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We discuss how the baryon acoustic oscillation (BAO) signatures in the galaxy power spectrum
can distinguish between modified gravity and the cosmological constant as the source of cosmic
acceleration. To this end we consider a model characterized by a parameter n, which corresponds
to the Dvali-Gabadadze-Porrati (DGP) model if n = 2 and reduces to the standard spatially flat
cosmological constant concordance model for n equal to infinity. We find that the different expan-
sion histories of the modified gravity models systematically shifts the peak positions of BAO. A
preliminary analysis using the current SDSS LRG sample indicates that the original DGP model
is disfavored unless the matter density parameter exceeds 0.3. The constraints will be strongly
tightened with future spectroscopic samples of galaxies at high redshifts. We demonstrate that
WFMOS, in collaboration with other surveys such as Planck, will powerfully constrain modified
gravity alternatives to dark energy as the explanation of cosmic acceleration.

PACS numbers: 98.80.-k,98.80.Es,04.50.+h

I. INTRODUCTION

Exploring the origin of the cosmic acceleration is one of the most challenging problems in cosmology. The nature
of the cosmic expansion history can be investigated using a variety of cosmological observations: the anisotropies in
the cosmic microwave background at z = 1100, the Hubble diagram of supernovae, cosmic shear statistics of galaxies
with photometric redshifts, and spatial clustering of galaxies with spectroscopically measured redshifts. In the present
paper, we focus on the fourth method which relies on extracting the baryon acoustic oscillations (BAO) in the high-z
galaxy power spectrum [1, 2, 3, 4, 5, 6].

Recently the clear detection of the baryon oscillations has been reported [7, 8, 9, 10] already yielding some constraints
surely on dark energy and particularly cosmic curvature. Based on this success, and the fact that the systematic errors
in the BAO method appear easier to control (due to the fact that the characteristic scale of 100 Mpc is fundamentally
linear), many BAO projects for the future are being discussed. For example, the AAOmega spectrograph on the 2dF
system will be able to observe a large number of galaxies in the range of redshift 0.5 < z < 0.9 [11]. The Fibre
Multi Object Spectrograph (FMOS) on Subaru will be able to measure redshifts of more than 6× 105 Ly-α emitting
galaxies around z = 1.5 in near future [12]. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST)
project in China has a capability of performing large redshift-survey [13], while HETDEX (Hobby-Eberly Telescope
Dark Energy Experiment) aims to measure redshifts of more than 106 Ly-α emitting galaxies using VIRUS (Visible
Integral-field Replicable Unit Spectrograph) [14]. Furthermore, on a longer timescale, very large galaxy surveys might
be performed with a space-based telescope [15] and the SKA radio telescope [16].

In this paper we concentrate on the constraints that can be expected from the planned WFMOS. It is a BAO survey
that aims to measure the redshift of more than two millions of high-z galaxies with a large field of view and multi-fiber
spectrograph ( 4000 fibers) on a large ground-based telescope such as Subaru [17]. While the optimal geometry of
WFMOS is not finalized yet we will use the fiducial baseline concept. One aim of the present paper is to demonstrate
the power of WFMOS to extract the baryon oscillation in the galaxy power spectrum and the resulting tests that can
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be made of modified gravity models which are putative explanations for the acceleration of the cosmos.
Although the cosmological constant is the simplest model leading to acceleration, new dynamical degrees of freedom

(e.g., a scalar field) with effective negative pressure may be the source of acceleration. An interesting possibility is
that acceleration results not from an additional repulsive force but through the weakening of traditional Einstein
gravity on very large scales. The archetypal model in this class is the Dvali-Gabadadze-Porrati (DGP) model which
was developed in the context of the brane world scenario, which includes a mechanism to explain self-acceleration
in the late time universe [18, 19]. The DGP model and variants [20, 21, 22, 23] will serve as a testbed for testing
the ability of WFMOS to distinguish them from a cosmological constant. We note here that the DGP model is not
without subtleties and problems at the quantum level as discussed in [24, 25, 26].

Very recently, the evolution of the large-scale cosmological perturbations of the DGP cosmological model have
been studied in detail with rather general assumptions [27] compared to earlier works [28, 29, 30]. Koyama has also
presented a generalized model that interpolates between the DGP model and the CDM model with a cosmological
constant (ΛCDM) in general relativity [31]. We will see that WFMOS may well provide not only a chance to test
dark energy models but also to put general relativity to severe tests on large scales. To achieve this we investigate
the theoretical predictions of modified gravity models in the galaxy power spectrum from a survey with WFMOS.

So far, there are a few works which focus on the nature of the large scale structure in a modified gravity model
[32, 33, 34]. In the present paper, we consider the DGP cosmological model and its variants from the point of view
of testing the gravity theory with the baryon oscillation, and investigate a future prospect assuming the WFMOS
project for the first time. We also investigate the current consistency with observation utilizing the power spectrum.
A similar problem is considered in [23, 35, 36], however, these works make use of a result on the distance from the
SDSS LRG correlation function analysis in [8].

