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Voters make their decisions in social and geographical contexts that can be seen 
as diferent levels in an overall data structure. Increasingly these structures are 
being analyzed by  multilevel models, but this approach has so f a r  been limited 
to structures that are strictly hierarchical. This paper outlines the approach of 
cross-classijied multilevel models in  which units at lower levels in the structure 
can be nested in  more than one higher-level unit simultaneously. An appropriate 
modeling framework is outlined, models are specijied, and particular attention 
is paid to eficient computation. The approach is illustrated through a cross- 
classijied logit analysis of Labor versus Conservative support for a nationally 
representative sample of voting behavior for the 1992 British General Election. 
The data is structured so that individual voters at level 1 are nested within con- 
stituencies at level 2 which are cross-classijied by  geographical and functional 
regionalizations at level 3. A conclusion discusses the general utility of a cross- 
classijied approach to  geographically based contextual research, while two tech- 
nical appendices provide details on model estimation. 

INTRODUCTION 

Research on voting behavior has long stressed the importance of context 
(Ennis 1962). Voters may be socialized in their youth in a particular place and 
subsequently move to another locality where these views are challenged or rein- 
forced. At any one time, a particular voter may receive contextual influences 
from a number of sources, be it the home, the neighborhood, or the work- 
place. Different scales of context can readily be recognized with individual voters 
being influenced by the microcontexts of the home, the mesocontexts of the 
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FIG. 1. A Strictly Hierarchical Multilevel Structure 

neighborhood and the macrocontexts of the constituency, the region, and 
beyond. 

One way of conceiving of these contexts is as a set of “levels” in a data struc- 
ture. A simple example (Figure 1) is voters at level 1 nested in neighborhoods 
at level 2 within regions at level 3. Clearly if we ignore any level in an analysis 
we can say nothing substantive about it, but this is what researchers have previ- 
ously done. They have either worked at the individual scale and used social 
survey data, or they have analyzed aggregate data at some higher level. The 
former approach commits the atomistic fallacy (Alker 1969) in omitting context 
altogether, while the latter approach commits the aggregative fallacy (Robinson 
1950) in forgetting that it is individuals who vote, not groups. Moreover, if the 
levels are of substantive importance, people within each level or context will 
tend to be autocorrelated. This results in a whole series of technical problems 
if the hierarchically structured nature of the population with many levels is 
ignored (Skinner, Holt, and Smith 1989). 

The last few years, however, have seen a growing use of a multilevel approach 
that allows the simultaneous consideration of individual and ecological data, that 
is, of individuals in particular contexts (Goldstein 1987; Jones 1991). Examples 
of this approach to voting behavior are given by Jones, Johnston, and Pattie 
(1992), who examine the voting behavior of individuals nested within constitu- 
encies within regions; Jones, Tonkin, and Wrigley (1998), who analyzed the 
effects of interactions between individual and constituency characteristics; and 
McMahon and Heath (1992), who use multilevel models to examine the chang- 
ing class vote in a set of repeated cross-sectional studies of voters in constitu- 
encies. Each of these studies, however, has been restricted to context as strict 
hierarchy. Only models in which each lower-level unit belongs to one (and only 
one) unit at the next higher level could be estimated. This ignores the reality of 
multiple overlapping contexts. 

The present research is motivated by debate concerning the relative impor- 
tance of differing overlapping contexts in accounting for voting intentions. This 
debate revolves around two issues: geographical versus functional contexts, and 
contextual effects versus compositional differences. The first part of the debate 
concerns the nature of regional differences and in particular whether the differ- 
ences are more marked for a “geographical” regionalization than for a “func- 
tional” one. According to Johnston, Pattie, and Allsopp (1988), the former refers 
to “contiguous blocks of territory” which “may be separately identified and treated 
in certain government policies, and voters there share a culture which leads them 
to respond in similar ways.” The functional classification, in contrast, represents 
“groups of constituencies with similar characteristics, irrespective of location.” 

The geographical grouping obviously identifies Wales and Scotland, but 
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within England we can recognize, for instance, that the Black Country (in the 
West Midlands) has shown working-class Tory support since Joseph Chamber- 
lain’s campaign for tariff reform, while Norfolk was a center for agricultural 
trade-unionism (Cox 1987). Such long-term geographical distinctiveness may 
provide an important context for political socialization which may affect current 
political outcomes. Others have argued for the growing importance of a func- 
tional regionalization. Thus Savage (1987, p. 66) argues that 

whereas in the past constituencies of a similar type often had different political 
alignments because of the salience of their local political cultures, this is becom- 
ing much less apparent and constituencies of a similar type are behaving in 
similar ways whatever part of the country they are in. 

The second part of the debate concerns context and composition. A key ques- 
tion is the extent to which the observed place differences, based on either 
geographical or functional regionalizations, are “contextual” effects or merely a 
result of different types of people living in these places, that is, the result of 
composition (Hauser 1970; Jones and Duncan 1995). For example, the strong 
support for Labor in the South Wales valley constituencies may be due to a 
high percentage of the population being of manual working class who, irrespec- 
tive of location, generally vote Labor. This argument has been made strongly by 
Rose and McAllister (1990) who have maintained that the apparent differences 
between places in their voting behavior are the result of differential social, dem- 
ographic, and family characteristics. Indeed, Bogdanor (1983, p. 53) has stated 
that: “an elector would tend to vote the same way as an elector from a similar 
class in Glasgow regardless of national or locational difference.” 

Consequently, there is a need for empirical evidence on whether people of 
similar characteristics vote differently in different places and different types of 
places. We know that places differ in voting outcomes, but does where a place is 
positioned in either locational (geographical) or social (functional) space make a 
difference? 

Cross-classified multilevel models (Goldstein 1994a) have been developed to 
assess the relative importance of overlapping contexts after allowing for differ- 
ential composition. Overlapping contexts generate a cross-classified structure in 
which lower-level units nest within a cross-classification of two or more higher- 
level units. In the present study, geographical regions are not nested within func- 
tional regions, nor are functional groupings nested within geographical; both 
groupings are at the same level and are therefore cross-classified. Thus, a possible 
structure (Figure 2) would be individual voters (at level 1) nested with constituen- 
cies (at level 2) nested with geographical regions (at level 3) and functional regions 
(also at level 3). A model based on such a structure would allow the assessment of 
contextual effects at higher levels, after the inclusion of individual characteristics 
of voters. 

The paper has both substantive and methodological aims. Methodologically, 
we consider the specification of a range of cross-classified models and discuss 
the need for efficient computational strategies. Detailed workings of the under- 
lying iterative generalized least squares (IGLS) algorithm (Goldstein 1986) are 
considered in two appendices. Substantively, we present a series of results from 
hierarchical and cross-classified multilevel models. This analysis provides an 
assessment of the relative importance of the cross-classified contexts of geo- 
graphical and functional regions while taking account of voter and constituency 
characteristics. To operationalize the study we use data from the 1992 British 
General Election Study (BES), and for functional and geographical regionaliza- 
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FIG. 2. A Multilevel Model with Cross-classification at the Higher Level 

tions we use the same definitions as Johnston, Pattie, and Allsopp (1988) which 
gives us thirty-one of the former and twenty-four of the latter.' 

MODEL SPECIFICATION 

Strictly Hierarchical Models 

The essence of the multilevel approach is to specify a set of linked models at 
a number of levels. The approach here is to start with a single-level model for 
voters and then to develop the specification for the hierarchical case to show 
some of the complexities of which the technique is capable. Only then is the 
cross-classified model considered. Finally the discrete nature of the response 
variable will be taken into account. 

