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Abstract

We review spacetime dynamics in the presence of large-scale electromagnetic fields
and then consider the effects of the magnetic component on perturbations to a spa-
tially homogeneous and isotropic universe. Using covariant techniques, we refine and
extend earlier work and provide the magnetohydrodynamic equations that describe
inhomogeneous magnetic cosmologies in full general relativity. Specialising this sys-
tem to perturbed Friedmann-Robertson-Walker models, we examine the effects of
the field on the expansion dynamics and on the growth of density inhomogeneities,
including non-adiabatic modes. We look at scalar perturbations and obtain analytic
solutions for their linear evolution in the radiation, dust and inflationary eras. In
the dust case we also calculate the magnetic analogue of the Jeans length. We then
consider the evolution of vector perturbations and find that the magnetic presence
generally reduces the decay rate of these distortions. Finally, we examine the im-
plications of magnetic fields for the evolution of cosmological gravitational waves.

PACS: 98.80.-k; 98.62.En; 98.65.Dx
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1 Introduction

Magnetic fields are a widespread and significant component of the Universe [1]-[7]. The Milky
Way and many other spiral galaxies possess magnetic fields with strengths of order a few
micro Gauss, that are coherent over the plane of the galactic disc. Magnetic fields are also a
common property of galaxy clusters, extending well beyond their core regions. The strengths
of the ordered magnetic fields in the intracluster medium exceed those typically associated
with the interstellar medium of the Milky Way, suggesting that galaxy formation, and even
cluster dynamics, could be influenced by magnetic forces. Furthermore, reports of Faraday
rotation in high-redshift, Lyman-α absorption systems suggest that dynamically significant
magnetic fields could be present in protogalactic condensations.

Despite their widespread presence, however, the precise origin of any large-scale cosmological
magnetic field is still a mystery, and its likelihood or necessity remains a subject of debate [8]-
[12]. The alignment of the galactic fields, especially those seen in spiral galaxies, seems to
support the dynamo idea [13]-[17]. However, the galactic dynamo cannot work without an
initial seed field [18]-[20] and these seeds may require B-fields of primeval origin [21]-[44]. De-
ciding whether galactic and cluster magnetic fields are primordial relics or post-recombination
artefacts is difficult because the strong amplification of the fields in these virialized systems
has overwhelmed all traces of their earlier history. In contrast, possible magnetic imprints
in the Cosmic Microwave Background (CMB), or a magnetic field in the intercluster space,
can provide better insight into the early history because the presence of small-scale magnetic
fields leaves small angular scale features in the CMB undamped [45,46], and leads to distinc-
tive polarisation signatures [47]. The idea of primordial magnetism is attractive because it can
potentially explain all the large-scale B-fields seen in the universe today, especially those found
in high-redshift protogalaxies. Early magnetogenesis is not problem-free however. Seed fields
generated during, say, phase-transitions in the radiation era have typical coherence lengths
that are very small and will destabilize the dynamo. On the other hand, fields which survived
an epoch of inflation are typically too weak to sustain the dynamo. Although the literature
contains several mechanisms of primordial magnetic amplification [48]-[57], with early reheat-
ing looking like a promising stage [58], the issue remains open. Any cosmological magnetic
field must also be consistent with a number of astrophysical constraints. These come from
primordial nucleosynthesis [59,60], and the high isotropy of the CMB radiation [61]-[80]. This
constrains the current strength of a large-scale homogeneous B-field below ∼ 10−9 G [66] (see
also § 11.4 here), although tangled random fields on small scales could reach up to ∼ 10−6 G.

Large-scale magnetic fields of µG strength can affect the evolution of structure in the Universe,
and studies of their effects have a long history. Anisotropic, spatially homogeneous, relativis-
tic cosmologies permeated by large-scale magnetic fields have been analysed in [81]-[83] and
more recently in [65] and [84]-[89]. The bulk of the available inhomogeneous treatments are
Newtonian, with general relativistic treatments only a recent addition to the literature. The
evolution of linear density and vorticity perturbations in magnetic Newtonian cosmologies
were addressed by [90]-[93], and again more recently by [94,95]; general relativistic treatments
have been given in [96]-[98]. These investigations have established that magnetic fields are
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sources of density and vorticity distortions, but the rather complicated action of the B-field
did not allow for analytic solutions to the relativistic equations. Solutions were provided with
the help of covariant and gauge-invariant techniques, which considerably simplify the math-
ematics of cosmological magnetohydrodynamics [99]-[102]. The covariant equations were also
used as the basis for qualitative studies by means of phase-plane methods [103], while an
analogous approach has been used to analyse two-component charged plasmas [104,105]. In
addition to the linear regime, a number of authors have looked into the non-linear interac-
tion between cosmic magnetic fields and electrically-charged fluids, primarily on sub-horizon
scales. This includes work on the amplification of the B-field by shearing effects during the
anisotropic collapse of a proto-galactic cloud [106]-[116]. The aforementioned studies combine
analytical and numerical approaches, and apply to the pre- or to the post-recombination era of
the universe. All this has motivated and facilitated work on the potential effects of magnetism
on the CMB spectrum, including its polarisation [47,63]-[80], and the low-quadrupole moment
problem [117].

In the present article, we use covariant and gauge-invariant techniques to analyse the effects of
cosmological magnetic fields on the large-scale structure of the universe. We do so by refining
and extending the work of [99]-[101]. After a brief introduction to the 1+3 covariant formalism
in § 2, we use § 3, 4 and 5 to provide a detailed discussion of cosmological electrodynamics and
magnetohydrodynamics in full general relativity. Section 6 utilises this information to study
the effects of the B-field on weakly magnetic almost-Friedmann-Robertson-Walker (FRW)
cosmologies in a gauge-invariant manner. One of the key results is that linear perturbations in
the magnetic energy density evolve in step with those in the density of the matter. Focusing
on scalar perturbations, we look at the evolution of linearized matter perturbations during
the radiation and dust eras in § 7. During the radiation era, and on super-horizon scales,
our solutions show the magnetic pressure slows down the standard ‘Jeans’ growth rate of the
density contrast. At the same time, the B-field increases the oscillation frequency of small-
scale density perturbations in proportion to its strength relative to the radiation background
density. The same amount of increase is also observed in the associated Jeans length. After
the radiation era ends, the fluid pressure is effectively zero, and the magnetic field emerges as
the sole source of pressure support. We calculate the associated ‘magnetic’ Jeans length and
find that for µG fields its scale is comparable to the size of a galaxy cluster. Given that during
the dust era the magnetic relative strength decays with time, we also calculate the late-time
magnetic effects on density perturbations. Here too, we find that the magnetic pressure in-
hibits the gravitational clumping of matter. This section closes by looking at the evolution
of magnetic density perturbations within an inflationary false-vacuum environment. We find
that the outcome is very sensitive to the effective equation of state of the cosmic medium.
Section 8 looks at the magnetic effects on isocurvature density fluctuations, namely on pertur-
bations evolving on irrotational spatial hypersurfaces of constant curvature. After establishing
the necessary conditions for the existence of such disturbances in the presence of the B-field,
we find that they always decay in time. In § 9, we treat the magnetic medium as a two-fluid
system and consider the effective entropy perturbations coming from differences in the dy-
namical behaviour of the two components. Our study shows that such disturbances vanish
during the radiation era, while after recombination they either vanish, or remain constant,
depending on the initial conditions. The magnetic effects on rotational (vector) density per-
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turbations are considered in § 10. At the linear perturbative level these distortions are directly
related to the amount of vorticity in the universe. Focusing on the dust era, we show that
the magnetic presence reduces the standard decay rate of rotational perturbations. This leads
to more residual vorticity relative to magnetic-free universes. The implications of the B-field
for the evolution of gravitational waves are examined in § 11. As a first step, we introduce
the additional constraints needed to isolate the linear pure-tensor modes in the presence of a
magnetic field. Once these have been imposed, we consider the magnetic effects on the propa-
gation of gravitational-wave distortions. We also look at the role of the magnetic anisotropic
pressure during the radiation era and discuss the critical, zero eigenvalue, case that emerges
there.

2 1+3 covariant description

The covariant approach to general relativity and cosmology dates back to the work of Heck-
mann, Schücking, and Raychaudhuri in the 1950s [118,119] and it has since been employed
in numerous applications by many authors. The formalism uses the kinematic quantities of
the fluid, its energy density and pressure and the gravito-electromagnetic tensors instead of
the metric, which in itself does not provide a covariant description. The key equations are the
Ricci and Bianchi identities, applied to the fluid 4-velocity vector, while Einstein’s equations
are incorporated via algebraic relations between the Ricci and the energy-momentum tensors.
Here, we will only give a brief description of the approach and direct the reader to a number
of review articles for further details and references [120]-[123].

2.1 Local spacetime splitting

Consider a general spacetime with a Lorentzian metric gab of signature (−, +, +, +). Introduce
a family of fundamental observers along a timelike congruence of worldlines tangent to the
4-velocity vector 1

ua =
dxa

dτ
, (2.1.1)

where τ is the associated proper time and uau
a = −1 [122]. This fundamental velocity field

introduces a local, 1+3 ‘threading’ of the spacetime into time and space. The vector ua de-
termines the time direction, and the tensor hab = gab + uaub projects orthogonal to 4-velocity
field into what is known as the observer’s instantaneous rest space. In the absence of rotation,
ua is hypersurface orthogonal and hab acts as the metric of the 3-D spatial sections.

Employing ua and hab, we define the covariant time derivative and the orthogonally projected

1 Latin indices run between 0 and 3 and Greek vary from 1 to 3. We use geometrized units with
c = 1 = 8πG, which means that all geometrical variables have physical dimensions that are integer
powers of length.
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gradient of any given tensor field Sab···
cd··· according to

Ṡab···
cd··· = ue∇eSab···

cd··· and DeSab···
cd··· = he

sha
fhb

phq
chr

d · · ·∇sSfp···
qr··· , (2.1.2)

respectively. The former indicates differentiation along the timelike direction and the latter
operates on the observer’s rest space.

2.2 Matter fields

Relative to the fundamental observers, the energy-momentum tensor of a general imperfect
fluid decomposes into its irreducible parts as [122]

Tab = ρuaub + phab + 2q(aub) + πab . (2.2.1)

Here, ρ = Tabu
aub and p = Tabh

ab/3 are, respectively, the energy density and the isotropic
pressure of the medium, qa = −ha

bTbcu
c is the energy-flux vector relative to ua, and πab =

h〈a
chb〉

dTcd is the symmetric and trace-free tensor that describes the anisotropic pressure of
the fluid. 2 It follows that qau

a = 0 = πabu
a. When the fluid is perfect, both qa and πab are

identically zero, and the remaining degrees of freedom are determined by the equation of state.
For a barotropic medium the latter reduces to p = p (ρ), with c2

s = dp/dρ giving the the square
of the associated adiabatic sound speed.

When dealing with a multi-component medium, or when allowing for peculiar velocities, one
needs to account for the velocity ‘tilt’ between the matter components and the fundamental
observers (e.g. see [124]-[128]). Here we will consider a single-component fluid and we will
assume that the fundamental observers move with it.

2.3 Covariant kinematics

The observers’ motion is characterized by the irreducible kinematical quantities of the ua-
congruence, which emerge from the covariant decomposition of the 4-velocity gradient

∇bua = σab + ωab +
1

3
Θhab − Aaub , (2.3.1)

where σab = D〈bua〉, ωab = D[bua], Θ = ∇aua = Daua and Aa = ub∇bua are respectively
the shear and the vorticity tensors, the volume expansion (or contraction) scalar, and the 4-
acceleration vector [122]. Then, σabu

a = 0 = ωabu
a = Aau

a by construction. The volume scalar
is used to introduce a representative length scale (the cosmological scale factor a) by means of
definition ȧ/a = Θ/3. Also, on using the orthogonally projected alternating tensor εabc (with

2 Angled brackets denote the symmetric and trace-free part of second-rank tensors projected or-
thogonally to ua and the projected component of vectors (i.e. v〈a〉 = ha

bvb).
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ε̇abc = 3u[aεbc]dA
d – see [135]), one defines the vorticity vector ωa = εabcω

bc/2. Note that ǫabc =
ηabcdu

d, where ηabcd is the totally antisymmetric permutation tensor of the spacetime. This is a
covariantly constant quantity, with ηabcdη

efpq = −4!δ[a
eδb

fδc
pδd]

q and η0123 = [−det(gab)]
−1/2.

The tensor vab = Dbua = σab + ωab + (Θ/3)hab describes the relative motion of neighbouring
observers (with the same 4-velocity). In particular, va = vabχ

b is the relative velocity of the
associated worldlines and χa is their relative position vector (see [121,129] for details).

The non-linear covariant kinematics is determined by a set of three propagation equations
complemented by an equal number of constraints [122]. The former contains Raychaudhuri’s
formula

Θ̇ = −1

3
Θ2 − 1

2
(ρ + 3p) − 2(σ2 − ω2) + DaAa + AaA

a , (2.3.2)

for the time evolution of Θ; the shear propagation equation

σ̇〈ab〉 = −2

3
Θσab − σc〈aσ

c
b〉 − ω〈aωb〉 + D〈aAb〉 + A〈aAb〉 − Eab +

1

2
πab , (2.3.3)

which describes kinematical anisotropies; and the evolution equation of the vorticity

ω̇〈a〉 = −2

3
Θωa −

1

2
curl Aa + σabω

b . (2.3.4)

Here σ2 = σabσ
ab/2 and ω2 = ωabω

ab/2 = ωaω
a are respectively the scalar magnitudes of

the shear and the vorticity, while Eab is the electric component of the Weyl tensor (see § 4.2
below). Also, curl va = εabcD

bvc for any orthogonally projected vector va.

Equations (2.3.2), (2.3.3) and (2.3.4) are complemented by a set of three non-linear constraints.
These are the shear

Dbσab =
2

3
DaΘ + curl ωa + 2εabcA

bωc − qa , (2.3.5)

the vorticity
Daωa = Aaω

a , (2.3.6)

and the magnetic Weyl constraint

Hab = curl σab + D〈aωb〉 + 2A〈aωb〉 , (2.3.7)

where curl Tab ≡ εcd〈aD
cTb〉

d for any symmetric, orthogonally projected tensor Tab. We finally
note that the cosmological constant has been set to zero (i.e. Λ = 0) throughout this review.

3 Electromagnetic fields

Covariant studies of electromagnetic fields date back to the work of Ehlers [120] and Ellis [129].
In addition to its inherent mathematical compactness and clarity, the formalism facilitates a
physically intuitive fluid description of the Maxwell field. This is represented as an imperfect
fluid with properties specified by its electric and magnetic components. For a fully covariant
study of electromagnetic fields in curved spacetimes the reader is referred to [130].
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3.1 Electric and magnetic components

The Maxwell field is covariantly characterized by the antisymmetric electromagnetic (Faraday)
tensor Fab. Relative to a fundamental observer, the latter decomposes as [129]

Fab = 2u[aEb] + εabcB
c , (3.1.1)

where Ea = Fabu
b and Ba = εabcF

bc/2 are respectively the electric and magnetic fields mea-
sured by the observer. Note that Eau

a = 0 = Bau
a, ensuring that both Ea and Ba are spacelike

vectors. Also, Ba = εabcF
bc/2 guarantees that Ba is the dual of Fab.

