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Abstract. This paper addresses an open problem recently posed by V. Kovloz in
this journal: a rigorous proof of the non-integrability of the geodesic flow on the cubic
surface xyz = 1. We prove this result using the Morales-Ramis theorem and Kovacic
algorithm. We also consider some consequences and extensions of this result.
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1. Introduction

In two recent papers [6] and [7] Kozlov posed the following open problem: to rigorously

prove the non-integrability (in the sense of Louiville) of the geodesic flow on the surface

xyz = 1. In what follows we will exploit the Hamiltonian nature of the geodesic

equations by examining the variational equations about a planar geodesic. The crucial

theorem we shall make use of is due to Morales-Ruiz and Ramis, which we quote from

[9]:

Theorem (Morales-Ramis). For a 2n dimensional Hamiltonian system assume there

are n first integrals which are meromorphic, in involution and independent in the

neighborhood of some non-constant solution. Then the identity component of the

differential Galois group of the normal variational equation (NVE) is an abelian subgroup

of the symplectic group.

On two-dimensional manifolds the normal variational equation (which we shall

derive in the next section) is a second order linear ordinary differential equation with

meromorphic coefficients. In particular, we will see that the NVE’s of interest are

Fuchsian. To show that the geodesic flow is not meromorphic-integrable it suffices to

show that the NVE is not solvable in the sense of differential Galois theory: the identity

component of the differential Galois group of the NVE is not abelian. This means

we cannot “build” the solutions from the field of meromorphic functions by adjoining

integrals, exponentiation of integrals, or algebraic functions of elements of the field of

meromorphic functions. To test this we make use of the Kovacic algorithm.

Before we state the Kovacic algorithm we note that this algorithm is very robust and

can treat any second order linear ODE with rational coefficients, however in the present
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work we will only need a very limited portion of the algorithm. Thus to save space we

will present a much abbreviated version and refer the reader to the original article of

Kovacic [5] and the reduced version appropriate for Fuchsian ODE’s in Churchill and

Rod [4], whose notation we will follow most closely below.

Consider a linear ode of the following form

d2ξ

dy2
= ξ′′ = r(y)ξ, r(y) ∈ C(y). (1)

If the equation is Fuchsian, that is it admits only regular singular points, then we can

decompose r(y) as

r(y) =
k∑

j=1

βj

(y − aj)2
+

k∑
j=1

δj

y − aj

,

where k is the number of finite regular singular points at locations y = aj. When∑
δj = 0 then y = ∞ is also a regular singular point, with β∞ =

∑
(βj + δjaj). The

indicial exponents are

τ±j = 1
2

(
1±

√
1 + 4βj

)
, τ±∞ = 1

2

(
1±

√
1 + 4β∞

)

at y = aj and y = ∞ respectively.

Kovacic proved in [5] that there are only 4 possible cases for the differential Galois

group of (1). We will see in Section 3 that we can rule out two of these cases immediately

(cases I and III), and as such we will present only necessary conditions for these cases.

Theorem (Kovacic). Let G be the differential Galois group associated with (1), and

note G ⊂ SL(2,C). Then only one of four cases can hold:

(I) G is triangulisable (or reducible). A necessary condition for this case to hold is

that, defining the ‘modified exponents’ α± as

α±j = τ±j if βj 6= 0; α±j = 1 if βj = 0 and δj 6= 0; α±j = 0 if βj = δj = 0,

α±∞ = τ±∞ if β∞ 6= 0; α+
∞ = 1, α−∞ = 0 if β∞ = 0,

there is some combination

d = α±∞ −
k∑

j=1

α±j ∈ N0 = 0, 1, 2, 3, . . .

(II) G is conjugate to a subgroup of the ‘DP’ group, in the terminology of Churchill and

Rod. A necessary and sufficient condition for this case to hold is that, defining

the following sets

Ej = {2 + e
√

1 + 4βj, e = 0,±2} ∩ Z if βj 6= 0;

Ej = {4} if βj = 0, δj 6= 0; Ej = {0} if βj = δj = 0;

E∞ = {2 + e
√

1 + 4β∞, e = 0,±2} ∩ Z if β∞ 6= 0;

E∞ = {0, 2, 4} if β∞ = 0, (2)
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there is some combination of ej ∈ Ej and e∞ ∈ E∞, not all even integers, so that

d =
1

2

(
e∞ −

k∑
j=1

ej

)
∈ N0

and there exists a monic polynomial P (y) of degree d which solves the following

ODE:

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4r)P ′ + (θ′′ + 3θθ′ + θ3 − 4rθ − 2r′)P = 0, θ =
1

2

k∑
j=1

ej

y − aj

.