In the case of a single-level model for voters, a characteristic equation with a 
mixture of categorical and continuous variables and systematic and random 
parameters is 

where the variables are 
y the response variable, whether voted Labor (1) or Conservative (0); 
xo the base category, a set of 1s representing people of average age and from 

the manual classes; 

The Johnston, Pattie, and Allsopp (1988) regionalizations were in fact adopted with one excep- 
tion. The functional regions are exactly the same as Johnston, Pattie, and Allsopp and are a classi- 
fication derived from forty-one variables covering demographic, socioeconomic, and housing charac- 
teristics of the 1981 Census. It groups all 633 constituencies into thirty-one types of constituency, 
which are listed by Crewe and Fox (1984). Johnston, Pattie, and Allsopp (1988) for their geographi- 
cal regions used the 22-fold classification developed by The Economist to present its election cover- 
age. In effect, these represent a breakdown of Standard Regions into non- and metropolitan areas. 
The slight modification [following Curtice and Steed (1992)] used here is to ensure a finer geographi- 
cal division of the southeast outside of London, and this results in a total of twenty-four geo- 
graphical regions. 
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x l  1 if nonmanual class, 0 otherwise; 
x2 age (centered about mean); and 
subscript i signifies an individual voter. 

In this linear probability model, the parameters an be interpreted as follows: 

Po the intercept term is the “national” probability of Labor voting for indi- 

B1 is the differential contrast in the probability of voting Labor for non- 

p2 is the linear increase in the probability of voting Labor with age; 
( E )  signifies the random part which allows for fluctuations around the fixed 

The systematic part represents the general votingage and voting/class relations 
that are fixed and unchanging. The random part allows for fluctuations around 
the fixed part where the term random simply means “allowed to vary.” In this 
single-level equation, the random part represents all the idiosyncratic aspects of 
individual voting that have not been included in the systematic part of the 
model. These residuals are usually summarized in a single variance term o,”. 
While individuals are allowed to vary, and the extent of this heterogeneity is sum- 
marized by this variance term, place differences are assumed not to exist in this 
model. Such a single-level model presumes that place does not matter, and the 
effects for age and class are not allowed to vary from place to place; that is they 
are “fixed.” 

We can begin to overcome these problems by allowing voting behavior to 
vary between constituencies in what is called a random-intercepts multilevel 
model: 

viduals of average age and manual social class; 

manual class compared to manual social class; 

part. 

yij = Boxoi + Blxl i j  + BZx2ij + (pojxoij + Qjxoij). (2) 

This has two new features. First, we, recognize the hierarchical structure of voters 
nested within the constituencies, signifylng this by the subscripts i and j, respec- 
tively. Second, there is an additional term, kj, in the random part. This term 
is associated with constituencies (not voters) and represents a differential effect 
for the place in which voters are resident. A positive value for p,,. indicates a con- 
stituency that generally supports Labor, a negative value a disincination to do so. 
There are now two random terms: the constituency-specific random term, kj, rep- 
resents place differences after allowing for age and class composition and individ- 
ual variation; and the level-1 random term, ~ j ,  represents indlvidual differences 
after allowing for age, class, and between-place differences. The “average” proba- 
bility of voting Labor in each o f j  places depends on an overall general average 
Po) plus an allowed-to-vary, “random” difference for each place (poj).  The prob- 
ability is no longer fixed but constituency differences are allowed to vary accordmg 
to a higher-level distribution. Making the usual identical and independently dis- 
tributed (IID) assumptions (Kennedy 1979) this distribution can be summarized 
by its overall mean, Po, and its variance, oEo. Equation (2) implies that there is a 
positive “correlation” between any two voters in the same constituency, but a zero 
“correlation” between any two voters from different constituencies. Thus, the 
covariance of yy and yi+l conditional on the fixed part of the model is the cova- 
riance between (oEo +&A and (oE0 + ~ + l j ) .  However, since q and &+Ij  are pre- 
sumed independent, this covariance simply reduces to oEo. A nonzero value for 
this term implies (equivalently) between-place variation or within-place similarity, 
and thereby suggests that geographical context is important in understanding voting 
outcomes after taking into account the age and class composition of places. 
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Such a random-intercepts model assumes that places are uniformly high or 
low in terms of voting Labor. In geographical terms, if this model is correct, 
place differences in voting can be represented by a single map. Such an assump- 
tion may be overly simplistic in suppressing important differences. For example, 
while manual class status may be associated with Labor voting nationally, there 
may be constituencies where the converse is true. If this is the case, there 
would need to be separate maps for each social class, and, if the age effect 
varies from place to place, for young, middle, and older age groups. Such a 
complex specification requires a model in which all predictors have associated 
random terms at level 2: 

so that there is a general class effect across all constituencies &), and a differen- 
tial class effect (,ulj) which is specific to that constituency; there is a general age 
effect across all places &), and a differential age effect (pzj) which is specific to 
that place. These three constituencies differentials are continuously distributed 
random variables at level 2. Making IID assumptions, the between-place differ- 
ences can be summarized in a set of variance terms, so that ojo estimates the dif- 
ferences between places for manual-class individuals of average age, oil assesses 
the extent to which the class differentials vary between places, while o$ summa- 
rizes the extent to which the Laborlage relationship varies geographically. It 
would be unnecessarily restrictive to assume that these level-2 random terms are 
independent of each other, so a covariance term is estimated between each pair 
of random variables. Thus, if apopl is negative, areas of high Labor voting for 
average-age, manual-class individuals have a relatively low differential rate for non- 
manual status individuals of average age. The estimation of these strictly hierar- 
chial models is considered in Appendix A. 

Cross-classijied Models 

The discussion so far has considered only elaborations of the strictly hierarchi- 
cal model; we now turn to the cross-classified model. For simplicity, consider 
the "random-intercepts" model in which contextual differences are based only 
on the base category, but now recognizing the cross-classification of geographi- 
cal and functional regions: 

The response is the probability of voting Labor for individual i in constituency j in 
functional region k in geographical region 1, the bracket indicating that subscripts 
k and 1 are at the same level, in this case level 3. The two additional random terms 
in comparison to equation (2), #ok and 601, represent the differential effect for 
Labor voting in functional and geographical regions after taking account of indi- 
vidual class and age, as well as "partitioning out" the variability at the constitu- 
ency and individual levels. These two additional random terms at level 3 are 
assumed to be independent of each other, and again making IID assumptions, 
the distribution of these differentials for the functional and geographical regional- 
ization can be summarized by the appropriate variance terms: oio and oio. If 
either or both these terms are nonzero, this suggests that there are regional contex- 
tual differences even after allowing for class and age. 
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Another way to appreciate what the cross-classified model is trying to achieve 
is to consider the covariance between voters (the level-1 units) implied by equa- 
tion (4). The variance of the response for given values of the fixed predictor 
variables in the cross-classified model of equation (4) is the sum of all the var- 
iances at each level: 

while the covariance between two voters in different constituencies in different 
regions and different functional groupings is zero by definition. The covariance 
between voters whose constituency is in the same functional, but different geo- 
graphical, regionalization is 

that between two voters whose constituency is in the same geographical, but 
different functional, regionalization is 

while if their constituency is in the same functional and geographical regionaliza- 
tion, the covariance is 

The relative size of these differing (co)variances in assessing the similarity within, 
and difference between, the various “groupings” of voters is our fundamental 
measure of the importance of context. If context is not important there will be 
no similarity between voters and no difference between places. 