The Faraday tensor also determines the energy-momentum tensor of the Maxwell field accord-
ing to

T
(em)
ab = −FacF

c
b −

1

4
FcdF

cdgab . (3.1.2)

The above combines with (3.1.1) to facilitate the irreducible decomposition of T
(em)
ab relative

to the ua-frame [129],

T
(em)
ab =

1

2

(

E2 + B2
)

uaub +
1

6

(

E2 + B2
)

hab + 2Q(aub) + Pab . (3.1.3)

Here E2 = EaE
a and B2 = BaB

a are the magnitudes of the two fields, Qa = εabcE
bBc is the

electromagnetic Poynting vector and Pab is a symmetric, trace-free tensor given by

Pab = P〈ab〉 =
1

3

(

E2 + B2
)

hab − EaEb − BaBb . (3.1.4)

Expression (3.1.3) provides a fluid description of the Maxwell field and manifests its generically
anisotropic nature. In particular, the electromagnetic field corresponds to an imperfect fluid
with energy density (E2 +B2)/2, isotropic pressure (E2 +B2)/6, anisotropic stresses given by
Pab and an energy-flux vector represented by Qa. Equation (3.1.3) also ensures that T (em) a

a = 0,
in agreement with the trace-free nature of the radiation stress-energy tensor. Finally, we note
that by putting the isotropic and anisotropic pressure together one arrives at the familiar
Maxwell tensor, which assumes the covariant form

Mab =
1

2

(

E2 + B2
)

hab − EaEb − BaBb . (3.1.5)

3.2 Maxwell’s equations

We follow the evolution of the electromagnetic field by means of Maxwell’s equations. In their
standard tensor form these read

∇[cFab] = 0 and ∇bFab = Ja , (3.2.1)
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where (3.2.1a) reflects the existence of a 4-potential and Ja is the 4-current that sources
the electromagnetic field. With respect to the ua-congruence, the 4-current splits into its
irreducible parts according to

Ja = ρeua + Ja , (3.2.2)

with ρe = −Jau
a representing the measurable charge density and Ja = ha

bJb the orthogonally
projected current (i.e. Jau

a = 0).

Relative to a fundamental observer, each one of Maxwell’s equations decomposes into a time-
like and a spacelike component. Projecting (3.2.1a) and (3.2.1b) along and orthogonal to the
4-velocity vector ua, one obtains a set of two propagation equations [129]

Ė〈a〉 =
(

σab + εabcω
c − 2

3
Θhab

)

Eb + εabcA
bBc + curl Ba − Ja , (3.2.3)

Ḃ〈a〉 =
(

σab + εabcω
c − 2

3
Θhab

)

Bb − εabcA
bEc − curl Ea , (3.2.4)

and the following pair of constraints

DaEa = ρe − 2ωaBa , (3.2.5)

DaBa =2ωaEa . (3.2.6)

Note that, in addition to the usual ‘curl’ and ‘divergence’ terms, Eqs. (3.2.3)-(3.2.6) also
contain effects triggered by the relative motion of neighbouring observers (with the same 4-
velocity – see § 2.3). These are carried by the kinematic terms in the right-hand side of the
above. Thus, ρ̃e = −2ωaB

a is an effective electric charge caused by the relative motion of the
magnetic field, while 2ωaEa acts as an effective magnetic charge triggered by the relatively
moving E-field. The acceleration terms in (3.2.3) and (3.2.4), on the other hand, also reflect
the fact that spacetime is treated as a single entity.

3.3 Conservation laws

The twice contracted Bianchi identities guarantee the conservation of the total energy mo-
mentum tensor, namely that ∇bTab = 0. This constraint splits into a timelike and a spacelike
part, which respectively lead to the energy density and the momentum-density conserva-
tion laws. The energy momentum tensor of the electromagnetic field satisfies the constraint
∇bT

(em)
ab = −FabJ

b, with the Faraday tensor given by (3.1.1) and the quantity in the right-
hand side representing the Lorentz 4-force. Thus, for charged matter the conservation of the
total energy-momentum tensor Tab = T

(m)
ab + T (em)

am leads to the formulae

ρ̇ = −Θ(ρ + p) − Daqa − 2Aaqa − σabπab + EaJ a , (3.3.1)

for the energy density, and
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(ρ + p)Aa =−Dap − q̇〈a〉 −
4

3
Θqa − (σab + ωab)q

b − Dbπab − πabA
b

+ρeEa + εabcJ bBc , (3.3.2)

for the momentum density. The last two terms in the right-hand side of (3.3.2) represent the
familiar form of the Lorentz force. We also note that the electromagnetic effects depend on
the electrical properties of the medium (see § 3.4 below).

The antisymmetry of the Faraday tensor (see Eq. (3.1.1)) and the second of Maxwell’s formulae
(see Eq. (3.2.1b)) imply ∇aJa = 0 and therefore ensure the conservation of the 4-current
density. Using decomposition (3.2.2), we arrive at the covariant form of the charge-density
conservation law [129]

ρ̇e = −Θρe − DaJa − AaJa . (3.3.3)

Hence, in the absence of spatial currents, the evolution of the charge density depends entirely
on the volume expansion (or contraction) of the fluid element.

3.4 Ohm’s law

The relation between the 4-current and the electric field, as measured by the fundamental
observers, is determined by Ohm’s law. Following [131,132], the latter has the covariant form

Ja = ρeua + ςEa , (3.4.1)

where ς is the scalar conductivity of the medium. Thus, Ohm’s law splits the 4-current into
a timelike convective component and a conducting spacelike counterpart. Projecting (3.4.1)
into the observer’s rest space gives

Ja = ςEa . (3.4.2)

This form of Ohm’s law covariantly describes the resistive magnetohydrodynamic (MHD)
approximation in the single-fluid approach. Note the absence of the induced electric field from
the above, reflecting the fact that the covariant form of Maxwell’s formulae (see expressions
(3.2.3)-(3.2.6)) already incorporates the effects of relative motion. According to (3.4.2), non-
zero spatial currents are compatible with a vanishing electric field as long as the conductivity of
the medium is infinite (i.e. for ς → ∞). Thus, at the limit of ideal magnetohydrodynamics, the
electric field vanishes in the frame of the fluid. On the other hand, zero electrical conductivity
implies that the spatial currents vanish, even when the electric field is non-zero. The electrical
conductivity is typically treated in a phenomenological manner and here we will also assume
that it remains constant throughout the medium.

4 Gravitational field

Covariantly, the local gravitational field is described by a set of algebraic relations between the
Ricci curvature tensor and the energy-momentum tensor of the matter. The free gravitational
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field, on the other hand, is described by the electric and magnetic components of the conformal
curvature (Weyl) tensor.

4.1 Local Ricci curvature

In the general-relativistic geometrical interpretation of gravity, matter determines the space-
time curvature, which in turn dictates the motion of the matter. This interaction is evident
in the Einstein field equations, which in the absence of a cosmological constant take the form

Rab = Tab −
1

2
Tgab , (4.1.1)

where Rab = Rc
acb is the spacetime Ricci tensor, Tab is the energy-momentum tensor of the

matter fields, with T = Ta
a being the trace. For our purposes the total energy-momentum

tensor has the form Tab = T
(f)
ab +T

(em)
ab , where T

(f)
ab is given by Eq. (2.2.1) and T

(em)
ab by (3.1.3).

Thus,

Tab =
[

ρ +
1

2

(

B2 + E2
)

]

uaub +
[

p +
1

6

(

B2 + E2
)

]

hab + 2(q(a + Q(a)ub)

+πab + Pab , (4.1.2)

ensuring that ρ + (B2 + E2)/2 is the total energy density of the system, p + (B2 + E2)/6 is
the total isotropic pressure, qa + Qa is the total heat-flux vector and πab + Pab is the total
anisotropic pressure. The inclusion of electromagnetic terms in the energy-momentum tensor
of the matter guarantees that the contribution of the Maxwell field to the spacetime geometry
is fully accounted for.

The successive contraction of the Einstein field equations, assuming that Tab is given by
Eq. (4.1.2), leads to the following algebraic relations:

Rabu
aub =

1

2

(

ρ + 3p + E2 + B2
)

, (4.1.3)

ha
bRbcu

c =− (qa + Qa) , (4.1.4)

ha
chb

dRcd =
{

1

2

[

ρ − p +
1

3

(

E2 + B2
)

]}

hab + πab + Pab . (4.1.5)

In addition, the trace of (4.1.1) gives R = −T , with R = Ra
a and T = Ta

a = 3p − ρ,

where the latter result is guaranteed by the trace-free nature of T
(em)
ab . Note that the above

expressions are valid irrespective of the strength of the electromagnetic components and recall
that qa = 0 = πab when dealing with a perfect fluid.
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4.2 Long-range Weyl curvature

The Ricci tensor describes the local gravitational field of the nearby matter. The long-range
gravitational field, namely gravitational waves and tidal forces, propagates through the Weyl
conformal curvature tensor. The splitting of the gravitational field into its local and non-local
components is demonstrated in the following decomposition of the Riemann tensor,

Rabcd = Cabcd +
1

2
(gacRbd + gbdRac − gbcRad − gadRbc) −

1

6
R (gacgbd − gadgbc) , (4.2.1)

where Cabcd is the Weyl tensor. This shares all the symmetries of the Riemann tensor and
is also trace-free (i.e. Cc

acb = 0). Relative to the fundamental observers, the Weyl tensor
decomposes into its irreducible parts according to

Cabcd = (gabqpgcdsr − ηabqpηcdsr)uqusEpr − (ηabqpgcdsr + gabqpηcdsr) uqusHpr , (4.2.2)

where ηabcd = η[abcd] is the spacetime permutation tensor defined in § 2.3 and gabcd = gacgbd −
gadgbc (e.g. see [133,134]). The symmetric and trace-free tensors Eab and Hab are known as the
electric and magnetic Weyl components and they are given by

Eab = Cacbdu
cud and Hab =

1

2
εa

cdCcdbeu
e , (4.2.3)

with Eabu
b = 0 = Habu

b. Given that Eab has a Newtonian counterpart, the electric part of
the Weyl tensor is associated with the tidal gravitational field. The magnetic component, on
the other hand, has no Newtonian analogue and is therefore primarily associated with gravi-
tational waves and spatial 3-curvature anisotropy [122]. Of course, both tensors are required
if gravitational waves are to exist.

The Weyl tensor represents the part of the curvature that is not determined locally by matter.
However, the dynamics of the Weyl field are not entirely arbitrary because the Riemann tensor
satisfies the Bianchi identities. When contracted, the latter take the form [133]

∇dCabcd = ∇[bRa]c +
1

6
gc[b∇a]R , (4.2.4)

by means of decomposition (4.2.1). In one sense the contracted Bianchi identities act as the
field equations for the Weyl tensor, determining the part of the spacetime curvature that
depends on the matter distribution at other points [133]. The form of the contracted Bianchi
identities guarantees that once the electromagnetic contribution to the Ricci curvature has
been incorporated, through the Einstein field equations, the effect of the Maxwell field on the
Weyl curvature has also been fully accounted for.

The 1+3 splitting of (4.2.4) provides a set of two propagation and two constraint equations for
the evolution of the long-range gravitational field, namely of tidal forces and gravity waves.
In particular, on using the decomposition (4.2.2), the timelike component of (4.2.4) leads
to [122,135]
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Ė〈ab〉 =−ΘEab −
1

2

[

ρ + p +
2

3

(

B2 + E2
)

]

σab + curl Hab −
1

2

(

π̇ab + Ṗab

)

−1

6
Θ (πab + Pab) −

1

2
D〈a(qb〉 + Qb〉) − A〈a(qb〉 + Qb〉)

+3σ〈a
c
[

Eb〉c −
1

6

(

πb〉c + Pb〉c

)

]

+ 2εcd〈aA
cHb〉

d

−εcd〈aω
c
[

Eb〉
d +

1

2

(

πb〉
d + Pb〉

d
)

]

(4.2.5)

and

Ḣ〈ab〉 =−ΘHab − curl Eab +
1

2
(curl πab + curlPab) + 3σ〈a

cHb〉c −
3

2
ω〈a(qb〉 + Qb〉)

−2εcd〈aA
cEb〉

d + εcd〈a

[

1

2
σc

b〉(q
d + Qd) − ωcHb〉

d
]

. (4.2.6)

Taking the time derivatives of the above one arrives to a pair of wavelike equations for the
electric and the magnetic parts of the Weyl tensor, showing how curvature distortions prop-
agate in the form of gravitational waves like ripples in the spacetime fabric. These waves
are also subjected to a set of constraints, which emerge from the spacelike component of the
decomposed Eq. (4.2.4) and are given by [122,135]

DbEab =
1

3
Da

[

ρ +
1

2

(

B2 + E2
)

]

− 1

2
Db (πab + Pab) −

1

3
Θ(qa + Qa) +

1

2
σab(q

b + Qb)

−3Habω
b + εabc

[

σb
dH

cd − 3

2
ωb(qc + Qc)

]

(4.2.7)

and

DbHab =
[

ρ + p +
2

3

(

B2 + E2
)

]

ωa −
1

2
curl (qa + Qa) + 3Eabω

b − 1

2
(πab + Pab)ωb

−εabcσ
b
d

[

Ecd +
1

2

(

πcd + Pcd
)

]

, (4.2.8)

respectively. The above expressions are similar to Maxwell’s formulae, which explains the
names of Eab and Hab. In fact, this Maxwell-like form of the free gravitational field underlines
the rich correspondence between electromagnetism and general relativity, which has been the
subject of theoretical debate for many decades (see [136]-[139] for a representative list).

4.3 Spatial curvature

When the fluid is irrotational, the rest spaces of the fundamental observers mesh together to
form spacelike surfaces orthogonal to their worldlines. These are normal to the ua-congruence
and define the hypersurfaces of simultaneity of all the comoving observers. In the presence
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of vorticity, however, Frobenius’ theorem forbids the existence of such integrable surfaces
(e.g. see [140,141]). The ua-congruence is no longer hypersurface orthogonal. Then, one can
still talk about the observers’ spatial rest-space but only locally. The local 3-Riemann tensor,
defined by

Rabcd = ha
qhb

shc
fhd

pRqsfp − vacvbd + vadvbc , (4.3.1)

where vab = Dbua is the relative position tensor. On using Eqs. (4.1.3)-(4.1.5) and expressions
(4.2.1), (4.2.2), definition (4.3.1) gives

Rabcd =−εabqεcdsE
qs +

1

3

[

ρ +
1

2

(

E2 + B2
)

− 1

3
Θ2
]

(hachbd − hadhbc)

+
1

2
[hac(πbd + Pbd) + (πac + Pac)hbd − had(πbc + Pbc) − (πad + Pad)hbc]

−1

3
Θ [hac(σbd + ωbd) + (σac + ωac)hbd − had(σbc + ωbc) − (σad + ωad)hbc]

−(σac + ωac)(σbd + ωbd) + (σad + ωad)(σbc + ωbc) , (4.3.2)

which offers an irreducible decomposition of the local 3-Riemann tensor orthogonal to ua.
Then, one can easily show that

Rabcd = R[ab][cd] (4.3.3)

and that

Rabcd −Rcdab =−2

3
Θ (hacωbd + ωachbd − hadωbc − ωadhbc)

−2 (σacωbd + ωacσbd − σadωbc − ωadσbc) . (4.3.4)

Therefore, in the absence of vorticity, Rabcd = Rcdab and the spatial Riemann tensor possesses
all the symmetries of its 4-D counterpart.

In analogy with Rab and R, the local Ricci tensor and Ricci scalar of the 3-D space orthogonal
to ua are defined by

Rab = hcdRcadb = Rc
acb and R = habRab , (4.3.5)

respectively. Thus, contracting (4.3.2) along the first and third indices we arrive at what is
usually referred to as the Gauss-Codacci equation:

Rab =Eab +
2

3

[

ρ +
1

2

(

E2 + B2
)

− 1

3
Θ2 + σ2 − ω2

]

hab +
1

2
(πab + Pab)

−1

3
Θ(σab + ωab) + σc〈aσ

c
b〉 − ωc〈aω

c
b〉 + 2σc[aω

c
b] . (4.3.6)

A further contraction leads to the trace of the above and provides the local Ricci scalar of the
3-dimension space orthogonal to ua

R = habRab = 2
[

ρ +
1

2

(

E2 + B2
)

− 1

3
Θ2 + σ2 − ω2

]

. (4.3.7)
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This expression is of major importance, since it is nothing else but the generalized Fried-
mann equation. Indeed, when the electromagnetic terms and those measuring anisotropy are
removed, the above assumes its familiar FRW form. Note that, on using (4.3.7), the Gauss-
Codacci formula (see Eq. (4.3.6)) reads

Rab =
1

3
Rhab +Eab +

1

2
(πab + Pab)−

1

3
Θ(σab + ωab) +σc〈aσ

c
b〉 −ωc〈aω

c
b〉 +2σc[aω

c
b] . (4.3.8)

The latter may be used to calculate the curvature of the 3-space along a chosen direction. For
instance, RabB

aBb gives the 3-curvature distortions along the magnetic field lines.

