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ABSTRACT
Galaxy bias can be split into two components: a formation-bias based on the locations of
galaxy creation, and an evolution-bias that details their subsequent evolution. In this letter
we consider evolution-bias in the peaks model. In this model, galaxy formation takes place
at local maxima in the density field, and we analyse the subsequent peculiar motion of these
galaxies in a linear model of structure formation. The peak restriction yields differences in
the velocity distribution and correlation between the galaxy and the dark matter fields, which
causes the evolution-bias component of the total bias to evolve in a scale-dependent way. This
mechanism naturally gives rise to a change in shape between galaxy and matter correlation
functions that depends on the mean age of the galaxy population. This model predicts that
older galaxies would be more strongly biased on large scalescompared to younger galaxies.
Our arguments are supported by a Monte-Carlo simulation of galaxy pairs propagated using
the Zel’dovich-approximation for describing linear peculiar galaxy motion.
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1 INTRODUCTION

A number of interesting observational results have recently been
published related to the bias of galaxies. On large scalesk <
0.2hMpc−1, the clustering of the 2dFGRS (Colless et al. 2003)
and SDSS (York et al. 2000) main galaxies is significantly differ-
ent (Cole et al. 2005; Percival et al. 2007; Sanchez & Cole 2007):
There is an excess of clustering for the SDSS main sample galax-
ies on scales greater thank < 0.2hMpc−1, which is not seen in
the 2dFGRS galaxies. If uncorrected, this impacts on cosmologi-
cal parameter measurements utilising the power spectrum shape. If
the SDSS main galaxy sample is split by luminosity, we see that the
bias depends on ther-band galaxy luminosity (Tegmark et al. 2004;
Percival et al. 2007); and a similar trend was observed in the2dF-
GRS sample (Norberg et al. 2001). If the SDSS galaxies are split
in both colour and luminosity, red galaxies are more clustered than
blue galaxies, but this is not a simple trend (Swanson et al. 2007).
Red galaxies have the strongest relative bias on large scales inde-
pendent of luminosity, while the bias of blue galaxies appears to
rise monotonically with luminosity. In addition, there appear to be
a number of cosmic conspiracies when considering the cosmolog-
ical evolution of clustering of different galaxy classes. The ampli-
tude of the clustering of the SDSS LRGs remains roughly constant
with redshift (Eisenstein et al. 2005; Tegmark et al. 2006).In this
case, the growth over time of the matter power spectrum is approx-
imately canceled by a drop in the average bias. Croom et al. (2005)
considered the evolution of the clustering amplitude of quasars in
the 2dFQRS: They found that the amplitude of quasar clustering
increases with increasing redshift. If quasars Poisson sample the
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matter distribution in the Universe, however, then we wouldrather
expect their large-scale clustering amplitude to be proportional to
the linear growth factor, decreasing with increasing redshift. There
is therefore still a great deal still to understand about galaxy bias.

Models of galaxy bias depend on two different processes, in
addition to the clustering of the underlying matter field: formation-
bias describes the effect of galaxies forming at local extrema in
the density field. These galaxies then move following the large-
scale matter velocity field, resulting in evolution-bias. Although the
galaxies may move locally with the matter velocity field, their pe-
culiar velocitydistributiondoes not have to match that of the mat-
ter. Ultimately, evolution-bias will lead galaxies to merge together,
reducing their number density and changing the clustering proper-
ties of the population as a whole. In the simplest model of struc-
ture growth, galaxies are always hosted within a halo whose mass
increases with time. In such a picture, evolution-bias is matched
by the increase in the average halo mass which hosts a particular
galaxy, after it has formed. A stronger evolution-bias growth in-
dicates an increased likelihood of rapid halo mass growth through
a continual merging process. In order to model the bias of an ob-
served galaxy population we also need to include the observational
selection function of the sample, which will include the galaxy for-
mation time distributions.

