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Abstract 
The outputs of mathematical models are often measurements on scales which may not be 

properly understood by some users – this includes both lay people and specialists in other areas. 

This may lead to these outputs, and the underlying models, being ignored, or misunderstood, or 

used or interpreted in ways that misrepresent the assumptions in the model. The practical 

consequences of these problems range from the enormous amount of time and energy devoted 

to trying to educate users, to the consequences of the misinterpretation of some financial 

valuation models which contributed to the recent financial crash. This paper analyses some 

examples of these problems with short case studies of p values in statistics, financial valuation 

models, university league tables and sigma measures, suggests that it is often possible to 

redesign measurements to make them easier to interpret, and proposes some principles for 

doing this. In the long term, the redesign of measurements from the perspective of potential 

users is likely to be an important facilitator of the growth and use of knowledge. However, in the 

short term there are powerful inhibiting factors. 
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Introduction 
Measurements are important in the modern world. We measure, for example, intelligence, the 

quality of university courses and industrial processes, the value of investments, the certainty of 

scientific conclusions, risk, and so on. The importance of these measurements stems from the 

fact that they are increasingly involved in decision making. 

 The word “measurement” refers to the process and result of measuring – which I will 

take to be the process of assigning a number to some aspect of the world in order to convey 

information about it. So we can measure lengths with rulers, temperatures with thermometers 

and the prices of goods in a shop by reading the label. 

 The measurements listed in the first paragraph above, however, are more complex: 

intelligence is measured by means of a test combined with some rules about how to use the 

results to compute intelligence scores, and the certainty of scientific conclusions may be 

measured by using the appropriate statistical models to compute p values. 

 These more complex measurements are typically related to mathematical or computer 

models of varying degrees of complexity. Ideally, perhaps, all users of a measurement would 

fully understand the model underlying it. In practice, however, the number of measurements in 

use, and the sophistication of some of the underlying models, means this is unlikely, and users’ 

understanding may be seriously limited. This limited understanding of measurements has 

potentially serious consequences ranging from a failure to understand the significance levels 

used to quantify the certainty with which scientific hypotheses have been established, to a hazy 

understanding of the basis for quality scores for universities, to the potentially very harmful 

misunderstanding of the basis of the valuations of certain financial instruments which is widely 

viewed as a contributing factor to the recent financial crisis.  

 The users we are talking about here are not just lay people. They may include 

professional social scientists whose understanding of statistical concepts may be limited, but 

who need to make use of these concepts, and financial experts who are not familiar with the 

mathematics used in models to value certain financial instruments. Experts in one area 

frequently make use of these models and measurements without a full understanding of how 

they work and the assumptions they entail because “as specialized knowledge domains are 

becoming ever more onerous, experts are becoming more ill informed about related knowledge 

domains” (Ungar, 2000, p. 299).  

 The obvious remedy for these problems is simply to recommend, or to try to insist on, 

adequate education. In practice, however, this may not be practical given the extent of these 

measurements and the time necessary for users to become sufficiently expert (Ungar, 2000; 

Simon, 1996: 90-93). The alternative approach to the problem is simply to try to redesign the 

measurements, or the underlying models, to make them easier to understand.  
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In an earlier paper I discussed the idea of redesigning models and theories to make 

them easier to understand (Wood, 2002). In the present paper I focus on a more limited 

approach – redesigning the measurements which are produced by the models (although may 

involve some change to the models as well). These measurements form the interface between 

the mathematics and the user. My argument is that there are opportunities to make enormous 

improvements with very little cost. Besides enhancing understanding of these measurements, 

there is also the possibility of simplifying the education process – and the implications of this 

may be at least as important.  

Attempts to popularize science and make it more widely understood are, of course, 

widespread. These range from popular books and articles on the latest science, or some issue in 

the news, to text books which aim to explain the concepts to a novice audience. Siemsen (2009), 

in a review of the views of Ernst Mach, distinguishes between “Pop” and “popular” science, the 

latter aiming to “teach fundamental scientific understanding to many people … Then we are also 

close to Popper’s (1959) claim that scientific theories should not exist in a remote ivory tower, 

but that they should be made questionable by as many people as possible.” If this is achieved, it 

is likely to encourage a more realistic trust in mathematical models. 