This paper is organized as follows: In section 2, a brief review of the DGP cosmological model and its variants is
presented. In section 3, our theoretical modeling of the power spectrum and our basic statistic is explained. Then,
a current comparison of the theoretical model with the observational result with the luminous red galaxy (LRG)
sample in the SDSS is presented in section 4. In section 5, we discuss the baryon oscillation features, assuming a
future WFMOS sample, as a test of the modified gravity model. We discusses how one can improve the constraints
on modified gravity models from future WFMOS samples. The last section is devoted to a summary and conclusions.
Throughout this paper, we use units in which the speed of light and the Planck constant are unity, c = ~ = 1. We
adopt the Hubble parameter: H0 = 72 km/s/Mpc, unless we mention explicitly.

II. THE DGP COSMOLOGICAL MODEL AND VARIANTS

We start with a brief review of the DGP cosmological model (see e.g., [19]). The DGP model is based on the brane
world scenario, and is constructed by embedding a (3+1)dimensional brane in a (4+1)dimensional bulk with infinite
volume, with action

S = −
M3

∗

16π

∫

d5X
√

−g(5)R(5) −
M2

pl

16π

∫

d4x
√

−g(4)R(4) +

∫

d4x
√

−g(4)Lm + SG.H., (2.1)

where M∗ (Mpl) is the fundamental Planck mass in the 5-dim (4-dim) space-time, g(5) (g(4)) and R(5) (R(4)) denote
the determinant and the Ricci scalar of the 5-dim (4-dim) metric, respectively, and Lm is the matter Lagrangian
on the brane. The final term, the Hawking-Gibbons term SG.H., is added so as to reproduce the appropriate field
equation in a space-time with a boundary. The term with R(4) in the above action is assumed to be induced by
quantum effects in the matter sector on the brane.

The crucial cross-over scale, rc, is defined by the ratio of the Planck scales

rc =
M2

pl

2M3
∗

. (2.2)

This characterizes the region where gravity switches from being 4-dimensional (scales less than rc) to being 5-
dimensional (scales greater than rc) which causes a modification of the laws of gravity on cosmologically larger
scales if rc ∼ H−1

0 . As a result so-called self-acceleration may appear. The cosmological solution of the DGP model
give

H2 −
H

rc
=

8πρ

3M2
pl

, (2.3)

where H(t) is the Hubble expansion rate, ρ(t) is the matter density, and M−2
pl is regarded as the 4-dimensional

gravitational constant, G.
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Cosmological perturbations have also been studied in the modified DGP-like models [31], originally proposed by
Dvali and Turner [37]. These variants are phenomenological models interpolating between the DGP model and ΛCDM.
Adopting this modified DGP-like model, the modified Friedmann equation is

H2 −
H2/n

r
2−2/n
c

=
8πρ

3M2
pl

, (2.4)

where rc and n are the parameters of the model. In this paper, we assume spatially flat sections, implying that the
parameter rc is related to the cosmological parameters by (H0rc)

2/n−2 = 1 − Ωm, where Ωm is the matter density
parameter.

This model is the DGP model for n = 2, and it reduces to ΛCDM for n→ ∞. Following the analysis of the modified
DGP-like model[31], the evolution equation for the linear density perturbation (linear growth factor) obeys

D̈1 + 2HḊ1 =
4π

M2
pl

(

1 +
1

3β

)

ρD1, (2.5)

where

β = 1 − n(Hrc)
2(n−1)/n

(

1 + 2(n− 1)Ḣ/3nH2
)

. (2.6)

In the present paper, we test these modified DGP models by extracting the baryon oscillations of simulated and real
galaxy power spectra.

Concerning the linear growth factor, the time evolution slightly depends on the treatment and assumptions of the
perturbation equation [27, 28, 29, 30, 31]. However, the difference is small, and the effect on the baryon oscillation
feature is negligible in the cases studied in the present paper. In a strict sense, the growth factor is the expression
under the sub-horizon approximation. Hence the growth factor may depend on wavenumber at large scales, which
could lead to additional scale dependence [38].

III. BARYON ACOUSTIC OSCILLATION IN THE MODIFIED DGP MODEL: THEORETICAL

PREDICTIONS IN LINEAR THEORY

The reason why clustering statistics are sensitive to the expansion history of the universe comes primarily from the
baryon acoustic oscillations (BAO), which imprints a characteristic scale on the galaxy distribution that acts as a
standard ruler, which we briefly summarize here (see also e.g. [1, 2, 3, 4, 5, 6]). The origin of the BAO in the matter
power spectrum can be understood as the velocity fluctuation of the baryon fluid at the decoupling time [39, 40].
The characteristic scale of the baryon oscillation is determined by the sound horizon at decoupling, which depends
on the total matter density and baryon densities. Because we can measure this scale in both the transverse and
radial directions the BAO yields both the angular diameter distance and Hubble parameter at that redshift. Thus,
the precise measurement of the BAO scale from galaxy power spectrum can put important constraints on the cosmic
expansion history.

