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ABSTRACT

Galaxy bias can be split into two components: a formati@sHiased on the locations of
galaxy creation, and an evolution-bias that details theélisequent evolution. In this letter
we consider evolution-bias in the peaks model. In this mogkdhxy formation takes place
at local maxima in the density field, and we analyse the suls#geculiar motion of these
galaxies in a linear model of structure formation. The pesstriction yields differences in

the velocity distribution and correlation between the ggland the dark matter fields, which
causes the evolution-bias component of the total bias tvewna scale-dependent way. This
mechanism naturally gives rise to a change in shape betwaarygand matter correlation

functions that depends on the mean age of the galaxy populdthis model predicts that

older galaxies would be more strongly biased on large scalegared to younger galaxies.
Our arguments are supported by a Monte-Carlo simulatioratafixy pairs propagated using
the Zel'dovich-approximation for describing linear pgaungalaxy motion.
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1 INTRODUCTION matter distribution in the Universe, however, then we waualther
expect their large-scale clustering amplitude to be propeeal to
the linear growth factor, decreasing with increasing rétisfhere
is therefore still a great deal still to understand aboutxabias.

Models of galaxy bias depend on two different processes, in
addition to the clustering of the underlying matter fieldnation-
bias describes the effect of galaxies forming at local exé&ren
the density field. These galaxies then move following thgdar
scale matter velocity field, resulting in evolution-biasthdugh the
galaxies may move locally with the matter velocity field,ithze-
culiar velocitydistribution does not have to match that of the mat-
ter. Ultimately, evolution-bias will lead galaxies to mermgether,
reducing their number density and changing the clusteringer-
ties of the population as a whole. In the simplest model afcstr
ture growth, galaxies are always hosted within a halo whosssm
increases with time. In such a picture, evolution-bias iscimed
by the increase in the average halo mass which hosts a particu
galaxy, after it has formed. A stronger evolution-bias gtowm-
dicates an increased likelihood of rapid halo mass growibutsh
a continual merging process. In order to model the bias oftan o
served galaxy population we also need to include the obisems
selection function of the sample, which will include theagal for-
mation time distributions.

Of the decomposition of galaxy bias into the two components,
it is expected that the formation-bias is the largest cbatar for
almost all galaxy populations: the peaks formalism (Bandeteal.
1986) predicts a strong clustering amplitude for galaxyniation
at high redshift, which takes the matter field a long time taana
Formation-bias evolves strongly with redshift so, for a ylap
tion of similar galaxies observed at different redshiftss twill
* E-mail: will.percival@port.ac.uk dominate the change in the bias with time. This is differeatf

A number of interesting observational results have regdgkn
published related to the bias of galaxies. On large schles
0.2hMpc?, the clustering of the 2dFGR$_(Colless etlal. 2003)
and SDSS| (York et al. 2000) main galaxies is significantlyedif
ent (Cole et al. 2005%; Percival et al. 2007; Sanchez &|Colel 00
There is an excess of clustering for the SDSS main sample-gala
ies on scales greater th&n< 0.2hMpc™t, which is not seen in
the 2dFGRS galaxies. If uncorrected, this impacts on cosgiol
cal parameter measurements utilising the power spectrapesliif
the SDSS main galaxy sample is split by luminosity, we segtttea
bias depends on theband galaxy luminosity (Tegmark etlal. 2004;
Percival et al. 2007); and a similar trend was observed ir2tie
GRS samplel (Norberg etlal. 2001). If the SDSS galaxies are spl
in both colour and luminosity, red galaxies are more clestehan
blue galaxies, but this is not a simple trehd (Swanson! 087 P
Red galaxies have the strongest relative bias on largessicale-
pendent of luminosity, while the bias of blue galaxies appaa
rise monotonically with luminosity. In addition, there aap to be

a number of cosmic conspiracies when considering the cagmol
ical evolution of clustering of different galaxy classeseTampli-
tude of the clustering of the SDSS LRGs remains roughly earst
with redshift (Eisenstein et £l. 2005; Tegmark et al. 2006 his
case, the growth over time of the matter power spectrum isxpp
imately canceled by a drop in the average hias. Croom etGO5(2
considered the evolution of the clustering amplitude ofsgus in
the 2dFQRS: They found that the amplitude of quasar clusgeri
increases with increasing redshift. If quasars Poissorpkathe
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evolution-bias, which gives the change in the bias of theesaet
of galaxies.