An important aspect of multilevel models is that contextuality has been 
accommodated in the model by expanding the random and not the fixed part 
(Jones and Bullen 1994). A “fixed part” expansion, in which each context is rep- 
resented in the model by a set of dummy indicator variables, will typically result 
in a very large number of separate parainaters to be estimated.2 This would 
result in very inefficient estimation with unstable and hence unreliable parame- 
ters. In effect, a separate regression would be fitted to each constituency and to 
each type of region. In contrast, the multilevel approach conceives the contex- 
tual differences not as separate entities but as coming from a distribution and is 
what Casetti (1986) terms a “stochastic expansion.” Consequently, with a random- 
intercepts model of equation (4 ) ,  only a single parameter, the variance of the 
differentials, is being estimated at each level (a$o, CJ:~, a2) and information 
from throughout the sample is used in this estimation. A i s  specification of 
contextuality through the random part of the model can result in a marked 
improvement in the precision of the estimates when, as here, the sample is 
small in relation to the number of higher-level units. A full discussion of these 
benefits, is given in Jones and Bullen (1994); a brief technical summary is given 
in Appendix B. 

Categorical Response 

Finally in terms of model specification, we have to take into account that 
the response variable is not a continuous variable but only has, in this case, 

Johnston, Pattie, and Allsopp (1988) fit a model with fifty-three dummy variables for functional 
and geographical regions in their analysis of the “flow of the vote.” 
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two possibilities: voting Labor or Conservative. The problems and potential solu- 
tions are more easily appreciated if we unpack equation (4) into two parts. First, 
we can distinguish the microlevel model for voters (for ease of presentation the 
detailed subscripting of the predictor variables will now be dropped): 

E [ y i j ( ~ ) ]  = zij(~) = BOj(k l )xO + Plxl + P 2 ~ 2  (5) 

where E is the expectation operator, and nq(kl) represents the “true” underlying 
propensity to vote Labor. 

Second, a macrolevel model for the higher levels can be written as 

so that the probability of voting Labor (after allowing for class and age) depends 
on the general “national” rate, and geographical, functional, and constituency dif- 
ferentials. The fact that the response is a binary outcome has no effect on the 
macroequation and we can continue to summarize the higher-level distributions 
of the continuous differentials by appropriate variance terms. However, the micro- 
model requires a binomial random term at level 1, and a nonlinear logit specifica- 
tion (Wrigley 1985). 

Beginning with the binomial random distribution, we only observe the Y i f ( k l ) ,  
the zero or one outcome, so that in even a perfectly specified micromodel, there 
will be binomial sampling fluctuations. That is, the y i j ( k l )  given the nq(k.) will have 
a distribution with a variance of n i j (~ l ) ( l -  7ri j (kl))0’5.  This is accommodated in the 
modeling process by including a “weight” in the level-1 random part, which if 
there is an exact binomial distribution, will have a variance of one. This is an 
overly restrictive assumption, however, and the variance can be estimated instead 
of being constrained to one. This allows for under- and over-dispersion (Collett 
1991, chap. 6) which is characterized, respectively, by the level-1 variance associ- 
ated with the weights being less or greater than unity. 

The micromodel of equation (5) represents a linear probability model and 
as such suffers two drawbacks (Duncan et al. 1994). First, probabilities fitted 
by the model are unconstrained, and it is possible to get nonsensical estimated 
values outside the range of 0 and 1. Second, a probability value assumes a linear 
relationship with the predictors, when it seems more reasonable to anticipate a 
nonlinear one of the form 

This nonlinear model can, however, be transformed to a linear one through a logit 
transformation: 

The logit, Lq(kl), represents the logarithm of the odds of voting Labor. As the under- 
lying probability, 7rij(kl) goes from 0 to 1, the logit goes from minus to plus infinity. 
This ensures that any estimated probabilities will be bounded between 0 and 1. 
Highly efficient software, MLn (Rasbash and Woohouse 1995), permits the estima- 
tion of a wide range of models and the ready graphic display of results. In practice 
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this multilevel logit model is estimated as a nonlinear model (Goldstein 1991; 
199413). 

ESTIMATION, COMPUTATION, AND SOFTWARE 

The basic concepts of multilevel models have been known for over twenty 
years. Indeed the cross-classified model features in the seminal paper of Lindley 
and Smith (1972) as resulting from “exchangeability” within and between regres- 
sions. However, it was not until the mid-1980s that estimation schemes were 
developed that could deal with realistically sized problems. The problems were 
twofold: the difficulty of estimating the fixed and random parameters simultane- 
ously, and doing so in a computationally feasible form. Existing programs were 
extremely limited in the size of the problem they could handle by the need to 
invert large matrices. Recently, a number of operational methods have been 
developed, including Goldstein’s (1986) IGLS algorithm. This procedure is a 
highly flexible estimation strategy, and the MLn software associated with it is 
unique in its ability to fit the complex models discussed here. Our intention 
here is to provide a succinct overview of the estimation process and to deal 
with the practicalities of estimating cross-classified models using existing soft- 
ware. Brief technical details of the algorithm are given in Appendix A. 

In broad terms, IGLS estimation proceeds as follows (Goldstein 1987, 
Appendix 2). Initial estimates of the fixed terms are derived by ordinary least 
squares (OLS) estimation, ignoring the higher-level random terms. The resid- 
uals based on this initial fit are then regressed on a set of variables defining 
the structure of the random part to provide initial estimates of the variance/ 
covariances. These estimates are then used in a generalized least squares analy- 
sis to provide revised estimates of the fixed part, which in turn is used to revise 
the estimates of the random part, and so on until convergence. Crucially, a dif- 
ficult estimation problem is decomposed into a sequence of linear regressions 
that can be solved efficiently and effectively. Goldstein (1986) provides a proof 
that these estimates are consistent, and that if the terms in the random part 
follow Gaussian distributions, they are the maximum-likelihood estimates. 

The software developed by Goldstein and his collaborators exploits the fact 
that a strictly hierarchical situation, providing units at a lower level are sorted 
within the higher level, generates a block-diagonal structure (Figure 3a). Tak- 
ing the example of voters nested within constituencies nested within functional 
regions, the covariance structure requires only terms for within constituency 
and within region variation. The IGLS algorithm and MLn software exploits 
this block diagonality which results in large sparse, but structured matrices to 
achieve highly efficient computation ( Goldstein and Rasbash 1992). From this 
perspective, the cross-classified model is problematic in that it destroys this 
block diagonality (compare Figures 3a and 3b). Consequently, it is seemingly 
impossible to use existing software to undertake computations leading to model 
estimation. This is not a trivial matter given the resources that have already 
been expended in developing the software for the hierarchical case. 

Fortunately, recent research (Rasbash and Goldstein 1994) has been able to 
recast the cross-classified model in a “quasi-hierarchical” form, so that their 
existing software can be pressed into action by using dummy (indicator) vari- 
ables, constraints and “pseudo levels.” This re-formulation can be seen as 
involving three steps: 

(i) For reasons of computational efficiency, specify the most numerous group 
of the cross-classification, the one with the larger number of units, at the appro- 
priate level of the cross-classification. In our case functional and geographical 
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regions are cross-classified at level 3, but it is the former that is most numerous 
with thirty-one units, so it is that classification that is specified at level 3. The 
data are then sorted as voters within constituencies within functional regions 
to achieve the block diagonal structure shown in Figure 3a, which portrays the 
structure given in Figure 1. The fixed and random parts of this hierarchical 
model can then be readily estimated using the IGLS algorithm and existing 
software. 

(ii) Including geographical regions results in the non-block-diagonal structure 
of Figure 3b, which portrays the lower part of the structure shown in Figure 2.  
To overcome this, a pseudo higher level is created with a single group that 
spans the entire data set. In our case, a group of all the geographical regions is 
created to form a single unit at level 4. The structure is now again hierarchical. 

