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Abstract

We consider a probe codimension-2 brane inflation scenario in a warped six-dimensional
flux compactification. Our background model is Salam-Sezgin gauged supergrav-
ity with codimension-2 brane sources, which preserve N = 1 supersymmetry. The
model has a modulus, which is stabilised by means of a cap regularisation of the
codimension-2 singularities, with appropriate dilaton potentials on the ring interface
of the caps with the bulk. We discuss the cosmological evolution of the world-volume
of a probe codimension-2 brane when it moves along the radial direction of the inter-
nal space. In order to have slow-roll inflation, one needs the warping of the internal
space to be weak, in contrast to the recent string inflation constructions with strong
warping. We discuss the parameter range that the inflation is in agreement with
the observationally inferred parameters and which furthermore is consistent with the
probe brane approximation. We provide arguments pointing that the probe brane ap-
proximation is a good assumption if the probe brane is not exactly conical and show
with a multi-brane solution that the mild warping needed for a slow-roll inflation is
not spoiled by the probe brane.
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1 Introduction

Cosmological inflation [1] has been the the most successful paradigm to solve the problems
of standard big bang cosmology, as the horizon, the flatness, etc. Furthermore, it provides
the seeds of structure in the Universe relating them to quantum fluctuations of the inflaton
field, and so offering an interesting link between quantum scale physics and the macrocosm.
The origin of the inflaton field and its potential is a theoretical challenge and has been a
subject of intense research for the past decades. One hopes that ideally this field can arise
within some fundamental theory and its potential will be fixed by the latter. For example,
there had been a lot of work of how inflation can be realised in supergravity or in string
theory (for several reviews see [2]). The D-brane inflation in strongly warped compactifi-
cations [3] has drawn much attention recently. In that case the inflaton is identified as the
separation between a brane and an anti-brane, as first considered in the unwarped case
by [4]. Thus, it is crucial to achieve sufficiently weak inter-brane forces for a slow roll to
occur. On the other hand, in Dirac-Born-Infeld(DBI) inflation [5–7], the brane position of
a relativistically moving D-brane is considered as the inflaton. These probe brane scenarios
are distinguished from the one of the mirage cosmology [8], where the brane position is not
an effective four-dimensional field interacting with the scale factor, but instead is directly
related to the latter (see [9] for relevant models).

In the present paper we will follow a similar path by considering a six-dimensional
supergravity model, the Salam-Sezgin model [10], with two compact dimensions. The
inflaton is the field corresponding to the position of a probe 3-brane, which moves in the
internal compact space (for a different scenario of codimension-2 brane inflation see [11]).
The warping of the internal space provides a potential for the inflaton. If the warping is
small, one can see that the inflaton slow-rolls, with not so unnatural choice of parameters.
The special characteristic of this model is that slow-roll inflation happens because of a
small warping, in contrast to the usual string constructions where a strong warping is used
for a red-shift in the effective brane tension [3].

In more details, we consider the six-dimensional gauged supergravity of [10], which has
vacua featuring the mechanism of spontaneous compactification when a gauge field flux is
turned on in the internal two-dimensional space. This construction and similar ones have
been a very active theoretical laboratory for studying issues of codimension-2 branes as
selftuning, their cosmology, local solutions etc., see for instance [12–14]. We have supple-
mented this theory with magnetic couplings to codimension-2 branes or brane-localized
Fayet-Iliopoulos (FI) terms, so that the brane action preserves N = 1 supersymmetry
(SUSY) according to [15, 16]. This monopole background has four-dimensional flat solu-
tions, which are N = 1 supersymmetric when there is no warping. If one allows for warping,
the remaining SUSY is broken. The background is supported by two codimension-2 branes
situated in the axis of symmetry of the internal space. Whether SUSY is completely broken
or not, the system has an unfixed modulus due to a scaling symmetry of the equations of
motion. Most recently, modulus stabilization and SUSY breaking have been discussed in
the context of four-dimensional effective supergravity derived from six-dimensional gauged
supergravity with supersymmetric codimension-2 branes [17].
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Before proceeding with the study of probe brane inflation, we discuss the issue of sta-
bilisation of the unfixed modulus, since it can influence the inflationary dynamics. We
follow the prescription of [18] and consider the stabilisation of the modulus due to the
regularisation dynamics of the background codimension-2 branes. In particular, a regular-
isation which replaces these codimension-2 branes with caps joint to the rest of the bulk
with ring-like codimension-1 branes [19, 20], provides a potential for the modulus, if the
dilaton couplings to the brane do not respect the previously mentioned scaling symmetry.
By further analysing the suggestion of [18] we see that one can find parameter space of
the dilaton couplings to the branes for which the zero ring brane radius limit is purely
conical, and therefore the bulk background solution remains unaffected. With this stabili-
sation procedure, the dilaton is naturally stabilised with the modulus mass being close to
the compactification scale. A further advantage of this regularisation procedure is that,
at least for the Einstein-Maxwell system1, four dimensional gravity is reproduced on the
brane at large distances [20], therefore our four dimensional effective treatment is justified.
This is to be contrasted to the usual problem of obtaining four dimensional gravity on
infinitesimally thin codimension-2 branes [21].

The next step is to add a probe brane in the above background. There are two types of
probe branes that one may add in the bulk, codimension-1 and codimension-2. Regarding
the codimension-1 branes, to have a proper four-dimensional effective theory on the brane,
the radius of the 4-brane should either be small, thus resembling a codimension-2 brane,
or should be centered around the axis of symmetry, i.e., around one of the background
codimension-2 branes. The second case, however, does not give rise to slow-roll inflation.
Therefore, for our purposes the study of codimension-2 probes is sufficient. For the slow-
roll inflation of the codimension-2 probe brane, we need a mild warping which in turn
requires the two background brane tensions to be almost equal. In this case, we can match
the bound on the spectral index, having a sufficient number of efoldings. We also show
that the COBE normalization of the density perturbation constrains the compactification
scale to be of order 1013 GeV, thus the six-dimensional fundamental scale should be of
order 1015 GeV. The inflation ends with the collision of the probe brane to one of the
background branes. We provide a toy model describing a way to have graceful exit for the
inflationary period, based on hybrid inflation [22].

For the probe brane approximation to be justified, one needs to show that the backre-
action of the probe brane to the background solution is negligible. There are two sources of
backreactions possible: one is the backreaction on the volume modulus dynamics and the
other is the backreaction on the warp factor. The first backreaction can be made negligible
by taking the Hubble scale during the inflation to be much smaller than the modulus mass
or the compactification scale. In turn, the tension of the probe brane should be small
compared to the six-dimensional fundamental scale. Then, taking into account the COBE
normalization, the scale of inflation (linked to the probe brane tension) should be smaller

1A generalisation of [20] to the present supersymmetric model for scale invariant ring branes will
give four dimensional scalar-tensor theory at large distances, with the scalar being the unfixed modulus.
However, making the ring branes scale non-invariant, stabilises the modulus and decouples it at low
energies.
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than the compactification scale. This gives the strictest bound on the warping of the four-
dimensional space. Furthermore, a natural way to make the probe brane tension much
smaller than the six-dimensional fundamental scale, is to make it slightly non-conical. We
relate de-Sitter non-conical probe brane solutions to flat conical brane solutions and by
studying explicit multi-brane flat solutions, we argue that the second source of backreaction
of the probe brane, i.e., the one to the warp factor, is negligible.

It is worth nothing that taking the probe brane slightly non-conical also solves an
apparent paradox. Conical branes have a well known property to ”hide” vacuum energy
in a local deficit angle without curving their world-volume [30]. This could pose a problem
in our scenario of probe brane inflation, since inflation is driven by the potential energy of
the probe. If this potential energy is ”hidden”, it will not gravitate as expected from the
DBI action and our analysis would be incorrect. By taking the probe brane to be slightly
non-conical, that is, the ring 4-brane that regularizes a non-conical probe brane, the above
is avoided. Indeed, we show that the effective action in the presence of such a non-conical
probe brane behaves as the naive DBI action constructed with a conical flat probe, for
small departures of conicality.

The paper is organized as follows. We first give a brief review on the general warped so-
lution in the six-dimensional gauged supergravity and then discuss about the modulus sta-
bilization in the presence of the dilaton potentials localized on the regularized background
branes. Next we derive the DBI action for probe branes and focus on the codimension-2
probe brane for a slow-roll inflation with a mild warping. Finally, we point out the con-
straint coming from the backreaction of the probe brane on the volume modulus and on
the warping and the conclusion is drawn. Four appendices are added for providing the
general non-conical warped flat solutions, the effect of a nonzero FI term localized on the
probe brane, the effective action approach to the probe brane potential and the general
conical multi-brane flat solutions.

2 Model setup

Let us first make a short revision of the background that we will use for probe brane infla-
tion. The theory that we will consider is the six-dimensional chiral gauged supergravity,
also known as Salam-Sezgin supergravity [10]. If codimension-2 branes are present in the
extra dimensions at y = yi, the action may be supersymmetrised along the lines of [15,16].
Ignoring the Kalb-Ramond field and the hyperscalars in the bulk2, the bosonic action of
the system [16] is

S =
M4

∗
2

∫

d6x
√−g6

[

R6 −
1

4
(∂Mφ)2 − 1

2M4
∗
e

1

2
φF̂MN F̂

MN − 4g2M4
∗ e

− 1

2
φ

]

+ Sbrane , (1)

2As far as hyperscalars and KR field don’t couple to the probe brane, or if they get masses on the
background branes, those bulk fields do not influence the dynamics of the probe-brane position as will be
discussed in the later sections.
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with

Sbrane = −
∫

y=yi

d4x
√−g4

[

e
1

2
φ(DµQi)

2 + 2rig
2M4

∗ |Qi|2 + Ti + Vi(Qi, φ)
]

, (2)

where the extra components of the modified gauge field strength are

F̂mn = Fmn −
(

rig|Qi|2 +
( 2

M4
∗

) 1

2

ξi

)

ǫmn
δ2(y − yi)

e2
. (3)

In the above, ǫmn is the two-dimensional volume form, e2 is the determinant of zweibein
for extra dimensions and M∗ is the six-dimensional fundamental scale. Moreover, Ti are
the brane tensions, and Qi are brane scalar fields with covariant derivatives DµQi = (∂µ−
irigAµ)Qi and brane scalar potentials Vi(Qi, φ) coming from the brane F - and D-term [16].
For a BPS brane, preserving N = 1 SUSY, the localized Fayet-Iliopoulos (FI) term is

related to the brane tension as ξi = ηi
Ti

4g

(

2
M4

∗

)
1

2

with ηi = ±1 depending on the four-

dimensional chirality of the brane SUSY3.
Assuming axial symmetry in the internal space and zero F- and D-term potentials

Vi(Qi, φ) for the brane scalar, it has been found that the general warped solution with
four-dimensional Minkowski space [15,23,24] and conical branes, has Qi = 0 and takes the
following form4,

ds2 = e
1

2
φ0

[

W 2(r)ηµνdx
µdxν + A2(r)(dr2 +B2(r)dθ2)

]

,

F̂mn = qe−
1

2
φW−4ǫmn , (4)

φ = φ0 + 4 lnW ,

with

A =
W

f0
, B =

λr

W 4
, (5)

W 4 =
f1

f0
, f0 = 1 +

r2

r2
0

, f1 = 1 +
r2

r2
1

, (6)

where λ, φ0 and q are constant parameters, and the two radii r0, r1 are given by

r2
0 =

1

g2M4
∗
, r2

1 =
4M4

∗
q2

. (7)

The imbalance between the two radii r0 and r1 expresses the degree of warping of the
internal space. It is worth noting that with this ansatz and zero F- and D-term potentials,
one cannot find warped solutions with 〈Qi〉 6= 0, thus the FI term is determined by the

3For the brane SUSY that is the same as the one preserved by the bulk flux, ηi = +1.
4From the warped solution with a dilaton constant set to zero [15,23], we recovered the dilaton constant

φ0 by using the bulk scaling invariance under gMN → e
1

2
φ0gMN and φ → φ+φ0. The most general warped

solution with conical branes but without assuming axial symmetry was found in Ref. [25].
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value of the brane tension. However, there exist warped solutions [26] with 〈Qi〉 6= 0 for
non-trivial potentials Vi(Qi, φ). We will not mention them explicitly here, but they will be
important later on, when discussing the backreaction of the probe brane.

