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BRANE-WORLD COSMOLOGICAL PERTURBATIONS

A covariant approach

Roy Maartens
Institute of Cosmology & Gravitation, Portsmouth University, Portsmouth PO1 2EG, Britain

The standard cosmological model, based on general relativity with an inflationary era, is very
effective in accounting for a broad range of observed features of the universe. However, the ongoing
puzzles about the nature of dark matter and dark energy, together with the problem of a fundamental
theoretical framework for inflation, indicate that cosmology may be probing the limits of validity
of general relativity. The early universe provides a testing ground for theories of gravity, since
gravitational dynamics can lead to characteristic imprints on the CMB and other cosmological
observations. Precision cosmology is in principle a means to constrain and possibly falsify candidate
quantum gravity theories like M theory. Generalized Randall-Sundrum brane-worlds provide a
phenomenological means to test aspects of M theory. I outline the 1+3-covariant approach to
cosmological perturbations in these brane-worlds, and its application to CMB anisotropies.

I. INTRODUCTION

M theory, the 11-dimensional theory that encompasses the known superstring theories, is only partially understood,
but is widely considered to be a promising potential route to quantum gravity [1], and is therefore an important
candidate for cosmological testing. Currently there are not realistic M theory cosmological solutions, so that it is
reasonable to use simplified phenomenological models that share some of the key features of M theory, especially
branes. In brane cosmology, the observable universe is a 1+3-dimensional “brane” surface moving in a higher-
dimensional “bulk” spacetime. Fields and particles in the non-gravitational sector are confined to the brane, while
gravity propagates in the bulk. The simplest, and yet sufficiently general, phenomenological brane-world models are
the cosmological generalizations [2–4] of the Randall-Sundrum II model [5]. In the RSII brane-world, the bulk is
5-dimensional anti-de Sitter spacetime, so that the extra dimension is infinite. The generalized brane-worlds (see [6,7]
for recent reviews) also have non-compact extra dimension.1 The other 6 extra spatial dimensions of M theory may
be assumed to be stabilized and compactified on a very small scale, so that they do not affect the dynamics over the
range of validity of the brane-world model, i.e. for energies sufficiently below the string scale, for which the brane
may be treated as infinitely thin. The RSII models have the additional advantage that they provide a framework for
investigating aspects of holography and the AdS/CFT correspondence.

What prevents gravity from ‘leaking’ into the infinite extra dimension at low energies is the negative bulk cosmo-
logical constant,

Λ5 = − 6

ℓ2
, (1)

where ℓ is the curvature radius if the bulk is AdS5. Corrections to Newton’s law in the weak-field static limit are
O(ℓ2/r2) [5]:

φ(r) =
GM

r

(

1 +
2ℓ2

3r2

)

+ · · · (2)

Experiments currently impose an upper bound ℓ <∼ 1 mm. On the brane, the negative Λ5 is offset by the positive
brane tension λ. The effective cosmological constant on the brane is

1Various extensions of the generalized RSII brane-worlds are not discussed here. The simplest extension is to introduce a
second brane, so that the extra dimension is compact (but much larger than Planck scale), or a scalar field (gravitational
sector) in the bulk, or both. See [7] for further discussion and references (including the “ekpyrotic” and cyclic models where the
potential of the bulk scalar causes branes to collide, which may initiate a big bang and provide an alternative to inflation [8]).
Other extensions involve corrections to the action, including 4-dimensional “induced gravity” and 5-dimensional Gauss-Bonnet
corrections; see, e.g. [9].
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Λ =
1

2
(Λ5 + κ2λ) , κ2 = 8πG =

8π

M2
4

, (3)

where M4 ∼ 1019 GeV is the effective Planck scale on the brane. This is not the true fundamental gravity scale, which
can be much lower, offering the possibility of a resolution of the hierarchy problem, as well as the exciting prospect
that quantum gravity effects could be observable in particle accelerators and cosmic ray showers. The fundamental
energy scale can be as low as ∼ TeV in some brane-world scenarios, but in generalized RSII models it is higher,
M5 > 105 TeV, and is related to M4 via

M3
5 =

M2
4

ℓ
. (4)

The bound ℓ < 1 mm implies that λ is above the electroweak scale, λ > (100 GeV)4. At high energies (ρ ≫ λ)
in the early universe, gravity becomes 5-dimensional and there are significant corrections to standard cosmological
dynamics. There are also corrections that can operate at low energies, mediated by bulk graviton or Kaluza-Klein (KK)
modes. Both types of correction play an important role in cosmological perturbations. In particular, 5-dimensional
gravitational-wave modes introduce nonlocal effects from the viewpoint of brane-bound observers [10,11].

Brane-world inflation

The unperturbed cosmological brane-world is a Friedmann brane in a Schwarzschild-AdS5 bulk [2,12]. High-energy
brane-world modifications to the dynamics of inflation on the brane have been investigated [4,13]. Essentially, the
high-energy corrections provide increased Hubble damping,

V (ϕ) ≫ λ ⇒ H ≈ V

M4

√
6λ

, (5)

thus making slow-roll inflation possible even for potentials V (ϕ) that would be too steep in standard cosmology [4,14].
This can be seen clearly from the slow-roll parameters (V ≫ λ)

ǫ ≈ ǫgr

(

4λ

V

)

, η ≈ ηgr

(

2λ

V

)

, (6)

where ǫgr, ηgr are the standard general relativity slow-roll parameters. Steep potentials can inflate at high energy and
then naturally stop inflating when V drops below λ. These models can be constrained because they typically generate
a blue spectrum of gravitational waves which can disturb nucleosynthesis [14]. They also raise the intriguing prospect
that the inflaton could act as dark matter or quintessence at low energies [14,15].