Our model predictions of galaxy power spectra in the modified DGP model proceed as follows (see [41, 42] for
details). In the linear regime, the real-space mass power spectrum Pmass(q; z) is translated to the galaxy power
spectrum in redshift-space as

Pgal(q‖, q⊥; z) = b2(z)

[

1 +
1

b(z)

d lnD1(z)

d ln a(z)

(

q‖
q

)2
]2

Pmass(q; z), (3.1)

where a(z) is the scale factor at z, q‖ and q⊥ is the parallel and perpendicular component of the comoving wavenumber
to the line-of-sight direction. We assume a linear scale-independent galaxy bias, b(z).

Mapping the length scale from the observed distribution, i.e., redshift and angular separations δz and δθ, becomes
sensitive to the cosmological parameters at high redshifts[43, 44, 45]. If one adopts a fiducial set of cosmological
parameters in estimating the power spectrum from the observed galaxy distribution, the result is necessarily distorted
from the actual spectrum, but the effect can be modeled theoretically. Suppose that the Hubble parameter in the
fiducial model is H(f)(z) instead of the true one, H(z), which can be obtained by numerically solving the modified
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Friedman equation (2.4). Then, comoving radial distances in the fiducial and true universes are given by1

r(f)(z) =

∫ z

0

dz′

H(f)(z′)
, r(z) =

∫ z

0

dz′

H(z′)
. (3.2)

The parallel and perpendicular comoving distances that correspond to the observables δz and δθ, respectively, are

x‖ =
dr(z)

dz
δz =

1

H(z)
δz, x⊥ = r(z)δθ. (3.3)

Therefore their counterparts in the model universe with the adopted fiducial parameters are related to the above as

x
(f)
‖ =

H(z)

H(f)(z)
x‖, x

(f)
⊥ =

r(f)(z)

r(z)
x⊥. (3.4)

The corresponding relations for the wavenumbers read

k
(f)
‖ =

H(f)(z)

H(z)
q‖ ≡ k(f)µ, k

(f)
⊥ =

r(z)

r(f)(z)
q⊥ ≡ k(f)

√

1 − µ2, (3.5)

which yield

q2 = q‖
2 + q⊥

2 = [k(f)]2

[

µ2

(

H(z)

H(f)(z)

)2

+ (1 − µ2)

(

r(f)(z)

r(z)

)2
]

. (3.6)

Then, the power spectrum in the fiducial universe is computed from

P (f)(k(f), µ, z)d2k
(f)
⊥ dk

(f)
‖ = Pgal(q‖, q⊥; z)d2q⊥dq‖. (3.7)

Combining equations (3.1), (3.5), and (3.6), one obtains

P (f)(k(f), µ, z) = b2(z)



1 +
1

b(z)

d lnD1(z)

d ln a(z)

{

µ2 + (1 − µ2)

(

H(f)(z)r(f)(z)

H(z)r(z)

)2
}−1





2
[

H(z)

H(f)(z)

] [

r(f)(z)

r(z)

]2

× Pmass



k(f)

√

µ2

(

H(z)

H(f)(z)

)2

+ (1 − µ2)

(

r(f)(z)

r(z)

)2

; z



 . (3.8)

Finally, the estimated power spectrum is given by integrating equation (3.8) over the light-cone:

P (k) =

∫ 1

0

dµ

∫ zmax

zmin

dz
dr(f)(z)

dz
r(f)(z)2n̄(z)2ψ(z, k)2P (f)(k, µ; z)

∫ zmax

zmin

dz
dr(f)(z)

dz
r(f)(z)2n̄(z)2ψ(z, k)2

, (3.9)

where we write k(f) simply as k. The mean number density of galaxies in the cosmological redshift space, n̄(z), is not
directly observable, but rather inferred from the observed number count dN(z)/dz:

dN

dz
= n̄(z)

[r(f)(z)]2

H(f)(z)
. (3.10)

We may introduce a weight factor, ψ(z, k), which is set as 1/[1 + P (k, µ, z)n̄(z)] in the optimal weighting scheme. In
the present paper, we adopt ψ(z, k) = 1/n̄(z) for the SDSS LRG sample following ref.[9], and ψ(z, k) = 1 for future
WFMOS samples for simplicity.

1 The comoving distance in the fiducial universe is denoted by s(z) in the previous paper [42], instead of r
(f)(z)
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The analysis presented in this paper focuses on the local power-law index of the power spectrum:

d lnP (k)

d ln k
=

1

P (k)

dP (k)

d ln k
. (3.11)

In general, d lnP (k)/d lnk does not contain all the information encoded in P (k) so constraints from d lnP (k)/d ln k
will be somewhat weaker than those from P (k). However, d lnP (k)/d ln k may be useful in extracting the baryon
oscillation feature because, as long as the oscillations are clearly detected the principal part of the constraints on
the cosmic expansion history using the power spectrum come from the oscillations [46]. In addition, d lnP (k)/d ln k
does not depend on the amplitude of the power spectrum. Thus, it is not sensitive to the bias and the growth factor
which provides a desirable level of model-independence. In our theoretical predictions, we obtain d lnP (k)/d lnk by
differentiating P (k) with respect to k which does introduce some level of additional noise.