5 Non-linear cosmological magnetohydrodynamics

With the exception of any period of inflation and early reheating, the universe has been a
good conductor throughout its lifetime. As a result, B-fields of cosmological origin must have
remained frozen into the expanding cosmic fluid during most of their evolution. This allows
us to study the magnetic effects on structure formation within the ideal-MHD limits.

5.1 Ideal MHD approximation

Consider a general spacetime filled with a single barotropic fluid of very high conductivity.
Ohm’s law (see Eq. (3.4.2)) guarantees that in the frame of the fundamental observer the
electric field vanishes despite the presence of non-zero currents. Therefore, in the ideal MHD
limit the energy-momentum tensor of the residual magnetic field simplifies to [99]

T
(B)
ab =

1

2
B2uaub +

1

6
B2hab + Πab , (5.1.1)

with

Πab = Π〈ab〉 =
1

3
B2hab − BaBb . (5.1.2)

Accordingly, the B-field corresponds to an imperfect fluid with energy density ρB = B2/2,
isotropic pressure pB = B2/6, and anisotropic stresses represented by the symmetric and
trace-free tensor Πab.

Similarly, in the absence of an electric field, Maxwell’s equations reduce to a single propagation
formula, namely the covariant magnetic induction equation,

Ḃ〈a〉 =
(

σab + εabcω
c − 2

3
Θhab

)

Bb , (5.1.3)

and the following three constraints
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curl Ba =Ja − εabcA
bBc , (5.1.4)

ωaBa =
1

2
ρe , (5.1.5)

DaBa =0 . (5.1.6)

The right-hand side of (5.1.3) is due to the relative motion of the neighbouring observes and
guarantees that the magnetic field lines always connect the same matter particles [99]. This
means that the field remains frozen-in with the highly conducting fluid. Expression (5.1.4)
provides a direct relation between the spatial currents, which are responsible for keeping
the field lines frozen-in with the matter, and the magnetic field itself (e.g. see [14]). Note
Eq. (5.1.5) which shows that rotating neighbouring observers will measure a non-zero charge
density, triggered by their relative motion, unless ωaBa = 0. Finally, (5.1.6) demonstrates
that in the absence of magnetic monopoles the field lines remain closed and Ba is a solenoidal
vector.

5.2 Magnetic evolution

The magnetic induction equation also provides the non-linear evolution law for the energy
density of the field. More precisely, contracting Eq. (5.1.3) with Ba and then using (5.1.2) we
arrive at

(

B2
)·

= −4

3
ΘB2 − 2σabΠ

ab . (5.2.1)

This shows that in a highly conducting cosmic medium we have B2 ∝ a−4 always unless there
is substantial anisotropy, in which case the B-field behaves as an anisotropic radiative fluid.
In fact, in a homogeneous and anisotropic radiation-dominated universe this latter situation
arises even when the anisotropy is small because close to isotropy Πab ∝ ρ and the evolution
of B2 is determined at second-order with B2/ρrad → σ/Θ ∝ 1/ log(t) during the radiation era
(see [61,65] and also [66,102]).

The nonlinear evolution of the anisotropic magnetic stresses comes from the time derivative
of (5.1.2), which by means of Eqs. (5.1.3) and (5.2.1) leads to

Π̇ab = −4

3
ΘΠab −

2

3
B2σab + 2σc〈aΠ

c
b〉 − 2ωc〈aΠ

c
b〉 . (5.2.2)

5.3 Conservation laws

The energy momentum tensor corresponding to a magnetic single perfect fluid of infinite
conductivity is given by

Tab =
(

ρ +
1

2
B2
)

uaub +
(

p +
1

6
B2
)

hab + Πab , (5.3.1)
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Accordingly, the medium corresponds to an imperfect fluid with effective density equal to
ρ + B2/2, isotropic pressure given by p + B2/6, zero heat flux and solely magnetic anisotropic
stresses represented by Πab (see (5.1.2)).

When applied to the above, and using the MHD form of Maxwell’s equations, the standard
conservation law ∇bTab = 0 decomposes into the following expressions that respectively de-
scribe the energy-density

ρ̇ = −(ρ + p)Θ (5.3.2)

and the momentum-density

(

ρ + p +
2

3
B2
)

Aa = −Dap − εabcB
bcurl Bc − ΠabA

b . (5.3.3)

conservation [99,101]. Note the absence of magnetic terms in Eq. (5.3.2). This is guaranteed by
the magnetic induction equation (5.1.3) and reflects the fact that the magnetic energy density
is separately conserved. 3 Also, when there are no pressure gradients, (5.3.3) gives AaB

a = 0
to ensure that the field exerts no forces along its own direction. Finally, the left-hand side of
(5.3.3) shows that the magnetic contribution to the total inertial mass of the system is 2B2/3.

Contracting Eq. (5.3.3) along Ba we find that the contribution of the B-field to the momentum
density vanishes, thus guaranteeing that the magnetic Lorentz force is always normal to the
field lines. Also, the second term in the right-hand side of (5.3.3) decomposes as

εabcB
bcurl Bc =

1

2
DaB

2 − BbDbBa . (5.3.4)

The last term in the above is the result of the magnetic tension. In so far as this tension stress
is not balanced by the pressure gradients, the field lines are out of equilibrium and there is a
non-zero Lorentz force acting on the particles of the magnetic fluid.

5.4 Magnetic tension

The anisotropic nature of magnetic fields is encoded in the energy-momentum tensor of the
field – and particularly in the anisotropic pressure tensor (see (5.1.2)). This ensures that the
B-fields exert a positive pressure orthogonal to their own direction, while carrying a tension
along Ba. Both of these very well known magnetic features are reflected in the eigenvalues of
Πab, which are positive (1/3) perpendicular to Ba and negative (−2/3) parallel to it.

The magnetic tension also demonstrates the elasticity of the field lines and their tendency
to remain as straight as possible by reacting to any effect that distorts them from equilib-
rium [13,16]. Within the context of general relativity, we can see this tendency by looking

3 Expressions (5.3.2) and (5.3.3) can also be obtained from the conservation laws (3.3.1) and (3.3.2).
This is done by taking the ideal-MHD limit of the latter, using Eq. (5.1.4) and assuming perfect-fluid
matter.
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at the effect of the field on the spatial curvature of a magnetic spacetime. In particular,
contracting (4.3.6) along Ba twice, and ignoring all sources but the magnetic field, we find
that [142]

RabB
aBb =

1

3
B4 +

1

2
ΠabB

aBb = 0 , (5.4.1)

given that ΠabB
b = −(2B2/3)Ba (see (5.1.2)). Accordingly, despite the magnetic presence and

the energy density contribution of the field, the curvature of the 3-space in the direction of the
magnetic force lines is zero. Mathematically speaking, it is the contribution of the negative
magnetic pressure along Ba which cancels out the positive input of the field’s energy density.
More intuitively, however, one could argue that it is the elasticity of the magnetic lines, and
their tendency to remain straight, that maintains the zero curvature along Ba.

In the presence of sources, RabB
aBb is generally non-zero and the magnetic lines are forced out

of equilibrium. When allowing for spatial inhomogeneities, the reaction of the field’s tension,
as expressed through the second stress in the right-hand side of (5.3.4), to these geometrically
induced distortions generally leads to counter-intuitive effects. The potential implications of
these tension stresses, for cosmology as well as astrophysics, have been discussed in [143]-
[146]. In spatially homogeneous spacetimes on the other hand, like the Bianchi I models,
the magnetic Lorentz force vanishes and the field’s tension is manifested only as a negative
energy-density input, through the anisotropic pressure tensor (Πab – see Eq. (5.1.2)). Such
cosmologies were recently investigated in [89].

5.5 Kinematical evolution

The magnetic presence affects the kinematics of the highly conducting medium both directly
and indirectly. In particular, Raychaudhuri’s equation reads

Θ̇ = −1

3
Θ2 − 1

2
(ρ + 3p + B2) − 2(σ2 − ω2) + DaAa + AaA

a , (5.5.1)

showing that the field’s contribution to the total gravitational mass is B2. There are also
indirect magnetic effects propagating through the rest of the terms in the right-hand side of
(5.5.1). Of these effects, probably the most important are carried by the acceleration terms
which follow from Eq. (5.3.3). Similarly, there are direct and indirect magnetic effects on the
shear evolution. In the magnetic environment the propagation equation of the shear tensor
takes the form

σ̇〈ab〉 = −2

3
Θσab − σc〈aσ

c
b〉 − ω〈aωb〉 + D〈aAb〉 + A〈aAb〉 − Eab +

1

2
Πab , (5.5.2)

which reveals how the anisotropic pressure of the field directly induces and also affects kine-
matical anisotropies. Rotation, on the other hand hand, is affected only indirectly through
the magnetic effects on the 4-acceleration of the fluid. To be precise,

ω̇〈a〉 = −2

3
Θωa −

1

2
curl Aa + σabω

b . (5.5.3)
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This means that the B-field not only affects the rotational behaviour of the observers’ frame
but it can also generate vorticity.

The kinematical constraints are also only indirectly affected by the field’s presence. This is
manifested by the absence of explicit magnetic terms in Eqs. (2.3.5)-(2.3.7). When applied to
a highly conducting barotropic fluid expressions (2.3.6) and (2.3.7) remain unchanged, while
(2.3.5) reduces to

Dbσab =
2

3
DaΘ + curl ωa + 2εabcA

bωc . (5.5.4)

When Daσab = 0, the shear is divergence-free and its pure-tensor part has been isolated. In
other words, there is no way of using σab to construct a scalar or a vector. This condition will be
imposed later, in § 11, when studying the magnetic effects of gravitational-wave perturbations.

5.6 Spacetime curvature

The energy-momentum tensor of a highly conducting magnetic perfect fluid is given by
Eqs. (5.1.1), (5.1.2). In that case formulae (4.1.3)-(4.1.5) reduce to

Rabu
aub =

1

2

(

ρ + 3p + B2
)

, ha
bRbcu

c = 0 (5.6.1)

and

ha
chb

dRcd =
[

1

2

(

ρ − p +
1

3
B2
)]

hab + Πab , (5.6.2)

respectively. We note that the above are fully non-linear expressions and that the former
quantifies the total gravitational mass of the MHD fluid (in agreement with (5.5.1)).

We evaluate the magnetic contribution to the local 3-Ricci tensor orthogonal to the ua-
congruence, by taking the MHD limit of the geometrical relations given in § 4.3. Expressions
(4.3.6) and (4.3.7), in particular, simplify to

Rab =Eab +
2

3

(

ρ +
1

2
B2 − 1

3
Θ2 + σ2 − ω2

)

hab +
1

2
Πab −

1

3
Θ(σab + ωab)

+σc〈aσ
c
b〉 − ωc〈aω

c
b〉 + 2σc[aω

c
b] (5.6.3)

and

R = 2
(

ρ +
1

2
B2 − 1

3
Θ2 + σ2 − ω2

)

, (5.6.4)

respectively. This is simply the familiar Friedmann equation generalized to the magnetic and
highly conducting environment.
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5.7 Evolution of inhomogeneities

5.7.1 Basic variables

Spatial inhomogeneities of a given physical quantity are covariantly described by its orthog-
onally projected gradients. For our purposes, the basic variables are the comoving fractional
gradients,

∆a =
a

ρ
Daρ and Ba =

a

B2
DaB

2 , (5.7.1)

describing spatial variations in the fluid and the magnetic energy density distributions (see [147]-
[149]) and [99,100] respectively). Both variables are dimensionless by construction, and vanish
identically when the spacetime is spatially homogeneous. As we will show later, ∆a and Ba

respectively describe spatial variations in the fluid and the magnetic energy densities, as mea-
sured by a pair of neighbouring fundamental observers, in a gauge-invariant way (see § 6.3.1).

The above are supplemented by a pair of auxiliary variables, which describe spatial inhomo-
geneities in the average expansion and the isotropic pressure of the fluid. These are [147]

Za = aDaΘ and Ya = Dap , (5.7.2)

respectively. It should be noted that, for barotropic fluids, the variable Ya is directly related to
∆a and therefore is redundant for all practical purposes. Finally, one may also monitor spatial
inhomogeneities in the distribution of the magnetic field vector by means of the orthogonally
projected tensor [99]

Mab = DbBa . (5.7.3)

This is trace-free in the ideal MHD limit (see constraint (5.1.6)) but, contrary to the gradients
(5.7.1) and (5.7.2), it does not vanish unless the FRW metric is spatially flat (see Appendix A
in [100] and also § 6.3.2 here).

5.7.2 Evolution equations

In the presence of magnetic fields, the non-linear evolution of spatial inhomogeneities in the
density distribution of a single, highly conducting perfect fluid is described by the expression

∆̇〈a〉 =wΘ∆a − (1 + w)Za +
aΘ

ρ
εabcB

bcurl Bc +
2

3
c2
a(1 + w)aΘAa

− (σba + ωba) ∆b +
aΘ

ρ
ΠabA

b , (5.7.4)

with w = p/ρ and c2
a = B2/ρ(1 + w) representing the Alfvén speed (see § 6.1.4 below).

This equation has been obtained by taking the proper-time derivative of (5.7.1a) and then
projecting it onto the observer’s 3-dimensional instantaneous rest space. In the process, we
have also employed the conservation laws (5.3.2) and (5.3.3).
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Similarly, starting from definition (5.7.2a) and using (5.3.3), (5.5.1), we arrive at the following
non-linear evolution equation for the expansion gradients

Ż〈a〉 =−2

3
ΘZa −

1

2
ρ∆a −

1

2
B2Ba +

3

2
aεabcB

bcurl Bc + aDaA

+
[

1

2
R− 3(σ2 − ω2) + A + AbA

b
]

aAa + 2aAbDaAb

−(σba + ωba)Zb +
3

2
aΠabA

b − 2aDa(σ
2 − ω2) , (5.7.5)

where A = DaAa and R is the Ricci scalar of the observer’s local 3-D rest space.

Finally, the orthogonally-projected time derivative of (5.7.1b) leads to the non-linear propa-
gation formula monitoring spatial inhomogeneities in the magnetic energy density

Ḃ〈a〉 =
4

3(1 + w)
∆̇〈a〉 −

4wΘ

3(1 + w)
∆a −

4aΘ

3ρ(1 + w)
εabcB

bcurl Bc − 4

3
aΘ

(

1 +
2

3
c2
a

)

Aa

− (σba + ωba)Bb +
4

3(1 + w)
(σba + ωba)∆b − 4aΘ

3ρ(1 + w)
ΠabA

b − 2a

B2
ΠbcDaσbc

− 2a

B2
σbcDaΠbc +

2

B2
σbcΠ

bcBa −
2a

B2
σbcΠ

bcAa . (5.7.6)

In deriving the above, we have employed the non-linear relations (5.1.3) and (5.2.1), as well as
(5.7.4). This helped to eliminate the expansion gradients from the right-hand sideof Eq. (5.7.6).
We emphasize that (5.7.6) cannot beused when the equation of state of the cosmic medium
has the vacuumenergy form contributed by a cosmological constant in the Einsteinequations,
namely for w = p/ρ = −1. In that case we can no longeruse (5.7.4) to eliminate Za from (5.7.6)
and the evolution of density inhomogeneities is described by a different system of equations
(see § 7.5).

