occurs for γF  = γFT1, of the two deep nulls. The end of 

the AB(B) range corresponds to class B which provides a single null at high power.
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We may treat this class as the limiting case of the two deep null situations where the 

lower power null has moved to an input signal power level of zero − see Figures 7.8 

or 7.13. 

The BC class range distortion sweeps are given in Figures 7.20(c) and 7.21(c) 

and include the case of class B. They are quite similar to the corresponding sweeps 

for the linear and square law models in Figures 5.11(b) and 6.9(b), respectively. 

The distortion-power sweeps for the Q-law and velocity saturation device 

models in Figures 7.20 and 7.21 are quite similar and do not show any strong 

differentiating behaviour in the dominant distortion features. However, at low 

distortion levels, there are some differences which are now discussed. 

The low level distortion that occurs in the R0 region where there is no clipping 

is different for the velocity saturation model and for the Q-law model, For example, 

for class A, distortion at the FPP is − 30 dBV for the velocity saturation model 

(Figure 7.21(a)) and is − 37 dBV for the Q-law model (Figure 7.20(a)). Below the 

FPP, the class A distortion curve becomes approximately linear. And the curves for 

other classes in the AB(A) and AB(AB) range become approximately parallel to the 

class A curve, in both Figures 7.20(a) and 7.21(a). Here, in the R0 region, there is no 

clipping and this distortion is entirely due to small-signal model derivatives. However, 

the gradients of the curves differ. For the Q-law model in Figure 7.20(a), it is 5, but 

for the velocity saturation model in Figure 7.21(a), it is 3. The greater steepness of the 

curves for the Q-law model can be clearly seen in the 3-D plots in Figures 7.13(a) and 

7.14(a), where this is seen as an increased slope of the low level planar surface in the 

AB(A) and AB(AB) class ranges. 

However, Figures 7.13(a) and 7.14(a) show that this planar surface leads down 

into a low level valley, or secondary valley, approximately parallel to the γF axis in 

the middle of the R0 region. This secondary valley occurs at different input signal 

amplitude levels for the two models, at − 10 dBV for the Q-law model and at − 15 

dBV for the velocity saturation model. This shows that the slope of the approximately 

planar region above this valley is determined principally by the position of the valley, 

rather than by a particular power dependence on input signal amplitude. It should be 

noted that, although there are these differences in the low level distortion behaviour 

obtained for the two transition models, these levels of distortion are very low. 
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Observable PA distortion behaviour is governed by the principal ‘L’-shaped valley 

that cuts through the R2 and R1 regions. The secondary valley in the R0 region in 

Figures 7.13 and 7.14 has not been observed in practice, probably because the levels 

of the distortion surrounding it are so low. Nevertheless, the difference in the slope of 

the planar surface that leads down to the secondary valley could lead to observable 

effects, as seen in Figures 7.20(a) and 7.21(a). This difference in slope could be a 

factor in choosing one model in preference to another for fitting the distortion 

characteristics of practical PAs. The task of fitting these distortion predictions to the 

characteristics of real PAs will be undertaken in the following chapter. 

7.10.   Conclusion 

In Chapters 5 and 6, 3rd order distortion surfaces, as functions of γF (PA class) 

and input voltage amplitude Gv , have been predicted for the linear and square law 

device models. For both models, the area of high distortion in the double and single 

clipping regions (R2 and R1, respectively) is crossed by a deep valley, but the path of 

valley is quite different for the two models. But slices taken from either of the 3-D 

distortion surfaces cannot predict the distortion power sweeps of real PAs, especially 

the double null in the class AB region. That has led to the aim of this chapter of trying 

to discover a device model that has a distortion surface that can yield the forms of 

distortion power sweep observed in real PAs. 

The aim of this chapter has been met by the identification of a type of device 

model that can predict the distortion power sweeps of real PAs, including the double 

null in the AB range. This model is called a transitional model in that is can be varied, 

by means of a transition parameter, between the abrupt cut-off characteristic of the 

linear model and the smooth cut-off characteristic of the square law model. The two 

examples of transitional models studied in this chapter will be used to fit published 

PA distortion data in the following chapter. In the process of meeting the aims of this 

chapter, a lot has been discovered about the nature of distortion in PAs, and this may 

be summarised as follows. 



CHAPTER 7 Transitional Device Models and PA                                                           132 

  
 
  

The starting point for understanding distortion in PAs is the surface of 3rd order 

distortion versus γF, PA class, and Gv , input voltage amplitude, for the case of the 

linear device model. This distortion surface is cut by the ‘L’-shaped valley which is 

straight and follows the line γF = π in the quasi-linear range and turns to the left at the 

FPP to cross the BC class saturation range in a curve. The resulting power-distortion 

sweeps will give a single deep null in the saturation power range in the BC class 

range, which agrees with published data. However, for Class B, the straight part of 

the valley predicts a no-distortion sweet spot that is not observed in practice. In the 

AB class range, a ledge is predicted throughout the range, whereas, in practice, a 

double null is most often observed. In order to obtain correct distortion predictions, 

the transitional device model is introduced. 

The transitional model has a softer cut-off than the linear model. As a result, the 

part of the transfer characteristic for moderate and high values of output current may 

be extrapolated to the Gv  axis in order to define an effective threshold voltage that is 

always greater than actual threshold voltage. The clipping theory of Chapter 4 shows 

that increase of effective threshold voltage reduces conduction angle, γ. Hence, a 

given distortion feature with a linear model will occur with a transitional model for a 

higher value of γ. A plot in Chapter 4 of constant γ contours in the γF - Gv  plane shows 

that as γ is increased above π, the straight contour for γ = π turns to the right and 

becomes curved. It follows that the straight part of the class B distortion valley, 

obtained with the linear device model, turns to the right and becomes curved with a 

transitional device model. 

The principle of valley continuity, proposed in this chapter, requires that as the 

straight valley turns to the right and curves, the Class BC part of the valley, obtained 

for the linear model, must extend so that the two parts of the valley remain connected. 

The result is that with a transitional device model, the ‘L’-shaped distortion valley 

obtained with the linear model rotates clockwise and curves to the right. The rotation 

of the ‘L’ shaped valley to the right has important consequences. It implies that a 

distortion power sweep can have two deep nulls, which is the type of sweep most 

frequently observed for practical PAs operating in Class AB. 

The rotation of the ‘L’-shaped valley leads to a sub-division of the AB-Class 

range of PA operation depending on type of distortion characteristic. The value of γF 
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that corresponds to the corner of the rotated ‘L’-shaped valley is denoted a transition 

value of γF, γFT1. The first part of the AB class range is from γF = π (Class B) to γF = 

γFT1. In this range, called AB(B), the distortion power sweep will cross the rotated 

valley twice giving rise to two deep nulls in the distortion characteristic. As γF is 

increased above γFT1, there will be a shallow valley, due to proximity to the deep 

valley at γFT1, and as γF is increased, moving away from γFT1, the depth of the valley 

will reduce. A second transition point, γFT2, is the point where there just ceases to be a 

shallow valley. The range γFT2 ≤ γF ≤ γFT1, where there is a shallow valley is denoted 

the AB(AB) class range. Finally, the range from γF = γFT2 to γF = 2π (Class A) is 

called the Class AB(A) range. In this range, the distortion characteristic exhibits a 

ledge feature and there is no change in sign of its gradient. 

Ideas have been proposed that lead to predicted distortion characteristics that 

have the same general from as those observed for practical PAs. Furthermore, a very 

general theory has emerged that can explain the dependence of PA 3rd order distortion 

on input signal amplitude and class, and how this dependence is affected by device 

model. In the next chapter, these ideas are put to the test by carrying out precise 

fitting of the predicted PA performance curves to published performance curves for 

PAs implemented with different technologies.            

 



 

  
 
  

CHAPTER 8                                                                                      

PERFORMANCE PREDICTION AND COMPARISON WITH 

PUBLISHED DATA 

8.1. Introduction 

In order to verify that the device current clipping theory developed in Chapters 

3 and 4 of this thesis is the major factor determining PA performance including 

distortion, performance predictions using the theory with the transitional device 

models of Chapter 7 will be fitted to published PA performance curves.  