In the solution we noted above, the metric has two conical singularities, one at r = 0 and
the other at r = ∞, which is at finite proper distance from the former one. The singular
terms coming from the deficit angles at these singularities need to be compensated by
brane tensions Ti (i = 1, 2) with the following matching conditions,

T1 = 2πM4
∗ (1 − λ) , (8)

T2 = 2πM4
∗

(

1 − λ
r2
1

r2
0

)

, (9)

if the angular coordinate has periodicity 2π. After imposing the matching conditions, there
is one parameter φ0 undetermined. However, it has been shown that in the presence of the
modulus potentials on the regularized branes, one can have the modulus φ0 fixed at the
four-dimensional Minkowski vacuum, provided that the positions of the regularized branes
are fixed by the dynamics on the branes [18]. We will explore this possibility in the next
section.

On the other hand, the gauge field strength has two singular FI terms proportional to
the brane tensions at the conical singularities, so that they modify the gauge potentials at
the branes. Therefore, the FI terms modify the quantization condition of the gauge flux as

2λgM4
∗

q
= n−

( 2

M4
∗

)
1

2 g

2π
(ξ1 + ξ2) . (10)

Consequently, using the brane matching conditions, (8) and (9), we obtain the relation
between the brane tensions as

(

1 − T1

2πM4
∗

)(

1 − T2

2πM4
∗

)

=
[

n−
( 2

M4
∗

)
1

2 g

2π
(ξ1 + ξ2)

]2

. (11)

For the unwarped football solution, it is T1 = T2 = 2πM4
∗ (1 − λ) and q = 2gM4

∗ . For

the BPS conditions ξ1 = ξ2 = T1

4g

(

2
M4

∗

)
1

2

, we see that eq. (11) is satisfied for n = 1,

independently of the brane tension. In other words, λ is not quantized and arbitrary. This
is in contrast with the non-supersymmetric brane action background [23, 27]. Moreover,
for this unwarped football solution, four-dimensional N = 1 SUSY is preserved [15].

3 The modulus potential

As mentioned previously, it is well known that the general warped solution has a massless
modulus in the spectrum, corresponding to the arbitrary value of φ0, which needs to be
stabilised. In order to give mass to this modulus, we will follow the suggestion of [18]
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and replace the conical 3-branes with capped 4-branes, with non-trivial couplings to the
dilaton. The action for the ring branes with dilaton coupling is given by

Si = −
∫

d5x
√−γi

[

Vi(φ) +
1

2
Ui(φ)(Dµ̂σiD

µ̂σi)
]

, (12)

where γiµ̂ν̂ is the induced metric on the branes, Vi, Ui are dilaton couplings to the branes
and σi is a brane Goldstone-like scalar fields.

The effective potential for the modulus can be found according to [18] after substituting
the background solution to the total action and integrating the extra dimensions. In the
presence of the dilaton potentials on the ring branes with ultraviolet (UV) caps, the effective
potential has been obtained in [18] as follows,

Spot = π

∫

d4x
∑

i=1,2

√−γi
[(Vi

2
+ 2

dVi
dφ

)

− 1

2

(Ui
2

− 2
dUi
dφ

)

gθθ(ki − eAθ)
2
]

, (13)

where ki is given from the solution for a brane sigma scalar, σi = kiθ. In the above, we
will consider the constant φ0 to be replaced with an x-dependent dynamical field. This
will be an accurate approximation of the modulus field and (13) will be a good estimate
of its potential for energies lower than the compactification scale. As can be seen from
the metric (4), the field φ0 will have mixing with the four-dimensional curvature. We can
eliminate this mixing by means of a four-dimensional coordinate redefinition, thus going
to the Einstein frame. In order to stress that the modulus which we will discuss is in the
Einstein frame, we will name it ψ(x) and re-write our metric and dilaton ansatz as

ds2 = e−ψ(x)W 2(r)g̃µν(x)dx
µdxν + eψ(x)A2(r)(dr2 +B2(r)dθ2) , (14)

φ = φB + 2ψ(x) , (15)

with φB = 4 lnW and Frθ being ψ-independent (the determinant ψ-dependence cancels
the ψ-dependence through φ in (4)). Then, the effective action becomes

Seff =

∫

d4x
√

−g̃
[

1

2
M2

PR4(g̃) −M2
P (∂µψ)2 − Veff

]

, (16)

where the four-dimensional Planck scale is given by M2
P = λπr2

0M
4
∗ and the effective

potential is

Veff = π
∑

i=1,2

e−
3

2
ψW 4AB

[(Vi
2

+ 2
dVi
dφ

)

− e−ψ

2A2B2

(Ui
2

− 2
dUi
dφ

)

(ki − eAθ)
2
]

. (17)

The minimisation of this effective potential determines the value of ψ = ψ0, which corre-
sponds to the dilaton constant in the original solution (4). It depends on the form of the
dilaton functions that appear in the ring brane dynamics. It is evident from (16) that once
the modulus acquires a mass, four dimensional gravity will be reproduced along the lines
of [20].

7



Finally, let us also remark on the relation between the effective modulus potential for
the general axisymmetric warped solution with four-dimensional Minkowski space5 and
the ring-brane junction conditions discussed in [18]. The deviation from the conical limit
is encoded in the parameter λ3 appearing in (A.1) and one of the ring-brane junction
conditions for the background solution [eq.(3.27) of Ref. [18]] reads

λ3 = W 4AB
[(V1

2
+ 2

dV1

dφ

)

− e−ψ0

2A2B2

(U1

2
− 2

dU1

dφ

)

(k1 − eAθ)
2
]

= −W 4AB
[(V2

2
+ 2

dV2

dφ

)

− e−ψ0

2A2B2

(U2

2
− 2

dU2

dφ

)

(k2 − eAθ)
2
]

. (18)

We note here that we have corrected the sign error in the junction condition of the other
ring-brane given in [18]. Thus, by inserting the above conditions for the static solution
with ψ = ψ0 into the effective modulus potential (17), we find that the effective vacuum
energy vanishes, which is consistent with the flatness of the background solution.

3.1 The case with exponential dilaton couplings

As an explicit demonstration of the method used, let us consider the proposal of [18] and
take the brane dilaton couplings to have an exponential form as

Vi = vie
− 1

4
siφ , Ui = uie

− 1

4
tiφ . (19)

Then, for si = 1 and ti = −1, the dilaton couplings to the ring branes are scale-invariant
and from (18) we see that λ3 = 0. In order to stabilise the modulus, one should break this
scale invariance. Here we will demonstrate that λ3 = 0 (i.e., purely conical singularities
for zero radius limit of the background ring branes) does not necessarily mean that the
ring-branes should be scale invariant, something that was not apparent in [18]. We will
see that it is possible to obtain solutions which break scale invariance, but however, in the
zero radius limit remain in the conical class6.

From eq. (17), we obtain the effective potential for the specific couplings that we have
considered as

Veff =
∑

i=1,2

[

Cie
− 1

2
(si+3)ψ +Die

− 1

2
(ti+5)ψ

]

, (20)

where the coefficients are given in terms of the ring brane parameters as

Ci = −1

2
πW 4ABvi(1 − si)e

− 1

4
siφB , (21)

Di =
1

4
π
W 4

AB
ui(1 + ti)(ki − eAθ)

2e−
1

4
tiφB . (22)

5See Appendix A for the general warped solution with general non-conical flat branes. These would be
the zero radius limits of the ring branes that we discuss in this section.

6There exist of course scale breaking ring-brane couplings, for which λ3 6= 0. In this case, we can see
from eq. (18) that there is no conical limit for a vanishing ring-brane radius. In section 5, we will put a
bound on |λ3| from the slow-roll conditions for a moving probe brane.
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From the above, we again verify that if one has scale-invariant ring branes, i.e., si = 1 and
ti = −1, then Ci = Di = 0 and so there is no modulus potential generated from the ring
branes.