6 Perturbed magnetic FRW cosmologies

The symmetries of FRW spacetimes cannot naturally accommodate generic anisotropic sources
like magnetic fields. This means that when based on a Friedmann background, any magnetic
study will require some degree of approximation. Nevertheless, it is intuitively plausible that
sufficiently weak B-fields can be adequately studied within perturbed almost-FRW models.
This belief, which has been at the core of almost every study of cosmological magnetic fields,
has been confirmed by the analysis of exact [65] and perturbed magnetic Bianchi I uni-
verses [102].
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6.1 Background evolution

6.1.1 Zero-order approach

We consider a spatially flat Friedmann background and allow for the presence of a weak
magnetic field. This is effectively a test field that does not disrupt isotropy and has B2 ≪ ρ.
The background B-field can be either homogeneous or sufficiently random, so that 〈Ba〉 =
0 6= 〈B2〉 (with 〈B2〉 homogeneous on all the scales of interest). In both cases the magnetic
anisotropic stress Πab is treated as a first-order perturbation and the only zero-order magnetic
variable is B2. First-order perturbations arise through Πab, the spatial gradients DbB

2 and the
spatial derivatives DbBa. If the background test field is homogeneous, the scalar B2 describes
its local density and pressure. For a stochastic test field, B2 describes the average density and
pressure of the background field. In either case, the form of the linearized MHD equations
guarantees that the magnetic effects propagate only via B2-terms (see § 7.2) and that, at least
when studying scalar (i.e. density) perturbations, the two approaches lead to the same linear
equations and results.

Alternatively, one can treat the magnetic field as a first-order perturbation, usually as a
stochastic Gaussian field (e.g. see [76,80]). One can adapt our analysis to this scheme by
removing the magneto-curvature terms from all the linear formulae (see § 7.2).

6.1.2 Zero-order equations

Locally, the evolution of the background is governed by the standard Friedmann and Ray-
chaudhuri equations. Introducing H = ȧ/a as our zero-order Hubble parameter, these are

3H2 = ρ and Ḣ = −H2 − 1

6
ρ(1 + 3w) , (6.1.1)

and are supplemented by the conservation laws for the matter and the magnetic energy den-
sities, namely by

ρ̇ = −3Hρ(1 + w) and
(

B2
)·

= −4HB2 , (6.1.2)

respectively. 4 This is obtained from the magnetic induction equation (see (5.1.3)), which
guarantees that

Ḃa = −2HBa . (6.1.3)

Note that the weakness of the B-field allows us to neglect the magnetic contribution to the total
energy density and gravitational mass of the system. This explains the absence of magnetic
terms from the right-hand sides of (6.1.1a) and (6.1.1b), provided w 6= −1/3 in the latter case.

4 The spatially averaged magnetic energy density depends only on time and evolves in tune with its
local counterpart. Indeed, using the local result (6.1.2b), it is straightforward to show that 〈B2〉· =
−4H〈B2〉 on any background domain because 〈H〉 = H in FRW models (e.g. see [150] for details).
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Also, (6.1.2b) guarantees the radiation-like evolution B2 ∝ a−4 for the zero-order field, which
means that the background magnetic flux is conserved.

6.1.3 Specifying the magnetic medium

The nature of the cosmic medium is determined by its equation of state. Here, we will be
dealing with a highly conducting barotropic fluid with p = wρ, where w is the barotropic
index. This vanishes in the case of dust, takes the value w = 1/3 for radiation and indicates a
stiff fluid when w = 1. Also, for w < −1/3 the total gravitational mass of the matter is negative
and the model enters a period of accelerated expansion, which corresponds to exponential de
Sitter-type inflation when w = −1. We find that

ẇ = −(1 + w)(c2
s − w)Θ , (6.1.4)

where c2
s = dp/dρ is the square of the adiabatic sound speed. Therefore, a time-invariant

barotropic index in a non-static universe (i.e. ẇ = 0 and Θ 6= 0) means that c2
s = w = constant,

and vice versa.

6.1.4 Magnetic strength and Alfvén speed

The magnetic strength, relative to the matter component, is measured by the dimensionless
energy-density ratio β = B2/ρ. Then, given the weakness of the field (i.e. since β ≪ 1), the
square of the Alfvén speed is conveniently defined as

c2
a =

β

1 + w
, (6.1.5)

ensuring that c2
a ≪ 1 at all times. The only exception is when w → −1, in which case the

proper definition for the Alfvén speed is c2
a = β/(1 + w + β). 5 Thus, from now on, w 6= −1

unless stated otherwise. On using (6.1.4) and Eqs. (6.1.2), the time derivative of the above
gives

(c2
a)
· = −(1 − 3c2

s)Hc2
a , (6.1.6)

to zero order. Accordingly, the Alfvén speed does not change with time when c2
s = 1/3, which

agrees with the radiation-like linear evolution of the magnetic energy density in almost-FRW
environments. 6

5 In the standard literature the square of the Alfvén speed is c2
a = B2/ρ = β (e.g. see [132]).

6 When shear anisotropy is included, the parameter β and therefore c2
a are no longer constant during

the radiation-dominated epoch but display a slow, ‘quasi static’, logarithmic decay (see [61,65] and
also [66,102]).
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6.2 Linear evolution

We linearize the full equations by treating quantities with non-zero background values as
zero-order variables in perturbative terms. On the other hand, quantities that vanish in the
background are of order one and higher-order terms are ignored. Therefore, the only zero-order
quantities in our case are the fluid energy density (ρ) and pressure (p), the magnetic energy
density (B2), and the Hubble parameter (H).

The linear conservation law of the magnetic energy density maintains its background form,
given by Eq. (6.1.2b). Similarly, the linear propagation of the magnetic vector is still given by
(6.1.3), which implies that Ba ∝ a−2 and that the magnetic flux remains conserved. On the
other hand, the scalar Bacurl Ba, which is used to measure the helicity of the field (e.g. see [71]),
obeys the linear evolution law

(Bacurl Ba)
· = −5HBacurl Ba . (6.2.1)

The above means that the magnetic helicity decays as a−5 and therefore it decreases faster
than the energy density of the B-field (recall that B2 ∝ a−4 throughout the linear regime).
Note that in deriving (6.2.1) we have assumed overall charge neutrality and used Eq. (6.1.3),
together with the first-order expression Ba(curl Ba)

· = −3HBacurl Ba, obtained by means of
commutator (A.2) in § A.2.

To first order, the conservation law of the fluid energy-density retains its the background form
(see Eq. (6.1.2a)). However, when linearized around a FRW background, the momentum-
density conservation equation (5.3.3) reduces to

(1 + w)
(

1 +
2

3
c2
a

)

ρAa = −c2
sDaρ − εabcB

bcurl Bc , (6.2.2)

with Dap = c2
sDaρ due to the barotropic nature of the medium.

The magnetic field’s presence affects the linear kinematics in a number of ways. The average
volume expansion, for example, is determined by the following version of the Raychaudhuri
equation

Θ̇ = −1

3
Θ2 − 1

2
ρ(1 + 3w + β) − c2

s

a(1 + w)

(

1 − 2

3
c2
a

)

Da∆a −
c2
a

2a
DaBa +

1

3
c2
aR , (6.2.3)

where R = habRab is the 3-Ricci scalar and we have kept up to c2
a-order terms. As expected, any

local increase in the magnetic energy density will decelerate the linear expansion of the model
in the same way that matter perturbations do. However, the B-field has an additional effect
due to the magneto-curvature term in the right-hand side of (6.2.3). This further decelerates
the expansion if R < 0, but tends to accelerate it when R is positive. This counter-intuitive
behaviour, whichresults from the tension of the field, can have nontrivial and veryunexpected
implications for spatially curved magnetic spacetimes [143]-[146].
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The rotational behaviour of the weakly magnetic fluid is described by the vorticity propagation
equation, which to linear order takes the form

ω̇a = −2
[

1 − 3

2
c2
s

(

1 − 2

3
c2
a

)

− 1

6
c2
a

]

Hωa −
1

2ρ(1 + w)

(

1 − 2

3
c2
a

)

BbDbcurl Ba . (6.2.4)

This means that the magnetic presence will generate vorticity unless the field’s distribution
is curl-free, or more specifically, unless curl Ba remains unchanged along the direction of the
magnetic force lines. Thus, B-fields can act as sources of rotation. The magnetic effect on
pre-existing vorticesis more difficult to quantify. As we will see later, in section§ 10.3, the
presence of the field can slow down the standard decay rate of vorticity and therefore increase
the residualamount of rotation relative to magnetic-free cosmologies. Recallthat in the absence
of the B-field, vorticity always decays unlessc2

s > 2/3 [151].

The evolution of linear kinematical anisotropies in the magnetic fluid is governed by the
following expression of the shear propagation equation

σ̇ab =−2Hσab +
1

2
Πab − Eab −

c2
s

a(1 + w)

(

1 − 2

3
c2
a

)

D〈a∆b〉 −
c2
a

2a
D〈aBb〉

+
1

ρ(1 + w)

(

1 − 2

3
c2
a

)

BcDcD〈aBb〉 +
1

3
c2
a R〈ab〉 . (6.2.5)

The magnetic effects are diverse. The anisotropic pressure of the field is supplemented by
anisotropies in the distribution of the magnetic vector and by those in the energy density of
the B-field. In addition, there is a purely geometrical magneto-curvature effect, provided that
R〈ab〉 is non-zero at the linear level.

In the ideal MHD limit the kinematical variables also satisfy constraints (5.5.4), (2.3.6) and
(2.3.7), which then linearize to

Dbσab =
2

3
DaΘ + curl ωa , Daωa = 0 (6.2.6)

and
Hab = curl σab + D〈aωb〉 , (6.2.7)

respectively. According to the above, ωa is a linear solenoidal vector and in the absence of
rotation the magnetic Weyl component is fully determined by the shear tensor. Additional
(geometrical) constraints between the kinematical and the dynamical quantities in the highly
conducting medium are provided by (5.6.3) and (5.6.4). The respective linearized counterparts
of these expressions are

Rab = Eab +
2

3

(

ρ +
1

2
B2 − 1

3
Θ2
)

hab +
1

2
Πab − H(σab + ωab) (6.2.8)

and

R = 2
(

ρ +
1

2
B2 − 1

3
Θ2
)

. (6.2.9)
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6.3 Spatial inhomogeneities

6.3.1 Local interpretation of the inhomogeneity variables

To linear order, the inhomogeneity variables defined in section 5.7.1 describe measurable
differences in the spatial distribution of physical quantities. In order to verify this, consider the
relative position vector χa connecting the same two points on the worldlines of neighbouring
fundamental observers. Following [122,147], we have χau

a = 0 and

χ̇a = Hχa + (σab + ωab)χ
b , (6.3.1)

which means that in a FRW universe χa = aχ0
a (with χ0

a = constant and a0 = 1). If P and P̃
are points on the two worldlines with coordinates (xa) and (xa + χa) respectively and ρ, ρ̃ are
the associated values of the energy density, a Taylor expansion around P gives

ρ̃ − ρ = χaDaρ , (6.3.2)

to leading order. Since χa ∝ a in the FRW background and using definition (5.7.1a), the above
translates into

δρ = χa
0∆a , (6.3.3)

where δρ = (ρ̃−ρ)/ρ. In other words, the comoving fractional gradient ∆a describes the mea-
surable local density variation between two neighbouring fundamental observers. Moreover,
∆a closely corresponds to the familiar energy-density contrast of the non-covariant studies.
The same analysis also applies to the rest of the variables defined in 5.7.1.

6.3.2 Gauge invariance of the inhomogeneity variables

Cosmological perturbations have long been known to suffer from gauge-related ambiguities,
reflecting the fact that in perturbation theory one deals with two spacetime manifolds. The
first is the physical spacetime (W) that corresponds to the real universe, while the second
(W) is a fictitious background described by an idealised mathematical model. To proceed
we need to establish an one-to-one correspondence, namely a gauge φ : W → W, between
these two manifolds. Such point identification maps are generally arbitrary and the gauge
problem stems from our inherent freedom to make gauge transformations. The latter differ
from ordinary coordinate transformations because they also change the point identification
between W and W.

We define perturbations as the difference between the value of a given quantity at some event
in the realistic universe and its value at the corresponding (through the gauge) event in the
background spacetime. Gauge transformations, however, generally change this correspondence
and therefore the value of the perturbation itself. This makes perturbations gauge-dependent
and arbitrary. For instance, we can select the gauge in such a way that a given perturbation
vanishes [147]. Following the Stewart & Walker lema, the simplest quantities that remain
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invariant under gauge-transformations are scalars that are constant in the background space-
time and tensors that vanish there [152]. 7 Note that the same general criteria also apply to
second-order perturbations, but this time the Stewart & Walker requirements must be satisfied
by the first-order variables [153].

In a Friedmann universe all physical variables are functions of cosmic time only, though they
acquire additional spatial dependence in perturbed ‘nearly-FRW’ universes. As a result of
the spatial homogeneity of the unperturbed Friedmann background, the variables (5.7.1) and
(5.7.2) vanish to zero order. Consider the density gradient for example. Then,

Daρ = ha
b∇bρ = ha

0∇0ρ + ha
α∇αρ = 0 , (6.3.4)

because ∇αρ = 0 and in a comoving frame ha
0 = 0 (with α = 1, 2, 3 – see also [147]). This result

guarantees the vanishing of the inhomogeneity variables (5.7.1), (5.7.2), in the background, and
therefore ensures their gauge invariance at the linear perturbative level [152]. Note, however,
that the gauge invariance of DbBa, and therefore of Mab, are guaranteed only in spatially flat
FRW backgrounds [100]. One can see that by applying the 3-Ricci identity to a zero-order
3-vector va (see Eq. (A.2) in § A.1). In the absence of rotation the latter reads

2D[aDb]vc = Rabcdv
d , (6.3.5)

which means that Dbva 6= 0 unless Rabcd = 0 [100].

6.3.3 Irreducible inhomogeneity variables

The orthogonally projected density gradient, ∆a, contains collective information about three
types of inhomogeneities, namely density perturbations, vortices and shape-distortions. This
information is encoded in the dimensionless comoving gradient

∆ab = aDb∆a (6.3.6)

and can be decoded by splitting the latter into its irreducible components as follows [149,154]

∆ab =
1

3
aDc∆chab + aD[b∆a] + aD〈b∆a〉 . (6.3.7)

The quantities on the right-hand side are associated with the aforementioned three different
types of inhomogeneity. The scalar Da∆a describes spatial variations in the matter density
(i.e. overdensities or underdensities), the skew part is related to magnitude-preserving changes
of ∆a (i.e. rotations), and the symmetric and trace-free tensor D〈b∆a〉 describes shape distor-
tions in the anisotropy pattern of the gradient field (e.g. pancakes or cigar-like structures).

7 The only alternative way of constructing gauge-independent variables is by using tensors which
are linear combinations of products of the Kronecker deldas with constant coefficients [152].
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In an exactly analogous way, all the information regarding perturbations in the volume ex-
pansion and in the magnetic energy density is stored in the dimensionless second-rank tensors

Zab = aDbZa and Bab = aDbBa , (6.3.8)

respectively. These decompose into their irreducible parts according to [149,101]

Zab =
1

3
aDcZchab + aD[bZa] + aD〈bZa〉 (6.3.9)

and

Bab =
1

3
aDcBchab + aD[bBa] + aD〈bBa〉 . (6.3.10)

6.3.4 Linear equations

When linearized around a FRW background permeated by a weak magnetic field, the non-
linear propagation equations of section 5.7.2 reduce to

∆̇a =3wH∆a − (1 + w)Za +
3aH

ρ
εabcB

bcurl Bc + 2c2
a(1 + w)aHAa , (6.3.11)

Ża =−2HZa −
1

2
ρ∆a −

1

2
B2Ba +

3

2
aεabcB

bcurl Bc + aDaA (6.3.12)

and

Ḃa =
4

3(1 + w)
∆̇a −

4wH

1 + w
∆a −

4aH

ρ(1 + w)
εabcB

bcurl Bc − 4aH
(

1 +
2

3
c2
a

)

Aa , (6.3.13)

respectively. Therefore, the linear evolution of the inhomogeneities depends on the 4-acceleration
of the highly conducting matter. To first order, the latter satisfies the momentum-density con-
servation law (see Eq. (6.2.2))

(1 + w)
(

1 +
2

3
c2
a

)

aρAa = −c2
sρ∆a − aεabcB

bcurl Bc . (6.3.14)

Using the commutation law D[aDb]vc = −ωabv̇〈c〉 + Rdcbav
d/2 between the spatial gradients

of va (with vau
a = 0 – see Eq. (A.2) in § A.1)), and the constraint (5.1.6), the projected

divergence of the above leads to

A = − c2
s

a(1 + w)

(

1 − 2

3
c2
a

)

Da∆a −
c2
a

2a
DaBa +

1

3
c2
aR , (6.3.15)

where

R = 2
(

ρ +
1

2
B2 − 1

3
Θ2
)

, (6.3.16)
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is the linearized 3-Ricci scalar (see Eq. (6.2.9)). Substituting (6.3.14) into the right-hand side
of (6.3.13) we arrive at

Ḃa =
4

3(1 + w)
∆̇a +

4(c2
s − w)H

1 + w
∆a , (6.3.17)

which means that linear inhomogeneities in the magnetic energy density are only affected
by those of the matter. To close the system of (6.3.11), (6.3.12) and (6.3.17) we require the
propagation equation of the 3-Ricci scalar. Taking the time derivative of (6.2.9) and linearising
we obtain

Ṙ = −2
(

1 +
2

3
c2
a

)

HR +
4c2

s

a(1 + w)

(

1 − 2

3
c2
a

)

HDa∆a +
2c2

aH

a
DaBa . (6.3.18)

We note that for c2
s = w, as it happens during the radiation and the dust epochs when the

equation of state of the cosmic medium remains unchanged (i.e. when ẇ = 0 - see Eq. (6.1.4)),
the above expression reduces to

Ḃa =
4

3(1 + w)
∆̇a . (6.3.19)

This guarantees that linear perturbations in the magnetic energy density evolve in step with
those in the density of the highly conducting matter. When dealing with a radiative fluid the
above gives Ḃa = ∆̇a, while Ḃa = 4∆̇a/3 for non-relativistic dust. 8 The implication of (6.3.19)
is that the effective entropy perturbations coming from the different dynamical behaviour of
the two components (i.e. the fluid and the magnetic field) are constant, or zero (see section 9).