Of the decomposition of galaxy bias into the two components,
it is expected that the formation-bias is the largest contributor for
almost all galaxy populations: the peaks formalism (Bardeen et al.
1986) predicts a strong clustering amplitude for galaxy formation
at high redshift, which takes the matter field a long time to match.
Formation-bias evolves strongly with redshift so, for a popula-
tion of similar galaxies observed at different redshifts, this will
dominate the change in the bias with time. This is different from
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evolution-bias, which gives the change in the bias of the same set
of galaxies.

Driven by the observational results discussed above, we now
reconsider evolution-bias from a theoretical point of view. Al-
though galaxy formation itself is a non-linear process, theveloc-
ity field of galaxies on large scales can be sufficiently well de-
scribed using linear theory. Previous work on evolution-bias has
assumed a local model where the distribution of galaxy velocities
matches that of the density field (Fry 1996; Tegmark & Peebles
1998). This simplifies the relevant formulae, and an analytic de-
scription of evolution-bias is achievable (this method is reviewed in
Sect. 2). However, if galaxies formed at the peaks of the smoothed
density field, the expecteddistributionsof the galaxy peculiar ve-
locities and of the matter field will not match (Bardeen et al.1986).
This effect is due to the nonzero covariance between the velocity
field and the density gradient and complicates the evolution-bias
scenario introduced by Fry (1996). We outline the theory of this ap-
proach in Sects. 3 and 4, describe the Monte-Carlo sampling tech-
nique we use to follow evolution-bias in Sect. 5 and summarise in
Sect. 6.

Throughout, the cosmological model assumed is the standard
ΛCDM cosmology with adiabatic initial perturbations. Choices
for the relevant parameter values are:Ωm = 0.25, ΩΛ = 0.75,
H0 = 100hkm s−1Mpc−1 with h = 0.72, Ωb = 0.04, ns = 1
and σ8 = 0.8. For the matter power spectrum we make the
ansatzP(k) ∝ knsT2(k) with the transferT(k) function given by
Bardeen et al. (1986) and the shape parameter given by (Sugiyama
1995). Where necessary, we impose a Gaussian smoothing on the
density field with the filter scalerscale, which is related to the mass
scaleMscale= 4π/3Ωmρcritr3

scaleof the objects considered.

2 ANALYTIC MODELS OF EVOLUTION-BIAS

2.1 Limit of small overdensities

Following the derivation of Fry (1996), we assume that the pe-
culiar velocities of galaxies match those of the matter fieldat the
same locations,υ. The continuity equation for the galaxy density
can be written∂tρgal = −div(ρgalυ), and for the matter∂tρCDM =

−div(ρCDMυ). By definingδ ≡ ρ/ρ̄ − 1, the continuity equation
for the matter reduces to∂tδCDM(a) = −divυ(a), for small δCDM.
Solving the system consisting of the continuity and Euler-equations
yields the result that the evolution ofδCDM is driven by the standard
linear growth factorD(a), so thatδCDM(a) = D(a)δCDM(1), with
D(1) = 1 at present day.

If (δgal − δCDM) is small everywhere, thenδgal(a) satisfies
the same linear continuity equation asδCDM(a), giving δ̇gal(a) =
−divυ(a). In this limit,

δgal(a) = δgal(1)+ (D(a) − 1)δCDM(1). (1)

Note that the assumption of small (δgal−δCDM) is important, because
the densities of the dark matter and galaxy fields need to be matched
in the full continuity equations, in order for the expected growth in
δgal to be equal to that ofδCDM. This assumption is equivalent to
stating that the distribution of the peculiar velocities ofthe galaxies
is the same as that of the matter field.