Large-scale scalar perturbations generated by slow-roll inflation (V ≫ λ) have an enhanced amplitude compared
with the standard general relativity case [4]:

A2
s ≈

[

64π

75M6
4

V 3

V ′2

] (

V

λ

)2

. (7)

This means that COBE-scale perturbations can be generated when the inflaton is well below M4. For example,

ϕcobe ≈
300

(M4ℓ)1/3
M4 ≪ M4 , (8)

for V = 1
2m2ϕ2. The scalar spectral index is in general given by

ns = 1 − 6ǫ + 2η , (9)

and is driven closer to 1 (compared to general relativity) by high-energy effects.
High-energy inflation on the brane also generates a zero-mode (4-dimensional graviton mode) of tensor perturba-

tions, and stretches it to super-Hubble scales. This zero-mode has the same qualitative features as in general relativity,
remaining frozen at constant amplitude while beyond the Hubble horizon. Its amplitude is enhanced at high energies,
although the enhancement is much less than for scalar perturbations [16]:
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A2
t ≈

[

8V

25M2
4

](

V

λ

)2

, (10)

A2
t

A2
s

≈
[

3M2
4

8π

V ′2

V 2

] (

λ

V

)

. (11)

Equation (11) means that brane-world effects suppress the large-scale tensor contribution to CMB anisotropies. The
tensor spectral index has a smaller magnitude than in general relativity, but obeys the same consistency relation:

nt = −3ǫ = −2
A2

t

A2
s

. (12)

The massive KK modes (5-dimensional graviton modes which have an effective mass from a brane observer view-
point) remain in the vacuum state during slow-roll inflation [16,17]. The evolution of the super-Hubble zero mode is
the same as in general relativity, so that high-energy brane-world effects in the early universe serve only to rescale
the amplitude. However, when the zero mode re-enters the Hubble horizon, massive KK modes can be excited. This
may be a very small effect, but it remains to be properly quantified.

Vector perturbations in the bulk metric can support vector metric perturbations on the brane, even in the absence of
matter perturbations. However, there is no normalizable zero mode, and the massive KK modes stay in the vacuum
state during brane-world inflation [18]. Therefore, as in general relativity, we can neglect vector perturbations in
inflationary cosmology.

Perturbation evolution

The background dynamics of brane-world cosmology is known exactly. Large-scale cosmological perturbations on
the brane are well understood [4,11,16,19,20]. However, without a solution for small-scale perturbations, we remain
unable to predict the CMB anisotropies in brane-world cosmology, and the CMB provides the key means to test
the scenario. The problem is that the 5-dimensional bulk perturbation equations must be solved in order to solve
for perturbations on the brane. The 5-dimensional equations are partial differential equations for the 3-dimensional
Fourier modes, with complicated boundary conditions. In fact, even the Sachs-Wolfe effect requires information from
the 5-dimensional solutions; although the large-scale density perturbations can be determined without knowing the
5-dimensional solutions [11,19], the Sachs-Wolfe effect requires the large-scale metric perturbations, and these are
related to the density perturbations in a way that involves the KK modes [20].

The theory of gauge-invariant perturbations in brane-world cosmology has been extensively investigated and de-
veloped [4,10,11,14,16–24] and is qualitatively well understood. The key remaining task is integration of the coupled
brane-bulk perturbation equations; up to now, only special cases have been solved, where these equations effectively
decouple. In general, and for the crucial case of calculating CMB anisotropies [20,22–24], the coupled system must be
solved. From the brane viewpoint, the bulk effects, i.e. the high-energy corrections and the KK modes, act as source
terms for the brane perturbation equations. At the same time, perturbations of matter on the brane can generate
KK modes (i.e., emit 5-dimensional gravitons into the bulk) which propagate in the bulk and can interact with the
brane. This nonlocal interaction amongst the perturbations is at the core of the complexity of the problem. It can
be elegantly expressed via integro-differential equations [10], which take the form

Ak(t) =

∫

dt′ G(t, t′)Bk(t′) , (13)

where G is the bulk retarded Green’s function evaluated on the brane, and Ak, Bk are made up of brane metric and
matter perturbations and their (brane) derivatives, and include high-energy corrections to the background dynamics.

II. COVARIANT DYNAMICS AND PERTURBATIONS

The 5D field equations are

(5)GAB = −Λ5
(5)gAB + δ(y)

8π

M3
5

[−λgAB + TAB] , (14)

where y is a Gaussian normal coordinate orthogonal to the brane, which is at y = 0, the induced metric on {y = const}
is gAB = (5)gAB − nAnB with nA the unit normal, and TAB is the energy-momentum tensor of particles and fields
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confined to the brane (with TABnB = 0). The effective field equations on the brane are derived from the Gauss-Codazzi
equations and the Darmois-Israel junction conditions (using Z2-symmetry) [3]:

Gab = −Λgab + κ2Tab + 6
κ2

λ
Sab − Eab , (15)

where Sab ∼ (Tab)
2 is the high-energy correction term, which is negligible for ρ ≪ λ, while Eab is the projection

of the bulk Weyl tensor on the brane. This term encodes corrections from KK or 5D graviton effects. From the
brane-observer viewpoint, the energy-momentum corrections in Sab are local, whereas the KK corrections in Eab are
nonlocal, since they incorporate 5D gravity wave modes, as discussed above. These nonlocal corrections cannot be
determined purely from data on the brane, and so the effective field equations are not a closed system. One needs to
supplement them by 5D equations governing Eab, which are obtained from the 5D Einstein and Bianchi equations [3].