7 Density perturbations

7.1 Basic variables

Decomposition (6.3.7) allows for a fully covariant and gauge-invariant study of linear density
perturbations, vortices and shape distortions. Here, we will focus on the scalar component of
∆ab. This is defined by

∆ = aDa∆a , (7.1.1)

and when positive (negative) it describes overdensities (underdensities) in the distribution
of the perturbed fluid. In other words, ∆ corresponds to the relative increase or decrease in
the matter density as measured by a pair of neighbouring fundamental observers. Similarly,
Z = aDaZa and B = aDaBa describe scalar perturbations in the volume expansion and the
magnetic energy density respectively.

8 The covariantly derived result (6.3.19) is in complete agreement with relation B ∝ ρ2/3(1+w),
familiar from conventional studies of weakly magnetized FRW models. Indeed, taking the square of
the above, and then its variation, we find that δB2/B2 = 4δρ/3ρ(1 + w) with δB2/B2 and δρ/ρ
corresponding to Ba and ∆a respectively.
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To linear order definition (7.1.1) reduces to ∆ = (a2/ρ)D2ρ, while analogous expressions hold
for B and Z. In addition, it helps to introduce the following rescaling

K = a2R , (7.1.2)

of the perturbed 3-Ricci scalar R. This is also gauge invariant, given the spatial flatness of
the FRW background.

7.2 Linear equations

Taking the orthogonally projected divergence of Eq. (6.3.11), using (6.3.14) and keeping up to
c2
a-order terms, given the weakness of the magnetic field, we arrive at the following equation

∆̇ = 3w
(

1 − 2

3
c2
a

)

H∆ − (1 + w)Z +
3

2
c2
a(1 + w)HB − c2

a(1 + w)HK , (7.2.1)

for the linear evolution of ∆. Note that in deriving the above we have also set ẇ = 0 to
zero order, which means that w = c2

s = constant in the background, and employed the linear
relation aDa∆̇a = ∆̇. Following (7.2.1), the field will generally act as a source for density
perturbations even when there are no such distortions present initially. Also, the magnetic
field’s presence has a direct and an indirect effect on ∆. The former results from the pressure
part of the Lorentz force (see decomposition (5.3.4) in § 5.3) and carries the effects of the
isotropic magnetic pressure. The latter comes from the tension component of the Lorentz
force and it is triggered by the magnetic coupling to the spatial curvature of the perturbed
model. Surprisingly, a positive 3-curvature perturbation causes ∆ to decrease, while a negative
K has the opposite effect. This rather counter-intuitive behaviour of the magneto-curvature
term in (7.2.1) is a direct consequence of the elasticity of the field lines (see also Eq. (7.2.2)
below).

Similarly, using (6.3.15), together with the linear results aDaŻa = Ż and aDaḂa = Ḃ, the
linearized orthogonally-projected divergences of (6.3.12) and (6.3.17) lead to

Ż =−2
(

1 +
2

3
c2
a

)

HZ − 1

2
ρ
(

1 − 4

3
c2
a

)

∆ +
1

4
c2
a(1 + w)ρB − 1

2
c2
a(1 + w)ρK

− c2
s

1 + w

(

1 − 2

3
c2
a

)

D2∆ − 1

2
c2
aD

2B (7.2.2)

and

Ḃ =
4

3(1 + w)
∆̇ +

4(c2
s − w)H

1 + w
∆ , (7.2.3)

respectively. Finally, starting from the linear propagation equation of the 3-Ricci scalar we
obtain

K̇ = −4

3
c2
aHK +

4c2
s

1 + w

(

1 − 2

3
c2
a

)

H∆ + 2c2
aHB . (7.2.4)
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The system (7.2.1)-(7.2.4) describes the linear evolution of scalar inhomogeneities in the den-
sity distribution of the matter in a weakly magnetic and spatially flat almost-FRW universe. 9

When the cosmic medium has a time-independent equation of state (i.e. for ẇ = 0) we have
c2
s = w = constant and Eq. (7.2.3) reduces to

Ḃ =
4

3(1 + w)
∆̇ . (7.2.5)

It should be noted that in [99]-[101] factors of the form 1±c2
a in the coefficients of the perturbed

variables were set to unity, because of the overall weakness of the B-field. Here, retaining the
factors 1±c2

a in the system of (7.2.1)-(7.2.4) has improved the accuracy of our linear equations
and will help us refine the results of [99]-[101]. When 1 ± c2

a ≃ 1, expressions (7.2.1)-(7.2.4)
immediately reduce to their corresponding formulae of [99]-[101]. The reduction is obvious and
straightforward for Eqs. (7.2.1)-(7.2.3) but not for (7.2.4). There, one needs to use definition
(7.1.2) to show that K̇ + (4c2

a/3)HK ≃ K̇ when 1 ± c2
a ≃ 1. This requirement was overlooked

in [103], resulting in the inconsistent linearisation of their equations.

7.3 Evolution in the radiation era

During the radiation epoch the background dynamics is determined by the parameters w =
1/3 = c2

s, H = 1/2t and ρ = 3/4t2. In addition, given the weakness of the magnetic field
we have c2

a = 3β/4, where β = B2/ρ = constant ≪ 1. To proceed further we harmonically
decompose the perturbed variables. In particular, we set ∆ =

∑

k ∆(k)Q(k), where Q(k) are the
standard scalar harmonics (with k representing the associated wavenumber) and Da∆

(k) = 0.
The harmonics are time-independent functions (i.e. Q̇(k) = 0) and satisfy the scalar Laplace-
Beltrami equation

D2Q(k) = −
(

k

a

)2

Q(k) . (7.3.1)

Similarly, the rest of the perturbed variables decompose as Z = Z(k)Q(k), B = B(k)Q(k) and
K = K(k)Q(k), with DaZ(k) = 0 = DaB(k) = DaK(k). Implementing this harmonic decomposi-
tion, Eqs. (7.2.1)-(7.2.4) now read

9 When B2 is treated as a first order perturbation, the 3-Ricci terms in the right-hand side of
Eqs. (7.2.1), (7.2.2) are second order and therefore vanish at the linear level. In that case linearized
magnetized matter fluctuations evolve free of spatial curvature effects and (7.2.4) is no longer re-
quired. Note that c2

aB = a2D2B2/ρ by definition and therefore the variable c2
aB is still linear.
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∆̇(k) =
1

2

(

1 − 1

2
β
)

t−1∆(k) − 4

3
Z(k) − 1

2
βt−1K(k) +

3

4
βt−1B(k) , (7.3.2)

Ż(k) =−
(

1 +
1

2
β
)

t−1Z(k) − 3

8
(1 − β)t−2∆(k) − 3

8
βt−2K(k) +

3

16
βt−2B(k)

+
1

4

(

k

a

)2 (

1 − 1

2
β
)

∆(k) +
3

8

(

k

a

)2

βB(k) , (7.3.3)

K̇(k) =−1

2
βt−1K(k) +

1

2

(

1 − 1

2
β
)

t−1∆(k) +
3

4
βt−1B(k) , (7.3.4)

Ḃ(k) =∆̇(k) . (7.3.5)

During the radiation era the Hubble radius, in comoving proper time t, is given by λH ≡
1/H = 2t. Also, physical wavelengths and comoving wave numbers are related by λk = a/k.
Substituting these expressions into Eq. (7.3.3), and keeping up to β-order terms (recall that
β ≪ 1), the system (7.3.2)-(7.3.5) becomes

∆̇(k) =
1

2

(

1 − 1

2
β
)

t−1∆(k) − 4

3
Z(k) − 1

2
βt−1K(k) +

3

4
βt−1B(k) , (7.3.6)

Ż(k) =−
(

1 +
1

2
β
)

t−1Z(k) − 3

8
(1 − β)t−2



1 − 1

6

(

λH

λk

)2 (

1 +
1

2
β
)



∆(k)

−3

8
βt−2K(k) +

3

16
βt−2



1 +
1

2

(

λH

λk

)2


B(k) , (7.3.7)

K̇(k) =−1

2
βt−1K(k) +

1

2

(

1 − 1

2
β
)

t−1∆(k) +
3

4
βt−1B(k) , (7.3.8)

Ḃ(k) =∆̇(k) , (7.3.9)

where λH/λk = k/aH . The above describe the evolution of linear matter perturbations in a
weakly magnetic almost-FRW universe filled with a single highly conducting perfect fluid.

7.3.1 Super-horizon scales

When dealing with perturbations on super-Hubble lengths we have λk ≫ λH . Then, given
also that β ≪ 1, Eqs. (7.3.6)-(7.3.9) reduce to the scale-independent system

∆̇ =
1

2

(

1 − 1

2
β
)

t−1∆ − 4

3
Z − 1

2
βt−1K +

3

4
βt−1B , (7.3.10)

Ż =−
(

1 +
1

2
β
)

t−1Z − 3

8
(1 − β)t−2∆ − 3

8
βt−2K +

3

16
βt−2B , (7.3.11)

K̇=−1

2
βt−1K +

1

2

(

1 − 1

2
β
)

t−1∆ +
3

4
βt−1B , (7.3.12)

Ḃ=∆̇ . (7.3.13)
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These can be solved analytically and lead to the following simple power-law evolution for the
density contrast

∆ = ∆(t) = C0 + Cit
zi , (7.3.14)

where C0, Ci are constants (with i = 1, 2, 3) and the zi are roots of a cubic algebraic equation.
Ignoring terms of order O(β2) and higher, the latter reads

8z3 − 4(1 − β)z2 − 4(1 − β)z = 4β . (7.3.15)

At the weak-field limit the above is solved perturbatively giving z1 = −1/2 + 5β/6, z2 = −β
and z3 = 1 − β/3, which are all physically allowed solutions. Consequently, at this level of
approximation, the linear evolution of ∆ proceeds as a sum of power-laws:

∆ = C0 + C1t
−

1
2
+

5
6

β + C2t
−β + C3t

1−
1
3

β . (7.3.16)

Note that in the absence of the magnetic field (i.e. for β = 0), we recover the standard
evolution for the density contrast, familiar from the linear study of perturbed magnetic-free
FRW models (e.g. see [155]-[157]). Thus, in the weak-field limit the main magnetic effect is
to reduce the growth rate of the dominant density mode. In addition, the field also decreases
the rate of the standard decay mode and introduces a new ‘non-adiabatic’ decay mode. 10

7.3.2 Sub-horizon scales

Well below the horizon scale, λH/λk ≫ 1 and the scale-dependent terms inside the brackets
of Eq. (7.3.7) become important. Then, on sub-horizon scales the system (7.3.6)-(7.3.9) reads

∆̇(k) =
1

2

(

1 − 1

2
β
)

t−1∆(k) − 4

3
Z(k) − 1

2
βt−1K(k) +

3

4
βt−1B(k) , (7.3.17)

Ż(k) =−
(

1 +
1

2
β
)

t−1Z(k) +
1

16

(

λH

λk

)2

0

(

1 − 1

2
β
)

t−1
0 t−1∆(k)

−3

8
βt−2K(k) +

3

32
β

(

λH

λk

)2

0

t−1
0 t−1B(k) , (7.3.18)

K̇(k) =−1

2
βt−1K(k) +

1

2

(

1 − 1

2
β
)

t−1∆(k) +
3

4
βt−1B(k) , (7.3.19)

Ḃ(k) =∆̇(k) , (7.3.20)

given that during the radiation era λH/λk = (λH/λk)0(t/t0)
1/2.

10 The magnetic suppression of the growing ∆-mode was first observed in [100], although there the
3-curvature effects were switched off. Allowing for the curvature effects, the analysis of [101] showed
no magnetic effect on the growing mode to lowest order in β, but a slight magnetic enhancement
at higher order (see solution (54), (55) there). Here, the refined solutions showed a suppression
proportional to β in line with the results of [100].
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When the 3-curvature effects are switched off, as is physically appropriate during the early
universe, the system can be solved analytically. In particular, the solution for the linear matter
perturbations reads

∆(k) = ∆(k)(t) = C1 + C2t
1/4J1/2+β(χ) + C3t

1/4Y1/2+β(χ) , (7.3.21)

where Ci are the integration constants (with i = 1, 2, 3) and J1/2+β(χ) and Y1/2+β(χ) are
Bessel functions of the first and second kind respectively, with arguments determined by

χ = cs

(

λH

λk

)

(

1 +
1

2
β
)

= cs

(

λH

λk

)

0

(

t

t0

)1/2 (

1 +
1

2
β
)

, (7.3.22)

and cs = 1/
√

3. Also, recalling that β ≪ 1 and keeping up to β-order terms, we arrive at the
following large-scale solution for B:

B(k) = B(k)(t) = −2

3
C1

(

1 − 1

2
β
)

β−1 + C2t
1/4J1/2+β(χ) + C3t

1/4Y1/2+β(χ) . (7.3.23)

As expected (see Eq. (7.3.20)), the above is identical to (7.3.21) up to a constant. Setting

∆(k) = ∆
(k)
0 and B(k) = B(k)

0 initially, solutions (7.3.21) and (7.3.23) combine to give C1 ≃
3β(∆

(k)
0 − B(k)

0 )/2. Then,

∆(k) =
3

2
β
(

∆
(k)
0 − B(k)

0

)

+ C2t
1/4J1/2+β(χ) + C3t

1/4Y1/2+β(χ) . (7.3.24)

Based on the weakness of the magnetic field, we may approximate the two Bessel functions
in the above given solutions by J1/2+β ≃ J1/2 and Y1/2+β ≃ Y1/2 respectively. In this case
(7.3.24) reduces to

∆(k) =
3

2
β
(

∆
(k)
0 − B(k)

0

)

+ C2

√

2

πα
sin

(

αt1/2
)

+ C3

√

2

πα
cos

(

αt1/2
)

, (7.3.25)

where α = cs(λH/λk)0t
−1/2
0 (1+β/2). Therefore, we find that small-scale matter perturbations

oscillate like magneto-sonic waves. The magnetic presence tends to reduce the amplitude of
the oscillation and increase its frequency (in agreement with [100,101]). In both cases the effect
of the field is proportional to its relative strength (i.e. to the ratio β = B2/ρ). As pointed out
in [63], the increased frequency of ∆(k) should bring the peaks of short-wavelength oscillations
in the density of the radiation component closer. This in turn could produce a potentially
observable signature in the CMB.