Let us also see the relation between the effective brane tensions and the coefficients of
the exponentials appearing in the effective potential. After the modulus is stabilized to
ψ = ψ0, integrating the brane action over the angular direction of the ring branes gives
the effective brane tensions of the limiting codimension-2 branes

Ti = 2πW 4ABe−
3

2
ψ0

(

Vi +
e−ψ0

2A2B2
Ui(ki − eAθ)

2
)

. (23)

Therefore, defining Ĉi ≡ e−
1

2
(si+3)ψ0Ci and D̂i ≡ e−

1

2
(ti+5)ψ0Di, the effective brane tensions

are given by

Ti = − 4Ĉi
1 − si

+
4D̂i

1 + ti
, i = 1, 2. (24)

3.2 The minimization of the effective potential

Let us see now explicitly how it is possible to obtain non-scale invariant ring branes which
provide a stabilisation mechanism for the modulus and still remain in the conical class,
i.e., λ3 = 0, in the thin ring brane limit. From eq. (18) for the static solution with ψ = ψ0,
we obtain the relations between the coefficients in the effective potential (20) as following

Ĉ1 + D̂1 = −(Ĉ2 + D̂2) = 0 . (25)

On the other hand, the extremization of the effective potential (20) gives rise to another
relation between the same coefficients

∑

i=1,2

(

Ĉi(si + 3) + D̂i(ti + 5)
)

= 0 . (26)

Then, the above system of three equations with four unknowns can be solved in terms of
Ĉ1. E.g., for Ĉ2 one obtains

Ĉ2 = −Ĉ1
s1 − t1 − 2

s2 − t2 − 2
. (27)

The minimum of the modulus ψ0 can then be found as following

e−
1

2
(s2−s1)ψ0 = −s1 − t1 − 2

s2 − t2 − 2

(C1

C2

)

. (28)

Substituting in (20) the coefficients Ĉ2, D̂1, D̂2, we obtain the effective potential for the
system as

Veff = Ĉ1

[

e−
1

2
(s1+3)(ψ−ψ0) − e−

1

2
(t1+5)(ψ−ψ0)

−s1 − t1 − 2

s2 − t2 − 2

(

e−
1

2
(s2+3)(ψ−ψ0) − e−

1

2
(t2+5)(ψ−ψ0)

)]

. (29)
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Taking into account the normalization of the modulus kinetic term in eq. (16), the quadratic
in (ψ − ψ0) piece of the above potential provides us with the mass of the modulus at the
minimum as

m2
ψ =

1

4M2
P

∑

i=1,2

(

Ĉi(si + 3)2 + D̂i(ti + 5)2
)

. (30)

Using eqs. (25) and (27), we can then express the modulus mass (30) in a simpler form

m2
ψ =

1

2M2
P

Ĉ1(s1 − t1 − 2)(s1 + t1 − s2 − t2) . (31)

Therefore, for si, ti of order 1, the modulus mass is of order Ĉ1. Assuming that both ui > 0
and vi > 0, one can see that there is no parameter space where the modulus is stabilised
(m2

ψ > 0). Keeping ui > 0 in order not to have ghost kinetic terms for σi, we can assume
that only v1 > 0, but v2 < 0. From eq. (21), the positive modulus squared mass requires

(1 − s1)(s1 − t1 − 2)(s1 + t1 − s2 − t2) < 0 . (32)

We can distinguish four cases of possible parameter space where the modulus is sta-
bilised

(I) : s1 < 1, t1 > −1; s2 < 1, t2 < −1; s2 − t2 − 2 < 0; (33)

(II) : s1 < 1, t1 > −1; s2 > 1, t2 > −1; s2 − t2 − 2 > 0; (34)

(III) : s1 > 1, t1 < −1; s2 < 1, t2 < −1; s2 − t2 − 2 < 0; (35)

(IV ) : s1 > 1, t1 < −1; s2 > 1, t2 > −1; s2 − t2 − 2 > 0, (36)

where in all cases one should also satisfy s1 + t1 > s2 + t2.
For λ3 = 0, using eq. (25), the effective brane tensions (24) become

T1 = −4Ĉ1
(2 − s1 + t1)

(1 − s1)(1 + t1)
, (37)

T2 = −4Ĉ2
(2 − s2 + t2)

(1 − s2)(1 + t2)
. (38)

For the above parameter space we see that for the cases II, III, IV, both branes have
the same sign of tension Ti > 0 (i = 1, 2), but for the case I they have opposite sign,
T1 > 0 and T2 < 0. Since we discuss solutions with small warping, we should have both
background 3-branes of the same tension sign. The only possibility where the case I can be
allowed is if T1 → 0+, T2 → 0−, but this case is not interesting, since the modulus becomes
very light, not allowing the inflation scenario that we’ll discuss in the following sections.

For illustration, let us take the dilaton couplings as (s2, t2) = (3, 0) and (s1, t1) =
(1

2
(1 − ε), 3). This example falls into the case II noted above. In this case, from eqs. (27),

(37) and (38), we obtain the ratio of brane tensions as

T2

T1

=
1

2
(1 − s1)(1 + t1) = 1 + ε . (39)
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Therefore, the brane tensions can be almost equal for ε ≪ 1, which is the case that
the probe brane inflation could be realized as we will see later. From eq. (31) with the
minimization condition (28), for ε ≪ 1, we get the modulus minimum and the modulus
mass, respectively, as

e−
5

4
ψ0 ≃ 9C1

2C2
, (40)

m2
ψ ≃ 9

8M2
P

(9C1

2C2

)
7

5

C1 . (41)

4 The probe brane action

We will now introduce probe branes in the above background, whose motion will induce
a cosmological evolution in their worldvolumes. The usual action for a probe brane is the
DBI action supplemented by appropriate Chern-Simons (CS) terms

Sprobe = −Tp
∫

probe

f(φ)
√−γind +Qp

∫

probe

Cp+1 + ξp

∫

probe

Fp+1 + · · · , (42)

where f(φ) is a suitable function of the dilaton, γind the induced metric on the probe brane,
Cp+1 the pull back of a bulk form field and Fp+1 the pull back of a bulk field strength.
The ellipsis denotes terms having to do with the coupling of brane gauge sectors to bulk
fields. In the absence of non-zero background field strengths in the brane sectors, we will
ignore the ellipsis. Let us now comment in more details for the various terms of (42) for the
specific case of a codimension-2 probe brane. For such a brane, there is no Qp-type coupling
to a bulk form field, since that would have to be a 4-form bulk field or a dual bulk scalar
field, both absent in the theory that we study. Compared to the D-brane action in string
theory, this corresponds to the case that the Ramond-Ramond (RR) field is not present or
the net RR charge of the brane vanishes in six-dimensional effective supergravity. Instead,
the field strength of the bulk U(1)R couples to the codimension-2 brane as a localized FI

term (ξp-type coupling in (42)), through the dual 4-form field strength F4 = e
1

2
φ ∗ F2.

This localized FI term also carries the dilaton coupling as seen from the expansion of the
modified gauge kinetic term in eq. (1). For a SUSY codimension-2 brane with nonzero
tension, on top of the linear FI term, there is a delta function squared term too [15, 16].
In the following, we will consider non-supersymmetric probe branes, in which case the
localized FI term can be made negligible by assuming that the scale of ξp is much smaller
than the brane tension.

In the absence of the background branes, the bulk equations of motion are scale invari-
ant. Under the scaling

gMN → eφ0/2gMN , φ→ φ+ φ0 , (43)

the bulk action in (1) transforms as S → eφ0S. As explained in the previous section, a
large breaking of this scale invariance on the capped background 4-branes is crucial for the
stabilisation of the extra dimensional space. On the other hand, it is favourable that the
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probe branes that we are adding to the system approximately respect this symmetry. This
will become clearer when we discuss the validity of the DBI action and backreaction issues
in Sec. 6 (and Appendix C in more details). There, we will consider a small violation
of the scaling symmetry for a probe ring brane with non-conical small radius limit and
show that this naturally makes the effective probe brane tension much smaller than the
overall scale of the modulus potential as required for the probe brane approximation. Since
the violation of the scaling symmetry on the probe brane will be eventually taken to be
small, we will neglect it in this and the next sections where we discuss the probe brane
dynamics. In this case, we can determine the precise form of the dilaton coupling to them.
So, parameterising the coupling of the probe 3-branes and 4-branes, respectively, as an
exponential like

Sprobe = −T3

∫

d4x eζ3φ
√

−γµν , Sprobe = −T4

∫

d5x eζ4φ
√−γab . (44)

we see that they scale as the bulk action when ζ3 = 0, ζ4 = −1/4.

4.1 Probe 3-brane

Let us first consider a codimension-2 probe brane with tension T3, moving in the previous
general warped background. The embedding coordinates of the probe brane are given
by XM . Suppose that the probe brane coordinate is given by XM = [xµ, yp] with yp =
[R(t),Θ(t)] where x0 = t. Then, the induced metric on the probe brane is given by

γµν = gMN
∂XM

∂xµ
∂XN

∂xν
. (45)

For the metric (14), taking into account the modulus dependence, the 4D effective action
becomes

Seff =

∫

d4x
√

−g̃
[

1

2
M2

PR4(g̃) −M2
P (∂µψ)2 − Veff

]

+ Sprobe , (46)

where the worldvolume action for the probe brane7 is given by

Sprobe = −T3

∫

d4x
√

− det γµν (47)

= −T3

∫

d4x
√

−g̃e−2ψW 4(R(t))
√

1 + e2ψW−2g̃mng̃µν∂µXm∂νXn . (48)

For small velocities, i.e., v2 ≡ W 2(r = R(t))|g̃mng̃00ẊmẊn| ≪ 1, the worldvolume action
gives

Sprobe ≈ T3

∫

d4x
√

−g̃
[

1

2
v2 −W 4e−2ψ

]

. (49)

7Here we assume that the background is homogeneous, so that the brane position depends on time only.
However, when the background is non-homogeneous, there will be extra terms in the metric determinant
in (48) quartic in derivatives of the brane position. Those terms can give an important contribution to
isocurvature perturbations and non-Gaussianities [7]. We thank Sébastien Renaux-Petel for pointing this
out.
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We, therefore, see that there is no kinetic mixing between the probe brane and the volume
modulus, while the probe brane potential depends on the volume modulus. Here, the
kinetic term for the radial motion can be written in a canonical form for

dχ =
√

T3A(R)W (R)dR , (50)

with A = W (R)
f0(R)

. Thus, the approximate probe brane potential is given by

Vprobe = T3W
4(R)e−2ψ = T3





1 + R2

r2
1

1 + R2

r2
0



 e−2ψ . (51)

The total potential for the effective dynamics is

Vtot = Veff + Vprobe . (52)

There is a delicate question about whether the probe brane potential describes in a good
way the effective four-dimensional dynamics of the system with moving probe codimension-
2 brane. We will discuss this in Sec. 6.1 and argue that indeed this is true, for a slight
deviation from a conical probe brane limit. We will, therefore, continue studying (52) for
the effective dynamics.

If we assume that T3 ≪ Vmodulus ∼M4
∗ , then the probe brane contribution to the total

potential is negligible and the minimum of ψ is determined from the extremisation of Veff

alone. Then, once ψ is fixed by this minimisation, the effective potential depends only on
the radial direction. The potential has a minimum at R = 0 for r0 > r1 and R = ∞ for
r0 < r1. In both cases, the probe brane tends to move to the background codimension-2
branes located at the poles of the compactification.

Let us note that as mentioned in the beginning of the section, we are mainly interested
in the non-supersymmetric probe branes. There is in principle a non-zero localised FI term
of the probe brane (contributing to the CS term in the brane effective action) whose effect
can be under control as shown in Appendix B. For a supersymmetric brane, however, there
is a relation between ξ3 and T3 [ξ3 = ±T3/(4g)(2/M

4
∗ )

1/2] and therefore the analysis will
break down. However, even then, one can use the vacuum expectation value (VEV) of a
probe brane scalar Q3 to set the effective ξ3,eff ≡ ξ3 + r3g|〈Q3〉|2(M4

∗ /2)1/2 to zero, while
the effective brane tension Teff = T3 + 2r3g

2M4
∗ |〈Q3〉|2 + V3(〈Q3〉) is nonzero. Then the

subsequent analysis will hold if we substitute T3 with T3,eff .