The trace free Eab contributes an effective energy density ρ∗, pressure ρ∗/3, momentum density q∗a and anisotropic
stress π∗

ab on the brane. In a 1+3-covariant decomposition,

− 1

κ2
Eab = ρ∗

(

uaub +
1

3
hab

)

+ q∗aub + q∗b ua + π∗
ab , (16)

where ua is a physically determined 4-velocity on the brane and hab = gab + uaub projects into the comoving rest
space at each event. The KK anisotropic stress π∗

ab incorporates the spin-0 (“Coulomb”), spin-1 (gravimagnetic) and
spin-2 (gravitational wave) 4D modes of the 5D graviton. The KK momentum density q∗a incorporates spin-0 and
spin-1 modes, and the KK energy density ρ∗ (the “dark radiation”) incorporates the spin-0 mode. The brane “feels”
the bulk gravitational field through these terms. In the background, q∗a = 0 = π∗

ab, since only the “dark radiation”
term is compatible with Friedmann symmetry.

The brane-world corrections can conveniently be consolidated into an effective total energy density, pressure, mo-
mentum density and anisotropic stress. Linearizing the general nonlinear expressions [11] we obtain

ρeff = ρ

(

1 +
ρ

2λ
+

ρ∗

ρ

)

, (17)

peff = p +
ρ

2λ
(2p + ρ) +

ρ∗

3
, (18)

qeff
a = qa

(

1 +
ρ

λ

)

+ q∗a , (19)

πeff
ab = πab

(

1 − ρ + 3p

2λ

)

+ π∗
ab , (20)

where ρ =
∑

i ρ(i) and p =
∑

i p(i) are the total matter-radiation density and pressure, qa =
∑

i q
(i)
a is the total

matter-radiation momentum density, and πab is the photon anisotropic stress (neglecting that of neutrinos, baryons
and CDM).

Energy-momentum conservation,

∇bTab = 0 , (21)

together with the 4D Bianchi identity, lead to

∇aEab =
6κ2

λ
∇aSab , (22)

which shows qualitatively how 1+3 spacetime variations in the matter-radiation on the brane can source KK modes.
The 1+3-covariant decomposition of Eq. (21) leads to the standard energy and (linearized) momentum conservation
equations,

ρ̇ + Θ(ρ + p) + Daqa = 0 , (23)

q̇a + 4Hqa + Dap + (ρ + p)Aa + Dbπab = 0 , (24)

where Θ is the volume expansion rate, which reduces to 3H in the background (H is the background Hubble rate), Aa

is the 4-acceleration, and Da is the covariant derivative in the rest space (i.e. DaF b···
···c = ha

dhb
e · · ·hc

f∇dF
e···

···f ).
The absence of bulk source terms in the conservation equations is a consequence of having Λ5 as the only 5D source
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in the bulk. If there is a bulk scalar field, then there is energy-momentum exchange between the brane and bulk (in
addition to the gravitational interaction) [25].

Equation (22) may be thought of as the “nonlocal conservation equation”. Linearizing the general 1+3-covariant
decomposition [11], we obtain

ρ̇∗ +
4

3
Θρ∗ + Daq∗a = 0 , (25)

q̇∗a + 4Hq∗a +
1

3
Daρ∗ +

4

3
ρ∗Aa + Dbπ∗

ab =
(ρ + p)

λ

[

−Daρ + 3Hqa +
3

2
Dbπab

]

. (26)

At linear order, spatial inhomogeneity (Daρ), peculiar motions (qa = ρva) and anisotropic stresses (πab) in the matter-
radiation on the brane are seen to be sources for KK modes (or 5D graviton emission into the bulk). Qualitatively and
geometrically this can be understood as follows: the non-uniform 5D gravitational field generated by inhomogeneous
and anisotropic 4D matter-radiation contributes to the 5D Weyl tensor, which nonlocally “backreacts” on the brane
via its projection Eab. Note also that the source terms are suppressed at low energies, and during quasi-de Sitter
inflation on the brane.

Equations (25) and (26) are propagation equations for ρ∗ and q∗a. There is no propagation equation on the brane
for π∗

ab; if there were such an equation, then one could determine the KK modes purely from data on the brane, which
would violate causality for 5D gravitational waves.

In the background, the modified Friedmann equations are

H2 =
κ2

3
ρeff +

1

3
Λ +

K

a2
, (27)

Ḣ = −κ2

2
(ρeff + peff) +

K

a2
. (28)

By Eq. (25), the KK energy density behaves like dark radiation:

ρ∗ ∝ 1

a4
. (29)

The source of the dark radiation is the tidal (Coulomb) effect of a 5D black hole in the bulk. When the black hole mass
vanishes, the bulk geometry reduces to AdS5 and ρ∗ = 0. In order to avoid a naked singularity, we assume that the
black hole mass is non-negative, so that ρ∗ ≥ 0. This additional effective relativistic degree of freedom is constrained
by nucleosynthesis and CMB observations to be no more than ∼3% of the radiation energy density [20,22,26]:

ρ∗

ρrad

∣

∣

∣

∣

nuc

<∼ 0.03 (30)

If ρ∗ = 0 and K = 0 = Λ, then the exact solution of the Friedmann equations is [2]

a = const [t(t + tλ)]1/3(w+1) , tλ =
M4√
πλ

< 10−9 sec , (31)

where w = p/ρ is assumed constant. If ρ∗ 6= 0 (but K = 0 = Λ), then the solution for the radiation era (w = 1
3 ) is [22]

a = const [t(t + tλ)]1/4 , tλ =

√
3M4

4
√

πλ (1 + ρ∗/ρ)
. (32)

For t ≫ tλ we recover from Eqs. (31) and (32) the standard behaviour, a ∝ t2/3(w+1), whereas for t ≪ tλ, we have
the very different behaviour, a ∝ t1/3(w+1).