This Chapter begins with overview of the published measured and simulated 

performance data for PAs using CMOS, LDMOS and MESFET devices. The 

performance data includes 3rd intermodulation distortion and, in most cases, output 

power. Then the choice of criteria for fitting will be discussed and different styles for 

fitting the performance curves and optimising the device models will be illustrated. 

Finally, performance predictions will be presented and compared with published 

simulation and measurement data for different PA device technologies.   

8.2. Published PA Performance Data 

The published PA performance curves that will be fitted using the transitional 
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models of Chapter 7 were presented in Chapter 2 as Figures 2.19 − 2.22. The data in 

Figures 2.19, 2.20 and 2.21 is measured output power and IMD3 for three different 

technologies, namely CMOS, LDMOS and GaAs MESFET. The data in Figure 2.22 

is IMD3 simulated using harmonic balance for the CMOS PA whose measured data is 

given in Figure 2.19. The bias voltages used for all the published data were stated in 

Table 2.2. 

The simulated and measured data for the CMOS PA in Figures 2.22 and 2.19 

includes four different gate bias conditions; one is class BC (called Class C in [83]), 

two are Class AB (AB− and AB+) and one is Class A. It can be seen from Figures 

2.22(b) and 2.19(b) that the Class AB design with lower bias voltage (AB−) has an 

IMD3 curve with two nulls. From the theory developed in Chapter 7 and illustrated in 

Figure 7.8 (b), it is evident that this design is operating in the AB(B) class range. 

From Figures 2.22(c) and 2.19(c), the class AB design with higher bias voltage (AB+) 

has an IMD3 curve with a ledge; from Figure 7.8(b), it can now be stated that this 

design is operating in the AB(A) class range. 

The measured data for the LDMOS PA in Figure 2.20 includes four different 

gate bias conditions; one is a Class BC, two are Class AB (AB− and AB+) and one is 

Class A, as for the CMOS PA. However, Figures 2.20(b) and (c) show that in both 

cases of Class AB, there are two deep nulls. From the theory in Chapter 7, they are 

therefore both operating in the AB(B) Class range. The spacing of the nulls is much 

less for the case of the higher bias voltage (AB+). 

The measured data for the GaAs MESFET PA in Figure 2.21 includes just two 

gate bias conditions, Class AB and Class B. From Figure 2.21(a) and Figure 7.8(b), it 

is clear that the Class AB case, that has a ledge, is operating in the AB(A) class range. 

In Chapter 4 of this thesis, a strict definition of the class of a PA has been 

proposed based on full power conduction angle, γF. However, as shown in Figures 4.5 

and 4.6, conduction angle γ varies greatly with input signal amplitude, and this means 

that in the literature, there is no accepted strict definition of the class of a PA. 

Therefore, in fitting the published curves, the class quoted in the literature, such as A 

or B, is ignored. For each performance curve, γF is optimised to obtain the best curve 

fit. This actually leads to the determination of the class of the PA according to the 

strict definition in this thesis. 



CHAPTER 8 Performance Prediction and Comparison with Published Data                    136  

  
 
  

This approach can be justified by comparison of the simulated and measured 

distortion curves for the CMOS PA in Figures 2.22 and 2.19. For the measured Class 

AB− data in Figure 2.19(b), the two nulls are not very deep, and yet it is possible to 

establish the spacing of the nulls to be close to 10 dB. For the simulated Class AB− 

data in Figure 2.22(b), the null spacing is clearly about 15 dB. Again, for the 

simulated class AB− data in Figure 2.22(c), the difference between the distortion on 

the ledge and the maximum limit of distortion is about 20 dB but for the 

corresponding measured data in Figure 2.19(c), this difference is about 35 dB. In 

view of these major differences between measured and simulated IMD3 in [83], it is 

right to make no assumption that the class, as defined in this thesis using γF, is the 

same for the simulated and measured data that is presented as corresponding. 

Furthermore, it will not be assumed in this chapter that the device model that 

best fits the measured and simulated CMOS data is the same. The device model will 

be optimised against each set of performance data independently and then a 

comparison of the models will be made.  

Note that, in the published PA data for fitting that is available, there is no 

distortion curve that has a shallow valley, as exemplified by curves AB(AB)1 and 

AB(AB)2 in Figures 7.20(a) and 7.21(a), which are for the AB(AB) class range. 

Table 7.1, that shows the data used for the typical distortion curves in Figures 7.20(a) 

and 7.21(a), indicates that the AB(AB) class range covers a range of γF of about 0.25π. 

This range is not unduly narrow and therefore the lack, in the literature, of distortion 

curves showing a single shallow null for this region of PA operation must be 

attributed to co-incidence.      

8.3. A Method for Fitting Model Predictions to Published Data 

8.3.1. Methods of Approach 

Published distortion data for a PA using a particular device, examples of which 

have been shown in Figures 2.19 − 2.22, typically consist of a set of distortion-power 

sweeps, each for a different value of input voltage DC bias, which sets the class of the 

PA. These sweeps could be stood-up vertically and assembled along an axis with a 
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scale of input voltage bias, and then they could be regarded as cross-sections of a 

distortion surface that is plotted against two axes, one of which is PA input voltage 

amplitude and the other is bias voltage, or PA class. In principle, measurements could 

be made to establish the form of the whole of this distortion surface. This would 

describe distortion as a function of input voltage amplitude for any bias that may be 

chosen, i.e. for any class of operation. However, this has never been done because the 

number of measurements needed would be prohibitively high. So we have to work 

with a limited number of cross-sections, or slices, through such a distortion surface, 

as are given in Figures 2.19 − 2.22. 

The prediction of PA 3rd order distortion due to device current clipping, as has 

been proposed in this thesis, leads also to a 3-D plot of distortion. The surface 

depends on the value of the model transition parameter, as seen for example by 

comparing Figures 7.13(a) and (b). The predicted distortion surface also depends on 

the form of the model, but for good models the differences should not be too great, as 

seen for example by comparing the Q-law model in Figure 7.13 with the θ model in 

Figure 7.14. Optimising the form of the model is a very important task in general, but 

in this thesis, only the two transition models introduced in Chapter 7, the Q-law and 

velocity saturation models, will be used, and both will be used for fitting, so it is not 

necessary to consider the form of the model further here. So, as far as these models 

that will be used here are concerned, just the transition parameters of the models (Q 

and θ) must be optimised as part of the process of fitting the model predictions to the 

published data. 

The task of modelling distortion can now be formulated. Ideally, the predicted 

distortion surface should be the best possible fit to the measured distortion surface for 

the whole range of PA class (0 ≤ γF ≤ 2π) and for the range of input voltage amplitude 

that is of interest. Since, in practice, the measured distortion surface is only available 

as sample slices for a few discrete values of PA bias voltage, the best possible 

approach to the ideal is to fit the predicted distortion surface to the available 

distortion power sweeps. If the given sweeps span the whole class range from A to 

BC, then they may be regarded as reasonable samples of the whole distortion surface. 

Thus the variables for the optimisation are the transition parameter of the model and 

the values of γF (or class, according to the formal definition of this thesis) for each 
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given distortion-power sweep. Such a multi-variable optimisation requires a 

numerical method, and this is regarded as outside the scope of this thesis for the 

following reasons: 

1) Fitting to the published PA data to a very high standard, well sufficient to confirm 

the validity of the theory presented, can be performed by a much simpler method, 

as will be shown. 

2) The focus of this thesis is on developing the clipping theory and using it to 

explain observed PA behaviour using two basic transition device models. Detailed 

numerical optimisation is a task for future work. 

3) Detailed numerical optimisation should include a wider range of models than the 

basic ones considered here; this also is outside the scope of the thesis. 