(iii) The final step is to incorporate all the geographical regions without 
“disturbing” the block-diagonal structure. This is achieved by creating a set of 
dummy, indicator (0, 1) variables for each one of the twenty-four regions. These 
are not entered into the fixed part of the model, but are allowed to be random 
at the highest level, in this case 4. The variance of these twenty-four random 
parameters is then estimated from the data but they are all constrained to be 
equal. This is the desired “random-intercepts” variance term for the between 
geographical regional variation. 

To summarize, a four-level model is specified with functional groupings 
as the third-level unit and with a single level 4 unit spanning the entire data 
set. Dummy variables for each geographical region are created with coefficients 
random at level 4 with variance constrained to be equal during estimation. The 
fourth level is simply a computational device to allow modeling to proceed with 
existing hierarchical software. 

This is a general procedure that can deal with a number of extensions. For 
example, if the social class term is allowed to vary over both the functional and 
geographical regionalizations, this will require, as usual, a variance for the base 
category, a variance for the class differential and a covariance at level 3 for the 
functional regions. However, to deal with the geographical regions, there will 
need to be two sets of twenty-four dummies representing the base and class 
differentials, and these dummies will have to be allowed to vary at level 4 to 
produce twenty-four variances for the base category, twenty-four variances for 
the class differentials and twenty-four coveriances. These seventy-two “param- 
eters” then have to be constrained so as to estimate two variances and a cova- 
riance for the geographical regions. Multi-way cross-classifications involving 
more than two groups are also p ~ s s i b l e . ~  In general, p-way cross-classifications 
are achieved by including sets of random variables with dummy variables for 
unit membership at the next p-1 higher levels. The cross-classified models so 
far specified have been additive, but interaction between the functional and 
regional groupings is also possible ( Goldstein 1995). 

This procedure allows existing software to be used but it brings with it two 
substantial problems: storage requirements and slowness of estimation. The 
problem here is that both speed and storage are greatly affected by the number 
of elements in a unit and in this case there is a single unit at level 4 that con- 
tains all (2,275) voters. The estimation process can be speeded considerably 
if instead of a single level 4 unit spanning the complete data, “disjoint sets” are 

3For example, there may be two alternative functional regionalizations as well as the single 
geographical one. As Savage (1987, p. 66) argues, “It would be an extremely interesting project to 
see if theoretically derived clusters such as those offered by Cook (1983) would provide even better 
results” [than those used by Johnston, Pattie, and Allsopp (1988)l. 
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found in which there is no overlap (Rasbash and Goldstein 1994). These disjoint 
sets with no cross-unit membership represent separate combinations of func- 
tional and geographical groupings. For example, there may be three underlying 
sets, North, Mid, and South, each with their distinctive combinations. The cross- 
classification can then be represented, as before by functional regions at level 3 
nested within the three disjoint sets at level 4. Sorting on voters within constit- 
uencies, within sets, imposes a block-diagonal structure. The pseudo level 4 can 
then be specified as a combination of sets (each with less than all the voters) 
and a smaller number of dummy variables for specific regions. This can lead 
to major improvements in computational efficiency. This all depends, of course, 
on finding disjoint, nonoverlapping sets. There may be cases where overlap is 
present but this is based on a small number of observations. The analyst may 
wish to omit these cells with small sample sizes, thereby trading storage and 
computational speed for (hopefully) a slight loss of precision in terms of estima- 
tion. In the present study, the samples of entire constituencies would need to 
be omitted to avoid overlap as no “natural” subgroups were found, and there- 
fore this option was not chosen. 

The current version of the MLn software allows the dynamic setting of the 
number of levels (dependent on RAM) and has a number of commands for esti- 
mating cross-classified models. A single command (SETX) creates the dummies 
variables, the specification of the random part, and sets up the constraints on 
parameter estimation. There are also commands to search for disjoint sets 
(XSEARCH and BXSEARCH) and for omitting observations (XOMIT) until a 
suitable number of disjoint sets are found. Cross-classified models with bino- 
mial, multinomial, Poisson, and negative binomial distributions can all now be 
e ~ t i m a t e d . ~  

ANALYSIS 

The analysis is based on the BES survey which was conducted at the same 
time as the 1992 General Election (Heath et al. 1993). Data were extracted on 
voting and voters’ characteristics for 2,275 voters in 218 constituencies. These 
constituencies were then classified into twenty-four geographical and thirty-one 
functional regions. We begin with what is known as the null variance-components 
model. Such a model simply decomposes the total variance in the response vari- 
able into its various levels without allowing for any predictor variable; that is, 
compositional differences are not taken into account. Table 1 details the results 
for two strictly hierarchical models and for the cross-classified model. The only 
fixed term in the models (Do), represents the log-odds of voting Labor as opposed 
to Conservative in the national  ample.^ When the estimated logit (-0.268) for 
the hierarchical geographical regional Model A is transformed, the result sug- 
gests that the probability of voting Labor is 0.43. While this term varies slightly 
between the models, none of the estimates are large compared to their standard 
errors. All the level-1 terms for the “binomial” variance are less than 1, suggest- 
ing that there is greater homogeneity within constituencies than is being cap- 
tured by these variance components models. 

4Technical details of the binomial logit model are given by Goldstein (1991). In the estimation 
of logit models, approximations based on the second-order Taylor expansion and Partial Quasi- 
Likelihood have been used (Goldstein 1994h); “extra-binomial’’ variation has been allowed for the 
level-1 random term. 

5The Scottish constituencies were oversampled but we have not taken account of this in the anal- 
ysis that follows. 
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TABLE 1 
Variance Components Models 

(a) Model A: Hierarchical, Geographical Regions 
Level Parameter 

Fixed P O  

Random Three Geographical regions d 0  

Two Constituency mi0 

One Voter 4 

Fixed P O  

Two Constituency UP0 
One Voter 4 

Fixed P O  

Random Three Geographical regions 4 0  

Two Constituency aPO 

One Voter 4 

(b) Model B: Hierarchical, Functional Regions 
Level Parameter 

Random Three Functional regions $3 

(c) Model C: Cross-classified, Geographical, and Functional Regions 
Level Parameter 

Three Functional regions UiO 

Estimate 

-0.268 
0.812 
1.176 
0.920 

Estimate 

-0.212 
1.216 
0.630 
0.9281 

Estimate 

-0.161 
0.199 
0.536 
0.362 
0.753 

Standard 
Error 

0.210 
0.304 
0.177 
0.029 

Standard 
Error 

0.223 
0.385 
0.143 
0.029 

Standard 
Error 

0.161 
0.093 
0.163 
0.077 
0.023 

Examining the higher-level random terms of Model A suggests that there are 
noticeable differences between (or equivalently similarities within) both con- 
stituencies and geographical regions, although it is at the former level that the 
larger random term is found. The estimated differential for each geographical 
region is given in Table 2. The estimated percentage voting Labor varies from 
a high of 74 percent in the Industrial Northeast to a low of just 13 percent in 
the South Coast region. There are large apparent differences between regions, 
with the estimates confirming a general a north-south division with the excep- 
tions of the Rural North favoring the Conservatives and Inner London favoring 
Labor. A map of the regions is given in Johnston, Pattie, and Allsopp (1988). 

The random terms for the hierarchical model of the functional regions 
(Model B) show that there are substantial differences between functional 
regions. Indeed, the estimate of the variance at the functional level in Model 
B is greater than that for constituencies. The scale of the differences between 
different functional regions can be appreciated from Table 3. The extremes of 
support for Labor now extend from 12 percent in Prosperous areas with little 
industry to 80 percent in Areas with the poorest domestic conditions. The general 
pattern is a direct association between Labor voting and deprivation but there 
are exceptions in Poor inner-city areas (relatively anti-Labor) and Modestly 
affluent urban Scotland (relatively pro-Labor). There is a marked contrast 
between industrial and metropolitan areas on one hand, and rural and subur- 
ban regions on the other. 