In the 1+3-covariant description of perturbations [11], we isolate the KK anisotropic stress π∗
ab as the term that

must be determined from 5D equations. Once π∗
ab is determined in this way, the 1+3 perturbation equations on the

brane form a closed system. The KK terms act as source terms modifying the standard general relativity perturbation
equations, together with the high-energy corrections. For example, the propagation equation for the shear is [11]

σ̇ab + 2Hσab + Eab −
κ2

2
πab − D〈aAb〉 =

κ2

2
π∗

ab −
κ2

4
(1 + 3w)

ρ

λ
πab , (33)
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where Eab is the electric part of the 4D brane Weyl tensor (not to be confused with Eab). In general relativity, the
right hand side is zero. In the brane-world, the first source term on the right is the KK term, the second term is
the high-energy modification. The other modification is a straightforward high-energy correction of the background
quantities H and ρ via the modified Friedmann equations.

In the 1+3-covariant approach, perturbative quantities are projected vectors (Vaua = 0) and projected symmetric
tracefree tensors,

Wab = W〈ab〉 ≡
[

ha
chb

d − 1

3
habh

cd

]

Wcd . (34)

These are decomposed into (3D) scalar, vector and tensor modes as [6]

Va = DaV + V̄a , (35)

Wab = D〈aDb〉W + D〈aW̄b〉 + W̄ab , (36)

where an overbar denotes a (3D) transverse quantity (DaV̄a = 0 = DbW̄ab). Purely scalar perturbations are charac-
terized by

V̄a = W̄a = W̄ab = 0 , (37)

and scalar quantities are formed via the (3D) Laplacian: V = DaDaV ≡ D2V . Purely vector perturbations are
characterized by

Va = V̄a , Wab = D〈aW̄b〉 , curlDaf = −2ḟωa , (38)

where ωa is the vorticity, and purely tensor by

Daf = 0 = Va , Wab = W̄ab . (39)

The KK energy density produces a scalar mode Daρ∗ (which is present even if ρ∗ = 0 in the background). The KK
momentum density carries scalar and vector modes, and the KK anisotropic stress carries scalar, vector and tensor
modes:

q∗a = Daq∗ + q̄∗a , (40)

π∗
ab = D〈aDb〉π

∗ + D〈aπ̄∗
b〉 + π̄∗

ab . (41)

Density perturbations

We define matter density and expansion (velocity) perturbation scalars, as in general relativity,

∆ =
a2

ρ
D2ρ , Z = a2D2Θ , (42)

and then define dimensionless KK scalars [11],

U =
a2

ρ
D2ρ∗ , Q =

a

ρ
D2q∗ , Π =

1

ρ
D2π∗ . (43)

A non-adiabatic isocurvature mode is associated with the KK fluctuations. We can see this from the 1+3-covariant
expression which determines the non-adiabatic perturbations in the matter plus KK “fluid” [19]:

ρ̇ eff D2peff − ṗ eff D2ρeff =
Hρ

9a2

[

c2
s −

1

3
+

(

2

3
+ w + c2

s

)

ρ

λ

]

(3ρU − 4ρ∗∆) , (44)

where c2
s = ṗ/ρ̇, and the matter perturbations are assumed adiabatic. This mode is in general present, in particular

when ρ∗ = 0 in the background. However the mode will in general decay and be suppressed at low energies.
This can be related to the curvature perturbation R on uniform density surfaces, which is defined in the metric-based

perturbation theory. The associated gauge-invariant quantity
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ξ = R +
δρ

3(ρ + p)
, (45)

may be defined for matter on the brane (ξm), for the KK “fluid” (ξ∗) if ρ∗ 6= 0, and for the total, effective fluid (ξeff).
If ρ∗ 6= 0 in the background,

ξeff = ξm +

[

4ρ∗

3(ρ + p)(1 + ρ/λ) + 4ρ∗

]

(ξ∗ − ξm) . (46)

In the case where ρ∗ = 0 in the background, the evolution of the total curvature perturbation on large scales is [20]:

ξ̇ eff = ξ̇ m + H

[

c2
s −

1

3
+

(

ρ + p

ρ + λ

)]

δρ∗

(ρ + p)(1 + ρ/λ)
. (47)

For adiabatic matter perturbations, ξ̇ m = 0, independent of brane-world modifications to the field equations, since
this result depends on energy conservation only [27]. However, ξ̇ eff 6= 0 even for adiabatic matter perturbations. The

KK effects on the brane contribute a non-adiabatic mode, although ξ̇ eff → 0 at low energies.
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FIG. 1. The evolution of Φ along a fundamental world-line for a mode that is well beyond the Hubble horizon at
N ≡ ln(a/a0) = 0, about 50 e-folds before inflation ends, and remains super-Hubble through the radiation era. A smooth
transition from inflation to radiation is modelled by w = 1

3
[(2−α) tanh(N −50)−(1−α)], where α is a small positive parameter

(chosen as α = 0.1 in the plot). Labels on the curves indicate the value of ρ0/λ, so that the general relativistic solution is the
dashed curve (ρ0/λ = 0). For ρ0/λ ≫ 1, inflation ends at N = 50− 2 ln[(1− 2α)/3] ≈ 47.4, and at N = 50 in general relativity.
Only the lowest curve still has ρ/λ ≫ 1 at the start of radiation-domination (N greater than about 53), and one can see that
Φ is still growing.