The fiducial cosmological model that we choose in the following analysis is a spatially-flat Λ CDM with Ω
(f)
m = 0.27,

Ω
(f)
Λ = 1 − Ω

(f)
m , Ωb = 0.044, and h = 0.72. Therefore

H(f)(z) = H0

√

Ω
(f)
m (1 + z)3 + 1 − Ω

(f)
m . (3.12)

Since we assume scale-independent linear growth factor in the modified DGP model (eq.[2.5]), Pmass(q; z), except
for its overall amplitude, is exactly the same as that in the fiducial ΛCDM model. The spectrum is computed using
the linear transfer function by Eisenstein and Hu [39], and the primordial spectral index ns = 0.95 and σ8 = 0.8 [47].
For definiteness we adopt ψ(k, z) = 1, and the Fry’s bias model:

b(z) = 1 +
b0 − 1

D1(z)
(3.13)

with b0 = 1.5 for the samples WFMOS1 and WFMOS2, and with b0 = 2 for the sample SDSS LRG (see below for
details). The reasonable change in the bias model does not alter our results for d lnP (k)/d lnk. However the error
does depend on the bias amplitude.

Figs. 1 and 2 plot r(z)/r(f)(z) and H(f)(z)/H(z), respectively, as function z for the original DGP model (n = 2;
the dashed curve), and the modified DGP models with n = 4 (dotted curve) and n = 8 (dash-dotted curve). Here
the density parameter is fixed as Ωm = 0.27. The solid curve is the ΛCDM model, which is trivially r(z)/r(f)(z) =
H(f)(z)/H(z) = 1, because it is equivalent to the fiducial model. For clearly differentiating models, the deviation
of r(z)/r(f)(z) and H(f)(z)/H(z) from unity is important. Therefore, the sample of the redshift larger than 0.5 is
effective for selecting the models.

In the rest of this section, we consider theoretical predictions of the modified gravity model for d lnP (k)/d ln k.
Here we assume a future fiducial WFMOS survey in the range of redshifts 0.5 < z < 1.3 (zmin = 0.5 and zmax = 1.3;
see section 5 for details). Fig. 3 shows the theoretical curves of d lnP/d ln k for the original DGP model (n = 2, dashed
curve), the DGP-like models with n = 4 and n = 8 (dotted and dashed-dotted curves) and for the ΛCDM model (solid
curve, the fiducial model). We have fixed the spectral index of the initial spectrum to the value ns = 0.95 and the
density parameters to Ωb = 0.044, Ωm = 0.27. The difference of predictions between the fiducial Λ CDM model and
the modified gravity models entirely comes from the geometric distortion, i.e., the model-dependent relation between
q and k, equation (3.5). The apparent geometric distortion disappears only when the actual universe has the same
H(f)(z) and r(f)(z) for z < zmax of the fiducial model.

It is instructive to consider how the theoretical predictions are sensitive to the cosmological parameters in order to
understand the degeneracy among different parameters. For this purpose, we plot the results for different Λ CDM
models by varying the values of Ωm and Ωb in Figs. 4 and 5, while the other parameters are the same as the fiducial
Λ CDM model in Fig. 3. Note again that the wavenumber k in Figs. 4 and 5 is also computed under the assumption
of the fiducial model parameters and should be regarded as k(f).

Figs. 4 and 5 indicate that varying Ωm and Ωb in spatially-flat CDM models mainly affects the amplitude of the
BAO, but the induced shift of the peak positions is weak, at least much weaker than the difference between the DGP
model and the fiducial model illustrated in Fig. 3. This also applies to the change of the spectral index, ns. Therefore
we conclude that the degeneracy among those parameters space is not so crucial, although it is clear that a prior
constraint on these parameters is important and complementary to the BAO test.

IV. CURRENT CONSTRAINTS: SDSS LRG SAMPLE

In this section, we utilize the theoretical framework developed in the previous section to place constraints on modified
DGP models from existing large–scale structure data. For this purpose, we use the published power spectrum of galaxy
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clustering by Hütsi [9] based on 51763 LRGs from Data Release Four (DR4) of the Sloan Digital Sky Survey (SDSS).
In this work, they present a discovery of the BAO in the power spectrum and compute the covariance matrix as well,
which is ideal to apply our current methodology.