The alternative and simple method of fitting distortion predictions to published 

data consists in using just one of the given distortion-power sweeps in order to 

determine the device model transition parameter. Since the FPCA, γF, for the given 

sweep is not known, this is a 2-variable optimisation. A method of handling this 

without resorting to numerical optimisation will be presented. But first, the choice of 

which of the given distortion-power sweeps to use in order to optimise the transition 

parameter of the device model is considered. 

8.3.2. Choice of Best Distortion Sweep for Simple Method       

Predicted distortion plots generated by the clipping theory of this thesis are for 

normalised PA input voltage and normalised device output current, and 

denormalisation for application to a practical PA requires knowledge of maximum 

device current, effective load resistance at the device output port and average device 

transconductance, as described in Appendix A. Since these parameters are often not 

available in the literature, it is not practical to predict an absolute value of distortion 

or an absolute value of input voltage amplitude for which a particular distortion 

feature occurs. It is necessary, therefore, to use, as criteria for curve fitting, 

differences of distortion levels and differences of PA input voltage amplitude that 

correspond to particular distortion features. We refer to such differences as relative 

fitting criteria. 
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Figure 8.1 Fitting criteria for distortion-power sweeps, (a) Class BC; (b) Class AB(B); (c) 
Class AB(A).   

The published distortion-power sweeps in Figures 2.19 − 2.22 have distinctive 

characteristics. All of the sweeps for class C and class B have a single null (e.g. 

Figures 2.19(a), 2.20(a), 2.21(a) and 2.22(a)). The sweeps for class range AB(B) (e.g. 

Figures 2.19(b), 2.20(b), 2.21(b) and 2.22(b)) have two nulls. The sweep for class 

range AB(A) (e.g. Figures 2.19(c), 2.20(c), 2.21(c) and 2.22(c)) has a ledge and the 

curve for class A (e.g. Figures 2.19(d), 2.20(d), 2.21(d) and 2.22(d)) is monotonic. It 

is now necessary to decide the type of curve that should be used to optimise the 

device model transition parameter. 

First consider the Class BC distortion curve that has a single null. There is just 

one possible relative fitting criterion, and that is the difference between the minimum 
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distortion below the null and the distortion limit for large input voltage, as indicated 

by ∆D1 in the sketch in Figure 8.1(a). 

Now consider the distortion curve, for the Class AB(B) that has two nulls. For 

this type of curve, there are two possible distortion criteria, shown as ∆D2 and ∆D3 in 

Figure 8.1(b). There is also a possible criterion for input voltage amplitude. This is 

the spacing 1Gv∆  between the two nulls, as also illustrated in Figure 8.1(b). 

Next consider the distortion curve for Class AB(A) that has a ledge. Clearly, the 

width of the ledge could be a criterion, as indicated in the sketch in Figure 8.1(c). 

Also, the difference ∆D4 between the distortion on the ledge and the limit of the 

distortion for large input voltage amplitude is also a candidate criterion.  

Consider finally the distortion curve for Class A that is monotonic. The shape 

of the curve is relatively featureless and it is not possible to establish any relative 

criterion, either of distortion or input voltage amplitude.  

The curve types and fitting criteria in Figure 8.1 now can be assessed for 

suitability for determining device model transition parameters. The width of the ledge 

2Gv∆ in Figure 8.1(c) has the problem that width of ledge is difficult to define 

precisely. This excludes the class AB(A) curve as unsuitable. That leaves the Class 

BC and AB(B) curves in Figure 8.1(a) and (b). Since the Class AB(B) type of curve 

in Figure 8.1(b) has three possible relative criteria for fitting and the BC curve has 

only one criterion, the Class AB(B) is preferred. The fit of the predicted distortion to 

the Class AB(B) published data will be used to establish the device model transition 

parameter that is used to model the distortion curves for all other classes as well. As 

mentioned in section 8.3.1, the fitting of the model to one of the given distortion-

power sweeps, now chosen to be the class AB(B) curve, is a 2-variable optimisation 

problem. In obtaining the model transition parameter, Q or θ, the FPCA, γF, for the 

given AB(B) distortion curve is treated as un-known. A method of handling this 

without recourse to numerical optimisation is now discussed. 

8.3.3. A Method for By-Hand Fitting of Distortion Data    

A simple by-hand method of curve fitting is possible when there is a single 

optimisation variable, as then a family of curves for different values of the parameter 
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Figure 8.2 Fitting procedure illustrated for the velocity saturation model, (a) best fitting 
at high power, θ = 0.74; (b) best fitting at low power, θ = 0.36; (c) compromise fitting, θ 
= 0.50.  

may be plotted and the best one chosen. A 2-variable optimisation problem may be 

reduced to a single variable problem if a constraint is introduced. 

Consider now the families of predicted distortion contour plots in Figures 7.18 

and 7.19. For any value of device model transition parameter, Q or θ, in the AB(B) 

class range, where there are two nulls, the FPCA γF has a strong effect on the null 

spacing. If γF = γFT1, then the nulls are co-incident and the spacing is 0 dBV. If γF = π, 

then the lower null is at − ∞ on the dBV scale, i.e. at Gv∆ = 0 V. Hence, the spacing 

between the two deep nulls in the AB(B) class range may be set to any given value by 

means of γF, and, consequently, the fitting criterion ∆vG1 in Figure 8.1(b) may always 

be satisfied exactly. Thus, the satisfaction of this criterion may be built-in, and then, 
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there is left only a single optimisation variable, for which families of curves may be 

plotted and the best one chosen, using the criteria ∆D2 and ∆D3 in Figure 8.1(b). The 

process of optimisation will now be illustrated using an example.  

Figures 8.2(a) − (c) show the curve of Figure 2.22(b), of simulated IMD3 for a 

CMOS PA from [83] in the class AB(B) region, with fits of three different predictions. 

Each fit is obtained with the different pair of θ and γF values given in Table 8.1. In 

Figure 8.2(a), the fit is very good at the higher end of the input power range, above 

the higher null. In Figure 8.2(b), a much better fit is obtained at low power level, 

around the lower null. But the fit at high power levels is not nearly as good as that in 

Figure 8.2(a). In Figure 8.2(c), the fit is a compromise fit that gives the best fit over a 

range of input signal amplitudes. Notice that in all three fits in Figure 8.2, the spacing 

of the nulls is kept constant and matches the spacing for the published curve. Because 

of the difficulty of obtaining data from publications for correctly denormalising the 

predicted curve, the fitting of all curves involves introducing horizontal and vertical 

shifts in order to optimise the fit, and these shifts are given in Table 8.1. 

A process such as that illustrated in Figure 8.2 can be used to determine what is 

regarded as the best fit. That process leads to a value for the device model transition 

parameter, Q or θ, which establishes the device model. Using this model, FPCA γF 

alone is then used to fit the published curves for the given PA device for all other 

classes for which data is provided. Fitting of the published PA data in Figures 2.19 − 

2.22 using the transitional models in Chapter 7 by the simple method of by-hand 

optimisation can now be carried out. 

Table 8.1 Parameters for fitting in Figure 8.2. 

Figure 8.2 θ γF / π ∆D (dB) ∆vG (dBV) 
(a) 0.74 1.05 − 48.0 − 1.30 
(b) 0.50 1.06 − 48.0 − 1.30 
(c) 0.36 1.06 − 52.7 − 1.30 
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Figure 8.3 Velocity saturation model fitting for simulated data for CMOS PA of [83], (a) 
Class BC, (b) Class AB−, (c) Class AB+, (d) Class A. 

8.4. Fitting Simulated Distortion Data for CMOS PA from [83] 

In this section, the simulated IMD3 curves for a CMOS PA from [83], which 

were shown in Figure 2.22, are fitted with curves for predicted 3rd order distortion due 

to device current clipping using the velocity saturation and Q-law device models. The 

fits using these two models are shown in Figures 8.3 and 8.4, respectively. In Figures 

8.3 and 8.4, and in all remaining figures in this chapter, the published data points are 

indicated by symbols ‘o’ and the predicted data by a continuous curve. For each 

predicted curve, the FPP is indicated by the symbol ‘*’. As mentioned is section 8.3, 

the fit to the class AB(B) published curve, in Figures 8.3(b) and 8.4(b), was used to 

define the device model transition parameter; for  other classes, the same model was
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Figure 8.4 Q-law model fitting for simulated data for CMOS PA of [83], (a) Class BC, (b) 
Class AB−, (c) Class AB+, (d) Class A. 

used and only the γF value was altered. As mentioned in section 8.2, it is difficult to 

obtain from publications sufficient data to correctly denormalise the predicted curves. 