2.2 Starting from linear bias

This idea has been extended by Fry (1996), who considered a
galaxy overdensity field with a linear bias at present dayδgal(1) =

b(1)δCDM(1). Substituting this into eqn. (1) givesδgal(a) = [D(a) −
1 + b(1)]δCDM(1). In this model the linear bias is is related to the
growth function by

b(a) =
D(a) − 1+ b(1)

D(a)
. (2)

Furthermore Tegmark & Peebles (1998) considered the evolution-
bias of galaxies following the more general stochastic biasmodel
of Dekel & Lahav (1999) and derive cross correlations between the
matter density and galaxy fields. To simplify the analysis wefollow
Tegmark & Peebles (1998) and define the vector

x(a) =

(

δCDM(a)
δgal(a)

)

. (3)

Forcing the galaxy overdensity field to obey the bias model of
Dekel & Lahav (1999) at present day allows the galaxy and dark
matter distributions to be related by an additional correlation coef-
ficient r. At present day, the covariance matrix can be written

C(1) ≡ 〈x(1)xt(1)〉 = 〈δ2CDM(1)〉

(

1 b(1)r(1)
b(1)r(1) b(1)2

)

. (4)

In this notation, the continuity equation for the galaxy overdensity
field coupled with the linear growth factor for the matter gives

x(a) = M(a)x(1) , whereM ≡
(

D(a) 0
D(a) − 1 1

)

. (5)

The corresponding evolution of the covariance matrixC(a) =
M(a)C(1)Mt(a) shows that the evolution of the galaxy overdensity
field can be rewritten in terms ofr(a) andb(a) (Tegmark & Peebles
1998), and that the bias model does not change its form. Forr = 1,
the formula reduces to the relation of Fry (1996).

2.3 Bias for Gaussian random fields

In work predating Fry (1996) and Tegmark & Peebles (1998),
Bardeen et al. (1986) considered the evolution of bias for galaxies
that form at peaks of the density field after smoothing on a cer-
tain mass scale. On large scales, the peak density field can becon-
sidered as a continuous Gaussian random field itself, statistically
independent and uncorrelated with the background, which drives
the dynamics of the galaxies. The galaxy and matter density field
evolve independently due to the peak-background split, as indepen-
dentk-modes are important for their respective evolution.

Using this model Bardeen et al. (1986) showed that the large-
scale bias evolves asb(a) ∝ δc/σM(a) + 1 for a smoothed Gaus-
sian density field with varianceσM(a), whereδc is the overdensity
threshold above which galaxies form. On linear scales, the vari-
ance of the density fieldσM(a) is proportional to the linear growth
factor σM(a) ∝ D(a). Consequently, if we normalise the bias at
present day, we recover eqn. (2) for the evolution of the bias. A key
assumption made in the derivation is the treatment of the galaxy
distribution as a continuous field and that the evolution in the co-
moving number density of peaks is driven by the evolution of the
background density, which is in effect a reformulation of the conti-
nuity equation for the galaxy field: Forcing the number density of
galaxies to evolve with the background density is akin to theas-
sumption of small (δgal− δCDM) that led to the linearised continuity
equation for the galaxy field.

c© 2007 RAS, MNRAS000, 1–5
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3 STRUCTURE GROWTH FROM PAIR VELOCITIES

The above descriptions of evolution-bias can also be understood in
terms of the peculiar velocities of a discrete set of galaxies. The
variance of the peculiar velocity distribution for each galaxy is

σ2
υ =

[aH(z) f ]2

2π2

∫ ∞

0
dk P(k), (6)

whereH(z) is the Hubble parameter andf ≡ d log D/d loga. If we
assume thatδ is small everywhere, the expected infall velocity is
zero for all pairs of galaxies: we are as likely to choose galaxies that
are moving apart (in comoving space), as peaks moving together.
If galaxy peculiar velocities were uncorrelated, the galaxy density
field would not develop clustering as any initial clusteringpattern
will be destroyed by the random diffusion. This is not the case for
velocity fields driven by correlated Gaussian random overdensity
fields as the velocities of galaxy pairs of separationr are correlated
according to

Cυ(r) = 〈υ1 · υ2〉 =
[aH(z) f ]2

2π2

∫ ∞

0
dk P(k) j0(kr). (7)

Velocities of pairs of galaxies will be strongly correlatedwhen r
is small as both galaxies preferentially move in the same direction,
being part of the same bulk flow, but velocities of galaxy pairs with
large separations are less strongly correlated. This difference means
that there is a net influx of galaxy pairs from large to small sepa-
rations, which leads to the growth in the clustering strength. For a
pair of galaxies of separationr, the variance of the peculiar velocity
difference is

〈|υ1 − υ2|
2〉 = 2[σ2

υ −Cυ(r)], (8)

whereσ2
υ is a diffusion term.