The covariant density perturbation equations on the brane reduce to [19]

∆̇ = 3wH∆ − (1 + w)Z , (48)

Ż = −2HZ −
(

c2
s

1 + w

)

D2∆ − κ2ρU − 1

2
κ2ρ

[

1 + (4 + 3w)
ρ

λ
−

(

4c2
s

1 + w

)

ρ∗

ρ

]

∆ , (49)
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U̇ = (3w − 1)HU +

(

4c2
s

1 + w

) (

ρ∗

ρ

)

H∆ −
(

4ρ∗

3ρ

)

Z − aD2Q , (50)

Q̇ = (3 − 1w)HQ − 1

3a
U − 2

3
aD2Π +

1

3a

[(

4c2
s

1 + w

)

ρ∗

ρ
− 3(1 + w)

ρ

λ

]

∆ . (51)

It follows that the system closes on super-Hubble scales, since the KK anisotropic stress term Π occurs only via its
Laplacian [11]. KK effects introduce two new isocurvature modes on large scales (associated with U and Q), as well
as modifying the evolution of the adiabatic modes [19,23]. A simple illustration of this modification is shown in Fig. 1
(from [19]). The variable

Φ = κ2a2ρ∆ (52)

is a covariant analogue of the Bardeen metric perturbation variable ΦH . The large-scale behaviour of Φ through the
inflationary and radiation eras is compared for different values of the inflationary energy scale relative to the brane
tension. In general relativity, Φ is constant in both eras, whereas Φ grows during the high-energy regime on the brane.

Although the density perturbations can be found on super-Hubble scales, the Sachs-Wolfe effect requires Π in order
to translate from density to metric perturbations. In the longitudinal gauge of the metric perturbation formalism,
the gauge-invariant metric perturbations at last scattering are related by

ΦA − ΦH = −κ2a2δπ∗ , (53)

where the radiation anisotropic stress on large scales is neglected, as in general relativity, and δπ∗ is equivalent to the
covariant quantity Π. In general relativity, the right hand side is zero. The brane-world corrections to the general
relativistic direct Sachs-Wolfe effect are given by [20]

δT

T
=

(

δT

T

)

gr

− 8

3

(

ρrad

ρcdm

)

S∗ − κ2a2δπ∗ +
2κ2

a5/2

∫

da a7/2 δπ∗ , (54)

where S∗ is the KK entropy perturbation (determined by δρ∗). The KK term δπ∗ cannot be determined by the 4D
brane equations, so that δT/T cannot be evaluated on large scales without solving the 5D equations.

A simple approximation to δπ∗ on large scales is discussed in [22] and the Sachs-Wolfe effect is estimated as

δT

T
∼

(

δπ∗

ρ

)

in

(

teq
tls

)2/3 [

ln(tin/t4)

ln(teq/t4)

]

, (55)

where t4 is the 4D Planck time and tin is the time when the KK anisotropic stress is induced on the brane, which is
expected to be of the order of the 5D Planck time.

Vector perturbations

The vorticity propagation equation on the brane is the same as in general relativity,

ω̇a + 2Hωa = −1

2
curlAa . (56)

Taking the curl of the conservation equation (24) (for the case of a perfect fluid, qa = 0 = πab), and using the identity
in Eq. (38), one obtains

curlAa = −6Hc2
sωa , (57)

as in general relativity, so that Eq. (56) becomes

ω̇a + [2 − 3c2
s ]Hωa = 0 , (58)

which expresses the conservation of angular momentum. In general relativity, vector perturbations vanish when the
vorticity is zero. By contrast, in brane-world cosmology, bulk effects can source vector perturbations even in the
absence of vorticity [6]. This can be seen via the divergence equation for the magnetic part Hab of the 4D Weyl tensor
on the brane:
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D2H̄a = 2κ2(ρ + p)
[

1 +
ρ

λ

]

ωa +
4

3
κ2ρ∗ωa − 1

2
κ2curl q̄∗a , (59)

where Hab = D〈aH̄b〉. Even when ωa = 0, there is a source for gravimagnetic terms on the brane from the KK quantity
curl q̄∗a.

We define covariant dimensionless vector perturbation quantities for the vorticity and the KK gravimagnetic term:

ᾱa = a ωa , β̄a =
a

ρ
curl q̄∗a . (60)

On large scales, we can find a closed system for these vector perturbations on the brane [6]:

˙̄αa +
(

1 − 3c2
s

)

Hᾱa = 0 , (61)

˙̄βa + (1 − 3w)Hβ̄a =
2

3
H

[

4
(

3c2
s − 1

) ρ∗

ρ
− 9(1 + w)2

ρ

λ

]

ᾱa . (62)

Thus we can solve for ᾱa and β̄a on super-Hubble scales, as for density perturbations. Vorticity in the brane matter is
a source for the KK vector perturbation β̄a on large scales. Vorticity decays unless the matter is ultra-relativistic or
stiffer (w ≥ 1

3 ), and this source term typically provides a decaying mode. There is another pure KK mode, independent
of vorticity, but this mode decays like vorticity. For w ≡ p/ρ = const, the solutions are

ᾱa = ba

(

a

a0

)3w−1

, (63)

β̄a = ca

(

a

a0

)3w−1

+ ba

[

ǫw
8ρ∗0
3ρ0

(

a

a0

)2(3w−1)

+ 2(1 + w)
ρ0

λ

(

a

a0

)−4
]

, (64)

where ḃa = 0 = ċa and ǫw = (1, 0) for (w 6= 1
3 , w = 1

3 ).
Inflation will redshift away the vorticity and the KK mode, which is consistent with the analysis in [18] of vector

perturbations generated during inflation.

Tensor perturbations

The covariant description of tensor modes on the brane is via the shear, which satisfies the wave equation [6]

D2σ̄ab − ¨̄σab − 5H ˙̄σab −
[

2Λ +
1

2
κ2

{

ρ − 3p − (ρ + 3p)
ρ

λ

}

]

σ̄ab

= −κ2
(

˙̄π
∗
ab + 2Hπ̄∗

ab

)

. (65)

Unlike the density and vector perturbations, there is no closed system on the brane for large scales. The KK anisotropic
stress π̄∗

ab is an unavoidable source for tensor modes on the brane. These modes and their effect on the CMB are
discussed in the following section.