Therefore, the predicted curves were subject to shifting vertically and horizontally in 

order to optimise their fit to the published curves. The horizontal and vertical scales 

in Figures 8.3 and 8.4, and in all the remaining figures in this chapter, are the scales 

for the published performance data. Data about the optimisation, including device 

model transition parameter, values of γF and shifts introduced are given in Table 8.2. 

The fits used are ‘compromise fits’ that take into account the whole curve, but 

give rather more weight to the parts of the curve where the distortion is highest. For 

fitting the Class AB(B) curves in Figures 8.3(b) and 8.4(b) that are used to define the 
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Table 8.2 Parameters for fitting simulated data for CMOS PA of [83].  

θ = 0.50 (for Figure 8.3) Q = 1.20 (for Figure 8.4)  
γF / π ∆D(dB)  ∆vG(dB) γF / π ∆D(dB) ∆vG(dB) 

C 0.97 − 48.0 − 1.30 0.93 − 48.0 − 2.20 
AB− 1.06 − 48.0 − 1.30 1.02 − 48.0 − 1.80 
AB+ 1.22 − 47.0 − 1.10 1.18 − 48.0 − 2.20 

A 1.47 − 47.0 − 1.10 1.31 − 46.5 − 2.20 
 

device model, , the predicted curve is chosen to model the spacing of the nulls 

precisely, as outlined in section 8.3.3. 

The predicted curves in Figure 8.3(a) − (c) for the velocity saturation model 

clearly display the distinct curves types observed for the different classes, namely 

single deep null, double null and ledge. In Figure 8.3(d), the predicted curve has a 

small ledge that is not in the published curve in order to optimise the fit. But, 

nevertheless, the curves are very close to each other. At low power levels, where 

device model small-signal derivatives begin to have a significant effect, the predicted 

and published curves in Figure 8.3 do diverge, but it should be observed that the 

distortion power levels where this occurs are very low. For the Class AB(B) case in 

Figure 8.3(b), there is a significant difference between the curves at the FPP. This is 

possibly due to the fact that the device models used in the predictions have abrupt 

knee clipping whereas the real device, and a full model for a real device, has smooth 

knee clipping. Apart from the discrepancy around the FPP for the AB(B) curve, and 

discrepancies at very low power levels for all classes, the fits to the published data are 

good. 

The fits in Figure 8.4 for the Q-law model are very similar to those for the 

velocity saturation model in Figure 8.3, except that at very low power level the 

differences between the curves are much greater. This suggests that the small-signal 

derivatives for the Q-law model are less realistic. However, at medium and high 

power levels, where device current clipping is the dominant factor, there is little to 

choose between the two models.  

The optimisation data in Table 8.2 comes out of the process of fitting the 

distortion predictions to the published data in Figures 8.3 and 8.4. From this data, we 

can make interesting comparison between transition parameter values, Q and θ, of the
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Q-law and velocity saturation device models and between the γF value for each class 

of operation and the class stated in the publication [83]. 

The values for the device model transition parameter, Q and θ, in Table 8.2, θ = 

0.5 and Q = 1.2, are both towards the linear end of the transition range, with the Q-

law model closer to the linear case. The values of γF for classes BC, AB− and AB+ are 

quite similar for the two models. Both Class BC and Class AB− whose distortion 

curve exhibits two nulls, are in fact very close to Class B (γF = π). For Class A, the γF 

values for the two models differ to same extent from each other and differ 

considerably from the true Class A value, γF = 2π. This serves to emphasise that there 

is a lack of a precise criterion in the literature for the class of a PA.   

8.5. Fitting Measured Performance Data for CMOS PA from 

[83] 

This section presents fits of predicted output power and 3rd order distortion to 

the corresponding measured curves from [83] for a CMOS PA, as have been 

presented in Figure 2.19. These fits for the velocity saturation and Q-law models are 

given in Figures 8.5 and 8.6, respectively. Prediction of output power is carried out in 

the same way as 3rd order distortion described in Chapter 7, except that the 

fundamental Fourier component is used in place of the 3rd order component. The 

difficult of denormalising predicted distortion data due to insufficient information 

about the published data has been mentioned. For output power data, there are further 

unknowns, such as whether the test is a 2-tone test using the IMD3 test set-up or 

whether it is a single-tone test (network analyser set-up). Consequently it was decided 

to introduce vertical and horizontal shifts for the output power curves that are 

independent of those used for the distortion curves. Data relating to the curve fits in 

Figures 8.5 and 8.6, including these shifts for the output power curves are given in 

Table 8.3. 

As mentioned in section 8.2, it was decided to optimise the device models for 

the fit to the measured CMOS data independently of the model optimisation for 

fitting the simulated CMOS data that was described in section 8.4. It was also 
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Figure 8.5 Velocity saturation model fitting for measured data for CMOS PA of [83], (a) 
Class BC, (b) Class AB−, (c) Class AB+, (d) Class A. 
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Figure 8.6 Q-law model fitting for measured data for CMOS PA of [83], (a) Class BC, (b) 
Class AB−, (c) Class AB+, (d) Class A. 

Table 8.3 Parameters for fitting measured data for CMOS PA of [83]. 

θ = 0.20 (for Figure 8.5) Q = 1.22 (for Figure 8.6) 
Pout IMD3 Pout IMD3  γF / 

π ∆P 
(dB) 

∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

γF / 
π 

∆P 
(dB) 

∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

C 0.98 13.0 − 3.00 8.50 − 4.00 0.93 10.0 − 2.00 10.0 − 4.00 
AB− 1.12 13.0 − 1.80 6.00 − 4.50 1.03 14.0 − 2.00 6.00 − 6.00 
AB+ 1.31 13.5 1.00 0.00 − 7.00 1.20 14.5  2.00 − 6.00 − 8.00 

A 1.51 15.0 0.00 11.0 − 4.00 1.34 14.5 − 2.00 12.0 − 2.00 
 

mentioned in section 8.2 that, in view of significant differences between the published 

simulated and measured data for the CMOS PA, γF would be optimised independently 

for the two cases. The fits of predicted 3rd order distortion to the measured curves for 

the CMOS PA in Figures 8.5 and 8.6 are now considered.  

Excluding the curves in Figures 8.5(c) and 8.6(c) for the Class AB(A) case, the 

fits at medium and high power levels are reasonable. At low power levels, there are 

two issues. The curves in Figures 8.5(b) and (d), and those in Figures 8.6(b) and (d), 

do diverge at low power levels, and the divergence is much less for the velocity 

saturation model in Figure 8.5 than for the Q-law model in Figure 8.6. This confirms 

the conclusion from the previous section that very low levels of distortion obtained 

where there is no clipping are predicted better by the velocity saturation model. 

The fits for the Class BC case in Figure 8.5(a) and Figure 8.6(a) are now 

discussed. For this class alone, there is a considerable divergence in the output power 
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curves that occurs at low power levels and affects distortion fit too, especially for the 

Q-law model in Figure 8.6(a). For low power levels the predicted output power 

curves in Figures 8.5(a) and 8.6(a) show a strong expansion. The expansion effect 

was already observed for low γF in the peak clipped gate voltage plot of Figure 4.4, 

and the effect is further enhanced by model non-linearity and by the Fourier series co-

efficient for the output current. The published measured curve of output power in 

Figures 8.5(a) and 8.6(a) does not follow this expansion but instead is more linear. 

The reason for this is that the real device never cuts-off completely; its behaviour at 

low power in class BC is governed by its sub-threshold behaviour, which requires the 

soft pinch-off function for its accurate representation [92][94]. This difference 

between published and predicted output power curves for Class BC at low input 

power levels applies to all technologies that will be considered, and also applies to the 

fits to the simulated CMOS data in Figures 8.3(a) and 8.4(a). 