(3)

(III) G is finite. A necessary condition for this case to hold is that all indicial exponents

τ±j and τ±∞ are rational.

(IV) G = SL(2,C), whose identity component is not abelian and therefore (1) is not

solvable.

In the next section we will derive the NVE about a planar geodesic on the Monge

patch with a plane of symmetry; in Section 3 we will prove, using the theorems presented

in this Section, that the NVE is not solvable and therefore the geodesic flow is not

Louiville integrable on the surface xyz = 1. In Section 4 we will consider some extensions

and consequences of this result, and in Section 5 we finish with some conclusions.

We note that the approach followed in this paper has been used to prove the non-

integrability of a number of problems in mechanics and celestial mechanics (see, for

example, [10], [11], [3], [14], [1], [12], [8], [2], to name but a few), but with the exception

of another work by the author [15] this approach is novel in examining geodesic flow.

2. Derivation of the NVE

The key feature of the surface xyz = c, where w.l.o.g. we can set c = 1, which facilitates

this analysis is that by a simple rearrangement and rotation of π/4 about the z-axis we

can write z = 1/(x2 − y2), or more generally

z = f(x, y), f,x(0, y) = 0. (4)

This means the surface is a Monge patch (or graph) with a plane of symmetry

(or invariant plane), the y-z plane. The surface is actually made up of 4 identical

components, and to demonstrate the non-integrability of the geodesics of the surface we

need only demonstrate this property on one component. We will restrict our attention

to the quadrant

{x, y, z ∈ R3 : |x| > |y|, x > 0}
which immediately rules out any possible divergences in f .

To keep the approach of this section general and to facilitate the analysis of Section

4 we will derive the NVE on the Monge patch with a plane of symmetry as in (4).
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Lemma 1. The normal variational equation about the planar geodesic on the Monge

patch (4) is

ξ̈ +K|0ξ = 0,

where K|0 is the Gauss curvature evaluated along the planar geodesic.

Proof. Using the standard parameterisation (x, y, f(x, y)) and resulting line element we

may calculate the Christoffel symbols and geodesic equations:

ẍa +
∑

b,c

Γa
bc ẋbẋc = 0, xa = (x, y)

where a dot denotes differentiation w.r.t. arc-length s. The x = 0 plane is invariant since

Γx
yy = 0 when f,x(0, y) = 0, and thus there is a planar geodesic (0, ỹ(s), f(0, ỹ(s))) where

ỹ solves (1 + f,y(0, ỹ)2) ˙̃y2 = 1. Linearizing the geodesic equations about this planar

geodesic the normal variational equation will simply be the variation in the x-direction,

namely

ξ̈ +
(
Γx

yy,x
˙̃y2

)∣∣∣
0
ξ = ξ̈ +

(
f,xxf,yy

(1 + f 2
,y)

2

) ∣∣∣
0
ξ = ξ̈ +K|0ξ = 0.

The problem with this equation is that the coefficient is a function of ỹ(s), which is

defined implicitly as a solution of (1 + f 2
,y ) ˙̃y2 = 1. Clearly ỹ will also parameterise the

planar geodesic and thus we make the change of independent variable to ỹ, calculating

derivatives such as (dropping the tildes)

d

ds
= ẏ

d

dy
=

1√
1 + f 2

,y

d

dy

and so on, to arrive at the NVE (dropping the 0 subscript)

ξ′′ −
(

f,yf,yy

1 + f 2
,y

)
ξ′ +

(
f,yyf,xx

1 + f 2
,y

)
ξ = 0. (5)

If, for a given surface z = f(x, y) with f,x(0, y) = 0, this NVE is not solvable in the

sense of differential Galois theory as described in Section 1, then the geodesic flow on

that surface is not integrable. This is precisely what we will show in the next Section

for the surface xyz = 1. Before we do however, we can make a comment about (5):