We fit our cosmological models to the power spectrum data by varying Ωm and Ωb, assuming spatial flatness both
for the ΛCDM and modified DGP models. In Figure 6, we present the best fit Λ CDM model (solid line) and the best
fit DGP model (dashed line) to the SDSS LRG power spectrum of [9]. For comparison, we also present the predicted
DGP model (dotted line) with the same cosmological parameters as the best fit Λ CDM model, i.e., with Ωm = 0.32
and Ωb = 0.045. For these fits, we have used zmin = 0.16 and zmax = 0.47, as well as determined the comoving
number density n̄(z) (see Fig. 4 of [9]) in the fiducial model cosmology (assuming the first year WMAP parameters).
The error bars were computed via Monte Carlo simulations and the covariance matrix provided by [9]. To minimize
non–linear effects, we only fit to the SDSS LRG power spectrum at scales of k < 0.2 hMpc−1. When quasi-nonlinear
effects properly taken accounted for[40, 48, 49, 50], we may increase the range of scales used in this analysis and thus
improve the statistics.

In Figure 7 (a), we show the contours of ∆χ2 in the Ωm versus Ωb/Ωm parameter plane with respect to the best fit
ΛCDM and DGP models shown in Figure 6. We compute the χ2 using

χ2 =
∑

i

[

d lnP/d ln k
∣

∣

obs

k=ki
− d lnP/d ln k

∣

∣

theo

k=ki

]2

[∆(d lnP/d ln k)]2
, (4.1)

where d lnP/d ln k
∣

∣

obs
and ∆(d lnP/d ln k) are the measured value and the errors in Figure 6 respectively. The

way of finding ∆(d lnP/d ln k) is similar to that in the next section. We generate mock P (k) data from Monte
Carlo simulations with the covariance matrix in [9]. Then, we evaluated the variance of d lnP/d ln k (see also next

section). Also, d lnP/d ln k
∣

∣

theo
is the corresponding theoretical value and is evaluated from P (k)theo sampled at the

wavenumber bin interval of ∆k = 0.02 hMpc−1 as in the observational data [9]. The other cosmological parameters
are held at the values set by our fiducial model.

In Figure 7(a), we plot the contour levels of ∆χ2 = 2.3 (inner curve) and 6.2 (outer curve), which correspond to the
one sigma and two sigma confidence levels for the χ2 distribution (with two degrees-of-freedom). Clearly, the DGP
model favors a higher value of Ωm than the ΛCDM model (see ref. [23]). Figure 7 (b) is the same as Fig. 7 (a) but
with assuming H0 = 66 km/s/Mpc. Thus, the alternation of the Hubble parameter does not change our conclusion.

In figure 8, we show the contours of ∆χ2 for the modified DGP models in the Ωm versus 1/n parameter plane. For
reference, n = 2 corresponds to the original DGP model, while n = ∞ is the ΛCDM model.

Figures 7 and 8 show the potential for differentiating between DGP models and the standard ΛCDM model if
independent measurements of Ωm, or the other cosmological parameters, can be obtained from additional data. We
do not attempt such an analysis here because of the small redshift range of the SDSS LRG sample that results in a
relatively small predicted difference in the location of the BAO peaks between the DGP models and ΛCDM model.
Furthermore, we have not included non–linear effects. Instead, we look forward to the next generation of galaxy
redshift surveys where the redshift baseline will be much larger and therefore, the expected differences between the
DGP and ΛCDM models will be greater.

Limiting to the ΛCDM model, we briefly compare our result with that in other analyses. In [51], Hütsi investigated
cosmological constraints from the SDSS LRG power spectrum. Our result on Ωm is larger than his result. This
might come from the difference in the treatment of the non-linear effect. In addition, his result is obtained by being
combined with the WMAP result, then the comparison is not straightforward. Our result can be rather consistent
with that in [52].

V. FUTURE CONSTRAINTS: WFMOS SAMPLES

As stated above, we now consider the expected constraints on DGP models from future galaxy samples at higher
redshifts. In particular, we consider the two galaxy redshift samples proposed by the WFMOS experiment; “WF-
MOS1”, which will contain 2.1 × 106 galaxies, over 2000 deg2, at 0.5 < z < 1.3 and “WFMOS2”, which will contain
5.5 × 105 galaxies, over 300 deg2, at 2.3 < z < 3.3. The corresponding comoving mean number density for these two
samples is n̄ = 5 × 10−4 (h−1Mpc)−3 and n̄ = 4 × 10−4 (h−1Mpc)−3, respectively.