The purpose of this paper is to suggest how this aim can be assisted by bringing the 

languages of science and the layman closer together. In many cases the user-friendly options to 

be discussed below are as useful and rigorous as the specialists’ original version, so we do not 

need an alternative “Pop” version because everyone would use the same terms. 

 In a sense, my aim is to encourage the translation of jargon into the language of the lay 

person. There is a widespread view that jargon in some fields of academic discourse is extensive, 

unnecessary, and just serves to exclude outsiders and reinforce the apparent expertise of the 

expert. By and large, mathematical jargon has escaped this criticism because it is seen as 

necessary. Sometimes this is doubtless true, but my case in this paper is that much 

mathematical jargon is unnecessary and could be replaced by more accessible terminology. 

There are many examples of attempts to make mathematical measurements more user-

friendly. To take a few more or less at random: Spiegelhalter (2005) advocates “funnel plots for 

comparing institutional performance … [because they] are very attractive to consumers of data”. 

Wood et al (1998) make various suggestions for making the measurements used in statistical 

process control more user-friendly. MacKay (2008) in his book on sustainable energy tries to 

make numbers "accessible by expressing them all in everyday personal units". These are, 

however, just isolated examples; there seems to be no systematic philosophy which makes user-

friendliness a requirement, not just an optional extra. 

 Measurements, of course, raise several other issues. There are different types or levels 

of scale (ratio, interval and ordinal being one common categorization), if users stand to gain or 

lose depending on the value of a measurement there may be various pressures to design 

measures more likely to give the desired result, or to bias the inputs in various ways, and there 
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are obvious issues of validity and reliability. These are not my primary concern here: my focus 

will be the user-friendliness of measurements although this factor undoubtedly interacts with 

some of these other factors. 

 I will start with some specific case studies to illustrate some of the problems and what it 

may be possible to do to solve them. I will then review some relevant background ideas, suggest 

some principles for redesigning measurements, and draw out some of the implications for 

science, public understanding of science, and the growth of knowledge. 

Some case studies of problematic measurements 

Statistical significance tests and p values 

“Life expectancy was 3.9 years longer for Academy Award [Oscar] winners than for other, less 

recognized performers (79.7 vs 75.8 years; P = 0.003)” (Redelmeier and Singh, 2001: 955). This 

conclusion appeared to demonstrate that winning an Oscar gives actors an edge over their less 

successful peers in terms of life expectancy. The p value is an estimate of the probability of a 

difference of 3.9 years or more arising if there were in fact no difference in the life expectancies 

of the underlying “populations”. However, the meaning of the p value is likely to be obscure to 

anyone without a good grounding in statistics (even the meaning of the word “population” may 

not be clear to the uninitiated) as commentators have been pointing out for at least 50 years 

(see, for example, Morrison and Henkel, 1970; Nickerson, 2000).  

The statement that p = 0.003 is roughly equivalent to the statement that the data 

suggests that Oscar winners have a greater life expectancy with a confidence level of 99.85% 

(see Wood, 2012). The slight uncertainty takes account of the fact that the conclusion is based 

on the sample of Oscar winners and peers who have already lived: even if it were true that 

winning an Oscar does have a tendency to extend life expectancy, the randomness of all the 

other influences on life expectancy may mean that the result is just an accident of the particular 

sample, and not a universal truth. The confidence level formulation seems far easier to 

understand, although it is almost never (as far as I am aware) used in this way. On the other 

hand, confidence intervals are widely used in some fields including in a revised analysis of the 

Oscars data (Sylvestre et al, 2006). 

Coulson et al, in a survey of 330 authors of published articles, tested authors’ 

understanding of p values and confidence intervals. They concluded that “interpretation was 

generally poor”, although slightly better for confidence intervals than p values. However, there 

was very clear evidence that many authors interpreted confidence intervals in terms of p values; 

those who interpreted confidence intervals without reference to null hypothesis tests gave a far 

better interpretation of the results than those who thought in terms of null hypothesis tests. 