The fits in Figures 8.5(c) and 8.6(c) for the Class AB(A) case are now discussed. 

It was observed in section 8.2 that there was a large difference between the simulated 

and measured distortion curves for the AB− class curve in Figures 2.26(c) and 2.23(c), 

respectively. The difference between the distortion at the ledge and the maximum 

limit of distortion was 20 dB for the simulated curve (Figure 2.22 (c)) and 35 dB for 

the measured curve (Figure 2.19(c)) − a very large difference. The simulated curve 

has been fitted well using both device models, as shown in Figures 8.3(c) and 8.4(c). 

Turning now to the fitting of the measured class AB(A) data in Figures 8.5(c) and 

8.6(c), it can be seen that is has been found to be impossible to fit the low level of 

distortion on the ledge. In fact, the best fits to the measured curve are similar to the 

fits to the simulated curve, for which the distortion at the ledge is about 20 dB below 

maximum. The fact that neither the simulation by the author of [83], or the clipping 

theory proposed in this thesis using two different transitional device models can 

predict the low level of distortion of 35 dB below maximum on the ledge of the 

measured data from [83] suggests that there must be a factor affecting the Class AB− 

measurement results that is outside the scope of the simulations of the author of [83] 

and also outside the scope of the clipping theory proposed in this thesis. Comparing 

to the two fitting criteria for the case of Class AB(A) in Figure 8.1(c), ∆vG2 can be 

fitted but ∆D4 is impossible to fit. As a result, ledge width is the main figure of merit 
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in fitting the measured CMOS IMD3 data for Class AB+ in Figures 8.5(c) and 8.6(c). 

Ignoring these known issues of the distortion level on the ledge for Class AB(A) and 

the output power at low input power for Class BC, the fits to the measured data in 

Figures 8.5 and 8.6 are satisfactory.  

It is now possible to compare the values of the device model transition 

parameters in Tables 8.2 and 8.3 for the fitting of the simulated and measured PA 

data. It can be seen that θ for the measured data has reduced considerably and the 

model is close to square law compared with the case of the simulated data. The value 

of Q, on the other hand is about the same for fitting simulated and measured data.  

It is now possible to compare the γF values in Table 8.3 with those in Table 8.2 

for fitting the simulated data. The γF values for the Q law model are very similar. For 

the velocity saturation device model, larger differences occur in the middle of the γF 

range. Note that, on account of the complex form of the distortion surface in the AB 

class range, especially in or near the AB(B) part, even small changes in γF have a very 

large effect on the shape of the distortion-power sweep. 

8.6. Fitting Measured Performance Data for LDMOS PA from 

[87] 

Curves of measured output power and 3rd order distortion for a LDMOS PA 

from [87] have been shown in Figure 2.20(a) − (d) for four classes of operation. This 

section presents fits to this data based on the clipping theory with the velocity 

saturation and Q-law models. The fits for these models are shown in Figures 8.7 and

Table 8.4 Parameters for fitting measured data for LDMOS PA of [87]. 

θ = 0.30 (for Figure 8.7) Q = 1.24 (for Figure 8.8) 
Pout IMD3 Pout IMD3  γF / π ∆P 

(dB) 
∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

γF / π ∆P 
 (dB)

∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

C 0.97 21.0 4.50 17.0 5.50 0.90 22.0 4.50 15.5 4.10 
AB− 1.05 20.0 4.50 16.0 4.50 1.02 21.5 6.00 15.5 4.00 
AB+ 1.08 20.0 4.50 15.0 4.50 1.04 21.0 6.00 14.0 4.00 

A 1.62 20.0 9.00 17.0 8.50 1.40 21.3 10.0 17.0 7.40 
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Figure 8.7 Velocity saturation model fitting for measured data for LDMOS PA of [87], 
(a) Class BC, (b) Class AB−, (c) Class AB+, (d) Class A. 

8.8. Data for the optimisation of these fits is contained in Table 8.4. 

As mentioned in section 8.2, both of the Class AB operating conductions for the 

LDMOS PA in [87] are in the AB(B) range and have a distortion characteristic with 

two deep nulls but with very different null spacings. As shown in Figures 8.7(b), (c) 

and 8.8(b), (c), it has been possible to meet both null spacing requirements exactly. 

The results in Figures 8.7(a) and 8.8(a) exhibit the divergence at low input 

power levels of the predicted and measured output power for Class BC and associated 

divergence of the distortion characteristics, the reason for which has explained in 

section 8.5. Apart from this effect, the fits for the velocity saturation model in Figure 

8.7 are very good. This fitting is assisted by the apparent high quality of the measured 
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Figure 8.8 Q-law model fitting for measured data for LDMOS PA of [87], (a) Class BC, 
(b) Class AB−, (c) Class AB+, (d) Class A. 

data for the LDMOS PA which exhibits mulls that are relatively deep, and therefore 

clearly defined. 

At low input power, the predicted curves for the Q-law model in Figure 8.8 

deviate from the measured data to a much greater extent than for the velocity 

saturation model in Figure 8.7. This suggest again that although both models predict 

well the moderate and high levels of distortion where clipping occurs, for the low 

levels of distortion, where there is no clipping, the velocity saturation model gives a 

better fit, which suggests that its small-signal derivative are more realistic. 

Comparing the θ and Q values in Table 8.4 for fitting the LDMOS data with 

those for the CMOS data in Tables 8.2 and 8.3, the Q-law model for the LDMOS case 
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is very similar to that for CMOS. On the other hand, for the velocity saturation model, 

the value of θ for the LDMOS data lies in between the rather different values obtained 

for fitting simulated and measured CMOS data. As mentioned in section 7.7, the two 

models do cause different degrees of curvature of the rotated Class B part of the 

distortion valley. Therefore it is mot surprising that in order to fit a given set of PA 

data, the model parameters come out differently. 

Consider the γF values in Table 8.4 for fitting the two models to the LDMOS 

data. It can be observed that the two cases of Class AB that have distortion 

characteristics with very different null spacing have values of γF that are very close to 

each other. This emphasises the high sensitivity of the distortion characteristic, 

especially in the AB(B) class range. As was the case for fitting the simulated and 

measured CMOS data, the Class BC PA is very close to Class B operation and what 

is described as a Class A PA, is, on the basis of the clipping theory and fitting 

distortion characteristics, in fact operating in the AB(A) class range and close to the 

middle of the AB class range. 

8.7. Fitting Measured Performance Data for GaAs MESFET PA 

from [89] 

Curves of measured output power and 3rd order distortion for a GaAs MESFET 

PA from [89] have been shown in Figure 2.21(a) and (b) for Class B and AB 

operation. This section presents fits to this data based on the clipping theory with the 

velocity saturation and Q-law models. The fits for these models are shown in Figures 

8.9 and 8.10. Data for the optimisation of these fits is contained in Table 8.5. 

Table 8.5 Parameters for fitting measured data for MESFET PA of [89]. 

θ = 0.35 (for Figure 8.9) Q = 1.70 (for Figure 8.10) 
Pout IMD3 Pout IMD3  γF / 

π ∆P 
(dB) 

∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

γF / π ∆P 
 dB)

∆vG 
(dB) 

∆D 
(dB) 

∆vG 
(dB) 

B 1.01 12.0 −0.50 11.0 − 0.70 1.02 12.5 0.00 11.0 − 1.0 
AB+ 1.43 12.0 0.50 8.50 − 0.70 1.37 12.5 0.00 11.0 − 1.0 
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Figure 8.9 Velocity saturation model fitting for measured data for MESFET PA of [89], 
(a) Class B, (b) Class AB. 

 
Figure 8.10 Q-law model fitting for measured data for MESFET PA of [89], (a) Class B, 
(b) Class AB. 