4.2 Probe 4-brane

The general way to embed a probe 4-brane in the internal space is yp = [R(t, ω),Θ(t, ω)],
where ω is the intrinsic angular coordinate of the 4-brane. There are two distinct cases that
we are going to investigate. The first one, is a probe 4-brane that (symmetrically) encircles
one of the background ring branes at the poles of the compactification. The second case,
is a probe 4-brane that one obtains from the ring-regularisation of a probe 3-brane.
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In the first case, because of the present symmetry we have ω = θ and the 4-brane
embedding is yp = [R(t), θ]. The radius of the 4-brane is R(t) and is changing because of
the brane radial motion. The probe brane action is given by

Sprobe = −T4

∫

d4xdω e−φ/4
√

− det γab (53)

= −2πT4

∫

d4x
√

−g̃ e−2ψABW 3
√

1 + e2ψA2W−2g̃µν∂µR∂νR . (54)

For low velocities, the probe potential is given by

Vprobe = 2πT4A(R)B(R)W 3(R)e−2ψ , (55)

and the canonical field of the radial motion is

dχ =
√

2πT4

√

A(R)B(R)W (R)dR . (56)

In the second case, one has to do with a 4-brane whose average radius R0 is very small
compared with the average curvature radius of the internal space r0, i.e., R0 ≪ r0. Then,
the embedding resembles the one of the 3-brane yp ≈ [R(t),Θ(t)]. The limit, however, has
to be taken carefully. The probe brane action will be given by

Sprobe = −T4

∫

d4xdω e−φ/4
√

− det γµν (57)

≈ −2πR0T4

∫

d4x
√

−g̃ e−2ψW 4
√

1 + e2ψW−2g̃mng̃µν∂µXm∂νXn + O(R2
0) , (58)

where the approximation in the second line is based on the expectation that there should
be a smooth limit between the dynamics of the probe 4-brane and the probe 3-brane to
which the former corresponds in the limit of zero radius. We will give further arguments
for this approximation in the following.

Therefore, for low velocities, the probe potential is similar to the 3-brane potential

Vprobe ≈ 2πR0T4W
4(R)e−2ψ + O(R2

0) . (59)

In the strict 3-brane limit T4 → ∞, R0 → 0, with T3 = 2πR0T4 → const. Thus, this limit
gives very similar results with the probe 3-brane modulo R0-corrections. Therefore, we will
not consider further this example and regarding the probe 4-brane, we will only check the
first symmetric case.

Concerning the approximation, we will consider as a toy example a circular ring brane
of radius R0 moving in flat unwarped background with flat internal space, i.e., the metric
is simply

ds2 = ηµνdx
µdxν + dr2 + r2dθ2 . (60)

Then the description of the 4-brane embedding is tractable analytically and we can see
how for small probe 4-brane radius we obtain the probe 3-brane result. Let the center
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of mass x0(t) of the ring brane move along the x-axis i.e., with θ = 0. Then if ω is the
intrinsic angular coordinate of the 3-brane, the embedding reads

R(t, ω) =
√

R2
0 + x2

0(t) + 2R0x0(t) cosω , (61)

Θ(t, ω) = tan−1

(

R0 sinω

x0(t) +R0 cosω

)

. (62)

The action of this brane (with zero dilaton coupling for simplicity) is

Sprobe = −T4

∫

d4xdω R

√

(1 − Ṙ2 − R2Θ̇2)(Θ′2 +R′2/R2) , (63)

where ′ ≡ d/dω. Substituting the embedding of the brane in the above and expanding in
powers of R0, we see that the leading term is

Sprobe ≈ −2πR0T4

∫

d4x
√

1 − ẋ2
0 + O(R2

0) , (64)

which reproduces the action for a 3-brane moving as the center of mass of the ring brane
with tension T3 = 2πR0T4. If the internal space is curved and the four dimensional space
warped, the equivalence is expected to be harder to prove, but at the end it is expected to
hold.

5 Inflation in the background with a mild warping

For the general warped background, it has been known that SUSY is broken completely.
However, for a constant warp factor with equal brane tensions, i.e., r0 = r1 or T1 = T2, four-
dimensional N = 1 SUSY is known to be preserved due to the localized FI terms [15, 16].
When we regard the position of the probe brane as being an inflaton, we will be led to
assume a mild warping with r0 ∼ r1 for which SUSY is slightly broken in the background.
The probe brane is supposed to start rolling from the background brane situated at one
pole and end when the probe brane hits the background brane situated at the other pole.
The above interesting result is for codimension-2 branes, or for ring codimension-1 branes
which are obtained from the regularisation of conical probes. The case of probe ring branes
which encircle the background ring branes turns out not to give an interesting cosmology.
All three cases are summarised in Fig.1. In this section we will discuss the conditions for
slow-roll of the inflaton, how the parameters are compared with observations and a toy
mechanism for a graceful exit from inflation. In the remainder of the paper we will not
include the dynamics of the modulus field ψ, since we have assumed that T3 ≪ Ci ∼ M4

∗
and therefore it gets stabilised at ψ0 at an energy scale much higher than the scales where
inflation takes place and will be of our interest. For this reason, we will set ψ0 = 0, and
restore it whenever we consider it necessary.
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(A)

(B)

(C)

Figure 1: The internal space with the capped ring background branes and the various
probe branes: (A) a 3-brane, (B) a 4-brane of small radius resembling a 3-brane, (C) a
4-brane symmetrically encircling one background brane. If the warping is very weak, the
motion of the branes of type (A), (B), gives rise to slow-roll inflation, which ends when the
probe hits one of the background branes.

5.1 Slow-roll inflation for the probe brane

The measure of SUSY breakdown is related to the difference between the brane tensions
located at the conical singularities. As a measure of the deviation from the unwarped case,
we may use the parameter

δ ≡ r2
0

r2
1

− 1 , (65)

which in terms of the brane tensions, from the brane matching conditions (8) and (9), is
given by

δ =
T2 − T1

2πM4
∗ − T2

. (66)

Let us now consider the conditions under which a probe 3-brane is slowly rolling along
the radial direction8. Since we work in an effective four dimensional theory, we can use the
standard definitions of the slow-roll parameters

ǫ =
M2

P

2

(V ′

V

)2

, (67)

η = M2
P

V ′′

V
, (68)

8If the radial field is slowly rolling, then one can check that the angular motion is suppressed by the
Hubble friction. Of course, there are regions in parameter space where the orbit of the probe codimension-2
brane is spiral, in which case the radial field is fast rolling. As was shown in a similar setup in [6] the
angular motion is rapidly damped, leading to an almost radial motion of the probe brane. However, it
was also pointed out that the perturbations related to the angular motion may lead to an enhancement of
isocurvature perturbations [7].
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where ′ ≡ d/dχ and V = Vprobe. The above parameters can be found, even without the
approximation of a mild warping, as functions of the probe brane position R,

ǫ =
M2

P

2

1

A2W 2

1

V 2

(∂V

∂R

)2

=
2M2

P

r4
0T3

δ2 R2

f 2
0W

12
, (69)

η = M2
P

1

AWV

∂

∂R

( 1

AW

∂V

∂R

)

=
2M2

P

r2
0T3

δ
1

W 8

[

1 − δ
R2

r2
0f

2
0W

4
− 2R2

r2
0f0

]

, (70)

where use is made of the relation

∂

∂R
W 4 =

2R

r2
0f

2
0

δ . (71)

As can be seen from the above expressions, the slow-roll parameters are proportional to
δ and therefore if the warping is small enough, the brane motion can result to a slow-roll
inflation9. In terms of the non-canonical field and for any value of δ, we have the number
of e-foldings as

N =
T3

M2
P

∫ Ri

Rf

dR
A2W 2V

∂V
∂R

=
T3r

2
0

2M2
P δ

∫ Ri

Rf

dR

R
W 8 , (72)

where Ri is the position of the probe at the beginning of inflation and Rf is the position
of the probe at the end of inflation.

Let us now see how the above parameters are expressed in terms of the canonical field
χ. For |δ| ≪ 1, we obtain the canonical scalar field for the radial motion approximately as

χ ≃ χ0 arctan
R

r0
, (73)

with χ0 ≡ r0
√
T3. The field range of χ/χ0 is from 0 to π

2
for the brane position R running

from 0 to ∞. And in terms of this approximate canonical scalar field, we obtain the probe
brane potential as

V (χ) ≃ T3

[

1 + δ sin2
( χ

χ0

)]

. (74)

Then we calculate that

ǫ ≃ M2
P δ

2

2χ2
0

sin2
(

2χ
χ0

)

[

1 + δ sin2
(

χ
χ0

)]2 , (75)

η ≃ 2M2
P δ

χ2
0

cos
(

2χ
χ0

)

1 + δ sin2
(

χ
χ0

) . (76)

9When the background is given by the non-conical warped flat solution (A.1) presented in Appendix
A, for |λ3| ≪ 1, the corrections to the slow-roll parameters are given by ∆ǫ = O(δ · λ2

3) and ∆η =
O(δ · λ3) + O(λ2

3
), respectively. Therefore, for λ2

3
≪ |δ|, the slow-roll approximation for the inflation

remains valid.
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Here there are upper bounds on the slow-roll parameters as

ǫ ≤ M2
P

2χ2
0

δ2

1 + δ
≡ ǫmax , (77)

|η| ≤ 2M2
P

χ2
0

|δ| ≡ |η|max . (78)

When χ2
0 ≫ 2M2

P |δ|, the inflaton can be slowly rolling in the entire field space. In this
case, we find the relation between the slow-rolling parameters in most of the field space as
ǫ ∼ |δη|. Thus, for a small |δ|, the ǫ parameter is negligible compared to the |η| parameter.
We also get the number of e-foldings as

N =

∫ χi

χf

V

M2
PV

′dχ ≃ − χ2
0

2M2
P δ

ln
(

tan
χ

χ0

)]∣

∣

∣

χf

χi

. (79)

Thus, the number of e-foldings can be sufficiently large, for the field range of order χ0.
A similar analysis can be done for the 4-brane that symmetrically encircles the back-

ground ring branes. We will not however study in detail the slow-roll parameters for this
case because of the following simple observation. In contrast with the 3-brane slow-roll
parameters, the ones for the 4-brane are not proportional to δ and therefore they are not
small in general, but only close to special points of the phase space. For the case of the
4-brane with small radius R0 which floats in the internal space, we expect the same kind
of dynamics as for the probe 3-brane inflation.