These results are particularly interesting because the subjects were not naïve readers but 

authors of published articles. The comparison was with confidence intervals; there is no 
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systematic evidence about the interpretability of confidence levels for hypotheses other than 

intervals. 

The result about Oscar winners and life expectancy has been challenged on the grounds 

that the statistical methods used were inappropriate (Sylvestre et al, 2006). Their revised 

estimate of the additional life expectancy due to winning an Oscar is given in the form of a 95% 

confidence interval extending from -0.3 years to +1.7 years (equivalent to a p value of 0.15, or a 

confidence level of a positive extension to life expectancy of about 93%  – see Wood, 2012). This 

suggests a reasonably strong possibility that the extension to life expectancy might be negative 

– winning an Oscar might actually reduce life expectancy. This confidence based formulation of 

the problem seems far clearer: the 95% or 93% figures give a clear measure of how likely it is 

that extension to life expectancy will lie in a given range without the distraction of the “null” 

hypothesis of no difference. 

 Strangely, despite their obscurity and “near universal misinterpretation” (Cohen, 1994, 

p. 997) p values are the standard way of expressing this type of uncertainty in the social 

sciences. Statistical analyses of experiments, regression models, and so on, are all 

conventionally qualified by p values, although it would be very easy to use confidence intervals 

or levels. 

Valuation models and the recent financial crisis 

An important contributory factor in the 2008 financial crash was the acceptance by financial 

institutions and ratings agencies of valuation models for financial products which did not 

realistically reflect the risks involved. There were two key, faulty assumptions in these models. 

The first is an over-reliance on the idea that the future will resemble the past – data from the 

past was built into models which thus failed to anticipate the new circumstances as the crisis 

took hold. The second point relates to the statistical dependence of events. Suppose we think, 

based on past data, that the probability of one borrower defaulting on a loan is 10%, and the 

same applies to a second borrower. Then standard probability theory says that if the two events 

are statistically independent, the probability of both defaulting will be 10% of 10% or 1%. The 

difficulty arises if the two events are statistically dependent: if, for example the probability of 

the first defaulting if the second has already defaulted is 80% – perhaps because they are both 

subject to the same economic environment – the correct assessment of the probability of both 

defaulting is then 80% of 10% or 8% which is eight times the estimate based on statistical 

independence. Most financial models do take some account of statistical dependence, but the 

difficulty is that, in practice, events like this are usually dependent in complex ways which are 

extremely difficult to anticipate and model.  

 Over-reliance on the theory of the normal (Gaussian, or bell curve) distribution is 

essentially the same point because this is based on the assumption that variables can be viewed 

as the sum of a large number of small, independent factors. Commentators have pointed out 

since the 1960s (Buckley, 2011: 140-142) that stock markets suffer large losses far more 

frequently than the theory based on the normal distribution would suggest because these 
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influences are sometimes large or dependent on each other. If these models are accepted by 

decision makers, as seems often to be the case, the result is an under-estimation of the 

likelihood of large losses. 

 One such model is the “copular function approach” to default correlation – the 

relationship between the likelihoods of a number of individual credits defaulting – proposed by 

Li (2000). This model has become notorious because it was used to produce valuations for 

portfolios of credits which turned out to be wildly over-optimistic (see, for example, Salmon, 

2009). The key points to note about Li’s model are 

1 It used market information because this “reflects the market agreed perception 

about the evolution of the market in the future” (Li, 2000, p. 48), which, Li argues, is 

the best information available. The difficulty is, of course, that the although the 

market arguably provided the best information available, it was still woefully 

inadequate. 

2  It used normal distribution functions, which, as we have seen, are likely to be 

fallible. 

In effect, Li’s model took the current market traders’ assumptions about default probabilities, 

used an elegant, but flawed, mathematical model to combine them and extrapolate them into 

the future, and then fed these predictions back to the traders. The result is that traders’ very 

fallible assumptions seemed to be legitimized by the elegance of the mathematics. 