b(1)dcom(1). Substituting this into eqrl1(1) givéga.(a) = [D(a) -
1 + b(1)]6com(1). In this model the linear bias is is related to the

Driven by the observational results discussed above, we now growth function by

reconsider evolution-bias from a theoretical point of viet
though galaxy formation itself is a non-linear process, al®c-
ity field of galaxies on large scales can be sufficiently welt d
scribed using linear theory. Previous work on evolutioasbhas
assumed a local model where the distribution of galaxy vedsc
matches that of the density field (Fry 1996; Tegmark & Peebles
1998). This simplifies the relevant formulae, and an analgé-
scription of evolution-bias is achievable (this methocigewed in
Sect[2). However, if galaxies formed at the peaks of the sheab
density field, the expectedistributionsof the galaxy peculiar ve-
locities and of the matter field will not match (Bardeen efl886).
This effect is due to the nonzero covariance between theciglo
field and the density gradient and complicates the evolttias
scenario introduced hy Fry (1996). We outline the theonhisf &ip-
proach in Sect$]3 aid 4, describe the Monte-Carlo sampiciy t
nique we use to follow evolution-bias in Sdct. 5 and summadris
Sect[®.

Throughout, the cosmological model assumed is the standardC(1) = (x(1)x'(1)) = (62om (1)

ACDM cosmology with adiabatic initial perturbations. Chesc
for the relevant parameter values at&, = 0.25, Q, = 0.75,

Ho = 100hkm s*Mpct with h = 0.72,Q, = 004,ns = 1
and og = 0.8. For the matter power spectrum we make the
ansatzP(k) o« k™T?(k) with the transferT (k) function given by
Bardeen et all (1986) and the shape parameter given by @ugiy

1995). Where necessary, we impose a Gaussian smoothing on th

density field with the filter scales.ae Which is related to the mass

scaleMscae = 4”/39rrpcritr§ca|e°f the objects considered.

2 ANALYTIC MODELS OF EVOLUTION-BIAS
2.1 Limit of small overdensities

Following the derivation of Fry| (1996), we assume that the pe
culiar velocities of galaxies match those of the matter falthe
same locationsy. The continuity equation for the galaxy density

can be writtempga = —div(pgav), and for the mattedpocom =
—div(ocomv). By definings = p/p — 1, the continuity equation
for the matter reduces @ dcpm(a) = —divo(a), for small 5cpm-

Solving the system consisting of the continuity and Eulguagions
yields the result that the evolution &py is driven by the standard
linear growth factorD(a), so thatécpm(a) = D(a)dcom(1), with
D(1) = 1 at present day.

If (6ga — 6com) is small everywhere, thefg.(a) satisfies
the same linear continuity equation &swm(a), giving éSga.(a) =
—divv (). In this limit,

5gal(a) = 5gal(l) + (D(a) - 1)5CDM(1)~ (l)

Note that the assumption of smafl{—dcpwm) is important, because
the densities of the dark matter and galaxy fields need to behed
in the full continuity equations, in order for the expectedvgth in
dga t0 be equal to that ofcpm. This assumption is equivalent to
stating that the distribution of the peculiar velocitiestaf galaxies
is the same as that of the matter field.

2.2 Starting from linear bias

D(a) - 1+ b(1)

b(a) = b@)

&)
Furthermore Tegmark & Peebles (1998) considered the éwntut
bias of galaxies following the more general stochastic biaslel
of Dekel & Lahav|(1999) and derive cross correlations betvwibe
matter density and galaxy fields. To simplify the analysidellew
Tegmark & Peebles (1998) and define the vector

dcom(@) ) .