An additional magnetic effect arises from the presence of a constant mode in solution (7.3.25).
This suggests that, unlike the magnetic-free case (e.g. see [156]), magnetic matter perturba-
tions in the pre-equality universe oscillate around a generally non-zero average value. This
depends on the relation between ∆ and B initially. For example, isocurvature initial condi-
tions typically correspond to zero perturbation in the total energy density [165,167]. In our
case ρt = ρ + B2/2 and the isocurvature requirement translates into ∆0 = (β/2)B0 (recall
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that β = constant throughout this epoch). Following (7.3.25), the latter implies that by the
end of the radiation era the associated density contrast oscillates around the average value
〈∆〉 ≃ 3∆0. We finally note that, strictly speaking, the analysis of § 7.3 holds as long as
the electrons are still relativistic (i.e. up to T ∼ Te). Subsequently, and until the end of the
radiation era, one should examine the magnetic effects on perturbed non-relativistic matter
on an expanding radiative background.

7.4 Evolution in the dust era

After the end of the radiation era, the unperturbed background is well approximated by
w = 0 = c2

s, H = 2/3t, ρ = 4/3t2. Also, c2
a = β and it is no longer constant but decreases

with time according to β ∝ a−1 ∝ t−2/3. Applying the usual harmonic decomposition to the
perturbation variables, and keeping up to β-order terms, the system (7.2.1)-(7.2.4) reads

∆̇(k) =−Z(k) − 2

3
βt−1K(k) + βt−1B(k) , (7.4.1)

Ż(k) =−4

3

(

1 +
2

3
β
)

t−1Z(k) − 2

3

(

1 − 4

3
β
)

t−2∆(k) − 2

3
βt−2K(k)

+
1

3
β



1 +
2

3

(

λH

λk

)2


 t−2B(k) , (7.4.2)

K̇(k) =−8

9
βt−1K(k) +

4

3
βt−1B(k) , (7.4.3)

Ḃ(k) =
4

3
∆̇(k) , (7.4.4)

with λH = 3t/2. The above system has no simple analytical solution because during the dust
era the dimensionless parameter β is no longer constant. Nevertheless, as we shall see next,
one can still extract useful qualitative and quantitative information about the magnetic effects
on density perturbations in the post-recombination universe.

7.4.1 Magnetically-induced Jeans’ length

The wave equation of the density contrast reveals the role of the magnetic pressure against
gravitational collapse and helps to establish the scale of the magnetic Jeans’ length. In par-
ticular, taking the time derivative of (7.4.1) and using the rest of the formulae we arrive
at

∆̈(k) =−4

3

(

1 − 1

3
β
)

t−1∆̇(k) +
2

3







1 − 8

3
β



1 +
1

6

(

λH

λk

)2










t−2∆(k)

+
8

9
βt−2K(k) . (7.4.5)
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Note that, in deriving the above, we have set B(k)
0 = 4∆

(k)
0 /3. This guarantees that B(k) =

4∆(k)/3 always (see Eq. (7.4.4)).

The first term on the right-hand side of (7.4.5) shows that the magnetic presence reduces
the diluting effect of the expansion by a small amount proportional to the field’s relative
strength. The second term gauges the opposing effects of gravity and magnetic pressure.
When the curvature term is removed form (7.4.5), and the quantity in the angled brackets is
positive, gravity prevails and the density contrast grows. When the brackets take a negative
value, the pressure of the magnetic field dominates and forces the inhomogeneity into an
oscillatory phase. In the latter case the magnetic effect is relatively weak and also decays in
time. Gravitational attraction and magnetic pressure balance each other out at the threshold
1 − (8β/3)[1 + (λH/λk)

2/6] = 0. This also determines an associated Jeans length, defined
as the scale below which the magnetic pressure gradients dominate and the inhomogeneities
oscillate. This ‘magnetic’ Jeans length is given by

λJ =

√

4β

9 − 24β
λH (7.4.6)

and it is considerably smaller than the corresponding Hubble radius since β ≪ 1 (see also [92,93]
for analogous expressions). The anisotropy of the CMB constrains the current magnitude
of a (homogeneous) cosmological magnetic field below 10−9 G [63,66]. In that case B2

0 ∼
10−58 GeV4, β0 ∼ 10−11 (recall that ρ = ρcr ∼ 10−47 GeV4 today) and the associated magnetic
Jeans length is

λJ ∼ 10−5λH ∼ 10 Kpc , (7.4.7)

today. Random B-fields, however, can have magnitudes up to 10−6 G in today’s values. If
B0 ∼ 10−7 G, a strength supported by observations in galaxy clusters and high-redshift
protogalactic structures, we find that

λJ ∼ 10−3λH ∼ 1 Mpc , (7.4.8)

at present. This number, which can also be obtained through a fully Newtonian treatment [95],
determines the dimensions of the region that is gravitationally supported by the magnetic
pressure gradients, and lies intriguingly close to the size of a galaxy cluster.

7.4.2 Late-time evolution

One can obtain an analytical solution for the evolution of magnetic density perturbations
in the dust era by taking the time derivative of (7.4.5). Then, recalling that λH/λk =
(λH/λk)0(t/t0)

1/3, using (7.4.3) and (7.4.4), and keeping up to β-order terms we arrive at
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∆
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 t−3∆(k) + CBt−3 . (7.4.9)

The constant CB is inversely proportional to the scale in question and vanishes when B0 =
4∆0/3. As we will see in § 9, the aforementioned initial conditions guarantee effective adia-
baticity. Ignoring the weak and time-decaying terms from the right-hand side of (7.4.9), we
obtain the following late-time solution (see also Eq. (67) in [101])

∆(k) = C1t
α1 + C2t

α2 + C3t
−2/3 + C4 , (7.4.10)

with

α1,2 = −1

6
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√

√

√

√1 − 32

75
β0

(

λH

λk

)2

0





 . (7.4.11)

In the absence of the B-field (i.e. when β0 = 0), we immediately recover the standard magnetic-
free solution with α1 = 2/3 and α2 = −1 (e.g. see [155]-[157]). Therefore, the main magnetic
effect is to reduce the growth rate of density perturbations by an amount proportional to its
relative strength (i.e. to the ratio β0 = (B2/ρ)0). It should be noted that the inhibiting role
of the field was first observed in the Newtonian treatment of [90] and later in the relativis-
tic studies of [100,101]. According to (7.4.10) and (7.4.11), the magnetic impact is inversely
proportional to the scale in question. On super-horizon lengths, in particular, the above given
solution reads

∆(k) = C1t
2/3 + C2t

−1 + C3t
−2/3 , (7.4.12)

since C4 ≃ (β0/3)(λH/λk)
2
0[B0 − (4/3)∆0] ≪ 1. Hence, on large scales the introduction of the

B-field simply adds the decaying t−2/3 mode to the standard magnetic-free result. Note also
that ∆ describes the directionally-averaged gravitational clumping of the matter. Generally,
the perturbations will grow at different rates parallel and perpendicular to the magnetic field
and so there will also be non-spherical evolution in the shapes of these distortions.

7.5 Evolution in false-vacuum environments

False vacuum cosmological environments have been largely associated with inflation, since
they typically lead to exponential, de Sitter-type expansion. Dynamically, such environments
can be achieved by introducing a fluid with a non-conventional equation of state. Here, we will
consider linear inhomogeneities in the energy density of a barotropic and of a non-barotropic
magnetized medium with a false-vacuum equation of state.

Nonlinear spatial inhomogeneities in the density distribution of a perfect, though not neces-
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sarily barotropic, fluid propagate according to 11

∆̇〈a〉 =
3p

ρ
H∆a −

3aH

ρ
Dap − (ρ + p)Za − 3a(ρ + p)HAa − (σba + ωba)∆

b , (7.5.1)

The 4-acceleration vector seen above satisfies the momentum-density conservation law. In the
absence of a magnetic field the latter reads

(ρ + p)Aa = −Dap , (7.5.2)

with ρ+p representing the inertial mass of the fluid. When dealing with a magnetized medium,
however, (7.5.2) is replaced by

(

ρ + p +
2

3
B2
)

Aa = −Dap − εabcB
bcurl Bc − ΠabA

b , (7.5.3)

which incorporates the magnetic contribution to the total inertial mass of the system.

One way of achieving the false vacuum environment is by introducing an effective (barotropic)
perfect fluid with p = −ρ. In that case Eq. (7.5.2) acts as a constraint demanding that
Dap = 0. This immediately implies Daρ = 0 and therefore zero density inhomogeneities. This
strict constraint is a direct and unavoidable consequence of having a medium with zero inertial
mass. When a magnetic field is present, however, the 4-acceleration is given by (7.5.3) and
this expression allows for nonzero pressure gradients even if ρ + p = 0. In that case we have
Dap = −Daρ 6= 0 and Eq. (7.5.1) reduces to

∆̇a = 0 , (7.5.4)

at the linear perturbative level. Accordingly, all three types of linear density inhomogeneities
(i.e. matter perturbations, vortices and shape distortions) remain constant as long as ρ+p = 0.
Note that we always assume that B2 ≪ ρ, which ensures that the magnetic field has no effect
of the exponential expansion of the model (i.e. ρ + 3p + B2 ≃ ρ + 3p = −2ρ < 0).

Standard de Sitter inflation is typically achieved by means of a single minimally coupled scalar
field (ϕ), which generally does not behave like a barotropic medium. Instead, the ϕ-field acts
as an effective perfect fluid with energy density and pressure given by

ρ = ρ(ϕ) =
1

2
ϕ̇2 + V (ϕ) and p = p(ϕ) =

1

2
ϕ̇2 − V (ϕ) , (7.5.5)

respectively (e.g. see [158,159]). Therefore, the scalar field corresponds to a barotropic fluid
only when its kinetic or potential energies vanishes. 12 In the first instance we have ϕ̇ = 0
and p(ϕ) = −ρ(ϕ) = −V (ϕ), while in the second Eqs. (7.5.5) give p(ϕ) = ρ(ϕ) = ϕ̇2/2. In any
other case p = ρ−2V (ϕ) = ϕ̇2−ρ. The perfect-fluid description of a minimally coupled scalar

11 One can derive (7.5.1) from first principle, namely by taking the proper-time derivative of definition
(5.7.1a), or directly from (5.7.4) by substituting the 4-acceleration from Eq. (3.3.2).
12 Non-minimally coupled scalar fields generally correspond to imperfect fluids with more complicated
expressions for their associated effective density and pressure (e.g. see [160]).
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field refers to a family of observers moving with the (timelike) 4-velocity ua = −∇aϕ/ϕ̇,
where ∇aϕ 6= 0 and ϕ̇ = ua∇aϕ. Relative to the same observers, Daϕ = 0 and therefore
Dap

(ϕ) = Daρ
(ϕ) = ϕ̇Daϕ̇ [159]. This last result indicates a major change relative to the

barotropic-fluid case and it will have a profound effect on the evolution of the inhomogeneities.

The de Sitter phase occurs when the scalar field rolls slowly down its potential. Throughout
this slow-rolling regime, ϕ̇2 ≪ V (ϕ) and expressions (7.5.5) imply that p(ϕ) ≃ −ρ(ϕ) ≃ −V (ϕ).
In this environment we may, to first approximation, ignore the last three terms in the right-
hand side of (7.5.1), which then linearizes to

∆̇a = −6H∆a , (7.5.6)

where H = ȧ/a ≃ constant and a ∝ exp(Ht). This result suggests an exponential decay for
all three types of density inhomogeneities irrespective of the magnetic presence and in line
with the cosmic no-hair theorems [161]-[164].

We note that here we have only considered the dynamical effect of the exponential expansion
on the evolution of perturbations in the presence of the B-field. Changes in the electrical
properties of the cosmic medium, which can occur during the de Sitter regime, have not been
accounted for. Also, typical linear studies, in magnetic-free universes, consider the second-
time derivative of the density gradients instead of the first. This means that one decouples
the expansion gradients from (7.5.1) before setting ρ + p ≃ 0. One could do the same in the
magnetic case as well. However, the calculation is rather involved and goes beyond the scope
of this section. We expect that the inhomogeneities will still be found to decay exponentially,
though probably at a slightly slower rate.

8 Isocurvature perturbations

One can define as isocurvature perturbations those occurring on hypersurfaces of uniform
curvature, namely fluctuations which maintain DaR = 0 at all times [147]. This should be
distinguished from the definition typically found in the literature, where the term isocurvature
means distortions in multi-component systems with zero perturbation in the total energy-
density initially (e.g. see [165,167]). Here we will impose the DaR = 0 condition throughout
the evolution of the perturbed mode, noting that one could use the equations given in section
§ 7 to study fluctuations with an isocurvature initial condition by setting ∆0 + (β0/2)B0 = 0
(see § 7.3.2).

8.1 Consistency condition

Isocurvature perturbations also require zero vorticity to guarantee the integrability of the 3-D
hypersurfaces orthogonal to ua. In the magnetic presence, linear vortices are switched off by
imposing the (self-consistent) constraint BbDbcurl Ba = 0 (see Eq. (6.2.4)). The zero-curvature

40



condition for isocurvature magnetic perturbations is obtained through the orthogonally pro-
jected gradient of (6.2.9). To be precise, using definitions (5.7.1), (5.7.2a) and linearising
around our FRW background we arrive at

aDaR = 2ρ∆a + c2
aρ(1 + w)Ba − 4HZa . (8.1.1)

When DaR = 0, the right-hand side of the above ensures that linear expansion gradients
and those in the fluid and the magnetic energy densities are connected by a simple algebraic
relation. The projected comoving divergence of the latter translates into the following linear
constraint between the associated scalar variables

2HZ = ρ
[

∆ +
1

2
c2
a(1 + w)B

]

. (8.1.2)

In the absence of the magnetic field, this condition is automatically satisfied for pressure-free
dust, but holds on large scales only when the matter has non-zero pressure [147]. If a magnetic
field is present the vanishing of the matter pressure is not enough to guarantee that DaR = 0
at all times, because of the Lorentz-force contribution to the 4-acceleration. In that case the
consistency condition for linear isocurvature perturbations is satisfied on large scales only.
Indeed, on using the linearized propagation equation of the spatial Ricci scalar, we arrive at

(DaR)· = −3
(

1 +
4

9
c2
a

)

HDaR +
4c2

sH

a(1 + w)

(

1 − 2

3
c2
a

)

D2∆a +
2c2

aH

a
D2Ba , (8.1.3)

since the vorticity has already been switched off. This result shows that the linear isocurvature
condition is self-maintained only asymptotically (i.e. at infinity) where the Laplacians of the
right-hand side vanish. Nevertheless, following [147]-[149], we will assume that on sufficiently
long wavelengths the source terms in the right-hand side of (8.1.3) are negligible. Note the
last term in the right-hand side of the above, which demonstrates why zero fluid pressure does
not automatically guarantee the consistency of DaR = 0 in the presence of the B-field.

Using the isocurvature condition (8.1.2), we can eliminate Z from Eq. (7.2.1), which reduces
to

∆̇ = −3

2

(

1 − w +
4

3
c2
aw
)

H∆ +
3

4
c2
a(1 − w2)HB − c2

a(1 + w)HK . (8.1.4)

The above, together with (7.2.3) and (7.2.4), describes the linear evolution of isocurvature
scalar perturbations on a weakly magnetic flat FRW background filled with a single highly
conducting perfect fluid.

8.2 Evolution in the radiation era

Since isocurvature perturbations apply to super-horizon scales only, all gradients in the fluid
and the magnetic pressure have been switched off. This means that the only support against the
gravitational pull of the matter comes from the expansion of the universe. When relativistic
matter dominates the energy density of the latter, the system (8.1.4), (7.2.3) and (7.2.4)
reduces to
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∆̇ =−1
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1 +
1

2
β
)

t−1∆ − 1

2
βt−1K +

1

4
βt−1B , (8.2.1)

K̇=−1

2
βt−1K +

1
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(

1 − 1

2
β
)

t−1∆ +
3

4
βt−1B , (8.2.2)

Ḃ=∆̇ . (8.2.3)

Taking into account that β = constant ≪ 1 and keeping up to β-order terms, the solution for
magnetised isocurvature perturbations reads

∆ =
1

2
β(∆0 − B0) + C1t

−β + C2t
−(1−β)/2 , (8.2.4)

where ∆0, B0 are the perturbed matter and magnetic energy densities initially and C1,2 are
constants (see also [101]). When ∆0 6= B0, the isocurvature density contrast approaches a
non-zero value which depends on the initial conditions.