Notice that the equation is of the form ξ′′ − f,yQ(y)ξ′ + f,xxQ(y)ξ = 0. If

f,xx/f,y = 1/y, then (5) would have the simple solution ξ1 = c1y from which we could

construct a second solution via integrals and exponentiation of integrals of meromorphic

functions. This leads us to consider solutions of the PDE

yf,xx − f,y = 0 (6)
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(where we evaluate the derivatives of f at x = 0) as candidates for surfaces with

integrable geodesic flow. Examples include well-known integrable surfaces such as

f(x, y) = f(x2 + y2) and more interesting surfaces such as f = cos(ωx)e−ω2y2/2. But we

should not divert too much attention to (6): a surface which solves this equation need

not have integrable geodesic flow, it merely passes this integrability test.

3. Non-integrability of the surface xyz = 1

In the case of z = f(x, y) = (x2 − y2)−1, the NVE takes the form

ξ′′ − 18(2 + 3y6)

y2(y6 + 4)2
ξ = 0, (7)

where we have removed the ξ′ term from (5) via the standard transformation [5],

and we extend the independent variable to the complex domain. There are 8 regular

singular points, aj = {0, ρ1, . . . , ρ6, } and ∞ where ρi denotes the 6 roots of y6 + 4 = 0

symmetrically distributed about the circle of radius 6
√

4 centred on the origin. We find

the β coefficients are

βj =
{
− 9

4
,

5

16
, . . . ,

5

16

}
, β∞ = 0,

and only δ∞ = 0. We can see immediately that τ±0 = 1
2
(1± i

√
8), and therefore case III

of the Kovacic algorithm can be ruled out (the finite case). What’s more, none of the

other τ±j are complex so case I of the algorithm can also be ruled out (the triangulisable

case).

Case II is more problematic. The sets described in (2) are

E0 = {2}, E1...6 = {2, 5,−1}, E∞ = {0, 2, 4}.

There are 21 combination of the elements of these sets leading to each of d = 0 and d = 1,

and 1 leading to each of d = 2, 3, 4 (for example, d = 1
2

(
4−(2−1−1−1−1−1−1)

)
= 4).

For each of these combinations we must attempt to construct a monic polynomial of

order d that satisfies (3). This can be done using a computer algebra system such

as Mathematica; the calculations are tedious rather than difficult. By checking each

combination we can see that there is no polynomial P satisfying (3). We can now state

the main result of this paper:

Theorem 1. The geodesic flow on the surface xyz = 1 is not integrable in the sense of

Louiville with meromorphic first integrals.

Proof. The differential Galois group of the normal variational equation (7) does not fall

into case I, II or III of Kovacic’s algorithm, as we have shown above. Therefore we

must have G = SL(2,C), the identity component of which (also SL(2,C)) is not abelian.

By the Morales-Ramis theorem of Section 1 this means the geodesic equations are not

Louiville integrable with meromorphic first integrals.
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4. Extensions and limitations

It seems natural to ask can we use the same techniques to examine other surfaces

similarly defined. We will consider two generalisations, xnynzn = 1 and xnynz = 1.

4.1. Surfaces of the form xnynzn = 1

While it might seem “obvious” that xyz = 1 and (xyz)n = 1 are “the same”, care

needs to be taken. If n is an even integer then the surface will have twice as many

components as when n is odd; for example the point (1, 1,−1) is on x2y2z2 = 1 but

not on xyz = 1. To show they are isometric would require the calculation of the first

fundamental form, which is not well-defined for algebraic surfaces, i.e. surfaces defined

implicitly by F (x, y, z) = c. We can calculate the Gauss curvature using the following

expression [13] (here ∇F and H(F ) are the gradient and Hessian of F respectively, and

the norms are w.r.t. the ambient Euclidean space)

K = −

∣∣∣∣∣
H(F ) ∇F

∇F T 0

∣∣∣∣∣
|∇F |4

which we find to be independent of the value of n, but having the same Gauss curvature

at identified points is a necessary but not sufficient condition for isometry. Instead, we

can generate the geodesic equations themselves on the algebraic surfaces in question,

and prove the following theorem.

