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Observational constraints on self-accelerating cosmology
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The DGP brane-world model provides a simple alternative to the standard LCDM cosmology,
with the same number of parameters. There is no dark energy – the late universe self-accelerates
due to an infrared modification of gravity. We compute the joint constraints on the DGP model
from supernovae, the cosmic microwave background shift parameter, and the baryon oscillation peak
in the SDSS luminous red galaxy sample. Flat DGP models are within the joint 2 sigma contour,
but the LCDM model provides a significantly better fit to the data. These tests are based on the
background dynamics of the DGP model, and we comment on further tests that involve structure
formation.

PACS numbers: 95.36.+x, 98.80.-k, 98.80.Es

1. THE DARK ENERGY PROBLEM

The acceleration of the late-time universe, as implied
by observations of supernovae, cosmic microwave back-
ground anisotropies and the large-scale structure, poses
one of the deepest theoretical problems facing cosmol-
ogy [1]. Within the framework of general relativity, the
acceleration originates from a dark energy field (or ef-
fective dark energy) with negative pressure (w ≡ p/ρ <
− 1

3
), such as vacuum energy (w = −1) or a slow-rolling

scalar field (“quintessence”, w > −1). So far, none of the
available models has a natural explanation.

For the simplest option of vacuum energy, i.e., the
LCDM model, the incredibly small value of the cosmo-
logical constant

ρΛ,obs =
Λ

8πG
∼ H2

0M2
P ∼ (10−3 eV)4 , (1)

ρΛ,theory ∼ M4
fundamental > (1 TeV)4 ≫ ρΛ,obs , (2)

cannot be explained by current particle physics. In ad-
dition, the value needs to be fine-tuned,

ΩΛ ∼ Ωm , (3)

which also has no natural explanation. Quintessence
models attempt to address the fine-tuning problem, but
do not produce a natural solution – and also cannot ad-
dress the problem of how Λ is set exactly to 0.

Alternatively, it is possible that there is no dark en-
ergy, but instead an infrared modification of general rel-
ativity, i.e., on very large scales, r >

∼ H−1
0 , that accounts

for late-time acceleration. (Note that this does not re-
move the problem of explaining why the vacuum energy
does not gravitate.) Schematically, we are modifying the
geometric side of the field equations,

Gµν + Gdark
µν = 8πGTµν , (4)

rather than the matter side,

Gµν = 8πG
(

Tµν + T dark
µν

)

, (5)

as in general relativity. It is important that the modifica-
tion is covariant and incorporates deviations from homo-
geneity and isotropy, so that one can compute not only
the background dynamics, but also the perturbations.

2. DGP MODIFIED GRAVITY

One of the simplest covariant modified-gravity models
is based on the Dvali-Gabadadze-Porrati (DGP) brane-
world model, as generalized to cosmology by Deffayet [2].
(It is worth noting that the original DGP model with a
Minkowski brane was not introduced to explain acceler-
ation – the generalization to a Friedman brane was sub-
sequently found to be self-accelerating.) In this model,
gravity leaks off the 4-dimensional brane universe into
the 5-dimensional bulk spacetime at large scales. At
small scales, gravity is effectively bound to the brane
and 4D gravity is recovered to a good approximation,
via the lightest modes of the 5D graviton – effectively
via an ultralight metastable graviton in the 4D universe.
The transition from 4D to 5D behaviour is governed by a
crossover scale rc; the weak-field gravitational potential
behaves as r−1 for r ≪ rc and as r−2 for r ≫ rc.

The energy conservation equation remains the same as
in general relativity, but the Friedman equation is mod-
ified:

ρ̇ + 3H(ρ + p) = 0 , (6)

H2 +
K

a2
−

1

rc

√

H2 +
K

a2
=

8πG

3
ρ . (7)

These equations imply (for the CDM case p = 0)

Ḣ −
K

a2
= −4πGρ

[

1 +
1

√

1 + 32πGr2
cρ/3

]

. (8)

Equation (7) shows that at early times, when H2 +
K/a2 ≫ r−2

c , the general relativistic Friedman equation
is recovered. By contrast, at late times in a CDM uni-
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verse, with ρ ∝ a−3 → 0, we have

H → H∞ =
1

rc
. (9)

Gravity leakage at late times initiates acceleration – not
due to any negative pressure field, but due to the weak-
ening of gravity on the brane. Since H0 > H∞, in order
to achieve self-acceleration at late times, we require

rc
>
∼ H−1

0 , (10)

and this is confirmed by fitting observations, as discussed
below.