Model C (Table lc)  gives the estimates for the cross-classified model; it can 
be seen that the greatest variation between units occurs for the functional regions. 
This suggests that voters who live in different regions and constituencies but 
live in places with the same social characteristics will tend to vote the same way. 
The geographical regional variance is much reduced and is now only barely more 
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TABLE 2 
Differentials for Geographical Regions 

Model A Model C Model D Model E 
801 801 801 

No. Refion Logit Rank Logit Rank Logit Rank Logit Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Strathclyde 
East-central Scotland 
Rural Scotland 
Rural North 
Industrial Northeast 
Merseyside 
Greater Manchester 
Rest of Northwest 
West Yorkshire 
South Yorkshire 
Rural Wales 
Industrial South Wales 
West Midlands Conurbation 
Rest of West Midlands 
East Midlands 
East Anglia 
Devon and Cornwall 
Wessex 
Inner London 
Outer London 
South Metropolitan 
South Coast 
North Metropolitan 
West Metropolitan 

1.21 
0.69 

-0.43 
-0.74 

1.30 
1.24 
0.40 
0.38 
0.24 
0.98 
0.50 
0.48 

-0.60 
-0.83 
-0.10 
-0.28 
-0.43 
-0.90 

0.85 
-0.23 
-0.96 
-1.59 
-0.45 
-0.75 

22 0.27 19 0.26 16 0.30 
19 0.21 17 0.31 19 0.35 
9 -0.21 7 -0.20 8 -0.22 
6 -0.13 8 -0.10 11 -0.11 

24 0.72 24 0.61 24 0.61 
23 0.58 23 0.29 17 0.29 

15 0.31 20 0.32 20 0.27 

21 0.26 18 0.30 18 0.32 
18 0.43 22 0.32 21 0.40 
17 0.13 16 0.42 23 0.46 

16 0.00 14 -0.20 7 -0.25 

14 -0.08 10 -0.01 14 -0.02 

7 -0.47 3 -0.41 3 -0.39 
4 -0.44 4 -0.33 5 -0.37 

13 -0.02 13 -0.01 13 -0.01 
11 0.05 15 0.09 15 0.10 
10 -0.08 11 -0.15 10 -0.15 
3 -0.48 2 -0.46 2 -0.48 

20 0.36 21 0.36 22 0.39 
12 -0.07 12 -0.09 12 -0.09 

2 -0.42 5 -0.37 4 -0.38 
1 -0.59 1 -0.50 1 -0.50 
8 -0.24 6 -0.29 6 -0.31 
5 -0.11 9 -0.19 9 -0.22 

18 
20 

8 
11 
24 
17 
7 

16 
13 
19 
22 
23 
3 
5 

14 
15 
10 
2 

21 
12 
4 
1 
6 
9 

than twice its standard error.6 Comparing the differentials in Models A and B 
for the geographical regions (Table 2) shows that although the rankings remain 
broadly the same, the absolute size of the differentials is much reduced. What 
previously appeared to be differences based on geographical location are seen 
to be based to a considerable extent on geographical regions containing differ- 
ent types of places. In contrast, the differentials for functional regions based on 
Models B and C (Table 3) show complex changes. While some effects are reduced, 
others show little change, while others show an increase. Marked differential sup- 
port for Labor is now seen for Clydeside and Scottish industrial areas while Con- 
servative support is strong in Agricultural areas and Areas of modest influence 
with some industry. 

In summary, the analysis so far suggests that while there are some differences 
between geographical regions, there are sizeable differences between functional 
groupings.7 The question is now whether these apparent contextual differences 
are really a result of differential sociodemogrpahic composition. Table 4 shows 
the results of fitting Model D in which a wide range of predictor variables for 
individual voters are included in the fixed part. The choice of level-1 predictor 
variables is informed by reviews of previous British general elections such as 

The use of ratios of estimated coefficients to their standard errors should not be compared with a 
Z-ratio when the number of higher level units is small. The procedure is used here as an approxi- 
mate screening device and not as an exact test. A likelihood deviance test was used to assess the 
relative improvements in model fit. 

'Comparisons of the relative size of variances have to be made carefully as they will reflect 
sample size. In this case there is a rough equality between the number of functional and geographi- 
cal groupings. 
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TABLE 4 
Cross-classified Model with Predictors 

Model D Model E 

Terms 

FIXED TERMS 
Intercept 
Age-sex interactions 

Female age 
Female age quadratic 
Male 
Male age 
Male age quadratic 

Higher education 
A and 0 level 

Local authority rent 
Private-rent 

Education 

Tenure 

Income 
€6-12k 
More than €20k 
Less than €6k 
Unknown 

Public-sector salariat 
Private-sector salariat 
Routine nonmanual 
Petty bourgeoisie 
Foreman 
Skilled manual 
Unknown 

Employment 
Unemployed 

Class 

RANDOM TERMS 
Level geographical regions 

Intercept uio 
Covariance uaoal 
Upper class ojo 

Intercept a;, 
Covariance u4011 
Upper class u; 

Level 2 constituency 
Intercept ujo 
Covariance u,o,,l 
Upper class uj! 

Level 1 Voters ujo 
Intercept ofo 
Lower class of! 