To prevent this, the assumptions need to be seen, not as a technical detail for the eyes 

of statistical experts only, but as an essential part of the answer: “if these conditions are 

assumed, then ….” If the conditions are not satisfied, then the model has no reliable predictions. 

University league tables 

University league tables are meant to summarize the quality of the universities, and of particular 

subjects within universities. There are now many such league tables (Usher & Medow, 2009). 

They generally take a number of inputs such as measures of research and teaching quality, 

student satisfaction, employment levels among graduates, and so on. These inputs are then 

processed by a mathematical algorithm to yield an aggregate score which is used to rank 

universities.  

Clearly the results depend on the inputs, their relative weighting, and the precise 

method of calculation used for the aggregation. Different ranking systems use different inputs 

and aggregate the results in different ways, so not surprisingly the results differ to some extent. 

For example the Guardian league table for individual subjects  (Hiely-Rayner, 2011) uses eight 

performance measures including, for example, results of a teaching quality survey and an 

assessment of career prospects, but not research quality. The sources of data and the definition 

of the measurements for each performance criterion are described, although not always in full 

detail – the “value added” score is “based upon a sophisticated indexing methodology” which is 
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only roughly described. The scores are then standardized to similar scales using standard 

deviations, and a weighted average is then computed. For non-medical subjects five of the 

performance criteria are weighted at 15%, and the other three at 10% or 5%, although no 

reason is given for this. Other rankings use different sets of performance criteria (many include 

research quality, for example), and aggregate them in different ways, and the resulting rankings 

are, of course, different. 

The literature on multi criteria decision analysis is extensive and largely ignored by the 

compilers of these ranking tables (see, for example, Belton and Stewart, 2002) despite its 

relevance to the ranking task. Weighted average schemes are just one possibility and suffer 

from well-known pitfalls. A good performance on any criterion can compensate for a bad 

performance on another: this means that a very good score on student-staff ratio might 

compensate for a bad score on the student satisfactions surveys. An alternative approach might 

be to use thresholds on important criteria. The weights are also less straightforward than they 

may seem. The three criteria relating to the student feedback survey have a total weight of 25% 

in the Guardian’s ranking, and “expenditure per student” has a 15% weighting. This may seem 

reasonable, but if it then turned out that the student survey results in all universities were fairly 

similar, whereas there were very big variations in expenditure it might seem more reasonable to 

give more weighting to the latter. (The standardization of the scores means that the spread of 

each set of scores will be similar.) There are a number of suggestions in the literature for dealing 

with this problem, but the point worth stressing here is that the weightings chosen by the 

ranking schemes are essentially arbitrary and in no sense “objective” even though a list of 

largely equal rankings may give this impression. 

Despite their shaky foundations, these league tables undoubtedly have tremendous 

power. Customers use them to assess the value of a course at specific universities, and the 

universities themselves devote a lot of effort to managing their scores on key criteria in order to 

achieve a higher ranking next time. 

Despite all this, most people who use these rankings to make decisions probably have 

little understanding of what the measurements mean, or of the assumptions behind them. In 

order to come to a clear decision about whether a particular league table is appropriate the user 

clearly needs to understand the basis of the scores on which the ranks are based, which may be 

difficult because the algorithm may be complicated, or because it may not be published. Given 

that this is unlikely, reliance on these league tables seems to be giving an unreasonable amount 

of power to the organizations behind these measurements. 

 One way round this problem would be not to aggregate the scores on different criteria 

so that users can balance the various criteria from their own – different – perspectives. This 

approach has been used by a number of organizations in various countries including the centre 

for Higher Education Development in Germany (Usher & Medow, 2009). Alternatively it would 

be possible to design a system to elicit information about preferences from individual students 
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and then use these to derive a ranking list customized to the particular individual (Giannoulis 

and Ishizaka, 2010). 

 Similar ranking schemes are used to measure the quality of many other goods and 

services – schools, hospitals, cars, even whole countries in the sense of their quality of life. Many 

of the same issue will apply to these. 