In dimensionless form, the modified Friedman equa-
tion (7) is

H(z)2

H2
0

=
[

√

Ωm(1 + z)3 + Ωrc
+

√

Ωrc

]2

+ ΩK(1 + z)2 , (11)

where

ΩK = 1 − Ωm − 2
√

Ωrc

(

√

Ωrc
+

√

Ωrc
+ Ωm

)

,(12)

Ωrc
=

1

4H2
0r2

c

. (13)

From Eq. (8), the dimensionless acceleration is

1

H2
0

ä

a
=

(

√

Ωm(1 + z)3 + Ωrc
+

√

Ωrc

)

[

√

Ωrc

+
2Ωrc

− Ωm(1 + z)3

2
√

Ωm(1 + z)3 + Ωrc

]

, (14)

so that the redshift when acceleration starts is given by

1 + za = 2

(

Ωrc

Ωm

)1/3

. (15)

The (Ωrc
, Ωm) plane is illustrated in Fig. 1. This shows

the flat model curve [from Eq. (12)],

Ωrc
=

1

4
(1 − Ωm)2, (16)

and the present-time zero-acceleration curve [from
Eq. (15)],

Ωrc
=

Ωm

8
. (17)

By checking for real roots z > 0 of the equation H(z) = 0,
given by Eq. (11) with radiation included, we also find
the region of the plane containing bouncing models, i.e.,
models that are currently expanding but were collapsing
in the past.

The modified Friedman equation in DGP may reinter-
preted from a standard viewpoint. We define the effective
dark energy density ρeff ≡ 3H/8πGrc. Then the effective

0 0.1 0.2 0.3 0.4 0.5 0.6
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FIG. 1: The parameter space for DGP models. The dotted
(red) curve is the flat case, with closed models above and open
models below; the dot-dashed (black) curve demarcates mod-
els that are currently accelerating (above) from those decel-
erating (below); the shaded (blue) region contains expanding
models that bounce in the past, i.e. do not have a big bang;
the likelihood contours are fits to the SNe Gold data [dashed
(brown)] and Legacy data [solid (blue)].

dark energy equation of state weff ≡ peff/ρeff is given by
ρ̇eff + 3H(1 + weff)ρeff = 0. Thus ρeff and weff give a
standard general relativistic interpretation of DGP ex-
pansion history, i.e., they describe the equivalent general
relativity dark energy model. For the flat case, ΩK = 0,
we find

weff(z) =
Ωm − 1 −

√

(1 − Ωm)2 + 4Ωm(1 + z)3

2
√

(1 − Ωm)2 + 4Ωm(1 + z)3
, (18)

which implies

weff(0) = −
1

1 + Ωm

. (19)

The DGP and LCDM models have the same number of
parameters, with rc substituting for Λ. (Neither model
provides a natural solution to the late-acceleration prob-
lem – both Λ and rc must be fine-tuned to match ob-
servations.) The DGP cosmology therefore gives a very
useful framework for comparing the LCDM general rela-
tivistic cosmology to a modified gravity alternative. Does
the DGP model pass the observational tests? The next
section considers this question.

3. OBSERVATIONAL CONSTRAINTS ON DGP

The fundamental test of the background dynamics of
a cosmological model is the SNe magnitude-redshift test,
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FIG. 2: Likelihood contours for the CMB shift parameter S

in DGP (left) and LCDM (right).

based on the luminosity distance,

dL =
(1 + z)

H0

√

|ΩK |
F

(

√

|ΩK |

∫ z

0

dz′

H(z′)/H0

)

, (20)

where

F(x) ≡ (x, sin x, sinh x) for K = (0, 1,−1) . (21)

The 68, 95 and 99% likelihood contours from fits to the
SNe data [3, 4] are shown in the DGP parameter plane
in Fig. 1.

The luminosity distance is determined purely by the
modified Friedman equation (11), and there is a general
relativistic dark energy model that can exactly mimic
the DGP luminosity distance. This equivalent model has
dark energy equation of state equal to the DGP effec-
tive equation of state weff, as given in Eq. (18) for the
flat case. Of course, there is no physical justification
for the equivalent general relativistic model, whereas the
DGP model has a clear physical motivation. Neverthe-
less, tests based on the Hubble rate H(z) cannot dis-
tinguish the DGP from a GR dark energy model. Fur-
ther tests are needed to discriminate DGP from general
relativistic models. The CMB anisotropies and matter
power spectrum provide in principle suitable discrimina-
tory tests. These tests require a detailed understand-
ing of the evolution of density perturbations in the DGP
model. Unfortunately the problem is highly complicated
and not yet solved, essentially since density perturba-
tions are coupled to perturbations in the 5D gravitational
field [5].