X(a) - ( 6gal(a)

3
Forcing the galaxy overdensity field to obey the bias model of
Dekel & LahaV [(1999) at present day allows the galaxy and dark
matter distributions to be related by an additional cotiehacoef-
ficientr. At present day, the covariance matrix can be written

b(L)r (1) ) .

1
b(1)r(1)
In this notation, the continuity equation for the galaxy mensity

field coupled with the linear growth factor for the matteragv

)

The corresponding evolution of the covariance matiifa) =
M(a)C(1)M'(a) shows that the evolution of the galaxy overdensity
field can be rewritten in terms ofa) andb(a) (Tegmark & Peebles
1998), and that the bias model does not change its form:. Edt,
the formula reduces to the relation of Fry (1996).

D(a) 0

X(@) = M(@)x(1) , whereM E( D@-1 1

©)

2.3 Bias for Gaussian random fields

In work predating| Fry (1996) and Tegmark & Peebles (1998),
Bardeen et all (1936) considered the evolution of bias faoges
that form at peaks of the density field after smoothing on a cer
tain mass scale. On large scales, the peak density field ceonbe
sidered as a continuous Gaussian random field itself, titatly
independent and uncorrelated with the background, whiglresr
the dynamics of the galaxies. The galaxy and matter density fi
evolve independently due to the peak-background splihdegien-
dentk-modes are important for their respective evolution.

Using this model Bardeen et|al. (1986) showed that the large-
scale bias evolves dx%a) « 6./ow(a) + 1 for a smoothed Gaus-
sian density field with variancey (a), whereg, is the overdensity
threshold above which galaxies form. On linear scales, Hre v
ance of the density fieldy (a) is proportional to the linear growth
factor oy(a) « D(a). Consequently, if we normalise the bias at
present day, we recover eqnl (2) for the evolution of the. Bidey
assumption made in the derivation is the treatment of thexgal
distribution as a continuous field and that the evolutiorhia ¢o-
moving number density of peaks is driven by the evolutionhef t
background density, which is in effect a reformulation @ tonti-
nuity equation for the galaxy field: Forcing the number dgnef
galaxies to evolve with the background density is akin toake

This idea has been extended lby|Fry (1996), who considered asumption of smalldg. — 6cpwm) that led to the linearised continuity

galaxy overdensity field with a linear bias at present dgy1) =

equation for the galaxy field.
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3 STRUCTURE GROWTH FROM PAIR VELOCITIES

The above descriptions of evolution-bias can also be utwteisn
terms of the peculiar velocities of a discrete set of gakxihe
variance of the peculiar velocity distribution for eachayal is
2
o= BT [ akrw, ©)
WhereH(z) is the Hubble parameter arfd= dlogD/dloga. If we
assume thad is small everywhere, the expected infall velocity is
zero for all pairs of galaxies: we are as likely to choosexjekthat
are moving apart (in comoving space), as peaks moving tegeth
If galaxy peculiar velocities were uncorrelated, the gald&nsity
field would not develop clustering as any initial clusterjpattern
will be destroyed by the random diffusion. This is not theects
velocity fields driven by correlated Gaussian random owvesitye
fields as the velocities of galaxy pairs of separati@ne correlated
according to

2
C1) = (wn vy = PNAT

[ kP, ™
Velocities of pairs of gaIaX|es will be strongly correlatedhenr

is small as both galaxies preferentially move in the samecton,
being part of the same bulk flow, but velocities of galaxy paiith
large separations are less strongly correlated. Thisrdiffee means
that there is a net influx of galaxy pairs from large to smafiase
rations, which leads to the growth in the clustering strengbr a
pair of galaxies of separationthe variance of the peculiar velocity
difference is

(lvy = va) = 2[0% - C,(N)], (8

whereo? is a diffusion term.