Upper class 02 

Level functional regions 

Estimate 

-0.058 

-0.025 
-0.00003 

0.381 
0.090 

-0.0007 

-0.408 
-0.294 

1.231 
0.488 

0.484 

0.466 
-0.408 

-0.187 

-0.375 
- 1.234 
-0.675 
-1.651 
-0.244 
-0.122 
-0.988 

0.707 

0.180 
- 
- 

0.459 
- 
- 

0.230 
- 

- 

0.945 
- 
- 

Standard 
Error 

~~~~ ~ 

Standard 
Estimate Error 

0.051 

0.024 
0.0002 
0.161 
0.034 
0.0003 

0.176 
0.138 

0.159 
0.191 

0.163 
0.151 
0.196 
0.194 

0.203 
0.216 
0.153 
0.253 
0.246 
0.188 
0.329 

0.261 

0.091 
- 
- 

0.167 
- 
- 

0.087 
- 
- 

0.029 
- 
- 

-0.048 

-0.024 
-0.0004 

0.379 
0.090 

-0.001 

-0.41 1 
-0.287 

1.210 
0.479 

0.493 

0.493 
-0.428 

-0.186 

-0.436 
-1.307 
-0.660 
-1.760 
-0.243 
-0.124 
-0.964 

0.723 

0.193 
0 
0 

0.500 

0.206 

0.323 

0.790 

-0.150 

-0.273 

- 
0.982 
0.982 

0.243 

0.02 
0.0002 
0.0158 
0.033 
0.0003 

0.173 
0.136 

0.156 
0.188 

0.160 
0.150 
0.194 
0.191 

0.230 
0.241 
0.151 
0.277 
0.240 
0.185 
0.323 

0.259 

0.100 
- 
- 

0.190 
0.142 
0.183 

0.117 
0.164 
0.349 

- 
0.033 
0.031 

Denver (1994). With the exception of age, which is a continuous variable cen- 
tered around the mean, the remaining predictors are all categories. These are 
represented in the model by a set of indicator variables that are contrasted with 
the base category of a 46-year-old woman without educational qualifications 
who lives in an owner-occupied household whose head is employed, receives a 
“middle” annual income (212-2O,OOO), and who is classified as unskilled work- 
ing class. That is the set of individual characteristics that occur most frequently: 
the stereotypical individual. 
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The intercept is the estimated log-odds of voting Labor as opposed to Con- 
servative for the stereotypical individual across Britain and gives a value, when 
transformed, of 49 percent favoring Labor. The estimate for the age-sex inter- 
actions must be interpreted as a “set” of results. Young women are generally 
pro-Labor but this declines with age in a roughly linear fashion (the quadratic 
age term for females is not large). Young men in contrast are generally more 
pro-Conservative than young women, but the relationship with age is non- 
linear. Middleaged men are pro-Labor, older men are less so, and the decline 
in support is more pronounced than that for women. 

Turning now to the rest of the estimates of Table 4, it can be seen that many 
of them exceed their standard error by more than a factor of two. Both those 
with Higher education and 0 and A level (post-16-) qualifications are signifi- 
cantly anti-Labor in comparison with the base category. Both tenure contrasts 
are also significant with a marked difference between Local authority tenants 
and Owner Occupiers, the base category. With the exception of the Unknown 
category, all the income contrasts are also significant and follow the anticipated 
pattern of low-income support for Labor. While the differences between Public- 
sector salariat, Foreman, and Skilled manual and the base category (Unskilled 
manual) are not significant, all other contrasts are. They are all anti-Labor, 
with the most marked effects being found for the Private-sector salariat, and 
the Petty bourgeoisie. Finally, unemployed individuals are significantly pro-Labor 
in contrast to those in employment.6 

The consequence of including these demographic and social variables for voters 
in the cross-classified model is to reduce all the higher-level variances, and to 
make the level-1 variance closer to a binomial distribution. The smallest higher- 
level variance is for the geographical regions. Transforming the logits of Table 2 
reveals that the probability of voting Labor for the stereotypical voter varies 
from 0.36 in the South Coast to 0.63 in the Industrial Northeast. The largest 
higher-level variance remains the between-functional regional variance which 
is still more than twice its standard error. This suggests that context in the form 
of the type of constituency is an important element in understanding voting after 
account is taken of differential composition. Examining the estimates for each 
functional region (Table 3) shows that the differentials have generally decreased 
as the variables are included (the exception is High-status inner-metropolitan). 
However, they remain substantial so that for the stereotypical voter the proba- 
bility of voting Labor varies at the extreme from 0.75 (Areas with poorest 
domestic conditions) to 0.25 (Scottish rural  area^).^ The differences between 
functional regions have been reduced but remain substantial despite taking 
account of a wide range of predictor variables. 

The estimates of the final Model E to be fitted to the data are given in Table 4.1° 
The fixed part remains defined as in Model D, but the random part is allowed 
to be considerably more complex. A new dummy variable (Upper class) is created 
with a 1 to signify the combined class categories of Public- and Private-sector 
salariat and Petty bourgeoisie. This new variable is not included in the fixed 
part (to do so would cause exact multicollinearity) but it is allowed to vary 
over all three higher-level contexts by the inclusion of variance and covariance 

sThe estimates for class, tenure, and unemployment agree closely with those found for the 1987 
election by Jones, Johnson, and Pattie (1992). 

For comparison the greatest fixed effects for individual class are the difference between 
unskilled manual (49 percent) and petty bourgeoisie (15 percent) when all the other predictor vari- 
ables are held at their stereotypical value. 

”Each iteration of Model E took approximately five minutes on a 66 MhZ PC; seven iterations 
were required for convergence. 
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terms. At level 1 two additional dummy variables are required to allow for dif- 
ferential heterogeneity between upper- and lower-class voters in comparison 
with the binomial distribution.11 

Examining the fixed part estimates of Table 4 reveals little substantial differ- 
ence from the simpler model. In the random part only the base category variance 
for the geographical regions is estimated as different from zero, thereby implying 
that this type of contextuality is not differentiated in terms of class. This is perhaps 
not surprising given that the model is trying to estimate three parameters on the 
basis of just twenty-four regions. Comparing the place-specific differentials with 
the previous model (Table 2) shows little change, with the Industrial Northeast 
being the most pro-Labor, while the South Coast is the most anti. For the func- 
tional regions a nonzero variance and covariance are estimated for the “Upper” 
contrast, although only the intercept variance is more than twice its standard 
error; three parameters are being estimated on just thirty-one 1,egions. The vari- 
ance for the lower-class category is given directly by the variance associated with 
the intercept, and this is 0.50. The variance for the upper-class category is given 
by 0.5+2(-0.15) +0.206 [that is, the sum of the variance associated with the 
intercept, two times the covariance, and the variance for the upper-class differen- 
tial (Goldstein 1995)l. The result of this calculation (0.4) shows that the between- 
place variation for the two functions of class are approximately the same, but the 
negative covariance suggests that where the differential working-class vote is pos- 
itive, there is a tendency for the upper-class differential to be negative (the corre- 
lation between the two sets of place specific differentials is -0.33).12 This is shown 
in Table 3 with, for example, the logit for the Small towns showing a positive value 
for the base category (higher than usual support for Labor from the lower classes), 
but a negative logit for the Upper-class contrast (higher than usual anti-Labor vot- 
ing by the Upper class). Transforming these values into probabilities, the range of 
Labor support among the working class goes from 0.26 in Scottish rural areas to 
0.77 in Areas with poorest domestic conditions. For the Private-sector salariat, the 
range is from 0.08 in Scottish rural areas to 0.41 in the Clydeside constituencies. 
The biggest difference between the classes is found in Textile areas where the 
probabilities for the working class and Private-sector salariat are 0.62 and 0.25, 
respectively. The smallest difference is in Agricultural areas where the probabili- 
ties are 0.29 and 0.16. These results at the level of the functional regions must, 
of course, be treated with caution due to the nonsignificance of the upper-class 
variance and covariance. 

At the constituency level, the variance for the upper-class variable is more than 
twice its standard error. Moreover, the negative correlation (-0.57) between the 
upper and lower differentials is stronger for constituencies than for functional 
regions. This suggests a complex geography of constituency preference even after 
allowing for demographic and social characteristics of individuals, with a tendency 
for places that are pro-Labor for the working class to be relatively even more 
anti-Labor for the upper class. At level 1, both classes are found to have the 
same estimate which is close to the binomial assumption of a unit variance. 

CONCLUSIONS 