III. CMB ANISOTROPIES IN THE BRANE-WORLD

The perturbation equations in the previous section form the basis for an analysis of scalar and tensor CMB
anisotropies in the brane-world. The full system of equations on the brane, including the Boltzmann equation for
photons, has been given for scalar [23] and tensor [24] perturbations. But the systems are not closed, as discussed
above, because of the presence of the KK anisotropic stress π∗

ab, which acts a source term. For example, in the tight-
coupling radiation era, the scalar perturbation equations may be decoupled to give an equation for the gravitational
potential Φ, defined by

Eab = D〈aDb〉Φ . (66)

In general relativity, this equation in Φ has no source term, but in the brane-world there is a source term made up of
π∗

ab and its time-derivatives. At low energies (ρ ≪ λ), and for a flat background (K = 0), the equation is [23]
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3xΦ′′
k + 12Φ′

k + xΦk

=
const

λ

[

π∗′′
k − 1

x
π∗′

k +

(

2

x3
− 3

x2
+

1

x

)

π∗
k

]

, (67)

where x = k/(aH), a prime denotes d/dx, and Φk, π∗
k are the Fourier modes of Φ and π∗

ab. In general relativity the
right hand side is zero, so that the equation may be solved for Φk, and then for the remaining perturbative variables,
which gives the basis for initializing CMB numerical integrations. At high energies, earlier in the radiation era, the
decoupled equation is fourth order [23]:

729x2Φ′′′′
k + 3888xΦ′′′

k + (1782 + 54x2)Φ′′
k + 144xΦ′

k + (90 + x2)Φk = const

[

243

(

π∗
k

ρ

)′′′′

+

−810

x

(

π∗
k

ρ

)′′′

+
18(135 + 2x2)

x2

(

π∗
k

ρ

)′′

− 30(162 + x2)

x3

(

π∗
k

ρ

)′

+
x4 + 30(162 + x2)

x4

(

π∗
k

ρ

)

]

. (68)

The formalism and machinery are ready to compute the temperature and polarization anisotropies in brane-world
cosmology, once a solution, or at least an approximation, is given for π∗

ab. The resulting power spectra will reveal the
nature of the brane-world imprint on CMB anisotropies, and would in principle provide a means of constraining or
possibly falsifying the brane-world models. Once this is achieved, the implications for the fundamental underlying
theory, i.e. M theory, would need to be explored.

However, the first step required is the solution or estimate of π∗
ab. This solution will be of the form, expressed in

Fourier modes (and assuming no incoming 5D gravitational waves):

π∗
k(t) ∝

∫

dt′ G(t, t′)Fk(t′) , (69)

where G is a retarded Green’s function evaluated on the brane. The functional Fk will be determined by the covariant
brane perturbation quantities and their derivatives. It is known in the case of a Minkowski background [28], but not
in the cosmological case. Once G and Fk are determined or estimated, the numerical integration in Eq. (69) can in
principle be incorporated into a modified version of a CMB numerical code.

In order to make some progress towards understanding brane-world signatures on CMB anisotropies, we need to
consider approximations to the solution. The nonlocal nature of π∗

k, as reflected in Eq. (69), is fundamental, but
is also the source of the great complexity of the problem. The lowest level approximation to π∗

k is local. Despite
removing the key aspect of the KK anisotropic stress, we can get a feel for its influence on the CMB if we capture at
least part of its qualitative properties. The key qualitative feature is that inhomogeneity and anisotropy on the brane
are a source for KK modes in the bulk which “backreact” or “feed back” onto the brane.

The simplest case is that of tensor perturbations. The transverse traceless part of inhomogeneity and anisotropy
on the brane is given by the transverse traceless anisotropic stresses in the geometry, i.e. by the photon anisotropic
stress π̄ab and the shear anisotropy σ̄ab. The photon anisotropic stress in turn is sourced by the shear to lowest
order (neglecting the role of the octupole and higher Boltzmann moments), so that Fk ≈ F [σ̄k]. The simplest local
approximation which reflects the essential qualitative feature of the spin-2 KK modes is [24]

κ2π̄∗
ab = −ζHσ̄ab , (70)

where ζ is a dimensionless KK parameter, which is assumed to be a comoving constant in a first approximation,

ζ̇ = 0 . (71)

The limit ζ = 0 corresponds to no KK effects on the brane, and ζ = 0 = λ−1 gives the general relativity limit.
For tensor perturbations, there is no freedom over the choice of frame (i.e. ua), and thus there is no gauge ambiguity

in Eq. (70). However, for scalar (or vector) perturbations, this relation could only hold in one frame, since π∗
ab is

frame-invariant in linear theory while σab is not:

ua → ua + va ⇒ π∗
ab → π∗

ab , σab → σab + D〈avb〉 . (72)

Thus for scalar perturbations, we would need an alternative, frame-invariant, local approximation.
The approximation in Eq. (70) has the qualitative form of a shear viscosity, which suggests that KK effects lead to

a damping of tensor anisotropies. This is indeed consistent with the conversion of part of the zero-mode at Hubble
re-entry into massive KK modes [16,17]. The conversion may be understood equivalently as the emission of KK
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gravitons into the bulk. This leads to a loss of energy in the 4D graviton modes on the brane, i.e. to an effective
damping. The approximation in Eq. (70), although local, therefore also incorporates this key feature qualitatively.