The process sigma measure of process quality 

This is a measure of the quality of a business or industrial process linked to the “Six Sigma” 

approach to management (Schroeder, Linderman, Liedtke, & Choo, 2008; Zu, Fredendall, & 

Douglas, 2008). For example, 430 defects per million opportunities (DPMU) corresponds to a 

process sigma of 3.33, and 6 sigma itself corresponds to 0 DPMU (using the calculator at 

http://world-class-manufacturing.com/Sigma/level.html accessed on 19 December 2011).  

However, it is unclear what the purpose of the sigma scale is; defects per million 

opportunities (or as a percentage) is a straightforward and easily understood measure, whereas 

the process sigma measurement is seemingly devoid of intuitive meaning. It has an 

interpretation in terms of mathematical statistics – the sigma level is the value of the standard 

normal variable for which the single tail probability is the defects per million opportunities 

(although this is further complicated by the possibility of incorporating a “1.5 sigma shift” – the 

results cited above do not incorporate this). Usually mathematics is used to translate something 

which is difficult to understand or evaluate, to something that is easy to understand: e.g. 

mathematics can be used to show that e
πi

  is the same as –1, the latter being far easier to 

understand. The process sigma measurement seems to involve exactly the opposite procedure: 

translating something that is easy to understand into something which is very obscure. 

The obvious question is: why bother with the process sigma measurement? Why not 

stick with defects per million opportunities? One explanation is the persistence of conventional 

ways of speaking in the statistics where the normal distribution is very widely used: sigma values 

are a common (but by no means universal) route to estimating probabilities, so the idea of 

describing levels of uncertainty in terms of sigma values may seem natural. This is reflected in 

the use of the traditional measures of process capability (cp and cpk) whose definition also 

depends on sigma values: just the same question applies to these indices – why not replace 

them by a measure such as defects per million opportunities (Wood et al, 1998)? 

Sigma levels are also part of the language used in the very different context of particle 

physics: the recent press coverage of the possible discovery of the Higgs boson made extensive 

use of sigma levels as a means of describing uncertainty levels, which prompted the Times 

newspaper to explain that 5 sigma means a chance of less than one in a million (14 December, 

2011, page 6). However, in all these cases, there would be a good case for abandoning the sigma 

measures and returning to the core concept which is a probability expressed as defects per 

million opportunities or as a percentage. 
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The persistence of statistical convention is doubtless one factor encouraging the use of 

sigma measurements. This pressure might be supported by the desire of consultants and others 

to have a well defined product to sell. Six sigma is a nice slogan, with the Greek possibly 

suggesting profundity, and the added benefit that a lack of user understanding might encourage 

the uncritical acceptance of the wares of the consultant. 

Further examples of problematic measurements 

There are many further examples of measurements which could easily be improved from the 

users’ perspective. Statistics is a particularly problematic area. We’ve discussed p values and 

sigma levels above; another example is provided by the habit of giving the results of regression 

models as a list of unexplained coefficients which are probably meaningless to many readers. 

For example Glebbeek and Bax (2004) give a standardized regression coefficient of –0.23 for one 

of their models estimating the impact of staff turnover in an organization on the financial 

performance of the organization. An alternative way of presenting the same result would be to 

say that this impact is –1778 units of currency (Dutch Guilders) per employee per annum, per 

1% rise in staff turnover (Wood, 2010). This gives the reader an idea of the magnitude of the 

effect on a scale which would make sense to managers in the organizations involved. This is a 

fairly trivial, but typical, example. There are many more similar possibilities. 

Problems 
It is helpful to divide the problems found with these, and many other measurements, into the 

following four categories. These are not mutually exclusive: two or more may apply 

simultaneously. They are also inevitably fuzzy categories, and may depend on a simplistic idea of 

the “correct” understanding. But they are useful for my purposes here. 

1. Failure to understand 

Someone may not understand what a measurement means, and so may ignore it completely, or 

fail to appreciate the subtleties of the measurement. For example, the reader of the research on 

Oscars above may not understand what the p value means and so may ignore it, or just realise 

that it is some measure of research quality but without any clear idea of its meaning.  