Changing the selection criteria of galaxy pair-velocitiesnatu-
rally changes the evolution of galaxy clustering. An extreme exam-
ple of a galaxy field with an evolution-bias would be the assump-
tion that galaxies only form at locations where the peculiarvelocity
υ = 0. After formation, galaxies at these locations do not move,and
the galaxy overdensity and clustering properties are constant in co-
moving space. In contrast to the model proposed by Bardeen etal.
(1986), this is not physically motivated, because there is no a-priori
reason to link places in the velocity field whereυ ≃ 0 with galaxy
formation. The derivation leading to eqn. (1) breaks down for this
model because it relied on matching the galaxy and matter over-
density fields, which is clearly broken. In this situation, the galax-
ies still locally “move with the matter” although thedistributionof
galaxy velocities does not match thedistributionof velocities of the
dark matter.

4 EVOLUTION-BIAS IN THE PEAKS FORMALISM

We now consider the evolution of a set of galaxies that form atthe
peaks of a smoothed density field, where there is the most rapid
increase in density. After formation, the galaxies leave the peaks,
whose positions are fixed in comoving space, and move with the
matter flow.

We wish to estimate the average velocity of a matter concen-
tration at a peak in the field, so we will need to consider the density
and velocity fields after smoothing by a filter of widthrsmooth. The
velocity dispersion and correlation can be calculated by replacing
P(k) with the smoothed power spectrum̄P(k) in eqns. (6), (7) and
(8). For large separationsr ≫ rsmooth, the Bessel function in eqn (7)
takes precedence over the smoothing of the field, andCυ(r) tends

Figure 1. The expected variance for velocities in a Gaussian random field
smoothed with a Gaussian filter (solid lines), and for the unsmoothed field
(dotted lines), plotted against smoothing scale parametrised by the mass en-
closed within the filter (upper lines). The expected velocity correlation be-
tween two points separated by 200h−1 Mpc, under the same assumptions
are shown by the lower lines. The decrease in velocity variance caused
by additionally selecting sampling points with vanishing gradient in the
smoothed density field is indicated by the dashed lines.

towards the value for the unsmoothed field. In contrast, the variance
of the velocity for each galaxyσ2

υ (eqn. 6), which is independent
of r, does depend on the smoothing applied to the field. The effects
of the smoothing scale onσ2

υ andCυ(r) are shown in Fig. (1), for a
pair separation of 200h−1 Mpc.

In order to select peaks in the smoothed density field, we need
to set two further constraints on the galaxy locations: The density
gradient has to be zero, and the local curvature needs to be posi-
tive definite. Because the velocities are correlated with the density
gradient, placing galaxies at locations where the gradientis zero
reduces the velocity varianceσ2

υ from that of eqn (6) by a factor
(1−γ2

υ) (Bardeen et al. 1986; Szalay & Jensen 1987; Peacock et al.
1987), where

γυ =
σ2

0

σ−1σ1
, and σ2

j = 4π
∫ ∞

0
dk k2 j+2P(k). (9)

For a smoothed field,P(k) needs to be replaced bȳP(k) with the
consequence thatγυ → 1 asrsmooth→ ∞. In the limit of larger, the
velocity correlation function is unchanged by the peak constraint:
In this limit, velocity-velocity correlations dominate over velocity-
gradient, or gradient-gradient correlations because of the additional
k−1 terms in the velocity-dependent integrands. The effect of in-
cluding both the smoothing of the field and the zero-gradientselec-
tion criteria onσ2

υ andCυ(r) is shown in Fig. (1), for a pair separa-
tion of 200h−1 Mpc.