The fact that the published distortion-power sweep for the Class AB GaAs 

MESFET PA in [89] shown in Figure 2.21(b) has a ledge shows that, according to the 

classification based on clipping theory in section 7.4, it is actually operating in the 

AB(A) class range. Thus the GaAs MESFET PA data does not include a sweep for 

the AB(B) class range that would exhibit two deep nulls. Since it is the Class AB(B) 

sweep with two deep nulls that has been used to define the device model transition 

parameters in the fitting to other technologies in sections 8.4 − 8.6, a different 

approach is necessary in order to define the model to best fit the GaAs MESFET data. 

Instead, a more empirical approach was adopted, in which the device model transition 
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parameter was stepped through a sequence of values, and, in each case, the two values 

of γF were adjusted to optimise the fitting criteria shown in Figures 8.1(a) and (c) for 

Class B and Class AB(A). As a result of this process, an optimum value of device 

model transition parameter, that gave the best fits when γF was optimised, was chosen. 

It can be seen from Figures 8.9 and 8.10 that the fits to the GaAs MESFET data 

are reasonably good. The single null for Class B and the ledge for Class AB(A) are 

predicted well. At low power levels, the Q-law model fit for Class B in Figure 8.10(a) 

is of similar quality to that for the velocity saturation model fit in Figure 8.9(a). 

Consider now the optimisation data for the GaAs MESFET PA in Table 8.5. It 

can be seen that the Q-law model, with Q = 1.7, is much closer to square-law than the 

models that best fit other technologies. For the velocity saturation model, the 

difference is not so great. 

From the γF values in Table 8.5, it can be seen that there is reasonable 

agreement between the values for the two models. To best fit the data described in [89] 

as Class B, it has in fact been necessary to increase γF slightly above π. Thus, what is 

described as the Class B design is actually operating in the AB(B) class range, but γF 

is so close to π that the second null as at a very low input power and is not visible. 

What is described as the Class AB design, which as has been stated is actually 

operating in Class AB(A) according to the distortion characteristic, is around the 

middle of the AB class range.  

8.8. Conclusion 

A theory was proposed in Chapter 7 to explain the different forms of distortion-

power sweep obtained for different classes of PA. The theory was based on an 

analysis of device output current clipping assuming a transitional device model. The 

general form of the distortion surface was validated using two different examples of 

transitional device models. The theory predicts the following: 

The class of a PA is defined by FPCA, γF. The complete range of γF, with its 

two end points γF = 0 (Class C) and γF = 2π (Class A), is divided by 3 transition points 

into 4 sub-ranges. In the BC class range, 0 ≤ γF ≤ π, distortion-power sweeps exhibit a 



CHAPTER 8 Performance Prediction and Comparison with Published Data                    156  

  
 
  

single deep null above the FPP. At the Class B transition point, γF = π, there is a 

single deep null at the FPP and a low distortion sweet spot for very low input voltage 

amplitude. The Class B transition point is the beginning of the AB(B) class range, π ≤ 

γF ≤ γFT1, where the distortion-power sweep exhibit two deep nulls, whose spacing 

reduces, as γF increases. The two nulls merge into a single wide deep null at the 

transition point γF = γFT1. The γFT1 transition point leads to the AB(AB) class range, 

γFT1 ≤ γF ≤ γFT2, where there is a shallow null, whose depth reduces as γF increases. 

The transition point at which the shallow null ceases to exist is denoted γFT2. For γFT2  
≤ γF ≤ 2π, the class range is denoted AB(A) and the distortion power sweeps exhibit a 

ledge that becomes narrower and lower as γF increases. The transition point γF = γFT1 

is dependent on the effective threshold voltage of the device model transfer 

characteristic which may be set for any transitional device model by means of the 

transition parameter. 

In Chapter 8, predicted distortion-power sweeps from the device current 

clipping theory using two examples of transitional device model have been fitted to 

published measured and simulated data for three different PA technologies. The 

published measured and simulated PA distortion-power sweeps clearly exhibit the 

expected patterns of behaviour in three of the class ranges, single null (BC), double 

null (AB(B)) and ledge (AB(A)). The fact that no published data showing the shallow 

null (AB(AB)) was found is attributed to co-incidence. The quality of the fits of the 

predictions to the published data, for the case of both transitional device models, 

confirms the validity of the theory of the rotated ‘L’-shaped distortion valley 

produced by device current clipping and a transitional device model, as the principal 

determining factor of distortion and its dependence on input signal amplitude, class 

and device model. 

It was mentioned in section 8.3.1 that, in principle, 3rd order distortion sweeps 

could be measured for a PA at a range of values of input signal bias voltage (i.e. class) 

and used to produce a 3-D plot showing a distortion surface. In this chapter, published 

distortion-power sweeps for PAs using CMOS, LDMOS and GaAs MESFET 

technologies have been fitted well by slices, or cross-sections, taken from the surface 

of 3rd order distortion predicted from device current clipping and use of a transitional 

model. The form of the predicted distortion surface has an area of high distortion in 
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the R1 and R2 clipping regions, which is intersected by a rotated ‘L’-shaped valley. It 

follows from the quality of the fits presented in this chapter that, if it was possible to 

make sufficient number of measurements on a PA of any technology in order to 

establish a measured surface of 3rd order distortion, then that surface too would be 

intersected by a rotated ‘L’-shaped valley. 

Likewise, a computer simulation of the 3rd order distortion of a PA that 

correctly predicted distortion power sweeps for a number of classes of operation 

would, if run enough times to establish the distortion surface, yield a surface that is 

intersected by the rotated ‘L’-shaped valleys; this is true whether the model has 

continuous derivatives, as in [92][95][96], or if it has discontinuous derivatives, like 

the models used in this thesis. 

Thus the rotated ‘L’-shaped valley in the distortion surface of a PA is a very 

fundamental feature underlying the actual performance of a PA using a device of any 

technology. And it underlies also any simulation of a PA that gives realistic 

distortion-power seeps for different classes of operation. 

As reviewed in section 1.3, the essential difference between PAs of different 

classes is the extent of the clipping of the device output current. It has been shown in 

this thesis that clipping introduces a continuous valley that cuts across the surface of 

3rd order distortion. Moreover, it has been shown that the form of the model affects 

the path of the valley. In particular, the effective threshold voltage of the device 

transfer characteristic (actual and simulated) governs a rotation of the valley that 

determines the diverse pattern of distortion-power sweeps obtained for different 

classes of operation. 

Therefore the device current clipping theory proposed in this thesis, the 

transitional device model and the rotated ‘L’-shaped 3rd order distortion valley that 

they lead to form the corner-stone of true understanding of PA operation and 

performance both in an educational setting and for practical PA design in industry. 

The results obtained in this thesis have important implications for modelling of 

devices for simulation of PA distortion. 

In an ideal situation, the transfer characteristic for the device model would be 

identical with that for the real PA device. In that case, the measured and simulated 3rd 

order distortion surfaces, and the distortion-power sweeps for any class, would also 
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be identical. The derivatives and effective threshold voltage for the transfer 

characteristics of the model and the real device would also be identical. 

In practice, the transfer characteristic for the device model cannot be the same 

as that of the real device. Then the interesting question of device modelling arises, 

namely, how should the model be optimised? One approach is to obtain the best fit of 

the two transfer characteristic curves [87]. Another is to introduce the soft pinch-off 

function [77][80] into the model equation in order to obtain bounded derivatives that 

give the best match to those for the real device, especially in the cut-off region. 

Although such advances are significant, they are not successful enough that they have 

permitted prediction of the 3rd order distortion-power sweeps of a PA at different 

classes of operation over the full range of input voltage amplitude with any accuracy. 

In order to do that, the understanding gained through the work described in this thesis 

may be used to propose novel criteria for device modelling. 

Up until now, the selection of PA input signal bias voltage, or class of operation, 

for the measurement of distortion power sweeps for evaluating simulator device 

models has been rather haphazard. For example, the two Class AB distortion-power 

sweep in [87] each has two nulls but, in [83], one has two nulls and the other has a 

ledge. The rotated ‘L’-shaped valley theory of PA distortion proposed in this thesis 

allows a systematic approach to the gathering of measured distortion data. 