2. Misunderstanding of the basic concept 

Other readers may have an idea of what they think p values, for example, are, but this idea 

might be wrong. One common misconception is that a very significant result, as indicated by a 

low p value, indicates a strong or important effect (Crettaz Von Roten, 2006); another is that the 

p value represents the probability of the null hypothesis being true. The first of these, in 

particular, is a serious misconception because it may lead to results of no practical significance 

being taken far too seriously, and conversely a lack of statistical significance does not mean that 

the effect does not exist and can safely be ignored, but rather that there is insufficient evidence 

to be sure. 
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3. Misunderstanding or ignoring the assumptions on which the result depends 

The valuation models referred to above depend on various assumptions that may not be met in 

practice. The consequences, as we have seen, can be disastrous. All mathematical models 

depend on assumptions of varying kinds; sometimes these assumptions are innocuous, but at 

other times they need checking very carefully. 

4. Unnecessary time and effort expended  

The usual recommendation for people having difficulty understanding something is to spend 

more time thinking about it, read up the background, attend a course on the subject, etc. 

However, the possibility of redesigning measurements so that the time and effort spent on 

these activities could be reduced is potentially a far more powerful strategy. It is difficult to 

estimate the magnitude of these savings, but my estimate is they could be very substantial – I 

would say at least 50% of the time needed to learn aspects of statistics could be saved by the 

design of more appropriate measurements. This has obvious implications for education – either 

less time is needed, or we can achieve more. 

 Obviously the examples above are selected to demonstrate various specific points: as 

such they doubtless tend towards the extreme end of the spectrum. Getting a rigorous 

assessment of how widespread these problems are would be extremely difficult as each 

measurement would need to be analyzed and alternatives found or created, and there would 

never be a last word on how much improvement was possible. However, this is not necessary 

for my argument: all I am claiming is that these problems exist and improvements are possible, 

both in the examples considered and, almost certainly, in many other examples.  

Why are these problematic measurements used? 
My argument in this paper is a difficult one to communicate. There is a general assumption that 

knowledge, including how measurements are defined, is in some sense fixed, and that moulding 

it to make it more appropriate for the audience is dumbing down which, by implication, will 

entail a much restricted understanding. I hope I have shown in the above examples, at least, 

that this is not necessarily so. In many cases the problem is that the standard measurement 

system is designed by the experts who developed the field. The measurements are then part of 

the established paradigm: they are reinforced by the language used, tacit assumptions made 

and so on, and it may be difficult to take seriously the idea that the measurements could be 

redesigned. And the vested interests of the experts and the educational system can only 

reinforce this attitude. The result is that all users, including the uninitiated have to retrace the 

steps taken by the experts. 

 Natural languages have an affinity for metaphors and analogies which undoubtedly 

assist communication in various subtle ways. When we say “it’s not rocket science” we have the 

background to appreciate that rockets are complicated beasts requiring unimaginable expertise 

to design. Even that last sentence uses the word “beasts” in a non-literal sense to bring to the 

reader’s mind the idea that there is some vaguely threatening and unpredicable at stake. The 
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same process occurs in expert communities who may refer, for example, to sigmas as a 

picturesque (perhaps conjuring up pictures of ancient Greek philosophers whom the experts 

would like to resemble) way of describing small probabilities, or to p values as a short hand for 

very particular probabilities. However, difficulties arise when these terms are exported out of 

the expert communities to people without the assumed background. That is when the experts 

need to be encouraged to use ordinary language in ordinary ways.  

 Some of the examples above come from the field of mathematical statistics. Many of 

the concepts employed in statistics are subtle ones, and their implementation often requires 

advanced mathematics, but despite this they are used by an increasing number of uninitiated 

users in an ever expanding variety of contexts – with some of the consequences we have 

discussed. 

 In most of these cases the problems are probably due to the inertia in any large system. 