The reduction of the dispersion element of eqn. (8), while
keeping the growth component fixed will lead to a scale-dependent
increase in the 2-point galaxy correlation function (Regos& Szalay
(1995) also comment on this). From this it is clear that propagating
galaxies along their velocity vectors does not preserve theshape
of the correlation function, and the bias evolution formalism devel-
oped in Sect. 2 breaks down.

c© 2007 RAS, MNRAS000, 1–5
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Figure 2. The correlation function atz = 0 (circles),z = 1 (triangles) and
z = 2 (squares) calculated from a Monte-Carlo realisation of 108 indepen-
dent pairs of points in a Gaussian random field. These are compared with
the expected correlations for linear growth (dashed lines). On large scales,
ξ(r) becomes negative because we only sample pairs of galaxies with initial
separation< 100h−1 Mpc.

5 MONTE-CARLO SIMULATION OF GALAXY PAIR
PROPERTIES

We use the formalism introduced by Regos & Szalay (1995) to set
up a Gaussian random process for determining velocity variances
and correlations in the large-scale structure. Regos & Szalay (1995)
show how a 26× 26 covariance matrix can be constructed for the
multi-variate Gaussian distribution of the properties (overdensity,
3 gradient components, 6 curvature components and 3 velocity
components) of pairs of points in a smoothed Gaussian random
field. The matrix depends on the power spectrum moments given
in eqn. (9) and from the functions of the pair separationr given by

Kℓm = 4π
∫ ∞

0
dk km j l(kr)P̄(k). (10)

Using these covariance matrices, we can randomly draw realisa-
tions of the properties of pairs of points in the field, assuming they
follow a multi-variate Gaussian distribution. We can also add con-
straints on the pairs selected, such as that they must both beat a
peak in the field.

We first demonstrate that this procedure can reproduce the
linear growth expected for the matter field. We have produceda
Monte-Carlo realisation of 108 pairs of galaxies using the proce-
dure described above, without any additional constraints on pair se-
lection. This corresponds to choosing random locations in amatter
field. The peculiar velocities were then used to estimate themotion
of galaxies in linear structure formation using the Zel’dovich ap-
proximation. This is applicable for small displacements, and should
therefore accurately describe the initial effect of evolution-bias af-
ter galaxy formation. The dynamical model is affected by theprop-
erties of the particular dark energy model through the growth func-
tion D(a), which affects the peculiar velocities. From these data,
we have calculatedξ(r) for z = 0, 1,2, assuming that the galaxy
pairs evolve from an initial unclustered comoving distribution (as
expected for the matter in the Universe, which is initially homo-

Figure 3. The expected amplitude of the pair-velocity as a function ofpair-
separation for peaks selected for halos of mass 1010...15 M⊙ (solid lines).
Increasing the halo mass leads to larger infall velocities.These curves
were calculated from 107 independent pairs of peaks, although each was
weighted as described in the text, so these correspond to a much smaller
effective number of pairs. The expected pair-velocity for locations selected
at random in the matter distribution is shown by the dotted line.

geneous). The correlation functions are plotted in Fig. 2 showing
excellent agreement with the expected linear evolution.

We now consider galaxies that form at peaks in this field. The
additional criteria applied within our Monte-Carlo procedure to en-
sure that we select peaks are

(i) overdensity thresholdδ > δc = 1.69,
(ii) gradient∇δ = 0,
(iii) positive definite curvature matrix.

Peaks are rare, so simply selecting peaks from pairs chosen at ran-
dom is computationally unfeasible. Instead, where possible, we
force the properties that are required (for example, we onlysample
from the tail of a Gaussian distribution to selectδ > δc), and then
weight the chosen pairs by the likelihood of making that selection
in a full multi-variate analysis. This gives a weighted distribution
with the same statistical properties as selecting a true Monte-Carlo
sample, but is computationally faster for determining the properties
of the distribution.

The expected amplitude of the pair-velocity〈|υ1 − υ2|〉 for
galaxies selected at peaks, is plotted in Fig. 3 for halos of mass
1010...15 M⊙. The expected pair-velocities differ from those of the
mass, because peaks are more likely to be approaching each other
than moving apart at large separations. The evolution in thecor-
relation function depends on the derivative of the expectedpair-
velocity, which controls the net change of pairs with a givensep-
aration (when the distances travelled are small). As we moveto
increasing separation, the peak pair-velocity increases rapidly, but
then turns over and starts to decrease. This will lead to the corre-
lation function decreasing on small scales, and increasingon large
scales.