8.3 Evolution in the dust era

After matter-radiation equality, the system (8.1.4), (7.2.3) and (7.2.4) becomes

∆̇ =−t−1∆ − 2

3
βt−1K +

1

2
βt−1B , (8.3.1)

K̇=−8

9
βt−1K +

4

3
βt−1B , (8.3.2)

Ḃ=
4

3
∆̇ . (8.3.3)

with β = β0(t0/t)
2/3 throughout the dust era. Because of this time-variation in the effective

sound speed, the above system has no simple analytical solution. Nevertheless, taking the time
derivative of (8.3.1), using (8.3.2), (8.3.3) and keeping up to β0-order terms we arrive at

∆̈ = −8

3

[

1 − 1

4
β0

(

t0
t

)2/3
]

t−1∆̇ − 2

3
t−2∆ . (8.3.4)

At late times, we may ignore the weak and decaying β0(t0/t)
2/3 term in the right-hand side of

the above, which then admits the power-law solution [101]

∆ = C1t
−2/3 + C2t

−1 . (8.3.5)

Comparing results (8.2.4) and (8.3.5) to their magnetic-free counterparts, shows that the
presence of the B-fieldd has only added new decaying isocurvature modes. Recall that in
single-fluid almost-FRW cosmologies, isocurvature modes evolve as ∆ ∝ t−1/2 during the
radiation era and like ∆ ∝ t−1 after equality [147].
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9 Entropy perturbations

9.1 Entropy perturbations in multi-component systems

Entropy perturbations can and will generically arise in all multi-component systems. The mag-
netized, highly conductive barotropic medium may be treated as a mixture of two comoving
fluids, of which one (the matter component) is perfect and the other (the B-field) is imperfect
(see Eq. (5.3.1)). Then, it would be interesting to see whether some of the magnetic effects
can be interpreted as coming from an effective entropy perturbation caused by differences in
the dynamical behaviour of the two fluids.

Assuming that E (i)
a is the intrinsic entropy perturbation associated with the i-th component

of a multi-fluid system, the effective entropy perturbation of the total fluid is given by the
expression [125]-[127]

Ea =
1

p̄

∑

i

p(i)E (i)
a +

1

2p̄ h̄

∑

ij

h(i)h(j)
(

c2(i)
s − c2(j)

s

)

S(ij)
a . (9.1.1)

Here, h(i) = ρ(i) + p(i) represents the inertial mass of the species, while p̄ =
∑

i p
(i) and

h̄ =
∑

i h
(i) are respectively the isotropic pressure and the inertial mass of the mixture. Also,

the orthogonally projected vector

S(ij)
a =

ρ(i)

h(i)
∆(i)

a − ρ(j)

h(j)
∆(j)

a , (9.1.2)

with ∆(i)
a = (a/ρ(i))Daρ

(i) and S(ij)
a = −S(ji)

a , describes the effective entropy perturbation
triggered by the different dynamical behaviour of the individual components. Therefore, in
a multi-fluid system, the total entropy fluctuation has one part coming from the intrinsic
entropy perturbation of each species and one coming from differences in their dynamics. In
this sense, a state of effective overall adiabaticity corresponds to Ea = 0. Note that, according
to (9.1.1), there is no entropy perturbation coming from differences in the dynamics of the
member species when these share the same effective sound speed.

9.2 Magnetically-induced entropy perturbations

Treating the highly conducting magnetized medium as a system of two comoving fluids, we
may only consider entropy perturbations due to the different dynamical evolution of the two
components. These are determined by

S(12)
a =

1

1 + w
∆a −

3

4
Ba , (9.2.1)

given that ρ(1) = ρ, ρ(2) = B2/2, h(1) = ρ + p, h(2) = 2B2/3, c2(1)
s = c2

s, c2(2)
s = 1/3 (since

pB = ρB/3 = B2/6), ∆(1)
a = ∆a, ∆(2)

a = Ba, p̄ = p+B2/6 and h̄ = ρ+p+2B2/3. However, linear
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perturbations in the magnetic energy density evolve in step with their matter counterparts
(see Eq. (6.3.19)). This guarantees that

S(12)
a =

3

4
Ca , (9.2.2)

where Ca = B0
a−4∆0

a/3(1+w) is a constant that depends on the initial conditions. Substituted
into definition (9.1.1), the above gives

Ea = − 3ρ(1 + w)(3c2
s − 1)B2

(6p + B2)[3ρ(1 + w) + 2B2]
Ca . (9.2.3)

This vanishes during the radiation era – a result guaranteed by the radiation-like behaviour
of the B-field (i.e. by the fact that pB = ρB/3 – see also [166]). In the dust epoch, on the
other hand, we find that Ea ≃ Ca = constant (since B2 ≪ ρ always). These mean that,
within the two-fluid description, part of the magnetic effect on the linear evolution of matter
inhomogeneities can be interpreted as an effective entropy perturbation, due to the different
dynamics of the two perturbed fluids, but only after equality. Then, the value of the effective
entropy fluctuation depends on the initial relation between the magnetic and the fluid energy-
density perturbations. In particular, when Ba = 4∆a/3 initially the dynamically induced
entropy perturbation vanishes and we have effective adiabaticity.

10 Vector perturbations

A general inhomogeneous perturbation is characterized by its rotational and deformation
properties, in addition to the amount of matter aggregation (or dilution). Following [101], we
will consider here the effect of magnetic fields on the linear evolution of vortex-like distortions
in the density distribution of the cosmic medium.

10.1 Basic variables

Rotational instabilities in the fluid density are described by means of the antisymmetric,
comoving, orthogonally projected tensor Wab = aD[b∆a] (see decomposition (6.3.7) in § 6.3.3).
The antisymmetry of the latter means that we can use it to define the vector

Wa =
1

2
εabcWbc = −a

2
curl ∆a , (10.1.1)

with DaWa = 0 to linear order. Recalling that ∆a = (a/ρ)Daρ and using the general relativistic
commutation law D[aDb]φ = −φ̇ωab between the projected gradients of scalars (see Eq. (A.1)
in § A.1), we find that

Wa = −3a2(1 + w)Hωa . (10.1.2)
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This result reflects a fundamental property of vortex-like distortions in general relativity,
namely that they are proportional to the amount of vorticity. Also, (10.1.2) and the linearized
version of constraint (2.3.6) guarantee that Wa is a solenoidal vector to first order. Similarly,
linear vortices in the volume expansion and the magnetic energy density are also directly
related to the vorticity vector and therefore to those in the density of the matter. In particular,

a

2
curlZa =

Ḣ

(1 + w)H
Wa and

a

2
curlBa = − 4

3(1 + w)
Wa , (10.1.3)

to first approximation. Finally, combining the antisymmetric part of the linearized Gauss-
Codacci equation (see (5.6.3) in § 5.6) with Eq. (10.1.2), we obtain

Ra =
1

3a2(1 + w)
Wa , (10.1.4)

where Ra = εabcRbc/2 is the vector component of the local spatial curvature.

10.2 Linear equations

Magnetic fields are unique in the sense that they are the only large-scale vector source that has
ever been observed in the universe. Given that, the study of vortex-like, vector perturbations
in the presence of the B-field acquires particular significance. In our analysis, effects directly
related to the vector nature of magnetic fields propagate through the tension part of the
Lorentz force (see decomposition (5.3.4)). Thus, as far as the scalar/density perturbations
are concerned, these effects are encoded in the magneto-curvature terms seen in Eqs. (7.2.1),
(7.2.2).

Spatial inhomogeneities in the density distribution of a magnetized and highly conductive
barotropic perfect fluid propagate according to the linear expression (6.3.11) in § 6.3.4. When
combined with (6.3.14), the latter takes the form

∆̇a =3w
(

1 − 2

3
c2
a

)

H∆a − (1 + w)Za +
3

2
c2
a(1 + w)HBa

−3aH

ρ

(

1 − 2

3
c2
a

)

BbDbBa , (10.2.1)

where we have decomposed the magnetic Lorentz force into its isotropic-pressure and tension
parts (see (5.3.4) in § 5.3) and kept up to c2

a-order terms. Taking the comoving, orthogonally
projected gradient of the above and isolating its antisymmetric part we arrive at

Ẇa =−3

2

{

1 − w − 1

18
c2
a

[

(1 − 3w)2 − 12w
]

}

HWa

+
3a2H

2ρ

(

1 − 2

3
c2
a

)

BbDbcurl Ba , (10.2.2)
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to linear order. Note that in deriving this expression we have also used the auxiliary relations
(10.1.3), (10.1.4), the commutation laws between the spatial gradients of scalars and orthog-
onally projected vectors and the zero-order versions of Eqs. (5.5.1), (5.6.4). The above shows
that the B-field acts as a source of density vortices when BbDbcurl Ba 6= 0. Not surprisingly,
the same requirement can also lead to kinematic vorticity (see Eq. (6.2.4) in § 6.2). In fact,
recalling that w = c2

s = constant, one can recover (6.2.4) from (10.2.2) by means of relation
(10.1.2). An additional magnetic effect is the precession of Wa, since its no longer parallel to
Ẇa (see also [101]).

For comparison reasons it will help to consider first the solution of Eq. (10.2.2) in the absence
of the B-field. Assuming conventional matter and dropping the magnetic terms from the right-
hand side of the above, it is straightforward to show that non-magnetized fluid vortices decay
always and on all scales. In particular, Wa ∝ t−1/2 during the radiation era and Wa ∝ t−1

after equality. In what follows we will illustrate how the magnetic field changes this picture
by focusing on the dust era, referring the reader to [101] for further discussion and details.

10.3 Evolution in the dust era

Expression (10.2.2) shows that the presence of the B-field will generally trigger vortices in the
density distribution of the magnetized matter. Nevertheless, the magnetic effect on preexisting
rotational distortions is not clear yet. To quantify the role of the field we need to go one step
further and obtain a decoupled equation for the evolution of Wa. After equality, the Alfvén
speed decays with time according to c2

a = β ∝ t−2/3. This means that, very soon, the weak
Alfvén terms in the right-hand side of (10.2.2) become completely negligible. At this limit,
the time derivative of the latter leads to [101]

Ẅa = −4HẆa −
1

2
ρWa +

1

3
c2
aD

2Wa . (10.3.1)

Thus, during the dust era, magnetized vortices propagate like Alfvén waves with signal speed
va = ca/

√
3. Using standard vector harmonics, we may decompose the solenoidal Wa as

Wa =
∑

k W(k)Q(k)
a , where DaW(k) = 0 = Q̇(k)

a = DaQ(k)
a and D2Q(k)

a = −(k/a)2Q(k)
a . Then,

recalling that w = 0 = c2
s, a ∝ t2/3, H = 2/3t and ρ = 4/3t2, the k-th Fourier mode propagates

according to

Ẅ(k) = −8

3
t−1Ẇ(k) − 2

3



1 +
2

9

(

λa

λk

)2

0



 t−2W(k) , (10.3.2)

with λk = a/k representing the wavelength of the perturbation and λa =
√

βλH . This repre-
sents a characteristic scale of the magnetized environment, which may be termed the ‘Alfvén
horizon’ [101]. The above admits the solution

W(k) = C1t
α1 + C2t

α2 , (10.3.3)
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where C1, 2 are constants and

α1, 2 = −1

6






5 ±

√

√

√

√1 − 48

9

(

λa

λk

)2

0






. (10.3.4)

On scales far beyond the Alfvén horizon, λa/λk ≪ 1 and the perturbed mode exhibits a
power-law decay with W ∝ t−2/3, a rate considerably slower than the one associated with dust
dominated, magnetic-free cosmologies. Recall that W ∝ t−1 in the absence of the B-field. Well
inside λa, on the other hand, perturbations oscillate like Alfvén waves with a time-decreasing
amplitude. In particular, for λa/λk ≫ 1, solution (10.3.3), (10.3.4) implies

W(k) ∝ cos

[

2
√

3

9

(

λa

λk

)

0

ln t

]

t−5/6 . (10.3.5)

Thus, the overall, the effect of the B-field on a given vortex mode is to decrease its standard
depletion rate.

Not surprisingly, a similar magnetic effect is also observed on vorticity proper. Using the
linear relation (10.1.2), we find that after equality large-scale rotational distortions decay as
ωa ∝ t−1 as opposed to ωa ∝ t−4/3. On these grounds, magnetized cosmologies would contain
more residual vortices than their magnetic-free counterparts.

11 Gravitational waves

Gravitational waves are propagating fluctuations in the geometry of the spacetime fabric,
usually described as weak perturbations of the background metric. Alternatively, one can
describe gravity waves covariantly by means of the electric and magnetic components of the
Weyl tensor [168], which encodes the long-range gravitational field, namely the one determined
by the presence of matter “elsewhere” in the space (see § 4.2).

11.1 Isolating magnetised tensor modes

Covariantly, gravitational waves are described by the transverse degrees of freedom in the
electric (Eab) and magnetic (Hab) parts of the conformal curvature tensor. The transversal-
ity is necessary to ensure that the pure tensor modes of the locally free gravitational field
have been isolated. The same condition is also imposed on the shear and any other orthogo-
nally projected, traceless, second-rank tensor that might be present. Thus, when studying the
propagation of gravitational radiation in perturbed FRW models with perfect fluid matter we
require that (see § 2.3 and § 4.2)

DbEab = 0 = DbHab = Dbσab , (11.1.1)

47



to linear order and at all times (e.g. see [169]). In magnetic-free universes, this is achieved by
switching the vorticity off and by setting Daρ = 0 = Dap = DaΘ (for a barotropic medium it
suffices to ensure that Daρ = 0 = DaΘ). These constraints, which are self-consistent (i.e. pre-
served in time) at the linear perturbative level, guarantee that the 4-acceleration also vanishes
to first approximation. When a magnetic field is included there is an additional constraint on
the anisotropic pressure of the field. In particular, the system (11.1.1) reads [142,170]

DbEab =
1

3
Daρ +

1

6
DaB

2 − 1

2
DbΠab = 0 , (11.1.2)

DbHab = ρ(1 + w)ωa = 0 , (11.1.3)

Dbσab =
2

3
DaΘ + curl ωa = 0 , (11.1.4)

DbΠab = εabcB
bcurl Bc − 1

6
DaB

2 = 0 . (11.1.5)

When studying the magnetic effects on cosmological gravitational waves, one needs to take
into account the anisotropic nature of the B-field. It is therefore not appropriate to assume
a fully random B-field, which simply acts as an additional source of energy density. Thus,
following [68] and also [142,170], we will treat both the energy density and the anisotropic
pressure of the field as first order perturbations. 13 This approach differs from the perturbative
scheme adopted for the scalar and the vector modes, where there was a weak B-field in
the background. Nevertheless, adopting the scheme of [68] simplifies the mathematics of the
gravito-magnetic interaction without compromising the physics.

We assume a spatially flat FRW background. Then one can isolate the pure-tensor pertur-
bations by adding to the previously mentioned perfect-fluid constraints the following linear
conditions [142,170]

DaB
2 = 0 = εabcB

bcurl Bc . (11.1.6)

In other words, both magnetic energy-density gradients and the Lorentz force vanish at all
times. These guarantee that there is no magnetic contribution to the 4-acceleration and sub-
sequently that the field does not trigger any vorticity, density or expansion perturbations. The
consistency of constraints (11.1.6) is straightforward to show. In particular, we find that

(DaB
2)· = −5H(DaB

2) and (εabcB
bcurl Bc)· = −5HεabcB

bcurl Bc , (11.1.7)

to lowest order. This means that the constraints (11.1.6) continue to hold after they are
initially imposed. Then, the only remaining nontrivial linear constraints are

Hab = curl σab and R〈ab〉 = −Hσab + Eab +
1

2
Πab , (11.1.8)

13 Formally, treating B2 = BaB
a as a first-order variable, means that Ba is of order 1/2 in perturba-

tive terms. Then, because DaB
2 is of order 1 and DaB

2 = 2BbDaBb, consistency demands that the
projected magnetic gradients are also half-order perturbations.
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where curl σab = εcd〈aD
cσb〉

d (see Eqs. (2.3.7) and (4.3.6) in § 2.3 and § 4.3 respectively). Note
that, according to (11.1.8b), the linear conditions DbEab = 0 = Dbσab = DbΠab guarantee that
DbR〈ab〉 = 0 as well.