However, in a few cases there may be a deliberate conspiracy to force untransparent measures 

on uninitiated users. It is difficult to see any other explanation for the six sigma measurement – 

the beneficiaries here would be the consultants and other experts peddling their supposed 

expertise. Similarly the university league tables are of obvious benefit to their publishers, and 

also to the universities which do well in the lists. These measurement systems are in effect 

brands: part of their strength, deliberately or not, is the relative obscurity of the mathematical 

models underpinning them which means that uninitiated users are unlikely to have the 

expertise and confidence to challenge them. 

The prestige of mathematics is a factor which may be used to assist in the branding of 

measurement systems. It may also be an important factor without any sort of conspiracy. For 

many people, it is tempting to assume that if complicated mathematics is employed it must be 

employed for a good reason, and to accept the measurement on this basis alone. This 

temptation may be greater for those who do not understand the mathematical basis of the 

model and so the assumptions on which it depends. The effect of employing complex 

mathematics may be to encourage uncritical acceptance, whether by design or not. 

 The desire of ordinary users to understand measurements may be a comparatively weak 

counter to pressures like the prestige of mathematics and the expert community. It is possible 

that many people would prefer to see statistics as unintelligible rather than face the effort of 

trying to understand. And some measurements like the university quality measurements may 

derive their credibility largely from the fact that they are accepted, leading to the migration of 

the best students and faculties to the universities with high scores. In this case, the details of the 

derivation are in a sense irrelevant, but it does seem to give unjustified power to algorithms 

which may be arbitrary, or may be verging towards a conspiracy. The survival of “memes” like p 

values or university league tables may depend on factors far removed from naïve assumptions 

about their validity and user-friendliness.  
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 To recap, the design of many measurement systems may depend on factors like the 

historical accident of how they were developed, or commercial pressures to brand a particular 

approach, or simply the unjustified prestige of complicated mathematics. Given this, it is likely 

that many measurements can be redesigned for make them more appropriate for current users 

and uses. The word here, of course, is “design”, not discovery. What is needed, and is usually 

lacking, is a mindset which views this as a possibility worth pursuing. 

Principles for redesigning measurements 
The above examples are very varied, so it is difficult to generalize about strategies for 

redesigning measurements. However, the following principles are a tentative start. 

1. Consider if the measurement should be scrapped or ignored 

I have argued above that there is a strong argument for ignoring the university rankings at the 

aggregate level, and the sigma measure as used in Six Sigma. Measurement systems do tend to 

proliferate in the modern world, and it is always worth asking whether a new measurement 

adds any value to what is available already. 

2. Use models and methods which are as transparent as possible 

It is often possible to use computer simulation methods instead of mathematical probability 

theory for deriving statistics such as p values and confidence intervals (see for example Wood, 

2005). The former have the advantage that users can almost literally see how they work, so their 

interpretation and limitations are likely to be far clearer than if results are derived from 

mathematical models that are not accessible to most users. Similarly the mathematical formulae 

for regression, or best fit, models can be replaced by trial and error methods which make the 

underlying rationale far clearer (Wood, 2001). There are likely to be similar opportunities in 

many other areas. 

3. Output measurements should be as useful as possible (for the intended users) 

This is obvious, but often forgotten. The typical audience for statistical results does not want p 

values; they want an estimate of the probability of, or confidence in, for example, the 

hypothesis that Oscar winners do live longer on average. And applicants for universities do not 

really need an overall quality measure for each university; rather they want measures of the 

particular aspects of the universities that are of interest to them as individual.  

4. Use appropriate names, scales and units for measurements 

The principle here is to ensure that the measurement fits in with the users’ frame of reference 

by adjusting these relatively trivial aspects. P values, for example, have an uninformative name 

(significance level is little better), and the scale is a reverse one with low p values corresponding 

to high degrees of certainty for the hypothesis of interest (the alternative to the null). Contrast 

this with the idea of confidence levels which have an informative name (confidence), high values 

do correspond to high confidence, and the conventional use of percentages encourages users to 

see the cited confidence level as a proportion of total confidence. 
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The name of the measurement should reflect meaning of the result, not the method used to 

get there or some historical accident of where the original idea came from – so R
2
, for example, 

should be described as the proportion of variation explained. And details such as the choice of 

68%, 95% and 99.8% for funnel plots (Spiegelhalter, 2005), and conventional control lines, which 

are driven by the method of derivation from standard errors (or sigmas), should be replaced by 

more obvious choices such as 90%, 99%, 99.9%. 