5.2 Comparison to the observations

Now we are in a position to discuss about the slow-roll predictions. The spectral index n
is given by the slow-roll parameters as [28]

n = 1 − 6ǫ+ 2η . (80)

The combined WMAP 5-year data with Baryon Acoustic Oscillations and Type Ia super-
novae [29] show that the spectral index is 0.960 ± 0.013 (68% CL). Thus, the spectrum is
slightly red-tilted. On the other hand, the adiabatic density perturbations are given in [28]
by

δH =
1√

75πM3
P

V 3/2

V ′ =
1√

150πM2
P

V 1/2

ǫ1/2
, (81)

where the potential and its derivative are evaluated at the epoch of horizon exit for the scale
k−1 = (aCOBEHCOBE)−1, which is H−1

0 = 3000h−1Mpc, the biggest cosmological scale in the
Universe. From the COBE normalisation we have that δH = 1.91×10−5. Thus, comparing
the theoretical prediction from inflation to the observed value, we get a constraint on the
inflaton potential as

V 1/4

ǫ1/4
= 0.027MP = 6.7 × 1016GeV . (82)
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For most of parameter space the slow-roll parameters are |η| ∼ |η|max =
2M2

P |δ|
χ2

0

and

ǫ ∼ ǫmax ∼ 1
4
|δ| · |η|max. Then, we see that, in order to have a red tilt, we should have

δ < 0 and therefore η < 0. Since the sign of η in eq. (76) changes from negative to positive
when crossing the equator at R = r0 or χ

χ0
= π

4
, horizon exit should occur before the brane

reaches the equator. So, we get from eq. (80) the spectral index to be

n = 1 −
(3

2
|δ| + 2

)

|η|max = 1 −
(3

2
|δ| + 2

) ln(Rf/Ri)

N
, (83)

where use is made of the number of e-foldings obtained from eq. (79), that is, N ∼ ln(Rf /Ri)

|η|max
.

ForN = (100+75|δ|)/2 ln(Rf/Ri) or |η|max = 2/(100+75|δ|), the spectral index is n = 0.96.

Thus, |η|max should be smaller than 0.02 to get the spectral index right. Defining α ≡ χ2
0

M2
P

=
r20T3

M2
P

, we have that the condition T3 < M4
∗ translates to α < 1

πλ
, usingM2

P = λπr2
0M

4
∗ . Then,

since |δ| = α
2
|η|max, we need to have

|δ| < 1

2πλ
|η|max <

0.01

πλ
. (84)

Therefore, we finally get |η|max ≃ 0.02 and N ≃ 50 ln(Rf/Ri). Assuming that inflation
starts close to the background ring brane which is at around Ri = 1/M∗ and taking a
typical Rf = r2

0M∗, we get the number of e-foldings as N ≃ 100 ln(r0M∗). This number
of e-foldings is sufficient to account for the NCOBE ≃ 60 e-foldings which are necessary to
explain the homogeneity of the largest cosmological scale. Moreover, from eq. (82), we get
the brane tension scale T3 as

T
1/4
3 = |δ|1/4 · 1.8 × 1016GeV ≃ |δ|1/4MGUT , (85)

where MGUT is the unification scale in four-dimensional SUSY GUTs. From the above
result and |δ| = α

2
|η|max ≃ 0.01α, the compactification scale should be

1

r0
= 0.1

M2
GUT

MP

≃ 1013GeV . (86)

Therefore, the COBE normalization and the spectral index require a rather low compact-
ification scale. However, the precise value of δ or the probe brane tension scale from
|δ| ≃ 0.01α is not determined.

Another observable is the running of the spectral index. According to [28], it is given
by

dn

d ln k
= 24ǫ2 − 16ǫη + 2ξ2 , (87)

where the new parameter is

ξ2 = M4
P

V ′V ′′′

V 2
. (88)
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Evaluating the above quantity for (74), we obtain

dn

d ln k
≃ M4

P

χ4
0

δ2
[

6δ2 sin4(2χ/χ0)

(1 + δ sin2(χ/χ0))4
− 16δ

sin2(2χ/χ0) cos(2χ/χ0)

(1 + δ sin2(χ/χ0))3

−8
sin2(2χ/χ0)

(1 + δ sin2(χ/χ0))2

]

. (89)

The last term in the above expression comes from ξ2 and it dominates for small δ. As
order of magnitude, in most of the field space (i.e., away from special points), we have
dn/(d ln k) ∼ η2 ∼ 10−4. Thus, the observational constraint [29] is easily satisfied.

The final observable we are going to mention is the ratio of the tensor to scalar perturba-
tions. It is given by r = 12.4ǫ and thus it is r ≃ 3.1|δ·η| ≃ 0.062|δ|. Therefore, for |δ| < 0.01

πλ
,

we get r < 0.0062/(πλ) which is in agreement with observations [29], r < 0.22 (95%CL)
for power-law models.

5.3 Graceful exit from inflation

As mentioned in the beginning of this section, we have assumed that inflation ends when
the probe brane hits the background brane at the other end. The exact dynamics at the
collision point is beyond the limitations of this model. However, in order for the model to
be realistic, we know that there should be on the one hand a mechanism of reducing the
vacuum energy to zero and on the other hand a mechanism which reheats the brane. Here,
we will consider a toy model featuring both mechanisms which need to occur at the end
of inflation, thus providing a way of having a so called graceful exit. We regard this toy
model as a crude approximation of the physics taking place at the brane collision.

For this purpose we will consider a possibility of having an analogue of hybrid inflation
[22] in our probe codimension-2 brane scenario. To this, we add a real scalar field ϕ with
a coupling to the probe brane. For instance, we take the effective potential for the system
with the inflaton and the real scalar field (the waterfall field) to be

Veff = (T3 + α2ϕ2)W 4(R) + h(ϕ2 − β2)2 − hβ4 (90)

where we assumed that the ψ modulus has been stabilised before inflation starts. When
the waterfall field lives on the probe brane, one should choose a specific dilaton coupling
for obtaining the self couplings in the latter part of eq. (90). On the other hand, when
the waterfall field lives in the bulk, the self couplings with arbitrary dilaton dependence
can be introduced on the background brane. Then, in either cases, as long as the brane
position is such that α2W 4(R) > 2hβ2, the waterfall field gets a vanishing VEV, so the
inflation as discussed previously takes place. We need that the above condition is satisfied
for the motion of the probe brane until it comes close to the point of collision with the
background ring brane. Close to that point, the direction of the inequality will be reversed
α2W 4(R) < 2hβ2 and the waterfall field starts rolling down to a minimum with nonzero
VEV, thus ending inflation. For the above scenario to work, we should carefully choose
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the parameters h, α and β so that the waterfall field starts fast-rolling to its new minimum
(and reheats the brane) after the N > 60 e-folds of inflation. Furthermore, in this case, we
can fine-tune the parameter β, such that the vacuum energy at the minimum vanishes.

6 The backreaction of the probe brane

In the previous section, by analysing the slow-roll conditions combined with the COBE
normalization we could not determine the precise value of the parameter δ, but only the

upper bound on |δ|. When the value of α =
r20T3

M2
P

is fixed, the required value of |δ| is

also determined by |δ| ≃ 0.01α. When α is of order unity, i.e., T3 ∼ 10−2M4
GUT , we only

need a small amount of tuning to get |δ| ≃ 0.01. However, the probe brane with such a
large tension could give a large backreaction, such that the background with static extra
dimensions and a mild warping could be deformed significantly. In this section, we discuss
the backreaction issues and find the conditions required for justifying the probe brane
approximation.

6.1 Backreaction on the volume modulus

In our previous analysis, we have first assumed that the backreaction of the probe brane is
negligible for the modulus stabilization. This would be the case if the modulus is stabilised
at a scale higher than the scale of inflation. This is equivalent with demanding that the
Hubble scale during the inflation is smaller than the modulus mass H2 ≪ m2

ψ, where

H2 = T3

3M2
P

e−2ψ0 , with m2
ψ being the modulus mass given in eq. (31) [in this subsection, we

momentarily restore ψ0 in our equations]. Thus, the probe brane approximation is justified
under the condition,

T3 ≪ 3e2ψ0M2
Pm

2
ψ . (91)

For instance, when the dilaton coupling parameters of the regularized background branes
are given by (s2, t2) = (3, 0) and (s1, t1) = (1

2
(1 − ε), 3) with ε ≪ 1, using eqs. (40) and

(41), the condition (91) becomes

T3 ≪
27

8

(2C2

9C1

)1/5

C1 . (92)

For C1 ∼ C2 ∼ M4
∗ we get T3 ≪ M4

∗ . Thus, the constraint on the warping |δ| ≃ 0.01α in
(84) becomes more severe as follows,

|δ| ≪ 0.01

πλ
. (93)

A natural way to make the probe brane tension much smaller than the six-dimensional
Planck scale is to consider it slightly non-conical. To see that, let us consider the probe
brane as being a ring 4-brane with a small radius and with a small violation of the scal-
ing symmetry, so that the limiting 3-brane is non-conical. Since the ring brane has a
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non-conical thin limit, we expect that its presence in the bulk will backreact to the four
dimensional part of the metric so that the latter obtains an expansion rate of the order of
H2 = T3

3M2
P

. This is to be contrasted with the property of conical branes, which are able to

”hide” vacuum energy in a local deficit angle without curving their world-volume [30].

To obtain the correction to the potential for the inflaton in this new setup, we should
study a six-dimensional system with curved (de-Sitter) four-dimensional foliations. We
refer the interested reader to Appendix C for an extended analysis of this case. Here, let
us sketch briefly how the derivation of the final result is obtained. In Ref. [31], solutions
of the six-dimensional system with curved (de-Sitter) four-dimensional foliations and axial
symmetry were discussed. The setup in [31] had two branes, at least one of which was
non-conical. In Appendix C, we extend the analysis of [31] for the model that we are
considering, i.e., two background branes at the axis of symmetry and one non-conical probe
brane. The curved solutions around the probe brane can be expanded around a conical
flat solution with warp factor Wf and dilaton φf = 4 lnWf . At this point, we consider
the inflation potential from an effective action approach (with the modulus stabilised at
some high scale), as we did for the modulus potential in Sec. 3, and take couplings for
the ring-regularised non-conical brane which marginally break the scale invariance, as for
example Vp = vpe

− 1

4
sφ with |1 − s| ≪ 1. After we impose a condition on the asymptotic

near-brane solution, the effective potential reduces to

Veff ≃ T3W
4
f

[

1 + (1 − s) lnWf

]

(94)

where T3 ≡ π
2
(1 − s)vpR0 is the effective probe brane tension for the small R0 limit. As a

result, for a small breaking of scaling invariance, the effective 3-brane tension is naturally
suppressed compared to the six dimensional fundamental scale10. Therefore, in the presence
of a steep modulus potential coming from the large breaking of scale invariance of the
background branes, it is possible to ignore the backreaction of the probe brane tension on
the volume modulus.