11.2 Covariant gravitational-wave energy density

The energy density of gravitational radiation is determined by the pure tensor, namely the
transverse traceless part (hTT

αβ ) of the metric perturbation, according to (e.g. see [171])

ρGW =
(hTT

αβ )′(hαβ
TT )′

2a2
, (11.2.1)

where a prime indicates differentiation with respect to conformal time (recall that c = 1 = 8πG
throughout this review). In a comoving frame, with ua = δ0

au0, we have σ2 = σabσ
ab/2 =

σαβσαβ/2, with the transverse part of the shear components given by [159,172]

σαβ = a(hTT
αβ )′ and σαβ = a−3(hαβ

TT )′ . (11.2.2)

Solving these relations for the metric perturbations and then substituting the results into
Eq. (11.2.1), we arrive at [142]

ρGW = σ2 , (11.2.3)

which provides a simple covariant expression for the energy density of gravitational-wave
distortions.

11.3 Evolution equations

In an FRW spacetime the Weyl tensor vanishes identically, which means that Eab and Hab

provide a covariant and gauge-invariant description of perturbations in the free-gravitational
field. Once the pure tensor modes have been isolated, we can proceed to linearize the prop-
agation equations (4.2.5), (4.2.6) of § 4.2. On a Friedmann background with a single perfect
fluid, the latter reduce to [142,170]

Ėab =−3HEab −
1

2
ρ(1 + w)σab + curl Hab −

1

2
Π̇ab −

1

2
HΠab , (11.3.1)

Ḣab =−3HHab − curl Eab +
1

2
curl Πab . (11.3.2)

Since the magnetic part of the Weyl tensor satisfies the constraint (11.1.8a), the linear evolu-
tion of Hab is determined by the shear evolution (2.3.3)

σ̇ab = −2Hσab − Eab +
1

2
Πab . (11.3.3)
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Furthermore, on using the commutation law between the orthogonally projected gradients of
spacelike tensors, constraint (11.1.8a) leads to the auxiliary relation curl Hab = −D2σab, and
Eq. (11.3.1) becomes

Ėab = −3HEab −
1

2
ρ(1 + w)σab −

1

2
Π̇ab −

1

2
HΠab − D2σab . (11.3.4)

This, together with Eq. (11.3.3) and the linearized part of (5.2.2), namely

Π̇ab = −4HΠab , (11.3.5)

describe the linear evolution of gravitational waves in almost-FRW universes containing a
single highly conductive barotropic fluid and a magnetic field.

We can describe this evolution in terms of the shear as follows. Taking the time derivative
of (11.3.3), using Eqs. (11.3.4), (11.3.5), the background Raychaudhuri and Friedmann equa-
tions, and keeping only linear order terms, we arrive at the following wave equation for the
gravitationally induced shear [170]

σ̈ab − D2σab = −5Hσ̇ab −
1

2
ρ(1 − 3w)σab − 2HΠab . (11.3.6)

This is no longer coupled to the electric Weyl tensor, and together with Eq. (11.3.5), describes
the propagation of gravitational waves. The magnetic anisotropic stress can act as a source for
gravitational waves, and it is possible to place strong constraints on magnetic fields via this
generation of gravitational waves [171,173]. Also, the anisotropic stress of the B-field slows
the decay of shear [174].

Following (11.3.6), the solution of Eqs. (11.3.5) and (11.3.6) depends critically on the equation
of state of the matter component, and in particular on whether w = 1/3 or not. In the matter
dominated era and on superhorizon scales, we find

σ = P1 t−1/3 + P2 t−2 + Q t−5/3 , (11.3.7)

where Ṗ1 = 0 = Ṗ2 = Q̇. The P -modes are the usual Bianchi I type solutions, while the
Q-mode carries the effect of the B-field. The latter mode means that, although the magnetic
presence does not alter the standard evolution rate of the shear, it can affect its magnitude
(in a rather involved way – see [142]). Note that in deriving the above we have also introduced

the familiar tensor harmonics Q(k)
ab , with Q(k)

ab = Q(k)
〈ab〉, Q̇(k)

ab = 0 = DbQ(k)
ab and D2Q(k)

ab =

−(k/a)2Q(k)
ab . These were used to decompose σab and Πab according to σab =

∑

k σ(k)Q(k)
ab and

Πab =
∑

k Π(k)Q(k)
ab respectively (with Daσ

(k) = 0 = DaΠ
(k)).

11.4 The zero-eigenvalue issue

The evolution equation of trace-free anisotropic stresses during the radiation era presents a
particular mathematical problem, when linearised around an FRW background, because of
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the zero eigenvalue issue (see [65] and references there in). In particular, following Eq. (6.1.6),
it appears that the Alfvén speed and therefore the ratio B2/ρ remain constant as long as
w = 1/3. This is a critical case, however, and a closer analysis leads to B2/ρ ∝ (log t)−1

because of second-order pressure effects. When these are taken into account, we find that [174]

σab = Pabt
−3/2 + Qab(t log t)−1 , (11.4.1)

on superhorizon scales. The magnetized mode falls off slowly due to the anisotropic pressures,
with σab ∝ (t log t)−1, and there is an attractor with σ/H → B2/ρ and Πab → 2Eab ∝
(t2 log t)−1 when the dynamics of the radiation era are close to isotropy [65,174]. In this
regime the leading-order diagonal scale factors of the spacetime metric during the radiation
epoch take the form

ai(t) ∝ t1/2(log t)qi , (11.4.2)

with the {qi, i = 1, 2, 3} constants satisfying the constraint
∑3

i=1 qi = 0. In the dust-dominated
era the anisotropies fall as power-law in time and the orthogonal scale factors evolve as

ai(t) ∝ t2/3(1 + Vit
−si) , (11.4.3)

where the {Vi, i = 1, 2, 3} and the {si, i = 1, 2, 3} are sets of constants with
∑3

i=1 si = 0.
Since the observed microwave background temperature anisotropy is determined by the value
of σ/H at recombination, and σ/H ∝ B2/ρm ∝ t−2/3 after the epoch of matter-radiation
equality, we obtain a strong observational bound on the present-day magnetic field strength
from the large-angular scale anisotropy of the microwave background at last scattering, when
z ∼ 1100, [66]:

|B| < 4.0 × 10−9Ω
1/2
0 G . (11.4.4)

An investigation of the behaviour of Yang-Mills fields in the early universe reveals that chaotic
behaviour is possible in the evolution of the scale factors with time, no matter how weak the
Yang-Mills field, and how close the expansion is to isotropy [175,176], if there is no perfect fluid
present in addition to the magnetic field. However, despite the close relationship between the
form of Yang-Mills fields and magnetic fields, the slow logarithmic decay of σ/H ∝ (log t)−1

of the shear distortion with time characteristic of magnetic fields and radiation does not occur
if an isotropic blackbody radiation fluid is added to the Yang-Mills fields [177], because of the
different time-dependence of their pressures (Πab/ρY M is no longer constant), which hastens
their decay, and the shear falls off in Bianchi I universes at the same rate as it does when
anisotropic stresses are absent, with σ/H ∝ t−1/2. This means that the microwave background
anisotropy provides a rather weak bound on the energy-density in Yang-Mills fields today of
ΩY M0 < 0.11Ωγ0, where Ωγ0 is the present density of blackbody fluids in units of the critical
density. By contrast, the slow decay of the shear in the presence of magnetic stresses led to a
far stronger bound on the magnetic field density today, with Ωmag0 . 10−5Ωγ0.
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12 Summary

Magnetic fields are detected everywhere when the appropriate observations are possible. The
origin of cosmic magnetism is still an open issue but the presence of large-scale B-fields with
similar µG-order strengths in galaxies, galaxy clusters, and high-redshift protogalactic struc-
tures may suggest a common (primordial) origin for them. Large-scale, micro-Gauss fields can
significantly affect the evolution of the universe and are extremely important for astrophysics
(see [12] for a cross-disciplinary review of the subject). The idea of primordial magnetism is
appealing because it can potentially explain all the large-scale fields seen in the universe to-
day, especially those found in remote protogalaxies. As a result, the literature contains many
studies examining the role and the implications of magnetic fields for cosmology.

In this work we have employed covariant techniques to analyse the effects of magnetic fields on
the evolution of inhomogeneous relativistic cosmologies. After a brief introduction to nonlinear
cosmological electrodynamics and magnetohydrodynamics, we investigated weakly magnetized
almost-FRW universes. Within the standard ideal MHD limits, we found that linear inhomo-
geneities in the magnetic energy density grow in step with those in the matter throughout the
hot big-bang evolution of the universe. This close relation between the magnetic and the fluid
density gradients is a key property of weakly-magnetized FRW cosmologies.

We found that during the radiation era and on large scales the magnetic pressure inhibits the
growth of density perturbations by an amount proportional to the field’s relative strength. On
sub-horizon lengths the extra magnetic pressure was shown to trigger magnetosonic waves with
a reduced amplitude and an increased frequency, relative to the magnetic-free case. Moreover,
the magnetic presence means that small-scale density perturbations no longer oscillate around
a zero average value but have a finite residual average that depends on the initial conditions.
After equality, the B-field is effectively the only source of pressure support. This reduces
the growth rate of matter condensations in a way exactly analogous to that observed on
super-Hubble scales during the radiation era. The same magnetic pressure can also stabilize
against gravitational collapse by bringing the Jeans length up to the size of a galaxy cluster.
Looking at models with a vacuum equation of state for the matter, we found that the outcome
depends on the effective equation of state of the medium. In particular, the comoving density
gradients remain constant as long as the barotropic p = −ρ condition holds. When dealing
with non-barotropic minimally coupled scalar fields, on the other hand, all three types of
density inhomogeneities suffer exponential decay.

Defining as isocurvature large-scale perturbations that maintain the zero 3-curvature require-
ment at all times, we found that they contain decaying modes only. Given that, typically, the
term ’isocurvature’ refers to fluctuations with zero initial total energy-density perturbation,
we have explained how our equations can be used to study this type of perturbation mode. By
treating the highly conductive medium as a two-component system we found that the effective
entropy perturbation caused by the different dynamical evolution of the two species is either
constant or zero. The evolution of vector perturbations in the presence of magnetic fields,
showed that the latter increase the amount of residual vorticity. Thus, universes containing
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large-scale inhomogeneous B-fields would rotate more than their magnetic-free counterparts.
Finally, we investigated the implications of the field for the evolution of gravitational-wave
perturbations.
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A Commutation laws

According to definition (2.1.2a), the orthogonally projected covariant derivative operator sat-
isfies the condition Dahbc = 0. This means that we can use hab to raise and lower indices in
equations acted upon by the aforementioned operator. Following Frobenius’ theorem, however,
rotating spaces do not possess integrable 3-D submanifolds (e.g. see [140,141]). Therefore, the
Da-operator cannot be used as a standard 3-D derivative in such spaces and it does not always
satisfy the usual commutation laws (see below and also [149]).

A.1 Orthogonally projected gradients

When acting on a scalar quantity the orthogonally projected covariant derivative operators
commute according to

D[aDb]f = −ωabḟ . (A.1)

The above is a purely relativistic result and underlines the different behaviour of rotating
spacetimes within Einstein’s theory. Similarly, the commutation law for the orthogonally pro-
jected derivatives of spacelike vectors reads

D[aDb]vc = −ωabv̇〈c〉 +
1

2
Rdcbav

d . (A.2)

where vau
a = 0 and Rabcd represents the Riemann tensor of the observer’s local rest-space.

Finally, when dealing with orthogonally projected tensors, we have

D[aDb]Scd = −ωabhc
ehd

f Ṡef +
1

2
(RecbaS

e
d + RedbaSc

e) , (A.3)

with Sabu
a = 0 = Sabu

b. Note that in the absence of rotation,Rabcd is the Riemann tensor of the
(integrable) 3-D hypersurfaces orthogonal to the ua-congruence For details on the definition,
the symmetries and the key equations involving Rabcd, the reader is referred to § 4.3. We also
note that the above equations are fully nonlinear and hold at all perturbative levels.
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A.2 Time derivatives

In general relativity, time derivatives do not generally commute with their spacelike counter-
parts. For scalars, in particular, we have

Daḟ − ha
b(Dbf)· = −ḟAa +

1

3
ΘDaf + Dbf

(

σb
a + ωb

a

)

, (A.1)

at all perturbative levels. Assuming an FRW background, we find that the orthogonally pro-
jected gradient and the time derivative of the first-order vector va commute as

aDav̇b = (aDavb)
· , (A.2)

to linear order. Similarly, when dealing with first-order spacelike tensors, we have the following
linear commutation law

aDaṠbc = (aDaSbc)
· . (A.3)

B Notation

• Spacetime Geometry

Line element: ds2 = gabdxadxb = −dτ 2, with c = 1.
4-velocity: ua = dxa/dτ , 3-D projection tensor: hab = gab + uaub.
4-D permutation tensor: ηabcd, 3-D permutation tensor: εabc = ηabcdu

d.
Covariant derivative: ∇bTa = ∂Ta/∂xb − Γc

abTc.
Time derivative: Ṫa = ub∇bTa, 3-D covariant derivative: DbTa = hb

dha
c∇dTc.

Riemann tensor: Rabcd, Ricci tensor: Rab = Rc
acb, Ricci scalar: R = Ra

a.
3-Riemann tensor: Rabcd, 3-Ricci tensor: Rab = Rc

acb, 3-Ricci scalar: R = Ra
a.

3-curvature index: K = 0, ±1, with R = 6K/a2 (in FRW models).
Weyl Tensor: Cabcd, electric Weyl: Eab = Cacbdu

cud, magnetic Weyl: Hab = εa
cdCcdbeu

e/2.
• Kinematics

Expansion scalar: Θ = ∇aua = Daua, scale factor: a, with ȧ/a = Θ/3.
Vorticity tensor: ωab = D[bua], vorticity vector: ωa = εabcω

bc/2.
Shear tensor: σab = D〈bub〉 = D(bub) − (Dcuc)hab/3, 4-acceleration: Aa = ub∇bua.
Hubble parameter: H = ȧ/a (in FRW models).

• Matter Fields

Field equations: Rab − (R/2)gab = Tab, with κ = 8πG = 1.
Matter energy-momentum tensor: Tab = ρuaub + phab + 2u(aqb) + πab.
Matter density: ρ = Tabu

aub, isotropic pressure: p = Tabh
ab/3.

Barotropic index: w = p/ρ, adiabatic sound speed: c2
s = ∂p/∂ρ.

Energy flux: qa = ha
bTbcu

c, anisotropic pressure: πab = T〈ab〉 = T(ab) − (T/3)hab.
• Electromagnetism

Electromagnetic tensor: Fab, magnetic field: Ba = εabcF
bc/2, electric field: Ea = Fabu

b.
Magnetic energy density: B2/2, magnetic isotropic pressure: B2/6.
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Magnetic anisotropic pressure: Πab = −B〈aBb〉 = (B2/3)hab − BaBb.
Alfvén speed: c2

a = B2/(ρ + p + B2).
Electric 4-current: Ja, electric 3-current: Ja = J〈a〉 = ha

bJb.
Charge density: ρe = −Jau

a, electrical conductivity: ς.
• Perturbations

Matter density gradients: ∆a = (a/ρ)Daρ, with ∆ab = aDb∆a and ∆ = ∆a
a.

Matter vortices: Wab = ∆[ab], with Wa = εabcWbc/2.
Volume expansion gradients: Za = aDaΘ, with Zab = aDbZa and Z = Za

a.
Magnetic density gradients: Ba = (a/B2)DbB

2 and Bab = aDbBa, with B = Ba
a.

Effective entropy perturbations: Ea, S(ij)
a , with S(ij)

a = −S(ji)
a .
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