Two sets of conclusions are appropriate: substantive and methodological. In 
substantive terms, there appears good evidence that voting cannot simply be 

l1 At level 1, for a number of technical reasons (Bullen, Jones, and Duncan 1997) the random part 
is specified as variances for two separate dummies; a covariance is not needed as it is impossible for 
a voter to belong simultaneously to the upper and lower classes. 

12 Derived as the ratio of the covariance to the square root of the product of the variances. 
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reduced to individual characteristics. These results show that any analysis of 
British voting that does not take place into account is inadequate. Voting depends 
not only on who you are (class and age), what you have (tenure and employment), 
but also on where you live in the contexts of the history, traditions, and eco- 
nomic experience of different types of places. A strong contextuality of voting 
remains after a wide range of demorgraphic and sociostructural variables are 
included in the models.There is evidence that this contextuality is complex and 
differentiated. While differences between geographical regions are not great, 
the remaining differences between functional regions and constituencies are 
substantial and, to some extent, the size of effect is differentiated by class. Fur- 
ther research needs to focus on accounting for these differentials by the inclu- 
sion of ecological variables and their interactions with individual characteristics 
in the manner of Jones, Tonkin, and Wrigley (1998). 

Methodolgocially, it has been shown that the multilevel model provides a 
coherent framework for studying individuals and their overlapping contexts. 
This represents a major breakthrough as geography is often concerned with 
multiple contexts that do not form neat hierarchies. An effective methodology 
that tackles a wide range of complex designs is beginning to be developed. Thus, 
cross-classified structures will also occur in panel or longitudinal designs of indi- 
viduals who migrate from one locality to another so that subjects are partially 
crossed with localities rather than strictly nested within them (Raudenbush 
1993). The models as currently developed include continuous and multiple 
category response as well as the binary categorical response considered here. 
Indeed, it is even possible to deal with multivariate cross-classified models 
where there are sets of responses that may be continuous, categorical, or even 
a mixture (Duncan, Jones, and Moon 1996). However, for the full potential of 
these models to be achieved, there is a need for larger and larger data sets with 
particular emphasis being placed on sampling a large number of higher-level 
units (Jones 1994). The BES, for example, has seen a substantial decline in the 
number of constituencies sampled between 1987 and 1992. Larger data sets, 
although essential, bring their own problems in terms of efficient computation. 
While this in part can be resolved by faster hardware with more memory, there 
remains a need to develop even more efficient computational algorithms. This is 
particularly the case when there are cross-classifications involving a large num- 
ber of units, such as panel study which takes into account changing household 
structure. In summary, multilevel modeling allows us to explore some of the 
complexity that we know exists in reality (Rose 1974) and, in so doing, provides 
a technical framework for substantive research questions involving highly differ- 
entiated geographies. 

APPENDIX A. IGLS ESTIMATION 

We can begin with the usual single-level model [equation (2)] recast in matrix terms: 

Y = X / 9 + &  (A1 1 
where Y is a vector of n observations of the response; X is the matrix of the pre- 
dictor variables, the first column of which, XO,  is a column of 1s; E is a vector of 
random terms; and /3 is a vector of unknown parameters whose first element, Po, 
is the intercept. The conditional expectation of the variance-covariance matrix, V, 
is given by 

E(V) = (wT) (A21 
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E(V) = 

where T represents the transpose. Making the usual assumptions for the ran- 
dom term of a mean of zero (E(E) = 0) and a constant variance (a:), the (n-by-n) 
variance-covariance matrix has the form: 

0 
0 

0 
0 

or equivalently, 

0 

0 
a: 

0 

0 
0 

0: 

0 

The main diagonal shows that each observation is presumed to have the same vari- 
ance (that is, homogeneity and no heteroskedasticity) while the off-diagonal ele- 
ments, the covariances, are presumed to be zero (that is independent and not 
autocorrelated). 

An exact solution to ( A l )  is found by minimizing the sum of squared residuals 
(in matrix terms iTi) to give the least squares estimate: 

where - and -' represent an estimate and a matrix inverse respectively. 
The multilevel model can be cast in matrix terms as 

with Z, the only additional term in comparison to (Al) ,  being a design matrix that 
structures the random part. Consequently E now represents not a single random 
term but potentially a set of terms at each level of the model. The expectation of 
the variance-covariance matrix is now given by 

and this does not reduce to (A3) and (A4) for we can anticipate both autocorrela- 
tion and heterogeneity. 

If the elements of V are known, however, a well-established result (for 
example, Johnston 1972, chap. 7) is that estimates of the fixed part of the general 
equation (A6) can be obtained by generalized least squares: 

j = (XTV-'X)-'XTV-'Y. (A8) 

The key element of Goldstein (1986) is to assume that p is known and to use this 
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together with the known structure of V to derive estimates of the variance and 
covariances of the random terms. 

To make the discussion concrete, let us use the simplest possible two-level 
hierarchical model, the random intercepts multilevel model with a single level-1 
random term: 

yij = POTO + B1.1+ (Pj + ~ j )  (A91 

and deal with a data set where there are just two people in two places. Sorting on 
place gives 

Yll = Box0 + BIZ1 + (PI + Ell) 

y21 = Box0 +PIX1 + (PI + E21) 

y12 = Do.0 + BlXl + (P2 + -512) 

y2z = Bo.0 + BlXl + (P2 + -522) ( A W  

If B is known, then the vector of “raw” residuals, W, the difference between the 
actual and fitted values, will also be known: 

W = Y - X p  ( A l l )  

w11 =(y11 - Box0 - 81.1) = (PI + Ell) 

w21 =(y21 - Box0 - B1.1) = (P1 + -521) 

w12 =(y12 - Box0 - P I X I )  = (P2 + El21 

w22 =(y22 - Box0 - B1.1) = (P2 + E22) 

or for our minimal data set, 

( A W  
The expectation of the variance-covariance matrix (A7) can now be rewritten as W 
equate: to ZE: 

E(V) = WWT = 

Vectorizing the lower half of this symmetric matrix gives (the operation “vech”): 

E(V) = 
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(PI + E 2 1 ) ( P 1  + E 1 1 ) ( P 1  + E ~ I ) ( P I  E e l )  
- - 

(Pz + E 1 2 ) ( P I  + E l l ) ( P Z  + E 1 2 ) ( P 1  + E Z d ( P 2  + E 1 2 ) ( P 2  + E 1 2 )  

Another approach to this variance-covariance matrix is to decompose it into its 
constituent elements and associated parameters given the basic assumptions of 
multilevel models. Returning to equation (A13) and noting how the elements of 
wy are comprised of the level-1 and level-2 random terms (A12), the expected 
variance-covariance is given by a symmetric matrix: 

cov(pj + ~ i ~ ,  pj + Ekj)  = cov(pj p. )  = variance(p) = o,, 2 
' I  J 

when j = j and i # k ;  

(iv) observations in different places are uncorrelated, so that conditional co- 
variance between two measurements in different places is given by 

Consequently, the expected variance-covariance in (A15) can be rewritten as 

I 0; + 0," 

o: CJ; +a," 
0 0 a;+.," 
0 0 0; 0; +o," 

E(V) = 

with a block diagonal matrix for each place. This can be separated into two com- 
ponents representing a covariance matrix at level-2 and level-1: 



Kelvyn ]ones, Myles 1. Could, and Robert Watt  1 87 

or equivalently, 

1 

0 0 1  0 1 ]a: 

0 0 0 1  

Vectorizing (vech) the lower half of these symmetric matrices gives 

a; + a," 
a; 

rT; + rT," 

0 
0 

a; + a," 
0 
0 

0; 

a; + a," 

1 1  
1 0  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 0  
1 1  

Comparing the versions of V given in equations (A14) and (A19), it can be seen 
that the squares are the estimates of a; + a," and the cross-product terms are esti- 
mates of a;. If p is known and V needs to be estimated, the w p  are known but a; 
and a," are not. This suggests that we formulate a model structure in which the 
response consists of the wys, the parameters to be estimated are the level-2 and 
level-1 variances, and the predictors are the (1 ,O)  elements of equation (A19). 
That is, 

Response Predictors Parameters 

1 1  
1 0  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 0  
1 1  

Letting B* be the parameter vector (the variances), Y* be the response vector (that 
is, squares and products of the raw residuals), X* the design ( 1 , O )  matrix linking 
Y* to V, and V* is the conditional covariance matrix of Y*, then we can obtain 
estimates by using generalized least squares: 

(A211 
B* = (X*TV*-'X*)-'X*T(\)-ly*. 
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As the estimates of ts; are based only on cross-products within places, there needs 