Moreover, the correction term to the DBI action becomes negligible. The inflaton
potential that we obtain in this effective action approach, is the same (modulo terms having
to do with the deviation form the conical limit) as the one obtained from the DBI action for
the probe brane with scaling invariance. Therefore, the DBI action approximation, used
everywhere in the previous sections, holds. Furthermore, the above solves an apparent
paradox that the careful reader may have noticed. As is known, codimension-2 branes
can have peculiar properties regarding the relation between their energy content and their
curvature. We mentioned above that conical branes can ”hide” vacuum energy in a local
deficit angle without curving themselves. In such a case, the potential energy needed for
inflation will not gravitate as expected from the DBI action. This paradox does not hold
anymore if we depart from the conical limit, since then the potential energy of the probe
will necessarily curve its worldvolume.

10We take both the 4-brane tension and the 4-brane radius to be of order the six dimensional fundamental
scale.
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6.2 Backreaction on the warp factor

In the previous subsection, we have seen that the effective potential for a probe (slightly
non-conical) brane, with an expansion rate much lower than the compactification scale,
can be in a good approximation given by the one obtained from the flat brane warp factor.
The mild warping that we need for a successful inflationary period, can be realised if the
background brane tensions are almost equal, as we can see from eq. (66). In order that
the probe brane approximation holds, we need to verify that the probe brane tension does
not change much the warp factor generated by the imbalance between the two background
branes. An easy way to make sure that this is not happening is to demand that the probe
brane tension is much smaller than the difference between the background brane tensions,
i.e., T3 ≪ |T2 − T1|. This is equivalent to imposing a condition on the deficit angle of the
background branes as λπ ≪ 10−2. In this case, the background branes have tension close
to critical, i.e., the deficit angle is close to 2π. However, a tuning of λ like this, is an extra
tuning besides the one of δ, which we would like to avoid.

In the following, we will concentrate on the possibility that λ ∼ O(1) and see if a
probe brane tension larger than the difference between the background brane tensions,
i.e., T3 > |T2 − T1|, can still give a small backreaction to the warp factor (and therefore
the inflationary potential). In this section, we discuss this backreaction by looking at how
the warp factor reacts to the additional brane(s) with an explicit multiple brane solution.

Multi-brane solutions for the supergravity system that we study are analysed in [25].
There, it is shown that it is possible to have general warped flat solutions with multiple
conical branes, if an undetermined holomorphic function V (z) appearing in the metric
solution has multiple zeros [25]. Thus, we can add more branes in our warped background
and identify one of the additional branes as the probe brane that was used for driving
inflation. In Appendix D we summarise the multiple brane solution with more than two
background branes and we link it to the background model that we used earlier on.

Here let us briefly mention the solution without going into many details. The four-
dimensional warp factor in the general warped solution with multiple branes can be written
in the following form [25]

ds2 = Ŵ 2ηµνdx
µdxν + +

1

2|V (z)|2
P (Ŵ )

Ŵ 2
dzdz̄ , (95)

with Ŵ the multibrane solution warp factor, P (Ŵ ) a definite function of the warp factor
given in Appendix D and V (z) an arbitrary holomorphic function of z. By choosing
different holomorphic functions V (z), we can generate solutions where the branes vary
in numbers and in characteristics, as their tension and position in the bulk. For small
warping, the additional branes will not change the warp factor much, but instead they will
induce additional local deficit angles around them. By choosing this holomorphic function
as

V (z) =
z

|c|

(

1 +
iβ

z + z−1

)

, (96)
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we can construct a system of branes which generates a warp factor similar to the one we
discussed in the previous text. In particular, the holomorphic function (96) generates a
system of six branes: two branes have fixed tensions T±i = −2πM4

∗ at z = ±i, two branes
with tensions given by (8), (9)

T1 = 2πM4
∗ (1 − λ) , T2 = 2πM4

∗

(

1 − λ
r2
1

r2
0

)

, (97)

at z = 0,∞ and two additional branes with varying tension given by

T3 = 2πM4
∗ (1 − |b|λ) , T4 = 2πM4

∗

(

1 − |b|λr
2
1

r2
0

)

, (98)

at z± = − i
2
(β ±

√

β2 + 4). The parameters in the brane tensions are related to the

parameters of the holomorphic function as, λ = 1
4
|c|g2(

r20
r2
1

− 1) and |b| = |β|√
β2+4

. Then,

from the above, we get a relation between the additional brane tensions and the warping,

2πM4
∗ − T3

2πM4
∗ − T4

=
r2
1

r2
0

. (99)

For the mild warping r1
r0

∼ 1 needed for the slow-roll inflation, eq. (99) requires that a
would-be probe brane with tension T3 should be paired with an additional brane with
almost the same tension as T4 ∼ T3. However, since the brane tensions (98) depend on an
arbitrary local deficit angle parameter |b|, we can dissociate the tensions T1,2 from T3,4.

We may regard the multiple brane solution as an adiabatic approximation of the moving
probe branes. Suppose that the would-be probe branes with positive tension start rolling
at some bulk positions. Then, the probe brane inflation ends when the probe branes hit
the would-be background branes at z = 0 and |z| = ∞, respectively, for |b| = 1 or |β| = ∞.
Then, the background solution settles into another flat solution with two brane tensions

only, T ′
1 = T1 + T3 = 2πM4

∗ (1 − λ′) and T ′
2 = T2 + T4 = 2πM4

∗

(

1 − λ′
r21
r2
0

)

by changing

the deficit angle parameter from λ to λ′ = 2λ − 1. Thus, after the probe branes hit the
background branes, it would be natural to get a graceful exit from inflation.

Finally, let us consider the flux quantization condition for multi-brane solutions to see
if the tuning required for a mild warping may be affected by the additional branes. Since
the flux quantization condition relates the probe brane tension with the background brane
tensions, the effect of the probe on the relation between the background brane tensions
(and thus the warp factor) is expected to be generically strong. However, as shown in
Appendix D, if we assume that one of the background branes is non-BPS (due to the VEV
〈Q1〉 of a brane scalar field with R charge r1), the flux quantisation condition reads

(

2 − T1 + T3

2πM4
∗

)(

2 − T2 + T4

2πM4
∗

)

=
[

n− 1

4πM4
∗

(

T1 + 2r1g
2M4

∗ |〈Q1〉|2 + T2

)]2

. (100)

In the above equation, we would like to keep the background brane tensions T1,2 fixed, in
order to ensure that the four-dimensional warp factor does not change with the introduction
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of the extra bulk branes. Then, by dynamically tuning the brane scalar VEV 〈Q1〉, we can
tune the effective localized FI term of the background brane, such that the probe brane
tension does not change the relation between the background brane tensions needed for a
mild warping. This tuning is independent of the tuning needed for ensuring slow-roll.

In conclusion, we see from the above, that one can maintain the small tuning between
the background branes needed for the mild warping by using corrections to its FI term due
to the VEV of a brane scalar field. This shows that even though the probe brane tension
could be larger than the difference between the background brane tensions, we can still
have a small backreaction to the warp factor.

7 Conclusion

We have pursued the possibility of realizing inflation from a probe non-BPS codimension-2
brane moving in a warped background in the context of six-dimensional gauged super-
gravity. The probe codimension-2 brane gets a nonzero potential due to the warping of
the four-dimensional metric. Unlike the probe D-brane case [3], the slow-roll inflation is
possible for a mild warping. In turn, from the brane matching conditions, it is necessary
to have two background branes with almost equal tensions for a mild warping. Then, the
nonzero inflaton potential can be understood due to the attractive interaction between the
probe brane with lower tension and a background brane. For the compactification scale
of order 1013 GeV, we can match both the COBE normalization and the spectral index as
observed by WMAP.

The key assumptions that we made for a successful probe-brane inflation are listed the
following:

• The background brane tensions are tunable, such that the brane tension difference is
made small enough, being close to a SUSY vacuum;

• Upon regularising the background branes as ring-like branes, the scale invariance of
the equations of motion is badly broken on the background branes, due to the brane
dilaton potentials. This stabilises the volume modulus at a high energy scale without
affecting the background geometry;

• The bulk hyperscalars and the Kalb-Ramond field get large masses on the background
branes or they do not couple to the probe brane;

• The probe brane is slightly non-conical, achieved with a slight breaking of the scale
invariance on the probe brane, for suppressing its tension in comparison to the six-
dimensional fundamental scale and also for making the DBI action a good approxi-
mation;

• Graceful exit occurs at the brane collision and is described by the coupling of a
tachyonic scalar field to the probe brane.
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Considering the backreaction of the probe brane on the volume modulus, we found that
the probe brane tension should be much smaller than the six-dimensional fundamental
scale. As stated above, this can be achieved with considering a probe brane which is
slightly non-conical. For this supergravity model, there exist warped brane solutions with
four-dimensional de-Sitter space [31], for which at least one of the branes must be non-
conical. We computed the four-dimensional effective action for a non-conical probe brane
and showed that it reproduces the DBI action for a conical 3-brane. Furthermore, it is
straightforward to see that this effective action is consistent with the presence of the six-
dimensional warped de-Sitter brane solution. The required suppression of the probe brane
tension (with respect to the six-dimensional Planck mass) determines the amount of tuning
needed for the background brane tensions for obtaining a small warping as |δ| ≪ 0.01

πλ
.

Moreover, from an explicit multiple brane solution, we showed that the backreaction of an
additional brane on the warp factor can be fully taken into account, with no modification of
the tuning needed between the background branes in order to have small warping. All the
above arguments confirm that the probe brane approximation used in this brane inflation
scenario is valid.

Concluding, the codimension-two probe brane inflation scenario could be realized in a
controllable way, provided that the background branes are tuned between each other for a
mild warping. A lot of work has to be still done regarding phenomenology in order to test
it against observations. An interesting direction of future research would be to compute
the non-Gaussianities of the model, as this is known from DBI inflation models (see for
example [7]) to provide testable predictions. What we can surely say by the present work,
is that due to the negligible amount of gravitational waves predicted by the model, it is in
principle falsifiable if a significant amount of them is observed by near-future observations.
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Appendix A: Non-conical warped background

The general warped solution with four-dimensional Minkowski space and internal axial
symmetry is generalized to the singular one with non-conical branes as following [23],

ds2 = W 2(η)ηµνdx
µdxν +K2(η)W 8(η)dη2 +K2(η)dθ2 ,

φ = 4 lnW + 2λ3η ,

Fηθ = qe−
1

2
φW−4ǫηθ , (A.1)
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where

W 4 =
∣

∣

∣

qλ2

4gλ1

∣

∣

∣

cosh[λ1(η − ξ1)]

cosh[λ2(η − ξ2)]
, (A.2)

K−4 =
∣

∣

∣

gq3

λ3
1λ2

∣

∣

∣
e−2λ3η cosh3[λ1(η − ξ1)] cosh[λ2(η − ξ2)] . (A.3)

Here, we note that λ2
2 = λ2

1 + λ2
3.