Previous results on the CMB anisotropies and struc-
ture formation in DGP [6] provide valuable strategies for
testing DGP and discriminating it from general relativis-
tic models. However, these results are based on neglect-
ing the 5D perturbations, which effectively imposes an
inconsistency, leading to a violation of the 4D Bianchi
identity, as explained by Koyama and Maartens [5]. On
sub-Hubble scales, linear density perturbations in the
DGP model have been computed in a way that satisfies
the 5D equations [5], and this result confirms and gener-
alizes the results of Lue and Starkman [7]. Further work

is needed to quantify the corrections to general relativis-
tic perturbations on scales near and above the Hubble
radius.

Until the problem of cosmological perturbations in
DGP is solved, we must turn to other observations, inde-
pendent of the SNe redshifts, that rely on the background
model and do not rely (or rely only weakly) on the den-
sity perturbations.

CMB shift

The CMB shift parameter

S =
√

ΩmH0

dL(zr)

(1 + zr)
, (22)

relates the angular scale of the first acoustic peak to the
angular diameter distance to last scattering and the phys-
ical scale of the sound horizon. It is effectively model-
independent and insensitive to perturbations, and may
be used to constrain the background dynamics of models,
such as quintessence models [8]. Wang and Mukherjee [9]
have used the WMAP 3-year data [10] to derive

S = 1.70 ± 0.03 , (23)

with zr = 1090. The likelihood contours for S in the
DGP and LCDM cases are shown in Fig. 2. Note that
the DGP contours are more in the open-model region for
Ωm

<
∼ 0.4 than the LCDM contours.

Baryon oscillations

Fairbairn and Goobar [11] used the baryon acoustic
oscillation peak recently detected in the SDSS luminous
red galaxies (LRGs) [12] as an independent test of the
DGP. The correlation function for SDSS LRGs shows a
peak at a scale ∼ 100h−1 Mpc, corresponding to the first
acoustic peak at recombination (determined by the sound
horizon). The observed scale effectively constrains the
quantity [12]

A =
√

Ωm

[

H3
0 d2

L(z1)

H1z2
1(1 + z1)2

]1/3

, (24)

and Eisenstein et al. find that [12]

A = 0.469 ± 0.017 , (25)

where z1 = 0.35 is the typical LRG redshift. (Following
Ref. [11], we have suppressed a weak dependence of A on
the spectral tilt.)

We should point out that there is a level of uncer-
tainty in the use of the BO measure A. The BO data
are analyzed via a fiducial LCDM model, with a single
scaling relation used to make a best fit, and a compres-
sion of the data to a constraint at a single redshift [12].
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FIG. 3: Joint constraints [solid thick (blue)] on DGP models from the SNe data [solid thin (yellow)], the BO measure A [dotted
(green)] and the CMB shift parameter S [dot-dashed (red)]. The left plot uses SNe Gold data, the right plot uses SNLS data.
The thick dashed (black) line represents the flat models, ΩK = 0.
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FIG. 4: As in Fig. 3, but for LCDM.

Within the LCDM class of models, this approximation is
accurate to within a few percent [12] (less than current
errors in the determination of Ωm). As pointed out by
Dick et al. [13], this single-redshift feature, which may
be robust for LCDM and constant-w models, could in-
troduce significant errors for models with nonconstant
w. The DGP has an effective nonconstant w, although
over the SDSS LRG redshift range (0.16 ≤ z ≤ 0.47)

the variation is small. It is not clear whether the errors
introduced in fitting DGP models are at the acceptable
level of a few percent. It is effectively implicitly assumed
that this is the case in Refs. [11, 14, 15]. This may be
a reasonable assumption, since the DGP comoving lumi-
nosity distance is close to LCDM in the redshift range
for the LRGs [5]. Ultimately, the BO data should be re-
analyzed without assuming a fiducial LCDM model and
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without compression to a single redshift, so as to be a
more reliable constraint on alternatives to LCDM.

Another issue is the extent to which the BO con-
straint relies on the LCDM matter power spectrum. The
DGP corrections to the shape of the matter power spec-
trum at last scattering on scales around the first acoustic
peak scale are small, although there may be some scale-
dependence in the corrections [16].

Fairbairn and Goobar showed that the joint constraints
from SNe (Legacy) data and the BO measure A ruled out
a flat DGP model at 3σ. Alam and Sahni [14] used the
Gold SNe data with the BO measure A and showed that
the flat DGP model is marginally allowed at 2σ. (See
also Refs. [15].) A conservative conclusion from these
results is that the SNe-BO constraints exclude flat DGP
models at 2σ, unlike the case of LCDM models, where
flat models are within the joint 1σ contour [4].