Theorem 2. The geodesic flow on the algebraic surface xnynzn = 1 with n ∈ R is not

Louiville integrable with meromorphic first integrals.

Proof. The geodesic equations on the algebraic surface F (r) = c where r = (x, y, z) are

given by [6]

r̈ = λ∇F, λ = −
(
H(F )ṙ

)
.ṙ

|∇F |2 .

Taking F = xnynzn we find the geodesic equations are independent of n, i.e. the

geodesic equations are the same for all values of n (we need to make use of the fact that

Ḟ = ∇F.ṙ = 0). We have shown the geodesic equations are not Louiville integrable

when n = 1 in the previous Section, and therefore they are not integrable for n ∈ R.

4.2. Surfaces of the form xnynz = 1

It might be hoped that we could generalize the surface considered in Section 3 to Monge

patches of the form

z =
1

(x2 − y2)n
, n ∈ N. (8)
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Unfortunately the techniques described in this paper do not allow for a uniform

treatment, for the following reason.

Using the methods of Section 2 the NVE of the planar geodesic of (8) is

ξ′′ +
2n2(2n + 1)(4n3 − 10n2 − y4n+2(4n + 5)

y2(4n2 + y4n+2)2
ξ = 0.

As before, there are regular singular points at 0,∞ and the 4n+2 roots of 4n2+y4n+2 = 0

which are distinct and symmetrically distributed along a circle centred on the origin of

the complex plane. The β coefficients are

βj =

{
(1 + 2n)(2n− 5)

4
,

5

16
, . . . ,

5

16

}
, β∞ = 0,

where 5
16

appears 4n + 2 times. We note that

√
1 + 4β0 = 2

√
n2 − 2n− 1 /∈ Q ∀ n ∈ N.

To show this we note that
√

1 + 4β0 ∈ Q ⇒ n2 − 2n − 1 = m2 for some m ∈ N. Since

n > m ⇒ m = n − η for η ∈ N which leads to a quadratic in η whose roots are

(2n + 1
2
,−1

2
) /∈ N. Therefore we can rule out cases I and III of the Kovacic algorithm

as in Section 3.

However, in analysing case II, the Ej sets as in (2) are

E0 = {2}, E1...(4n+2) = {2, 5,−1}, E∞ = {0, 2, 4}

and as such there will be a combination leading to d = 1
2

(
4− (2− (4n + 2))

)
= 2n + 2

and all values below. Thus we can at best look at individual values of n, for example:

Theorem 3. The geodesic flow on the surface x2y2z = 1 in not Louiville integrable with

meromorphic first integrals.

Proof. There are 615 combinations of the indicial exponents leading to d = 0; 55

leading to d = 1, 2, 3 and 1 leading to d = 4, 5, 6. Each of these need to be check

as described in Section 3. Again, the procedure is tedious rather than difficult. As

there are no combinations for which the necessary P exists, we can rule out case II of

Kovacic’s algorithm. Thus the identity component of the differential Galois group of

the normal variational equation is not abelian, and therefore the geodesic flow on the

surface z = 1/(x2 − y2)2 is not integrable.

As the number of cases which need to be checked increases rapidly for increasing n,

the methods described in this paper are not appropriate for testing the integrability of

surfaces of the form xnynz = 1. Having said that, since the n = 1 and n = 2 cases are

not integrable, we would conjecture that all surfaces of this form with n ∈ N are also

non-integrable.
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5. Conclusions

Using Morales-Ramis theory and Kovacic’s algorithm we are able to rigorously prove

the (meromorphic, Louiville) non-integrability of the geodesic flow on certain algebraic

surfaces. This approach is very geometrical in flavour, as opposed to the topological

approach followed by Kozlov [7]; nonetheless it is robust enough to deal with free

parameters and perturbations as another paper by the author has shown [15]. The

analysis was facilitated by two features of the surfaces considered: Monge patches allow

a simple intrinsic coordinate system/parameterization to be defined, and a plane of

symmetry leads to a planar geodesic along which the variational equations decouple

easily. It would be of interest to consider other surfaces where these properties do not

hold.
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