By making a coordinate transformation r = eλ1η, with r0 = eλ1ξ1 and r1 = eλ1ξ2, we
can rewrite the singular warped solution in the new coordinate as

ds2 = W 2(r)ηµνdx
µdxν + A2(r)(dr2 +B2(r)dθ2) , (A.4)

φ = 4 lnW +
2λ3

λ1
ln r , (A.5)

Frθ = qe−
1

2
φW−4ǫrθ , (A.6)

where

W 4 =
( r

r0

)

λ2
λ1

−1f1

f̃0

, (A.7)

A = r
λ3
2λ1

( r

r0

)

λ2
λ1

−1W

f̃0

, B =
λ1r

W 4
, (A.8)

f̃0 = 1 +
( r

r0

)

2λ2
λ1 , f1 = 1 +

r2

r2
1

. (A.9)

The two radii r0, r1 are given by

r2
0 =

λ2
2

λ2
1g

2M4
∗
, r2

1 =
4M4

∗
q2

. (A.10)

Here we have rescaled the four-dimensional and radial coordinates as well as two radii such
that W and A get the forms as above. We note that for λ3 = 0, i.e., λ1 = λ2, we reproduce
the warped solution with two conical branes.

In the above we have set the arbitrary integration constant of φ to zero. This can be
restored by a simple scale transformation gMN → e

1

2
φ0gMN and φ→ φ+ φ0.

Appendix B: The effect of a nonzero localized Fayet-
Iliopoulos term

In this Appendix, we discuss the effect of a localized FI term ξ3 corresponding to a
moving probe brane with nonzero tension T3. We show that an electric source is needed
for satisfying both the equation of the bulk gauge field and the Bianchi identity. Then, the
localized FI term, combined with the electric source, gives a divergent contribution to the
inflaton kinetic term.
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In the presence of the probe brane, the gauge field strength is modified to

F̂mn = 〈F̂mn〉 −
( 2

M4
∗

)1/2

ξ3ǫmn
δ2(y − yp(t))

e2
. (B.1)

Then, if Aθ is the only nonzero component of the gauge field, the relevant equation for the
bulk gauge field becomes

∂r(
√−ge 1

2
φF̂ rθ) + ∂0(

√−ge 1

2
φF 0θ) = −∂Le

∂Aθ
, (B.2)

and

∂θ(
√−ge 1

2
φF θ0) = −∂Le

∂A0
, (B.3)

where Le is the Lagrangian for an electric source. On the other hand, the Bianchi identity
for the bulk gauge field reads

∂θFrθ + ∂rFθ0 = 0 . (B.4)

We will take the solution for Frθ as

Frθ = 〈Frθ〉 +
( 2

M4
∗

)1/2

ξ3ǫrθ
δ2(y − yp(t))

e2
, (B.5)

where 〈Frθ〉 is the background flux. The last term of the above equation, for yp = (R(t), θ0),
is written as

ǫrθ
δ2(y − yp(t))

e2
= δ(r − R(t))δ(θ − θ0) . (B.6)

Then, the angular component of the gauge equation (B.2) becomes

∂0(
√−ge 1

2
φF 0θ) = −∂Le

∂Aθ
. (B.7)

Therefore, we choose the action for the electric source to be Se =
∫

d6xLe with

Le = AθJ
θ + A0J

0 , (B.8)

where Jθ = −∂0(
√−ge 1

2
φF 0θ) and J0 = ∂θ(

√−ge 1

2
φF 0θ). The solution for F0θ is obtained

from solving the Bianchi identity (B.4) as

F0θ = −
( 2

M4
∗

)1/2

ξ3Ṙδ(r − R(t))δ(θ − θ0) . (B.9)

That is, for A0 = 0, the gauge potential satisfying Aθ = 〈Aθ〉 for r < R(t) is obtained as

Aθ = 〈Aθ〉 +
( 2

M4
∗

)1/2

ξ3θ(r −R(t))δ(θ − θ0) . (B.10)
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Let us now consider the contribution of the FI term and the electric source to the
effective action. Due to the time-dependent piece in the gauge potential, the additional
term in the effective action is

∆Seff =

∫

d6x
√−g

[

− 1

2
e

1

2
φF0θF

0θ +
1√−g (AθJ

θ + A0J
0)

]

=

∫

d6x
√−g

[

− 1

2
e

1

2
φF0θF

0θ − 1√−gAθ∂0(
√−ge 1

2
φF 0θ)

]

. (B.11)

After integration by parts, the above additional term becomes

∆Seff =

∫

d6x
√−g 1

2
e

1

2
φF0θF

0θ

= −
∫

d4x
√

−g̃ 1

M4
∗
ξ2
3 e

1

2
φ0
W 8(R)

λR
Ṙ2δ(r = 0)δ(θ = 0) . (B.12)

Therefore, the FI term of the probe brane would give rise to a divergent correction to
the kinetic term of the inflaton. This can be regularised by thickening the brane. After
taking into account this regularization, and for a mild warping, the FI term correction
becomes roughly −κ 2

M4
∗

ξ2
3
Ṙ2

R
, with unknown coefficient κ so the total kinetic term would

be K = ( T3

f2
0
(R)

− κξ2
3

R
2
M4

∗

)Ṙ2. Thus, in order for the inflaton not to develop any ghost

instability for κ > 0, the inflaton must lie in the range satisfying
κξ2

3

r0T3

2
M4

∗

<
R
r0

1+ R2

r2
0

. So, for

κξ23
r0T3

2
M4

∗

≪ 1, we can still get a proper field range of order φ0 for the inflaton such that the
discussion in section 5 still holds.

Appendix C: Effective action approach for the probe
brane potential

In this Appendix, we will compute the inflaton potential for a non-conical probe brane
from an effective action approach. This will serve two purposes. First, we can see that
for a small departure from ”conicality” the probe brane tension is naturally suppressed
compared to the six dimensional fundamental scale. Secondly, we can confirm the validity
of the DBI action when discussing the effective four-dimensional theory. We first generalize
the analysis of four-dimensional curved solution with two branes of [31], to the case with
multiple branes (since in our setup we have two background branes and a non-conical probe
brane). Here, we assume that the local behavior of the curved multiple brane solution at
the brane is similar to the one of the curved solution with two branes [31], as it is true of
the flat solution [25].

In a coordinate patch adapted to a brane (ri, ωi), the metric will be

ds2 = W 2(ri, ωi)gµν(x)dx
µdxν + A2

i (ri, ωi)(dr
2
i +B2

i (ri, ωi)dω
2
i ) (C.1)
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but, in the close neighborhood of the brane, the metric will be approximately axially
symmetric, i.e., the above functions will not have strong dependence on ωi (however, as
we saw in Sec. 4.2 this small dependence may be crucial for obtaining the right potential).
Then, we see that the six-dimensional Einstein and dilaton equations imply a general
relation between the warping at the branes and the four-dimensional curvature [31] as

∑

i

λ1iri
∂

∂ri

(

lnW − 1

4
φ
)∣

∣

∣

ri,b
=

1

8π
R4V2. (C.2)

Here ri,b is the brane position, R4 = 12H2 is the curvature for a four-dimensional de-Sitter
metric gµν(x) and V2 =

∫

d2ye2W
2 is the volume of extra dimensions. For a small Hubble

scale compared to the compactification scale, we take the flat conical solution to be the
dominant piece of the curved solution at the ring brane positions ri = ri,b and add the
correction terms coming from the asymptotic limits of the curved solution [31] as

lnW → lnWf +
1

4

(

− 1 +
λ2i

λ1i

)

ln ri,

ln(AiBi) → ln(AfBf) +
1

4

(

− 1 +
λ2i

λ1i
+

2λ3i

λ1i

)

ln ri, (C.3)

φ → φf +
(

− 1 +
λ2i

λ1i
+

2λ3i

λ1i

)

ln ri

where λ1i, λ2i, λ3i are constant parameters and they satisfy λ2
2i = λ2

1i + λ2
3i, λ2i > 0 and

2λ2i + λ3i > 0. Here Wf , Af , Bf , φf are the functions obtained for the conical flat solution
with multiple branes [25]. When two background branes have conical limits, λ3i = 0 and
λ1i = λ2i for (i = 1, 2), so that φ → 4 lnWf at those branes. In this case, the junction
conditions at the background branes will give no contribution on the left-hand side of
eq. (C.2). Then, for a nonzero four-dimensional curvature, we would need λ3p 6= 0 for the
probe brane. Then, similarly to the junction conditions for the regularized background
branes in eq. (18), for the probe brane action with dilaton couplings Vp, Up, the junction
condition at the probe brane becomes

λ3p = W 4ApBp

[Vp
2

+ 2
∂Vp
∂φ

− k2
p

2A2
pB

2
p

(Up
2

− 2
∂Up
∂φ

)]∣

∣

∣

rp,b

(C.4)

where we set the U(1)R gauge coupling to the probe brane to zero for simplicity.
In the presence of the probe brane, we can derive the four-dimensional effective poten-

tial, as we did in Sec. 3 for finding the effective potential for the modulus ψ. In the present
case, the effective action will depend, apart from the modulus, on a new modulus which is
the position of the probe brane R, i.e., the inflaton. For the inflation and compactification
scales that we have taken before, the modulus is fixed at a scale much higher than the
inflation scale. Therefore, fixing ψ the effective potential will be a function of the probe
brane position R. The effective potential for the probe brane is

Veff = π

∫

dωpW
4ApBp

[Vp
2

+ 2
∂Vp
∂φ

− k2
p

2A2
pB

2
p

(Up
2

− 2
∂Up
∂φ

)]∣

∣

∣

rp,b

. (C.5)
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Here, using the expansions of the solution around the probe brane from eq. (C.3), we obtain

W 4ApBpe
−sφ/4

∣

∣

∣

rp,b

= W 4
fAfBfe

−sφf/4r
−1+

λ2p

λ1p
+ 1

4
(1−s)(−1+

λ2p

λ1p
+

2λ3p

λ1p
)

p . (C.6)

In Section 4.2, we argued that
∫

dωpAfBfe
−φf/4W 4

f ≈ 2πR0W
4
f . Therefore, choosing

λ2p = λ1p − 1−s
5−s · 2λ3p, we can rewrite the four-dimensional effective potential as

Veff = πR0W
4
f e

(1−s)φf /4esφ/4
[Vp

2
+ 2

∂Vp
∂φ

− k2
p

2A2
pB

2
p

(Up
2

− 2
∂Up
∂φ

)]∣

∣

∣

rp,b

(C.7)

where we have implicitly taken into account the delicate ωp integration. In this case, with
the condition λ2

2p = λ2
1p + λ2

3p, we would require

λ1p = −1

4

(s+ 3)(7 − 3s)

(1 − s)(5 − s)
λ3p , λ2p = −8(s− 1)2 + (s+ 3)(7 − 3s)

4(1 − s)(5 − s)
λ3p . (C.8)

To see how the mechanism can work, let us take a simple example with Vp = vpe
− 1

4
sφ

and Up = upe
1

4
φ. Then, the above effective potential becomes

Veff = T3W
4
f e

1

4
(1−s)φf

∣

∣

∣

rp,b

(C.9)

where T3 ≡ π
2
(1 − s)vpR0 is the effective probe brane tension for the small R0 limit.