Changing the selection criteria of galaxy pair-velocitiasu-
rally changes the evolution of galaxy clustering. An exteegram-
ple of a galaxy field with an evolution-bias would be the agsum
tion that galaxies only form at locations where the pecu@ocity
v = 0. After formation, galaxies at these locations do not mawe,
the galaxy overdensity and clustering properties are eoh#t co-
moving space. In contrast to the model proposed by Bardeah et
(1986), this is not physically motivated, because thereia-priori
reason to link places in the velocity field whase~ 0 with galaxy
formation. The derivation leading to eqfl (1) breaks downrtliics
model because it relied on matching the galaxy and mattar ove
density fields, which is clearly broken. In this situatiome galax-
ies still locally “move with the matter” although thbstribution of
galaxy velocities does not match ttistributionof velocities of the
dark matter.

4 EVOLUTION-BIAS IN THE PEAKS FORMALISM

We now consider the evolution of a set of galaxies that forthet
peaks of a smoothed density field, where there is the modd rapi
increase in density. After formation, the galaxies leave fikaks,
whose positions are fixed in comoving space, and move with the
matter flow.

We wish to estimate the average velocity of a matter concen-
tration at a peak in the field, so we will need to consider thresig
and velocity fields after smoothing by a filter of widthneot, The
velocity dispersion and correlation can be calculated ipjagng
P(k) with the smoothed power spectruak) in eqns. [[(6),[(I7) and
(8). For large separatiomss rsmoom the Bessel function in eghl(7)
takes precedence over the smoothing of the field, Gy{d) tends
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Figure 1. The expected variance for velocities in a Gaussian randdth fie
smoothed with a Gaussian filter (solid lines), and for themoathed field
(dotted lines), plotted against smoothing scale parasegtiiby the mass en-
closed within the filter (upper lines). The expected velocitrrelation be-
tween two points separated by 200 Mpc, under the same assumptions
are shown by the lower lines. The decrease in velocity vedaraused
by additionally selecting sampling points with vanishingdjent in the
smoothed density field is indicated by the dashed lines.

towards the value for the unsmoothed field. In contrast, &nemce

of the velocity for each galaxy? (eqn.[®), which is independent
of r, does depend on the smoothing applied to the field. The effect
of the smoothing scale an? andC,(r) are shown in Fig[{1), for a
pair separation of 200 Mpc.

In order to select peaks in the smoothed density field, we need
to set two further constraints on the galaxy locations: Téesity
gradient has to be zero, and the local curvature needs todie po
tive definite. Because the velocities are correlated wighdénsity
gradient, placing galaxies at locations where the gradiemtro
reduces the velocity varianee? from that of eqn[(B) by a factor
(1-v?) (Bardeen et al. 1986; Szalay & Jensen 1987; Peacock et al.
1987), where

2
9%

9)

, and o-J2 = 47rf dk IB+2P(K).
0-101 0

For a smoothed field?(k) needs to be replaced lﬁ(k) with the
consequence that, — 1 asrsmeoth— 0. In the limit of larger, the
velocity correlation function is unchanged by the peak traiirst:

In this limit, velocity-velocity correlations dominate ewvelocity-
gradient, or gradient-gradient correlations becausesitititional
k™! terms in the velocity-dependent integrands. The effecnef i
cluding both the smoothing of the field and the zero-gradietec-
tion criteria ono-2 andC,(r) is shown in Fig.[(LL), for a pair separa-
tion of 200h~ Mpc.

The reduction of the dispersion element of edd. (8), while
keeping the growth component fixed will lead to a scale-ddpen
increase in the 2-point galaxy correlation function (Refid3zalay
(1995) also comment on this). From this it is clear that pgapiag
galaxies along their velocity vectors does not preservestiape
of the correlation function, and the bias evolution forrsalidevel-
oped in Sect12 breaks down.
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Figure 2. The correlation function a = 0 (circles),z = 1 (triangles) and
z = 2 (squares) calculated from a Monte-Carlo realisation &fifiepen-
dent pairs of points in a Gaussian random field. These are a@dpvith
the expected correlations for linear growth (dashed lin@s)large scales,
&(r) becomes negative because we only sample pairs of galaktesitial
separatiork 100h~1 Mpc.