We determine the likely error on the power spectrum of these two WFMOS galaxy samples using Monte Carlo
simulations. In detail, the error on P (k) is obtained by the analytic formula of Feldman et al.[53]. More specifically,
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we use (see also [42, 54])

[∆P (k)]2 = 2
(2π)3

∆Vk

∫ 1

0

dµ

∫ zmax

zmin

dz
dr(f)(z)

dz
r(f)(z)2n̄(z)4ψ(k, z)4[P (k, µ; z) + 1/n̄]2

∆Ω
[

∫ zmax

zmin

dz
dr(f)(z)

dz
r(f)(z)2n̄(z)2ψ(k, z)2

]2
, (5.1)

where ∆Vk(= 4πk2∆k) denotes the volume of the shell in the Fourier space and ∆Ω is the survey area. Note that
we adopt ψ(k, z) = 1 here. We also create mock data from Monte Carlo simulations. We first generate P (ki) with
random errors from a Gaussian distribution, where ki = i∆k. Then, we evaluated d lnP/d ln k at the wavenumber
(ki + ki+1)/2 from the nearest two bins by (P (ki+1) − P (ki))(ki + ki+1)/(P (ki) + P (ki+1))/∆k. The quoted error
bars are one sigma derived from 105 mock realizations.

In Figure 9, we present theoretical predictions of d lnP/d lnk for the WFMOS1 galaxy sample based on the ΛCDM
(solid line) and modified DGP model (dashed line) presented in Figure 3. The data points with error bars are
derived from our mock data with the wavenumber binsize of ∆k = 0.01hMpc−1. We then compare the predictions
of the ΛCDM model and the DGP model (n = 2) with the mock data in Figure 9 using data points in the range
0.02 < k < 0.2 hMpc−1. Based on chi–square, we find that these two models are different by 6 σ. The statistical
difference, with respect to the ΛCDM model, decreases to 2σ for a modified DGP model with n = 3, while modified
gravity models with n ≥ 4 are only statistically different at the 1σ level. Therefore, Figure 9 demonstrates that the
BAO analysis of the WFMOS1 galaxy sample will be able to discriminate between the standard ΛCDM cosmology
and the original DGP models. Moreover, such analyses one will put stringent constraints on the modified DGP models
with n ≥ 3 especially when combined other independent cosmological observations.

For the actual analysis of the WFMOS galaxy power spectra, the binsize (∆k) will be determined to ensure the
statistical independence of adjacent bins, which will depend on the final survey geometry and the number density of
observed galaxies. To test the effect of such issues on our results, we present in Figure 10 new predictions based on a
binsize of ∆k = 0.02hMpc−1. Furthermore, in Figure 11, we adopt the nearest three points in computing dP/dk from
the mock data. Taken together, Figures 10 and 11 demonstrate our results are robust against the details of binning
the data. Nevertheless the statistical significance of the constraints should be carefully examined by properly taking
account of the covariance matrix analysis of different data points, which is beyond the scope of the present paper.

Figure 12 is similar to Figure 9 but now for the higher redshift WFMOS2 galaxy sample discussed above. The
theoretical curves are almost the same as those for the WFMOS1 sample, but the error bars are now a factor 2 to 3
larger, because the theoretical curves are determined by the factors r(z)/r(f)(z) and H(f)(z)/H(z) (Figures 1 and 2)
which are almost constant over the redshift range 0.5 < z < 3.

To estimate future cosmological constraints, Figure 13 shows the contour of ∆χ2 in the Ωm and 1/n parameter plane
for both the WFMOS1 (solid curve) and WFMOS2 (dashed curve) galaxy samples. This is similar to Figure 8 for the
existing SDSS LRG sample. In this figure, the underlying cosmological model is ΛCDM with Ωm = 0.27, ns = 0.95 and
Ωb = 0.044. Using Monte Carlo simulations, we create 100 mock datasets and computed d lnP (k)/d ln k with a binsize
of ∆k = 0.01hMpc−1 (Figure 9) and then we compute the average ∆χ2 statistic. The errors on the power spectrum
were determined from the effective volume of the WFMOS1 and WFMOS2 samples, and the amplitude of the power
spectrum (the volume of the WFMOS2 sample is assumed to be a quarter of WFMOS1 volume). Furthermore, we
assumed the same bias parameter (b0 = 1.5) which causes a decrease in the amplitude of power spectrum of WFMOS2
by a factor 2.

We also consider here a new WFMOS sample of galaxies (called “WFMOS3”) which consists of 2.2 × 106 galaxies
over 1200 deg2 at 2.3 < z < 3.3. This gives the same number density as the WFMOS2 sample, but with almost same
volume as the WFMOS1 sample. We also assume b0 = 1.9, so that the amplitude of the power spectrum is almost
same as the WFMOS1 sample. We present in Figure 13 the contour of ∆χ2 for the WFMOS3 sample (dotted curve),
which demonstrates that such a sample would provide similar cosmological constraints as the WFMOS1 sample.

The error of d lnP/d lnk can also be improved by increasing the mean number density of galaxies. The range of the
relevant wavenumber (the maximum wavenumber) is also important for constraining the parameters. These factors
will be able to improve the constraint.