The 1+3-covariant transverse traceless quantities are the electric (Eab) and magnetic parts of the brane Weyl

tensor, the shear, and the anisotropic stresses. They are expanded in electric (Q
(k)
ab ) and magnetic (Q̂

(k)
ab ) parity tensor

harmonics [29], with dimensionless coefficients:

Ēab =
∑

k

(

k

a

)2
[

EkQ
(k)
ab + ÊkQ̂

(k)
ab

]

, (73)

H̄ab =
∑

k

(

k

a

)2
[

HkQ
(k)
ab + ĤkQ̂

(k)
ab

]

, (74)

σ̄ab =
∑

k

k

a

[

σkQ
(k)
ab + σ̂kQ̂

(k)
ab

]

, (75)

π̄ab = ρ
∑

k

[

πkQ
(k)
ab + π̂kQ̂

(k)
ab

]

, (76)

π̄∗
ab = ρ

∑

k

[

π∗
kQ

(k)
ab + π̂∗

kQ̂
(k)
ab

]

. (77)

Using H̄ab = curl σ̄ab, we arrive at the coupled equations [24]

k

a2
(σ′

k + Hσk) +
k2

a2
Ek − κ2

2
ρπk = −κ2(1 + 3w)

ρ2

4λ
πk +

κ2

2
ρπ∗

k , (78)

k2

a2
(E′

k + HEk) − k

[

k2

a2
+

3K

a2
− κ2

2
(1 + w)ρ

]

σk +
κ2

2
ρπ′

k − κ2

2
(3w + 2)Hρπk

= − κ2

12λ

[

6k(1 + w)ρ2σk − 3(ρ′ + 3p′)ρπk − 3(3w + 1)ρ (ρπ′
k + ρ′πk) − 9(3w + 1)ρ2Hπk

]

− 2

3
kκ2ρ∗σk − κ2

2
[ρπ∗′

k + (ρ′ + Hρ)π∗
k] , (79)

where τ is conformal time, a prime denotes d/dτ , H = a′/a, and the equation-of-state parameter w is not assumed con-
stant. Equations (78) and (79), with all brane-world terms on the right-hand sides, determine the tensor anisotropies
in the CMB, once πk and π∗

k are given. The former is determined by the Boltzmann equation in the usual way [29],
since high-energy corrections are negligible at and after nucleosynthesis. The latter is given by the approximation
Eq. (70), which gives

κ2ρπ∗
k = −ζH k

a2
σk . (80)

We will also assume K = 0 = ρ∗ in the background. The KK parameter ζ (together with the brane tension λ) then
controls brane-world effects on the tensor CMB anisotropies in this simple local approximation.

Note that the 4D metric perturbation variable, HT , which characterizes the amplitude of 4D gravitational waves,
is related in flat models to the covariant variables by

HTk =
σ′

k

k
+ 2Ek . (81)

If the photon anisotropic stress πk can be neglected, Eq. (78) implies

kHTk = −σ′
k − (ζ + 2)Hσk . (82)

IV. CMB TENSOR POWER SPECTRA

In the tight coupling regime we can neglect the photon anisotropic stress (i.e. πk = 0), and the variable

uk ≡ a1+ζ/2σk (83)
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satisfies the equation of motion

u′′
k +

[

k2 + 2K − (a−1−ζ/2)′′

a−1−ζ/2

]

uk = 0 , (84)

by Eq. (80). In flat models (K = 0) on large scales, the solution is

σk = Aka−(2+ζ) + Bka−(2+ζ)

∫

dτ a(τ)2+ζ , (85)

where Ak (decaying mode) and Bk are constants of integration. If we let ζ → 0, we recover the general relativity
solution.

We can solve Eq. (84) on all scales in the high-energy (ρ ≫ λ and a ∝ τ1/3) and low-energy (ρ ≪ λ and a ∝ τ)
radiation-dominated regimes, and during matter-domination (a ∝ τ2). The solutions are

uk(τ) =
√

kτ
[

c1J(5+ζ)/6(kτ) + c2Y(5+ζ)/6(kτ)
]

(high energy radiation), (86)

uk(τ) =
√

kτ
[

c3J(3+ζ)/2(kτ) + c4Y(3+ζ)/2(kτ)
]

(low energy radiation), (87)

uk(τ) =
√

kτ
[

c5J(5+2ζ)/2(kτ) + c6Y(5+2ζ)/2(kτ)
]

(matter domination), (88)

where ci are integration constants and Jn, Yn are Bessel functions. The solutions for the electric part of the brane
Weyl tensor can be found from Eq. (78). For modes of cosmological interest the wavelength is well outside the Hubble
radius at the transition from the high energy regime to the low energy. It follows that the regular solution (labelled
by c1) in the high-energy regime will only excite the regular solution (c3) in the low-energy, radiation-dominated era.
Performing a series expansion, we arrive at the appropriate initial conditions for large-scale modes in the low-energy
radiation era:

HTk = 1 − (kτ)2

2(3 + ζ)
+

(kτ)4

8(3 + ζ)(5 + ζ)
+ O[(kτ)6], (89)

σk = − kτ

3 + ζ
+

k3τ3

2(3 + ζ)(5 + ζ)
+ O[(kτ)5], (90)

Ek =
(4 + ζ)

2(3 + ζ)
− (kτ)2(8 + ζ)

4(3 + ζ)(5 + ζ)
+ O[(kτ)4]. (91)

In the limit ζ → 0, we recover the general relativity results [29].
For modes that are super-Hubble at matter-radiation equality (i.e. kτeq ≪ 1), the above solution joins smoothly

onto the regular solution labelled by c5 in Eq. (88). For kτeq ≫ 1, the shear during matter domination takes the form

σk = −2(3+2ζ)/2Γ[(5 + 2ζ)/2](kτ)−(3+2ζ)/2J(5+2ζ)/2(kτ). (92)

In the opposite limit, the wavelength is well inside the Hubble radius at matter-radiation equality. The asymptotic
form of the shear in matter domination is then

σk ∼ Γ[(3 + ζ)/2]√
π

(

2τeq

τ

)1+ζ/2

(kτ)−(1+ζ/2) sin
(

kτ − π

4
ζ
)

. (93)
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[angle=-90]
FIG. 2. The temperature power spectrum for tensor perturbations in brane-world models, using the approximation in

Eq. (70), with ζ the dimensionless KK parameter. Models are shown with ζ = 0.0, 0.1, 0.25, 0.5 and 1.0. The initial tensor
power spectrum is scale invariant. The background cosmology is the (concordance) spatially flat ΛCDM model with density
parameters Ωb = 0.035, Ωc = 0.315, ΩΛ = 0.65, no massive neutrinos, and the Hubble constant H0 = 65 kms−1Mpc−1.