However, this negative conclusion is over-turned when
we include the CMB constraint from S.

Combined SNe-CMB-BO constraints

The effect of the CMB shift S is to pull the best-fit
model down from the closed region towards the flat curve.
This is clearly illustrated in Fig. 3: without the shift con-
straint, the joint SNe-BO best-fit would be well above the
flat model curve, as found by Fairbairn and Goobar [11].

The corresponding constraints for the LCDM model
are shown in Fig. 4, and are consistent with the results
of Ichikawa and Takahashi [17]. For LCDM, the SNe-
BO constraints already allow a flat model at 1σ, and
the effect of the shift parameter is simply to narrow and
rotate the contours. It is clear from Figs. 3 and 4 that
there is some tension between the data and DGP, which
is not the case for LCDM.

4. CONCLUSIONS

The combination of three independent observational
constraints – SNe, CMB shift parameter, baryon oscil-
lations – is a powerful way to test the background dy-
namics of a cosmological model. It has been used for
quintessence models by Ichikawa and Takahashi [17] and
for an f(R) modified gravity model by Amarzguioui et
al. [18]. We applied this triple joint constraint to the
DGP case, using both the Gold and the Legacy data,
and showed that flat DGP models are within the 2σ joint
contour. We note that the best-fit DGP model is slightly
open, as opposed to the slightly closed nature of the best-
fit LCDM model.

Although flat DGP and LCDM models are both within
the 2σ contour, it is clear from Figs. 3 and 4 that LCDM
fits the data more easily. A quantitative measure of this is
via the χ2 values for the best-fit models in the two cases,
as shown in Tables I (Gold SNe data) and II (Legacy
SNe data). The tension between the data and the DGP

is signalled by the rather large value of weff(0): using
Ωm ≈ 0.26 from Tables I and II, Eq. (19) gives

weff(0) ≈ −0.8 . (26)

best-fit best-fit best-fit χ2

acceleration density curvature value

parameter parameter parameter

DGP Ωrc
= 0.125 Ωm = 0.270 ΩK = +0.0278 185.0

LCDM ΩΛ = 0.730 Ωm = 0.285 ΩK = −0.0150 177.8

TABLE I: Best-fit parameters from SNe (Gold)-CMB shift-
BO constraints, and χ2 values, for the DGP and LCDM mod-
els.

best-fit best-fit best-fit χ2

acceleration density curvature value

parameter parameter parameter

DGP Ωrc
= 0.130 Ωm = 0.255 ΩK = +0.0300 128.8

LCDM ΩΛ = 0.740 Ωm = 0.270 ΩK = −0.0100 113.6

TABLE II: As in Table I, for the Legacy SNe data.

For the Gold data, LCDM reduces the χ2 by 7,
whereas the Legacy data gives an even larger reduction
of 15. LCDM provides a significantly better fit to SNe-
CMB shift-BO observations than DGP, especially for the
Legacy SNe data.

The χ2 per degree of freedom provides a comparison
of the goodness of fit across the two SNe data sets:

(

χ2/dof
)

DGP
=

{

1.179 Gold

1.120 Legacy

(

χ2/dof
)

LCDM
=

{

1.132 Gold

0.988 Legacy

The Legacy data leads to a better fit for both DGP and
LCDM.

One qualification to our results is that we have not
shown the reliability of the BO measure A as a clean test
of the background dynamics for DGP (this also applies
to previous applications of the BO constraint to DGP
models [11, 14, 15]). The BO measure A is tailored to
the LCDM model, as explained above. Although we may
expect that only small corrections are involved, it is not
clear whether this introduces an artificial bias against the
DGP model. This is a nontrivial problem to resolve, and
further work is needed.

At a more fundamental level, the DGP needs to be
tested against the data on CMB anisotropies and the
matter power spectrum, and these tests provide also the
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means to discriminate DGP from the equivalent general
relativistic dark energy model. However, as explained
above, theses tests cannot yet be carried out, since the
analysis of the density perturbations in DGP has not yet
been sufficiently developed [5]. We should also note that
there is a ghost at the linear perturbative level in the
asymptotic de Sitter state of the self-accelerating DGP
cosmology [19]. Classically, this ghost is not a problem,
but it does render the quantum vacuum unstable, and we
effectively assume that an ultraviolet completion of the
DGP model may be found that cures the ghost instability
in the quantum vacuum.
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