5. Include a list of assumptions 

In essence mathematical modelling is conditional reasoning: if we make these assumptions, then 

these conclusions follow. Often, the assumptions are seen as a technical detail which is not 

important for informal work. The example of the financial valuation instruments above shows 

that this is serious error. Assumptions of statistical independence, and that the future can be 

predicted by extrapolating past trends, are vital and should be appreciated by users. 

Conclusions: an agenda for research 
Measurements based on mathematical models are widely misinterpreted or ignored by their 

intended users. This is a problem leading to the waste of the information that the 

measurements could have provided to users, and to the consequences of misunderstandings 

which are potentially serious, particularly in fields such as medicine and finance. My argument 

here is that a very powerful strategy for dealing with the problem is to redesign measurements 

to make them more appropriate for their intended users and uses, and I have given a few 

examples of what might be possible, and suggested some principles for achieving this. Another 

important byproduct of this approach would be a potentially enormous reduction in the time 

and energy needed for the often unsuccessful effort to educate users to understand the 

unnecessary complexities of many mathematical measurements. 

 The difficulty, of course, is the mindset that says that the experts’ version cannot be 

altered. This is a powerful mindset: as far as I can see the ideas proposed here about, for 

example, even the possibility of changing relatively superficial aspects, such as the naming of 

measurements and the scales used, seems to be rarely, if ever, mentioned. History is often 

recommended as a good thing in so far as it stops us repeating the mistakes of the past, but if 

taken to extremes, it may make everyone repeat the tortuous route often taken to good ideas. 

The problem is not just inertia: the vested interests of universities and other commercial forces 

may be an important factor in the preservation of unnecessary complexity. 

 Markets are a powerful tool for encouraging sensible offerings to flourish. Software has 

become far easier to use over the years because user-friendliness is a necessary pre-requisite 

for software to be used. Training courses for software have probably declined as the idea that 

you can pick it up as you use it has spread. However, this process is far from perfect: to turn my 

computer (using Windows XP) off I need to click on the button labeled start! The market for 

ideas like mathematical measurements is much less developed and efficient: there is little 

confidence in the idea that ordinary people can pick up an acceptable understanding by practice 
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and trial and error, and in fact, as we have seen, this often leads to disaster. Part of the problem 

is the feedback mechanism: users of a software package know when they are not succeeding, 

but this is often not true of naïve users of mathematical measurements. 

 We need to challenge the culture that sometimes seems to assume that complex 

mathematical models are a good idea just because they are complex. Sometimes complexity 

may be necessary, but if a simplification is possible, which would bring the equivalent power “to 

the masses”, we should surely take this route. The peer review system, which legitimizes 

academic knowledge, may be a hindrance here because new models and measurements are 

scrutinized by experts who, for obvious reasons, may not acknowledge the problem. Non-

experts are not in a position to offer a critique because they do not understand, so the clique of 

experts may generate more and more complex ideas. In relation to statistics, to answer Crettaz 

Von Roten’s (2006) question “Do we need a public understanding of statistics?”, my answer 

would be yes, and furthermore experts in areas that make use of statistics (such as the authors 

surveyed by Coulson et al, 2010) are an important part of the public who need to understand. 

 These issues all need further research. There are several potentially useful avenues for 

research. At the conceptual level, devising new ways of measuring (e.g. the confidence levels 

suggested by Wood, 2012), and analyzing the conceptual background necessary for 

understanding various measurements with a view to simplifying this background as much as 

possible, are both important avenues to explore. On an empirical level, surveys of 

misunderstanding and experiments to see how these can be improved by changing the 

measurements used (e.g. Coulson et al, 2010) are of obvious importance. And there are also 

interesting issues about the extent of people’s understanding of the conditional nature of 

mathematical reasoning – and the importance of the conditions or assumptions – and the 

extent to which mathematical models are, or are not, trusted. 
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