The initial conditions Eqs. (89)–(91), are used in a modified version of the CAMB code [30] to obtain the tensor
temperature and polarization power spectra [24]. The temperature and electric and magnetic polarization spectra
are shown in Figs. 2–4 for a scale-invariant initial power spectrum. The normalization is set by the initial power in
the gravity wave background. Within the local approximation to π∗

k, the power spectra are insensitive to high-energy
effects: the ζ = 0 curve in Fig. 2 is indistinguishable from that of the general relativity model. For the computations,
the lowest value of the brane tension λ, consistent with the limit λ > (100 GeV)4, is used, but the results are largely
insensitive to the value of λ within the local approximation.

There are three notable effects arising from our approximation to the KK stress:
(1) the power on large scales reduces with increasing KK parameter ζ;
(2) features in the spectrum shift to smaller angular scales with increasing ζ;
(3) the power falls off more rapidly on small scales as ζ increases.

Neglecting scattering effects, the shear is the only source of linear tensor anisotropies [29]. For 1 ≪ l < 60 the
dominant modes to contribute to the temperature Cls are those whose wavelengths subtend an angle ∼ 1/l when
the shear first peaks (around the time of Hubble crossing). The small suppression in the Cls on large scales with
increasing ζ arises from the reduction in the peak amplitude of the shear at Hubble entry [see Eq. (92)], qualitatively
interpreted as the loss of energy in the 4D graviton modes to 5D KK modes.

Increasing ζ also has the effect of adding a small positive phase shift to the oscillations in the shear on sub-Hubble
scales, as shown e.g. by Eq. (93). The delay in the time at which the shear first peaks leads to a small increase in the
maximum l for which l(l +1)Cl is approximately constant, as is apparent in Fig. 2. The phase shift of the subsequent
peaks in the shear has the effect of shifting the peaks in the tensor Cls to the right. For l > 60 the main contribution
to the tensor anisotropies at a given scale is localized near last scattering and comes from modes with wavenumber
k ∼ l/τ0, where τ0 is the present conformal time. On these scales the gravity waves have already entered the Hubble
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radius at last scattering. Such modes are undergoing adiabatic damping by the expansion and this results in the
sharp decrease in the anisotropies on small scales. Increasing the KK parameter ζ effectively produces more damping
and hence a sharper fall off of power. The transition to a slower fall off in the Cls at l ∼ 200 is due to the weaker
dependence of the shear amplitude on wave-number at last scattering for modes that have entered the Hubble radius
during radiation domination. The asymptotic expansion of Eq. (92) gives the shear amplitude ∝ k−(2+ζ) at fixed τ ,
whereas for modes that were sub-Hubble at matter-radiation equality Eq. (93) gives the amplitude ∝ k−(1+ζ/2).

[angle=-90]
FIG. 3. The electric polarization power spectrum for tensor perturbations for the same brane-world models as in Fig. 2.

Similar comments apply to the tensor polarization CE
l and CB

l , shown in Figs. 3 and 4. As with the temperature
anisotropies, there is the same shifting of features to the right and increase in damping on small scales. Since
polarization is only generated at last scattering (except for the feature at very low l that arises from scattering at
reionization, optical depth 0.03) the large-scale polarization is suppressed, since the shear (and hence the temperature
quadrupole at last scattering) is small for super-Hubble modes. In matter domination the large-scale shear is σk =
−kτ/(5 + 2ζ); the reduction in the magnitude of the shear with increasing KK parameter ζ is clearly visible in the
large-angle polarization.
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[angle=-90]
FIG. 4. The magnetic polarization power spectrum for tensor perturbations for the same brane-world models as in Fig. 2.

V. CONCLUSION

In principle, observations can constrain the KK parameter ζ, which determines the brane-world effect on tensor
anisotropies in the CMB by controlling the generation of 5D modes within a simplified local approximation, Eq. (70).
The other brane-world parameter λ, the brane tension, is not constrained within this approximation. This may
indicate that the approximation entails a hidden low-energy assumption, or it may simply be accidental.

The local approximation to π∗
k introduced in [24] is a first step towards the calculation of the brane-world imprint

on CMB anisotropies on small scales, starting with the simplest case of tensor anisotropies. In practice, the tensor
power spectra are not measured, and the prospect of useful data is still far off. What is more important is the
theoretical task of improving on the simplified local approximation in Eq. (70). This approximation encodes aspects
of the qualitative features of brane-world tensor anisotropies, primarily the loss of energy in 4D graviton modes via 5D
graviton emission, which may be expected to survive in modified form within more realistic approximations. However,
a proper understanding of brane-world effects must incorporate the nonlocal nature of the KK graviton modes, as
reflected in the general form of Eq. (69).

Furthermore, it is the scalar anisotropies which dominate the measured power spectra, and it is therefore of even
greater importance to develop the scalar analysis. In this case, even the first step of a local approximation has
to confront the problem of the frame ambiguity in Eq. (70). An alternative frame-invariant local approximation is
needed, as a first step. Nonlocal approximations, and ultimately numerical integration of the nonlocal equation for
π∗

k, must be developed.
Once these more realistic nonlocal approximations are developed and the brane-world imprint on the CMB is

computed, there are two key tasks:

• generalize the CMB brane-world computations to include a bulk scalar field and other extensions of the RSII-type
models;
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• determine the implications of the brane-world imprint for the fundamental theory, M theory, which underlies
the key aspects of phenomenological brane-world cosmologies.
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