5 MONTE-CARLO SIMULATION OF GALAXY PAIR
PROPERTIES

We use the formalism introduced by Regos & Szalay (1995)tto se
up a Gaussian random process for determining velocity vegis.
and correlations in the large-scale structure. Regos &§74P95)
show how a 26< 26 covariance matrix can be constructed for the
multi-variate Gaussian distribution of the propertiese(@ensity,
3 gradient components, 6 curvature components and 3 wglocit

components) of pairs of points in a smoothed Gaussian random
field. The matrix depends on the power spectrum moments given

in eqn. [9) and from the functions of the pair separatigiven by

Km = 47rf dk K"ji(kr)P(K). (10)

0
Using these covariance matrices, we can randomly drawseeali
tions of the properties of pairs of points in the field, assaugrthey
follow a multi-variate Gaussian distribution. We can algld @on-
straints on the pairs selected, such as that they must both &e
peak in the field.

We first demonstrate that this procedure can reproduce the

linear growth expected for the matter field. We have produzed
Monte-Carlo realisation of £Opairs of galaxies using the proce-
dure described above, without any additional constrainisair se-
lection. This corresponds to choosing random locationsniratier
field. The peculiar velocities were then used to estimatertbion

of galaxies in linear structure formation using the Zel'bvap-
proximation. This is applicable for small displacements] should
therefore accurately describe the initial effect of eviolbias af-
ter galaxy formation. The dynamical model is affected byytep-
erties of the particular dark energy model through the gndwtc-
tion D(a), which affects the peculiar velocities. From these data,
we have calculated(r) for z = 0,1, 2, assuming that the galaxy
pairs evolve from an initial unclustered comoving disttibo (as
expected for the matter in the Universe, which is initiallynfo-
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Figure 3. The expected amplitude of the pair-velocity as a functiopaif-
separation for peaks selected for halos of mas€-4BM, (solid lines).
Increasing the halo mass leads to larger infall velocitiBlsese curves
were calculated from TOindependent pairs of peaks, although each was
weighted as described in the text, so these correspond toch smaller
effective number of pairs. The expected pair-velocity tmdtions selected

at random in the matter distribution is shown by the dotted.li

geneous). The correlation functions are plotted in Eig. @hg
excellent agreement with the expected linear evolution.

We now consider galaxies that form at peaks in this field. The
additional criteria applied within our Monte-Carlo procee to en-
sure that we select peaks are

(i) overdensity threshold > . = 1.69,
(i) gradientVs =0,
(i) positive definite curvature matrix.

Peaks are rare, so simply selecting peaks from pairs chésan-a
dom is computationally unfeasible. Instead, where possiie
force the properties that are required (for example, we saiyple
from the tail of a Gaussian distribution to seléct ¢;), and then
weight the chosen pairs by the likelihood of making that ctéde
in a full multi-variate analysis. This gives a weighted dksition
with the same statistical properties as selecting a truetéi@arlo
sample, but is computationally faster for determining trapprties
of the distribution.

The expected amplitude of the pair-velocity; — v,|) for
galaxies selected at peaks, is plotted in Eig. 3 for halos aéam
10'9-15M,. The expected pair-velocities differ from those of the
mass, because peaks are more likely to be approaching deh ot
than moving apart at large separations. The evolution irctite
relation function depends on the derivative of the expegtid-
velocity, which controls the net change of pairs with a gigeip-
aration (when the distances travelled are small). As we ntove
increasing separation, the peak pair-velocity increaapisliy, but
then turns over and starts to decrease. This will lead to dheec
lation function decreasing on small scales, and increasinigrge
scales.