to be a reasonableAnumber of places for effective estimation. 

When neither /3 nor V is known, the iterative generalized least squares esti- 
mates are those that simultaneously satisfy both (A8) and (A21). The overall 
algorithm therefore works by deriving an initial estimate for V in equation 
(A8) by ignoring higher-level structure and assuming the constant variance of 
(A3), OLS estimates can then be derived by equation (AS) which in turn allows 
the estimation of square and products of the raw residuals as in (A14). These 
are then fed into the generalized least squares equation of (A21) to derive ini- 
tial estimates of the level-2 and level-1 variances, which in turn allows the gen- 
eralized least squares estimation of the fixed parameters through equation (A8). 
The process then iterates between (A8) and (A21) until convergence. 

When there are more than two random variables at level 1 and/or level 2, the 
block diagonals have a more complicated structure but the same general IGLS 
procedure can still be used (Goldstein 1987, Appendix 3.1). The V matrix can 
also be replaced by any known or estimated covariance matrix so it is possible to 
model further dependency (temporal or spatial) amongst the level-1 responses 
(Goldstein 1995, chap. 7). The iterative nature of the algorithm has been 
exploited in the MLn software to allow manipulation and calculation of vari- 
ables between cycles. This is partially useful in the calculation of generalized 
multilevel models (such as logit link and binomial level-1 random term for cate- 
gorized outcomes) that require that the variances are a function of the pre- 
dicted response (Goldstein 1991) and when there is a need to improve estima- 
tion by using predictive quasi-likelihood (Breslow and Clayton 1993). 

The generalized least squares equations (A8 and A21) require the inversion of 
the V and V'. This potentially results in very large storage overheads and an n2 
time dependency. Considerable research effort has gone into developing proce- 
dures that render these equations in a computationally more tractable form. In 
particular, procedures have been developed to exploit the known structure of V, 
so that this matrix can be evaluated block by block. Consequently, computations 
can be arranged so that maximum storage required for the two-level model is 
equal to the number of coefficients that are random multiplied by the number 
of level-1 units in the largest level-2 unit (Goldstein and Rasbash 1992). 

All the discussion has so far focussed on purely hierarchically structured data. 
The advance of Rasbash and Goldstein (1994) is to recast the cross-classified 
model within this framework. The key to the hierarchical model is to exploit 
the known structure of V in the estimation of the variance-covariances of the 
random parameters. Returning to equation (A17) and the two-level hierarchical 
model, it is possible to see that V is composed of two elements: 

where Vl(2) refers to the level-1 contribution in a two-level model. In this par- 
ticular case with a single random term at level-1 and level-2, the two matrices 
are defined as 

Level 1 : v l ( q  = .,"I,, 

where I,, is the identity matrix for all n observations, @ is the direct sum opera- 
tor, and Jb,) is an nj x nj matrix of ones for all observations within placej. This 
patterning can clearly be seen in equation (A18). 
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More generally, the variance-covariance matrix of the multilevel model of 
equation (A6) can be written as 

where R1 and Rz are the random parameter matrices at level 1 and level 2, while 
Z(’) and Z(’) are the corresponding “design” matrices for the random part. Thus, for 
the variance-components random-intercepts model [equation (A9)] the “omega” 
matrices are scalars, consisting of just a,“ and a,, but for a “random slopes” model: 

the variance-covariance matrix will be given by 

where V1 remains defined as a,“I,,. The V matrices for higher levels are similarly 
constructed in a recursive manner, so that for a three-level model, 

Turning now to a two-level cross-classified model, 

the variance-covariance of the observations is written as 

where the Rs are random parameter matrices, and the Zs are design matrices. 
Each of the design matrices are of the size n by the number of relevant higher- 
level units and consists of dummy variables that are set to 1 if the nth observation is 
nested within the higher-level unit, 0 otherwise. Thus, the two-level cross-classified 
model of equation (A29) can be seen as a special case of the three-level model 
(A27) with a single level-2 unit nested within a single level-3 unit. Alternatively, 
(A29) can be rewritten as 

which is a special case of equation (AN), the two-level model. In both cases, it is 
possible to use the composite residuals (in the form of WWT) and the known 
structure of the design and random parameter matrices to obtain random-part 
estimates, through generalized least squares. 
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APPENDIX B.  SHRINKAGE 

The effects of shrinkage are seen most straightforwardly in a null, random- 
intercepts, two-level hierarchical model: 

yij = Po + (Pj + Q j )  (B1) 

where 

c$ is the variance of the level-2 random term; 

0," is the variance of the level-1 random term. 

As discussed in Appendix A, both these variances are derived from the IGLS algo- 
rithm, through using the composite residuals: 

w..  - A'I - yij - y y  = Yij - P o .  

Treating these parameters and variables as known, we have 

cov(wy, 4) = variance(pj) = 0;; 

(B3) 
cov(wy, &q) = at 2 ; 

variance(w9) = 0; + oE. 2 

It is therefore possible to consider wy, pj, and ~j as random variables, each having 
a mean of zero, and known variances and covariances. Consequently, it is possible 
to regress any residual on the observed wy and derive the expected value of the 
residual on the basis of the observed value and the random parameters, regression 
being just another name for condtional expectation. Since the residuals are inde- 
pendent between levels, they may be estimated separately at each level. Goldstein 
(1987, p. 21) gives the expected values for level 1 as 

so that the composite residual is deflated by the ratio of the level-1 random varia- 
tion to the total random variation. At level 2, the expected values are given by 

where nj is the number of people in place j ,  and Wj is the observed place mean 
residual defined as (&wy/nj). 

Examining (B5),  the effects of shrinkage can be more readily appreciated by 
dividing both parts of the ratio by n, and replacing the observed place mean 
residual by the difference between the OLS overall mean for all places (Pi) 
and the OLS mean for placej@ij): 
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This allows the multilevel, place-specific intercept to be expressed as a function of 
the OLS grand intercept and the “shrunken” OLS place-specific intercept: 

The shrinkage ratio is then seen as reflecting the reliability of the OLS mean. As 
the number of people in a place decreases so there is less information about that 
place and greater shrinkage. The OLS intercept takes no account of how reliable 
the data are on each place, the same formula is used regardless of whether there 
are two or two thousand people in place. In contrast, the multilevel intercept will 
be shrunk toward the overall intercept for all places when it is based on little 
information, but it will retain its value when it is based on reliable information. 
Multilevel estimates consequently represent a form of precision-weighted estima- 
tion, where the degree of shrinkage is dependent on the information in the data 
for each place (nj)  and the degree of similarity between places (a:). 

Goldstein (1987, Appendix 3.2) gives the matrix formulation for (B4) and (B5) 
when there is more than one random term at any level; he also provides equations 
for deriving the standard errors of the residuals for both comparative and diag- 
nostic purposes. The effects of shrinkage when there are random intercepts and 
slopes at level 2 are discussed by Paterson (1990), and Jones and Bullen (1994). 
They show that the degree of shrinkage is determined by the combination of 
three factors: 

(i) 

(ii) 

(iii) 

The number of units with a place: when this is low, there will be greater 
shrinkage of both the differential intercept and slope to their overall fixed 
part equivalents; 
The variation of predictor variable: when this is limited within a place, there 
will be greater shrinkage of the place-specific slope to the overall fixed 
slope; 
The sign and size of the covariation between the random terms; for example, 
when this is large and positive, high differential intercepts will be supported 
by high differential slopes and the effects of shrinkage on both terms will 
thereby be reduced; however, a place-specific, unreliable large positive dif- 
ferential slope will be shrunk toward the overall slope if the differential 
intercept is negative, and the covariance between slopes and intercepts 
remains positive. 

Multilevel estimates therefore pool information across places and “borrow 
strength,” so the place-specific relations that are poorly estimated on their own ben- 
efit from the information for other places (Jones and Bullen 1994). 
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