First the class B point may be determined, either by adjusting PA input signal 

bias voltage to obtain a sweep spot at very low input signal amplitude or by setting 

the bias voltage to equal the device threshold voltage. Some representative distortion 

power sweeps in the BC class range may be measured, all of which exhibits a single 

null.  

If input signal bias voltage is increased above the Class B point, then two nulls 

appear in the distortion-power sweep. The input signal bias voltage that corresponds 

to the transitional point γFT1 may be found by observing the point at which the two 

nulls just merge to create a single wide deep null. Then a number of representative 

distortion power sweeps in the AB(B) class range (π ≤ γF ≤ γFT1), all of which exhibit 

two deep nulls, may be made. 

Then the input signal bias voltage may be increased further until the point 

where the shallow null just disappears, establishing the transition point γFT2. Now 
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representative distortion-power sweeps may be made in the AB(AB) class range (γFT1  
≤ γF ≤ γFT2 − shallow null) and in the AB(A) class range (γFT1  ≤ γF ≤ 2π − ledge). Such 

comprehensive distortion measurements covering all class ranges would form a good 

set of data for evaluating simulator device models. 

The rotated ‘L’- shaped distortion valley theory of PA behaviour based on 

device current clipping and the transitional device model provides novel criteria for 

developing the form of device model and optimising its parameters. The most 

significant feature of the surface of PA 3rd order distortion is the rotated ‘L’-shaped 

valley. This suggests that the primary device modelling criterion should be the correct 

bias for the corner of the valley, γFT1, which gives a single wide deep null and 

separates the AB(B) and AB(AB) class ranges, where there are two deep nulls and a 

single shallow null, respectively. The results in Chapter 7 suggest that the effective 

threshold voltage of the device model transfer characteristic plays the major role in 

determining the degree of rotation of the valley and hence γFT1. Perhaps the second 

most important device modelling criterion is the correct input signal bias for the 

transition point γFT2, between the AB(AB) and AB(A) class ranges, where the 

distortion-power sweep has a single shallow null and a ledge, respectively. It has been 

shown in Chapter 7 (section 7.8) that different transitional device models give 

different curvature of the ‘L’-shaped valley in the class AB(B) class range. This 

curvature could be optimised in order to predict correctly the way in which the 

spacing of the two nulls in the AB(B) class range varies with PA input signal bias 

voltage. 

Finally, it has been shown (Chapter 7) that the low levels of distortion obtained 

where there is no clipping can be rather different for different transitional device 

models, and this might also be a criterion for optimising the form selected for device 

model. Thus it can be seen that understanding of the cause of PA distortion gained 

from the device current clipping theory, transitional device model and rotated ‘L’-

shaped distortion valley as developed in this thesis leads to novel criteria for 

optimisation of simulator device models. 



 

  
 
  

CHAPTER 9 CONCLUSION AND FUTURE WORK 

9.1. Conclusion 

Theories that explain key aspects of PA performance, such as output power, 

efficiency and gain, by analysis of device current clipping have been proposed in 

previous work by Pedro [51] and Cripps [52]. In this thesis, a new device current 

clipping theory has been proposed with clear advantages over the previous ones. 

These are that a very systematic approach to the analysis enables PA performance 

metrics of output power, efficiency and gain to be plotted as 3-D surfaces with PA 

class and input signal power as independent variables, offering considerable insight, 

and that the critical PA performance parameter of 3rd order intermodulation distortion 

is now included. 

The development of the new device current clipping theory rests on a number of 

original concepts and definitions. These are: 

• full power point (section 3.2.3) 

• full power conduction angle (section 3.2.4) 

• equivalent system model for PA that considers clipping to the applied to the 

input voltage (section 3.3) 

• definition and use of the extrapolation function as the ratio of peak clipped 

input voltage to peak input voltage (section 4.3) 

• partition of the γF − Gv  (i.e. class – input signal amplitude) space into 

regions R2, R1, R0 and Rf, according to type of clipping, double, single, no 

and full clipping (sections 4.4 and 4.5) 
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• understanding variation of knee and cut-off clipping angles and conduction 

angle versus γF and Gv  (section 4.7) 

• identifying form of constant γ (conduction angle) contours in γF − Gv  plane 

(section 4.7) 

• significance and effect of transitional device model that can be changed by 

means of a transition parameter between the linear and square law model 

(Chapter 7) 

• principle of valley continuity in a distortion surface (section 7.2.2) 

• idea and application of effective threshold voltage (section 7.2.3) and 

effective conduction angle (section 7.2.4) 

The theory presented in this thesis sheds understanding on PA 3rd order 

distortion in two ways. The first is on the general form of the distortion surface when 

plotted against input voltage amplitude Gv  and class of operation, FPCA γF. The 

surface shows high distortion both above the full power point (FPP) in the double 

clipping R2 region and below the FPP in the single clipping R1 region. The combined 

area of high distortion is crossed by a deep valley. In the BC class range (0 ≤ γF ≤ π), 

the valley is gently curved and its path is relatively independent of PA device model. 

In the AB class range (π ≤ γF ≤ 2π), the path of the valley is critically dependent on 

device model. For a linear device model, this part of the valley is straight, parallel to 

the Gv  axis and follows the line γF = π rads. For a transitional device model, this part 

of the valley curves to the right as Gv  increases, following, approximately, a constant 

γ contour. As the device model cut-off becomes increasingly soft, the curvature 

increases. In the limit, for a square law model, this part of the valley reaches the edge 

of the R1 region, i.e. the R1 − R0 boundary, and disappears into the no distortion R0 

region. The extent of the rotation of this part of valley depends on the effective 

threshold voltage of the device model transfer characteristic. The principle of valley 

continuity requires that, as this part of the valley turns and rotates; the BC part of the 

valley must extend across the AB region to keep its connection with it. Thus, device 

current clipping in a PA causes the region of high distortion around the full-power 

point to be intersected by an ‘L’-shaped valley that has a clockwise rotation, the 
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degree of rotation depending on the effective threshold voltage of the device transfer 

characteristic.   

The second contribution to understanding of PA distortion is on the forms 

obtained for 3rd order distortion-power sweeps. Since the power sweeps are simply 

cross-sections of the 3-D distortion surface, the forms of the power sweeps follow 

from the form of the distortion surface, having a rotated ‘L’-shaped valley, as 

discussed in the last paragraph. The entire class range (0 ≤ γF ≤ 2π) is divided into 

four sub-ranges by three transition points. The transition points are the Class B point 

(γF = π), the corner of the rotated ‘L’-shaped valley (γF = γFT1) and the point where the 

shallow valley just disappears (γF = γFT2). Each class sub-range has a distinctive form 

of distortion power sweep. In the BC Class range (0 ≤ γF ≤ π), there is a single deep 

null in the saturation range. Throughout the AB(B) class range (π ≤ γF ≤ γFT1), there 

are two deep nulls, whose spacing reduces as γF increases. At γF = γFT1, the two nulls 

merge to give a single wide deep null. In the AB(AB) class range (γFT1 ≤ γF ≤ γFT2), 

there is a shallow null, whose depth reduces as γF increases. Finally, in the AB(A) 

class range (γFT2 ≤ γF ≤ 2π), there is a ledge whose width reduces and depth increases 

as γF increases. Since, irrespective of PA device technology, device current clipping is 

the factor that distinguishes PAs of different classes [47], as shown in Figure 1.9, the 

four distinctive forms of distortion-power sweep, single null, double null, shallow 

null and ledge for the four class ranges, BC, AB(B), AB(AB) and AB(A) should be 

exhibited by PAs of any technology. These different forms of distortion power sweep 

have been observed in published measured distortion sweeps for CMOS, LDMOS 

and GaAs MESFET PAs, and the clipping theory presented in this thesis provides 

good fits to this published data using two different transitional device models. 

The class of operation of a PA is set by the input signal bias voltage. Changes in 

input signal bias voltage to set the class cause considerable changes in PA device 

current clipping characteristics, as shown in Figure 1.9. Indeed, it is the change in 

device current clipping with class that leads to the differences in performance metrics 

such as efficiency. Thus device current clipping is a primary aspect of PA operation. 