Moreover, from eqs. (C.2) and (C.4), we obtain

πλ3p =
1

2
πW 4ApBp(1 − s)vpe

− 1

4
sφ

∣

∣

∣

rp,b

= 3H2V2. (C.10)

For H2 ≃ T3

3M2
P

and M2
P = M3

∗V2, we get λ3p ∼ T3

M4
∗

≪ 1 as required for the negligible

backreaction on the volume modulus. Therefore, for |vp| ∼ M5
∗ , we need a small violation

of scaling symmetry as |1 − s| ≪ 1. Thus, for |1 − s| ≪ 1, λ1p ≃ λ2p ≃ − λ3p

1−s . Then, the
conditions, λ2p > 0 and 2λ2p + λ3p > 0, and λ3p > 0 for four-dimensional de-Sitter space,
lead to 1 − s < 0 and vp < 0. In this case, the effective brane tension, T3 = π

2
(1 − s)vpR0

is positive.
For these choices of λ1p,2p,3p, since φf = 4 lnWf , we can expand the effective potential

of the probe brane (C.9) for |1 − s| ≪ 1 as

Veff ≃ T3W
4
f

[

1 + (1 − s) lnWf

]

. (C.11)

As a result, for a small breaking of scaling invariance, the effective action approach for
a non-conical probe provides the same potential with the DBI action for a conical probe.
Furthermore, the effective 3-brane tension is naturally suppressed by a factor of (1 − s)

compared to the six dimensional fundamental scale (assuming that naturally v
1/5
p ∼ R−1

0 ∼
M∗).
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Appendix D: Conical multi-brane warped solutions

The general multi-brane warped solution with conical branes [25] admits only four-
dimensional Minkowski spacetime and takes the following form in complex internal space
coordinates11,

ds2 = Ŵ 2ηµνdx
µdxν +

1

2|V (z)|2
P (Ŵ )

Ŵ 2
dzdz̄ , (D.1)

Fmn = fe−
1

2
φŴ−4ǫmn , (D.2)

φ = 4 ln Ŵ , (D.3)

where f is a constant parameter, V (z) is an arbitrary holomorphic function and the function
P (Ŵ ) is given by

P (Ŵ ) =
1

8
g2Ŵ−4(W 4

+ − Ŵ 4)(Ŵ 4 −W 4
−) . (D.4)

The hatted warped factor Ŵ is determined implicitly by the following algebraic equation

(Ŵ 4(ζ) −W 4
−)W

4
−

(W 4
+ − Ŵ 4(ζ))W

4
+

= exp
{1

2
g2(W 4

+ −W 4
−)(ζ − ζ0)

}

, (D.5)

where ζ0 is an integration constant of the warp factor,

ζ(z) =
1

2

(

∫ z dω

V (ω)
+ c.c.

)

, (D.6)

and

W 4
± = v ±

√

v2 − f 2

4g2
, (D.7)

with v being an integration constant. Here, we note that there exists a conical singularity
with nontrivial deficit angle or nontrivial brane tension only at ζ = ±∞ or Ŵ = W±. The
warp factor lies in the finite range, W− ≤ Ŵ ≤W+.

Let us now review the matching conditions at the conical singularities depending on
the holomorphic function V (z) [25]. Suppose that the holomorphic function is expanded
around zi as V ∼ 1

ci
(z − zi)

αi . Then, for integer αi 6= 1, ζ or the warp factor are single-

valued because
∮

dz/zαi = 0. On the other hand, for αi = 1, ζ or the warp factor are
single-valued only for real ci because

∮

dz/z = 2πi. When αi is non-integer, there is a
branch cut of V (z) along Re(z − zi) > 0 and therefore there is a line-like singularity along
the branch cut, unless the space is covered with multiple patches. Moreover, for αi < −1,

11Compared to Ref. [25], we changed the solution form to be compatible with the notations in our paper.
For instance, the dilaton φLL is changed to − 1

2
φ and the dilaton constant is set to zero. The convention

for the six-dimensional fundamental scale in [25] is M4

∗LL = 1, but we restore M∗ when necessary.
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there is a curvature singularity [25]. At a simple zero with αi = 1, there appears a conical
singularity at zi and the matching condition for a brane tension is [25]

ci > 0 : Ti+ = 2πM4
∗

[

1 − 1

4
|ci|g2

(W 4
+

W 4
−
− 1

)]

, (D.8)

ci < 0 : Ti− = 2πM4
∗

[

1 − 1

4
|ci|g2

(

1 − W 4
−

W 4
+

)]

. (D.9)

At a simple pole with αi = −1, one has to introduce a fixed negative tension with Ti =
−2πM4

∗ at zi.

For instance, when V (z) = z
|c| with |c| being a constant, the warped solution takes the

following form [25],

ds2 = Ŵ 2ηµνdx
µdxν +

Ŵ 4

2P (Ŵ )
dŴ 2 + |c|2P (Ŵ )

2Ŵ 2
dθ2 , (D.10)

where use is made of dz
V (z)

= dζ + i|c|dθ, dz̄
V (z)

= dζ − i|c|dθ with dζ = Ŵ 3

P (Ŵ )
dŴ , and the

angular coordinate θ ranges from 0 to 2π. Then, by making a coordinate transformation,

Ŵ 2 = W 2
−W

2(r), comparing the parameters as
W 4

+

W 4
−

=
r20
r2
1

, f = W 4
−q and λ = 1

4
|c|g2

(

W 4
+

W 4
−

−1
)

,

and finally making a scaling transformation, gMN → e
1

2
φ0−2 lnW−gMN and φ → φ + φ0 −

4 lnW 4
−, we reach the same form of the warped solution with two conical branes as in eq. (4).

In the complex coordinate, we recover that one brane with tension T1 = 2πM4
∗ (1 − λ) is

located at z = 0 and the other brane with tension T2 = 2πM4
∗

(

1 − λ
r2
1

r2
0

)

is located at

|z| = ∞.
When V (z) has multiple zeros, it is possible to accommodate multiple branes [25]. In

order for the additional brane(s) not to change the brane junction conditions of the two
branes of the previous solution, we need to impose that the holomorphic function has the
limit V (z) → z

|c| for z → 0 and |z| → ∞. The simple example that satisfies these condition
is

V (z) =
z

|c|
(

1 +
α

z + z−1

)

, (D.11)

where α is a constant parameter. From eq. (D.6), we obtain the ζ variable as ζ = |c| ln |z|2+
|c|(−a ln(z− z+)+a ln(z− z−)+ c.c.) with a = α√

α2−4
. Therefore, from eq. (D.5), the warp

factor behavior is determined by the simple zeros, z = 0 and z = z±. However, the
positions of simple poles, z = ±i, do not affect the warp factor change.

For single-valued variable ζ or warp factor, α must be a real number with |α| > 2 or
a pure imaginary. Then, this holomorphic function has three simple zeros at z = 0, z± =
1
2
(−α ±

√
α2 − 4) at which ζ diverges and it has two simple poles at z = ±i. It has been

shown in [25] that one must place an arbitrary tension brane at a simple zero and a fixed
tension brane with T±i = −2πM4

∗ at a simple pole. Therefore, on top of two branes given
in eqs. (8) and (9), there are two additional branes with nontrivial tension possible at
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z = z±. For a real α, there are two possibilities: for α < −2,

T3 = 2πM4
∗ (1 − λ|a|) , at z = z+, (D.12)

T4 = 2πM4
∗

(

1 − λ|a|r
2
1

r2
0

)

, at z = z−; (D.13)

for α > 2,

T3 = 2πM4
∗ (1 − λ|a|) , at z = z−, (D.14)

T4 = 2πM4
∗

(

1 − λ|a|r
2
1

r2
0

)

, at z = z+. (D.15)

On the other hand, for a pure imaginary α = iβ with β a real number, we get the following
additional branes: for β < 0,

T3 = 2πM4
∗ (1 − λ|b|) , at z = z+, (D.16)

T4 = 2πM4
∗

(

1 − λ|a|r
2
1

r2
0

)

, at z = z−; (D.17)

for β > 0,

T3 = 2πM4
∗ (1 − λ|b|) , at z = z−, (D.18)

T4 = 2πM4
∗

(

1 − λ|b|r
2
1

r2
0

)

, at z = z+, (D.19)

where |b| = |β|√
β2+4

. For λ determined by the brane tension T1 given in eq. (8), we use

eq. (D.12) to determine the parameter a, b or the brane positions z±. The case with α = iβ
and β > 0 was considered in section 6.3.1.

Let us finally consider the flux quantization condition for the above multi-brane solu-
tions. Let us assume that one of the background branes is non-BPS such that the localized
effective FI term differs from the supersymmetric condition, i.e., ξ1,eff = T1

4g
(2/M4

∗ )1/2 +

r1g(M
4
∗ /2)1/2|〈Q1〉|2 6= ξ1 while ξ2,eff = T2

4g
(2/M4

∗ )1/2. This is possible due to a nonzero
VEV of the brane scalar field. On the other hand, the additional branes are non-BPS
too, such that their effective FI terms can be made negligible, as assumed in the previous
discussions for the probe brane. Then, the gauge field strength (3) becomes

〈Fmn〉 = 〈F̂mn〉 +
∑

i=1,2

(

2

M4
∗

)1/2

ξi,eff ǫmn
δ2(y − yi)

e2
, (D.20)

where 〈F̂mn〉 is a regular piece of the background solution. From the flux quantization
condition

g

∫

M2

〈F2〉 = 2πn , (D.21)
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we find, as in (10), the correction terms coming from the localized FI terms as following

g

∫

M2

〈F̂2〉 = 2π

[

n−
(

2

M4
∗

)1/2
g

2π

∑

i=1,2

ξi,eff

]

. (D.22)

In the particular example with V (z) as in eq. (D.11), we obtain the above relation between
the tensions of the various branes

(

2 − T1 + T3

2πM4
∗

)(

2 − T2 + T4

2πM4
∗

)

=
[

n− 1

4πM4
∗

(

T1 + 2r1g
2M4

∗ |〈Q1〉|2 + T2

)]2

. (D.23)

The above condition relating the brane tensions is to be compared with (11) for the two
background brane case. The different numerical factors in the left hand side have to do
with the details of the construction of this particular solution.
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