We have constructed a weighted Monte-Carlo distribution of
3 × 108 galaxy pairs selected at the peaks in a Gaussian random
field, smoothed by a Gaussian filter with width correspondingto a

c© 2007 RAS, MNRAS000, 1–5
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Figure 4. The correlation functions recovered from propagating pairs of
galaxies along their peculiar velocities, divided by thoseexpected from lin-
ear evolution of the density field. Correlation functions atz = 0 (circles),
z = 1 (triangles) andz = 2 (squares), were calculated from a Monte-Carlo
realisation of 108 independent pairs of points in a Gaussian random field
(lower lines), and from 3× 108 weighted peaks in a Gaussian random field
smoothed with a Gaussian filter corresponding to a halo mass of 1012 M⊙
(upper lines).

halo mass 1012 M⊙. In order to demonstrate the effect of peak selec-
tion on the galaxy correlation function, we have followed the evolu-
tion of galaxies pairs from an initially unclustered distribution. This
matches the analysis of pairs of galaxies selected at randomfrom
the matter distribution that led to Fig. 2, but selects special locations
in the velocity field. The ratios between the recovered galaxy corre-
lation functions and those expected for the matter atz= 0, 1,2, are
shown in Fig. 4. As we move from small to large scales, the biasat
any redshift initially decreases, because of the change in expected
infall velocity shown in Fig. 3, but then increases beyond that of
the matter field, as expected from the analytic arguments discussed
in Sect. 4. Due to the fact that galaxies only pick up their pecu-
liar velocities after formation, this plot should not be interpreted
as giving the actual galaxy correlation functions for peaks. To do
this, we would need to specify galaxy formation times and their
spatial distribution (or formation-bias). The relative effect of the
evolution-bias onξ(r), however, should be the same, and this plot
demonstrates that bias is not a simple function of scale. Thelarge-
scale bias is a decreasing function of time, as the amplitudeof the
clustering of the matter field grows to match the strong evolution-
bias predicted at early times.

6 SUMMARY AND DISCUSSION

We have considered a decomposition of galaxy bias into formation-
bias and evolution-bias. The formation- and evolution-biases are
inter-related, with one tending to lead to the other: By choosing
special locations for galaxy formation, we also tend to choose loca-
tions that lead to group evolution that is very different from that of
particles selected at random in the matter field. By analysing mod-
els of evolution-bias, we have argued that this component ofbias
has some interesting properties within the peaks model. We have

demonstrated this from both analytic arguments and a Monte-Carlo
procedure based on the work of Regos & Szalay (1995). Evolution-
bias provides a mechanism for producing a scale-dependent bias
in 2-pt correlation measurements, whose importance grows as the
galaxies move, and consequently depends on the time since galaxy
formation. Note that the overall bias of a galaxy sample would, in
general, be expected to be a decreasing function of time because
this depends on the increasing amplitude of the clustering of the
matter field.

The inclusion of evolution-bias in a combined model of galaxy
bias would predict that older galaxies have a scale dependent bias
with a correlation function whose shape is less like that of the mat-
ter field than a population of younger galaxies. In the most simple
model, the red luminosity of an individual galaxy increasesand
then fades with time. Galaxies can also merge together, forming
larger, brighter objects. The oldest field galaxies tend to be faintest,
and should be most affected by scale-dependent biasing on large
scales. Such a description might explain why the SDSS LRGs and
2dFGRS galaxies seem to match a simple prescription for galaxy
bias, while the SDSS main galaxies do not (Sanchez & Cole 2007):
The SDSS main galaxies sample would contain these old field
galaxies. The evolution-bias considered here would also impact on
measurements of the Baryon Acoustic Oscillation scale length from
the power spectrum or correlation function. Further simulations,
such as provided by semi-analytic techniques, which combine for-
mation and evolution-bias, are required to consider this mechanism
in more detail and apply it to specific galaxy types.
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