In this thesis, it has been shown that device current clipping causes high levels of 

intermodulation distortion and the clipping theory provides good fits to published 

measured distortion characteristics of CMOS, LDMOS and GaAs MESFET PAs. The 
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quality of the fits provides further confirmation that device current clipping is the 

primary cause of distortion in PAs. Therefore, the clipping theory presented in this 

thesis should be of key interest to those in industry who design and optimise PAs and 

also to those engaged in teaching an understanding of PA design and performance. Of 

course, PA distortion must be affected by phenomena other than device current 

clipping, but it is believed that these effects are secondary as they can only modify the 

path and the depth of the rotated ‘L’-shaped valley that is caused by device current 

clipping. Some of these secondary influences on distortion will be mentioned in the 

following sub-section on future work.        

9.2. Future Work 

9.2.1. Confirmation of Form of 3-D Surface for IMD3 of PAs 

It has been shown, in this thesis, that published measured distortion-power 

sweeps for PAs of different technologies can be fitted by slices from a predicted 3-D 

distortion surface that contains a rotated, curved ‘L’-shaped valley. The published 

measured data, however, is limited since only four different classes are considered for 

each technology and no curve has been found for the predicted AB(AB) class range, 

which has a shallow null. It would be very interesting to confirm the form of the 

whole of the distortion surface, including rotated ‘L’-shaped valley, by measurements 

on PAs of different technologies. In view of the quantity of measured data required to 

define the distortion surface, a fully automated test system would need to be utilized. 

The form of the surface of PA distortion, including the rotated ‘L’-shaped 

valley, has been predicted in this thesis using very simple device models that are 

transitional between the linear and square-law models. It would also be very 

interesting to derive the distortion surface by circuit simulation using full models for 

devices, such as the Parker-Skellern [79], EKV model [78] or other models, such as 

those used in Cadence. Harmonic balance [51][97] might be a suitable analysis 

method. In view of the very large amount of computation needed to define the 

distortion surface, the simulation would need to be set up to run fully automatically. 
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Comparison of measured distortion surface for a PA with that predicted using a 

particular device model could provide a very stringent method for assessing device 

models. Correct prediction of the path of the valley can be used as an initial criterion 

for selecting forms of device models and optimising their parameters. The valley 

paths can be obtained by generating contour plots from the 3-D distortion surfaces. 

Looking at distortion 3-D and contour plot, rather than at only distortion power 

sweeps, provides a higher level of view that would settle in a very clear way many 

question about accuracy of device models for distortion prediction. 

9.2.2. Extension of the Clipping Theory 

In this thesis, a basic form of PA device current clipping theory has been 

presented that can predict the measured distortion-power sweeps of practical PAs. 

However, there are several obvious ways in which it might be interesting and useful 

to extend the theory. 

1. Derivation of the relationship between the full power point (FPP) for a PA, as 

introduced in this thesis and the 1 dB compression point [52], and thus 

introduce 1 dB compression point into the theory. 

2. Introduction of a soft type of knee clipping, perhaps using the function in [77] 

and find the effect of this on the ‘L’-shaped distortion valley. Also, 

investigation of effect on distortion valley of modelling device cut-off using 

the soft pinch-off function [77], that makes derivatives finite and continuous. 

3. Formal definition of effective threshold voltage and effective conduction 

angle and hence derivative of mathematical expressions for the transitional 

values of γF − γFT1 and γFT2 (divides AB(B) from AB(AB) and AB(AB) from 

AB(A) class ranges, respectively). 

4. It has been shown that FET source access resistance has a considerable effect 

on small-signal distortion of the common-source FET amplifier [82]. 

Inclusion of device source resistance as separate from device model and 

determine its effect on the distortion surface. 

5. Investigation by computer simulation of the effect of the parasitic capacitance 

of the PA device on the form of the distortion surface for very high 
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frequencies of operation. Aim for an analytical treatment of the observed 

effect.    

9.2.3.  CAD Package for PA Design 

In the design of a practical PA, many design decisions have to be made, 

including device size scaling, class (i.e. input signal bias voltage) and degree of back-

off (i.e. input signal amplitude). These decisions will affect output power, efficiency 

and gain. They also affect distortion that in turn affects ACI and EVM, both of which 

affect bit error rate (BER). Thus the design of a practical PA involves trade-offs 

between many factors, and, is therefore time consuming and there is not guarantee of 

optimality. 

It has been shown in this thesis that device current clipping can predict the 

distortion characteristics of practical PAs, even using simple transitional device 

models. Therefore, it would be attractive to produce a CAD package based on device 

current clipping and a simple device model that could improve and speed up the work 

of a PA designer. The simplicity of the model of could allow rapid calculation and 

display of multiple sets of PA performance parameters, such as efficiency and BER, 

and allow the designer to adjust design parameters, such as bias and back-off, in order 

to obtain an optimum solution for a given modulation format. Use of such a package 

could form a very useful first stage of the PA design process that allows the designer 

to make optimum choice of the key parameters of PA design before then transforming 

the design to a conventional design package such as Cadence for detailed design at 

component level and layout. 

9.2.4. Effect of Load 

The device current clipping theory presented in this thesis has been based on the 

assumption of a device transfer characteristic that implies a maximum current limit 

value (iDL in Figure 3.2) that is independent of PA input signal amplitude and class of 

operation. In reality, the maximum limit current is not exactly constant, and including 

this effect in the theory could improve the quality of the fit of PA performance 

predictions to measured data. 
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As stated in section 3.2.1, the maximum limit current depends on the 

intersection of the load line (or load plane) with the outer edge of the triode region 

part of the device transfer characteristics, as can be envisaged using Figure 1.6 (or 

Figure 1.7). Although not yet quantified analytically, it is often stated in the literature 

that the position of the load line does vary with the amplitude of the PA input signal 

[52][98]. This will cause the maximum limit current of the device iDL to be dependent 

on the amplitude of the PA input signal. When different classes of operation for a PA 

are being compared, it may be the case that the effective load resistance at the device 

output terminal and the supply voltage are changed in such a way that iDL is not 

exactly constant. So it is likely that the quality of the predictions of PA performance 

made by the device current clipping theory would be improved if dependence of iDL 

on input voltage amplitude ( Gv ) and class (γF) was included. Other factors that could 

affect predictions from the theory and should be investigated include the use of a 

tuned load coupling matching circuit (as in Figure 1.5(b)) and the use of harmonic 

terminations [76]. 
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APPENDIX  

A.  Relationship between HD3 and IMD3 

Single tone input signal can be described by, such as 

 cos ,   Gv v tφ φ ω= ⋅ =  (A. 1) 

Let device be described by 
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Ratio of 3rd harmonic component to fundamental component is given by 

 

3
3

3
1 3

2
3

2
1 3

1
34
4

4 3

HD
g vR

g v g v

g v

g g v

=
+

=
+

 (A. 4) 

A 2-tone input signal may be described by 

 ( )1 2 1 1 2 2cos cos ,   ,    Gv v t tφ φ φ ω φ ω= + = =  (A. 5) 



 

  
 
  

Then drain current with two-tone input signals would become, 
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  (A. 6) 

Ratio of each IMD3 sideband (e.g. cos(2Φ1 − Φ2) term) to wanted o/p tone (e.g. 

cos(Φ1) term): 
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B. Denormalisation OF Predicted PA Performance Metrics 
 

B1. Device Output Current 

Drain current (fundamental and 3rd harmonic) can be converted to voltage using 

the actual load resistance RL and allow for the actual maximum current iDM, by 

introducing a shift along the dBA scale for F1 and F3 of: 

 1020 log
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DM L
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 (A. 8)  

B2. Device Input Current 

A transconductance GMM corresponding to maximum vG and iD swings for a 

device may be defined as 
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In order to denormalise the input voltage scales in dBV, we may introduce a shift of, 
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B3. Gain 

In order to denormalise gain, (A.8) and (A.10) can be combined to yield a shift 

of 
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