Finally, we stress that our analysis is based on the fitting of d lnP (k)/d ln k. In general, however, the fitting of P (k)
gives more stringent constraint. Then, the constraint in this paper can be improved when using the fitting of P (k)
directly. But, in our analysis, we fixed the cosmological parameters ns and Ωb. Uncertainty of these factors might
weaken the constraint.
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VI. DISCUSSION AND CONCLUSIONS

We have considered here how models of modified gravity affect the BAO signature in the power spectra of galaxy
clustering both for current and future galaxy samples. As a specific model of the modified gravity, we adopt the
modified DGP model[31] which is characterized by an index n; the model with n = 2 corresponds to the original
DGP model[18], while n = ∞ approaches the concordance, spatially flat, ΛCDM model in general relativity. We have
shown that the different expansion history in the modified gravity models shifts the peak positions of oscillations
relative to the ΛCDM model. These predicted shifts in the BAO can potentially be used to distinguish between the
ΛCDM model and the modified DGP model.

We tested our predictions for the BAO against existing data from the SDSS LRG sample and found we can already
rule out the original DGP modified gravity model (with n = 2) if we assume Ωm < 0.3 with the flat geometry, although
we have not carried out a full analysis of the parameter space (cf. [23, 36]). For future WFMOS galaxy samples,
there is great promise for putting stringent constraints on the modified gravity.

We also note that our work is based on the linear theory of density perturbation. The non-linear nature of the
gravity force in the DGP cosmology is not clear at present. It might be expected that the modification of the Poisson
equation would vanish by the non-linear nature. However, this problem remains unsolved.

In our investigation, we focused on the quantity d lnP (k)/d ln k in extracting the oscillation feature. As demon-
strated in the last section, the theoretical curve and the result of the simulation is slightly different. This comes
from the finite binsize effect, which becomes problematic when the bin of k is large. This gap might be resolved by
introducing a new algorithm for estimating in dP/d ln k. Following the conventional method of evaluating the power
spectrum with a discrete number density field [42, 53, 54], the power spectrum can be obtained by using the estimator,
adopting the constant weight factor,

P (k) =
[

∫

dsn̄(s)2
]

−1

∣

∣

∣

∣

∣

∣

N
∑

i

eik·si − α

N/α
∑

j

eik·sj

∣

∣

∣

∣

∣

∣

2

− shot noise term, (6.1)

where si (1 ≤ i ≤ N) is the i-th galaxy’s position of a real catalog, sj (1 ≤ j ≤ N/α) is the j-th galaxy’s position of
a random catalog, and α a parameter chosen as α≪ 1. In the similar way, we can evaluate the differentiation of the
power spectrum by introducing the estimator

k
∂P (k)

∂k
=

[

∫

dsn̄(s)2
]

−1
( N

∑

i1

ik · si1e
ik·si1 − α

N/α
∑

j1

ik · sj1e
ik·sj1

)( N
∑

i2

e−ik·si2 − α

N/α
∑

j2

e−ik·sj2

)

+complex conjugate . (6.2)

This expression gives an alternative way to evaluate dP (k)/d ln k. The effectiveness of the use of this estimator will
be investigated as a future work.

Finally, we note the degeneracy between the DGP models used in this paper and other dark energy models. As
demonstrated in [55, 56], the expansion history of the DGP model can be reproduced by a dark energy model with
an effective equation of state of weff(z) ≃ w0 + wa × z/(1 + z). The behavior of the galaxy power spectrum of the
DGP model presented in this paper can thus be re–interpreted using this effective equation of state. This is because
the WFMOS surveys only constrain the expansion history of the Universe and therefore, the measurement of the
power spectrum alone can not differentiate between the DGP model and more complex dark energy models if they
have the same expansion history. Observationally, weak lensing measurements can be more sensitive to the growth
factor than the BAO. Therefore HyperSuprime and other large weak lensing surveys will be very useful in breaking
this degeneracy while weak lensing in turn suffers from an ΩK degeneracy that BAO can break [57]. Together BAO
and weak lensing offer a powerful synergy in the hunt for the origin of cosmic acceleration. We hope to return to this
point in future.
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FIG. 1: r(z)/r(f)(z) as function of z for the DGP model (dashed red curve), the DGP-like modified gravity models n = 4
(dotted blue curve), n = 8 (dash-dotted green curve), and the ΛCDM model (solid black curve). Here the density parameter
is fixed as Ωm = 0.27.

FIG. 2: Same as Fig. 1 but for H(f)(z)/H(z). The DGP model (dashed red curve), the DGP-like modified gravity models
n = 4 (dotted blue curve), n = 8 (dash-dotted green curve), and the ΛCDM model (solid black curve). Here Ωm = 0.27 as
Fig. 1.

[57] G. Bernstein Astrophys. J. 637, 598 (2006)
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FIG. 3: Theoretical curves of d ln P/d ln k for the DGP model (dashed red curve), the DGP-like modified gravity models n = 4
(dotted blue curve), n = 8 (dash-dotted green curve), and the ΛCDM model (solid black curve) assuming the sample WFMOS1.
The modified gravity with large n approaches to the ΛCDM model. Here we adopted the initial power spectral index, ns = 0.95,
and Ωb = 0.044 and Ωm = 0.27.