We have constructed a weighted Monte-Carlo distribution of
3 x 10 galaxy pairs selected at the peaks in a Gaussian random
field, smoothed by a Gaussian filter with width corresponding

(© 2007 RAS, MNRASDOQ [THE
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Figure 4. The correlation functions recovered from propagating spair
galaxies along their peculiar velocities, divided by thespected from lin-
ear evolution of the density field. Correlation functionszat 0 (circles),

z = 1 (triangles) and = 2 (squares), were calculated from a Monte-Carlo
realisation of 18 independent pairs of points in a Gaussian random field
(lower lines), and from % 10° weighted peaks in a Gaussian random field
smoothed with a Gaussian filter corresponding to a halo mias68'4M,,
(upper lines).

halo mass 1% M,,. In order to demonstrate the effect of peak selec-
tion on the galaxy correlation function, we have followed &volu-
tion of galaxies pairs from an initially unclustered dibtriion. This
matches the analysis of pairs of galaxies selected at rarficiom
the matter distribution that led to FIg. 2, but selects sgldotations

in the velocity field. The ratios between the recovered gataxre-
lation functions and those expected for the matter-a0, 1, 2, are
shown in Fig[#. As we move from small to large scales, the dias
any redshift initially decreases, because of the changepaated
infall velocity shown in Fig[B, but then increases beyonait tif
the matter field, as expected from the analytic argumentsisised
in Sect[4. Due to the fact that galaxies only pick up theirupec
liar velocities after formation, this plot should not beergreted
as giving the actual galaxy correlation functions for pedksdo
this, we would need to specify galaxy formation times andrthe
spatial distribution (or formation-bias). The relativdeet of the
evolution-bias or¥(r), however, should be the same, and this plot
demonstrates that bias is not a simple function of scale |drge-
scale bias is a decreasing function of time, as the amplivfidee
clustering of the matter field grows to match the strong eiaid
bias predicted at early times.

6 SUMMARY AND DISCUSSION

We have considered a decomposition of galaxy bias into fooma
bias and evolution-bias. The formation- and evolutiorsbf@aare
inter-related, with one tending to lead to the other: By g
special locations for galaxy formation, we also tend to cledoca-
tions that lead to group evolution that is very differentifrthat of
particles selected at random in the matter field. By anadysind-
els of evolution-bias, we have argued that this componeiiazf
has some interesting properties within the peaks model. &/e h

(© 2007 RAS, MNRASD0Q [THE
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demonstrated this from both analytic arguments and a MGaiés
procedure based on the work of Regos & Szalay (1995). Ewoluti
bias provides a mechanism for producing a scale-dependast b
in 2-pt correlation measurements, whose importance grewkea
galaxies move, and consequently depends on the time siteg/ga
formation. Note that the overall bias of a galaxy sample wpin
general, be expected to be a decreasing function of timeubeca
this depends on the increasing amplitude of the clusterfrihe
matter field.

The inclusion of evolution-bias in a combined model of gglax
bias would predict that older galaxies have a scale dep¢itias
with a correlation function whose shape is less like thahefrhat-
ter field than a population of younger galaxies. In the maospte
model, the red luminosity of an individual galaxy increasesl
then fades with time. Galaxies can also merge together,ifigrm
larger, brighter objects. The oldest field galaxies tencetéaimtest,
and should be most affected by scale-dependent biasingrga la
scales. Such a description might explain why the SDSS LR@s an
2dFGRS galaxies seem to match a simple prescription foxgala
bias, while the SDSS main galaxies do not (Sanchez &Cole)2007
The SDSS main galaxies sample would contain these old field
galaxies. The evolution-bias considered here would alg@aanon
measurements of the Baryon Acoustic Oscillation scaletteingm
the power spectrum or correlation function. Further sirioies,
such as provided by semi-analytic techniques, which coenfon
mation and evolution-bias, are required to consider thishraeism
in more detail and apply it to specific galaxy types.
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