FIG. 4: Theoretical curves of d ln P/d ln k in the ΛCDM model showing the effect of changing Ωm: the solid curve has Ωm = 0.27,
the dashed curve has Ωm = 0.22, the dotted curve has Ωm = 0.32. The other parameters are the same as those of Fig. 3,
ns = 0.95 and Ωb = 0.044.
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FIG. 5: Theoretical curves of d lnP/d ln k in the ΛCDM model showing the effect of varying Ωb: the solid curve has Ωb = 0.044,
the dashed curve has Ωb = 0.04, and the dotted curve has Ωm = 0.05. The other parameters are the same as those of Fig. 3,
ns = 0.95 and Ωm = 0.27.

FIG. 6: d lnP/d ln k of the SDSS LRG sample and the corresponding theoretical curves of the DGP model (dashed red curves)
and the Λ CDM model (solid black curve). The thick curves are the best fit model which has Ωm = 0.32 and Ωb = 0.045 for
the Λ CDM model, and Ωm = 0.35 and Ωb = 0.053 for the DGP model. The thin dashed curve is the DGP model with the
same parameter as the Λ CDM model (Ωm = 0.32 and Ωb = 0.045). The other cosmological parameter ns = 0.95 is the same
as in Fig. 3. The error bar is evaluated using the simple simulation with the measured power spectrum and the covariance
matrix in ref. [9].
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FIG. 7: (a) Contour of ∆χ2 on the parameter space Ωm and Ωb/Ωm. The other parameters are fixed as the same as those in
Fig. 3. The solid curve is the Λ CDM model and the dashed curve is the DGP model. The contour level is ∆χ2 = 2.3 (1σ;
inner curve) and ∆χ2 = 6.2 (2σ; outer curve). Here ns = 0.95 as before. (b) Same as (a) but with h = 0.66.

FIG. 8: Contour of ∆χ2 on the parameter space Ωm and 1/n in the DGP-like model. n = 2 corresponds to the DGP model.
The other parameters are fixed as ns = 0.95 and Ωb = 0.044. The contour level is χ2 = 2.3 (1σ; inner curve) and χ2 = 6.2 (2σ;
outer curve).
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FIG. 9: Theoretical predictions for d ln P/d ln k assuming the sample WFMOS1 (corresponding to z < 1.3). The squares with
error bar are evaluated with the simple simulation of the power spectrum for the Λ CDM model. The asterisks are the DGP
model, but the error bar, which is almost the same as that of the Λ CDM model, is omitted for simplicity. Theoretical curves
are the DGP model (dashed red curve) and the Λ CDM model (solid black curve). The parameters are the same as those in
Fig. 3, i.e, ns = 0.95, Ωb = 0.044, Ωm = 0.27 and b0 = 1.5. Here we used the nearest two points in the differentiation and
∆k = 0.01 hMpc−1.

FIG. 10: Same as Fig. 9, but for the case ∆k = 0.02 hMpc−1. The parameters are chosen as ns = 0.95, Ωb = 0.044, Ωm = 0.27
and b0 = 1.5.



15

FIG. 11: Same as Fig. 9, but for the case of the differentiation with the nearest three points. The parameters are chosen as
ns = 0.95, Ωb = 0.044, Ωm = 0.27 and b0 = 1.5.

FIG. 12: Same as Fig. 9, but for the sample WFMOS2, which assumes the range of the redshift 2.3 < z < 3.3 with n̄ =
4× 10−4(h−1Mpc)−3, and a survey area 300 deg.2, which yields a total number 5.5× 105 galaxies. The parameters are chosen
as ns = 0.95, Ωb = 0.044, Ωm = 0.27 and b0 = 1.5.
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FIG. 13: (a, solid curve) Contour of ∆χ2 on the parameter space Ωm and 1/n in the DGP-like model, assuming the sample
WFMOS1, which consists of 2.1 × 106 galaxies over 2000 deg2 at 0.5 < z < 1.3 with the mean number density n̄ = 5 ×
10−4 (h−1Mpc)−3. The target model is the Λ CDM model, i.e., 1/n = 0 and Ωm = 0.27, and assumed the bias parameter
b0 = 1.5. Here we fixed ns = 0.95, Ωb = 0.044. The contour level is χ2 = 6.2 (2σ). (b, dashed curve) Same as (a) but
for the sample WFMOS2, which consists of 5.5 × 105 galaxies over 300 deg2 at 2.3 < z < 3.3 with the mean number density
n̄ = 4×10−4 (h−1Mpc)−3, and assumed the bias parameter b0 = 1.5. (c, dotted curve) Same as (a) but for the sample WFMOS3,
which consists of the 2.2×106 galaxies over 1200 deg2 at 2.3 < z < 3.3 with the mean number density n̄ = 4×10−4 (h−1Mpc)−3,
and assumed the bias parameter b0 = 1.9.
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