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Abstract

In this paper, we use a variety of mathematical techniques toexplore existence, local stabil-
ity, and global stability of equilibria in abstract models of mitochondrial metabolism. The
class of models constructed is defined by the biological description of the system, with min-
imal mathematical assumptions. The key features are an electron transport chain coupled to
a process of charge translocation across a membrane. In the absence of charge translocation
these models have previously been shown to behave in a very simple manner with a single,
globally stable equilibrium. We show that with charge translocation the conclusion about a
unique equilibrium remains true, but local and global stability do not necessarily follow. In
sufficiently low dimensions – i.e. for short electron transport chains – it is possible to make
claims about local and global stability of the equilibrium.On the other hand, for longer
chains, these general claims are no longer valid. Some particular conditions which ensure
stability of the equilibrium for chains of arbitrary lengthare presented.
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1 Introduction

The processes of electron transport and oxidative phosphorylation in mitochondria
are of vital biological importance, being central to cellular respiration and hence
energy production in most eukaryotic cells. Summaries of these processes can be
found in many modern biochemistry textbooks such as [1] or [2]. The basic features
of mitochondrial electron transport and oxidative phosphorylation are now well
understood, but elucidation of many of the detailed mechanisms is still in progress
[3].
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Mitochondrial electron transport occurs via a series of coupled redox reactions in
the mitochondrial inner membrane. After the initial reduction of a first electron
donor (e.g. NADH or FADH2 produced by glycolysis and the TCA cycle) elec-
trons are transferred from substrate to substrate, finally being accepted by oxygen.
During some of these electron transfers a second process takes place – protons
are pumped across the mitochondrial inner membrane producing a proton gradient
across this membrane. These protons then return down their gradient, either pas-
sively (termed leak current) or through a particular enzyme, ATP synthase, leading
to the phosphorylation of ADP.

Generic models of electron transport chains were explored in [4], where the main
emphasis was on the input-output response of such models. Inthe simplest case,
where the proton gradient across the membrane was ignored, these models were
found to have very simple behaviour – at all physically meaningful parameter val-
ues there was a single, globally stable, equilibrium. In [5], this result was shown
to generalise to the case of electron transfer networks withmore general topology
than a chain. On the other hand in the more biologically realistic case – where the
build up of a proton gradient has an inhibitory effect on electron transport – analysis
of the models proved harder. In this paper we analyse in more detail the behaviour
in this case.

Before discussing generic models, it is worth mentioning that there are several de-
tailed models of electron transport and oxidative phosphorylation such as [6], [7],
[8], [9]. These ordinary differential equation models have been designed with nu-
merical data in mind, and reflecting the complexity of the processes involved, the
functional forms are quite involved. Our interest in mitochondria was originally
inspired by analysis and simulation of some of these numerical models, but the ap-
proach here is quite different, and more akin to work in [4], [5], [10]. The generic
model we construct could be instantiated in a great variety of numerical models,
and the claims we make are valid for all possible instances ofthe generic model.

2 The model

2.1 The basic reaction scheme

The basic reaction scheme of interest here was described in some detail in [4] but
will be summarised here. Assume that there aren substrates, each of which can
exist in an oxidised state Ai and a reduced state Bi so that

A i + e− ⇌ Bi
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Further, assume that protons can exist in two compartments –the mitochondrial
matrix (where they are termed H+m), and the intermembrane space (where they are
termed H+e ) – with the possibility of transfers of the form

H+m ⇌ H+e

We are interested in reactions which are in general the combination of three pro-
cesses, a reduction, an oxidation, and the transport of someprotons across the mem-
brane. So for example, if substrate Ai is reduced to Bi, Bj is oxidised to Aj, andp
protons are pumped across the mitochondrial membrane we getthe half reactions

A i + e− ⇌ Bi , Bj ⇌ A j + e− and pH+m ⇌ pH+e

which combine to give

A i + Bj + pH+m ⇌ A j + Bi + pH+e

We also allow the possibility that a reducing/oxidising agent may be external to the
model giving reactions such as

A i + pH+m ⇌ Bi + pH+e or Bi + pH+m ⇌ A i + pH+e

A set of reactions of the kind just described can be combined into a network of re-
actions. A chain structure (as opposed to a more general network) derives from the
assumption that each oxidised substrate accepts an electron from only one donor,
and each reduced substrate transfers its electron to only one acceptor. This intro-
duces a natural ordering on the substrates, so that fori < n, theith substrate is able
to donate electrons to the (i + 1)th substrate, while fori > 1, theith substrate is
able to accept electrons from the (i − 1)th substrate. The first substrate is able to
accept electrons from outside the chain (reflecting the initial reduction of NADH
or FADH2), and thenth substrate is able to donate electrons to an acceptor outside
the chain (reflecting the action of O2).

Thus there aren + 1 redox reactions and theith reaction has forward ratefi. We
make no assumptions about the sign of thefi, potentially allowing reactions to be
reversible. Fori ≤ n, the ith reaction involves the reduction Ai, and fori ≥ 2, the
ith reaction involves the oxidation of Bi−1. We definepi as the number of protons
pumped across the mitochondrial membrane by theith reaction. Assuming that the
quantitiespi are constant discounts the possibility of “redox slip” [11], which does
not appear to be very important in normal circumstances [12]. A quantityψ can
be defined so that transfer of a single proton across the membrane creates one unit
of ψ. ψ can take any real value and is a strictly increasing functionof the elec-
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trical/chemical gradient against which protons are pumped across the membrane,
generally termed the proton motive force.

Finally, reflecting the combined effect of proton leak and ADP phosphorylation,
there is a process with rateL representing the “decay” ofψ. When there is no
gradient, no protons leak through the membrane, so thatL(0) = 0. FurtherL is
assumed to be strictly increasing inψ.

The structure of the model is illustrated in Figure 1.

B 1

A 1 A 3

B 3 B n

A n

f 3 f nf 1 f n+1

B 2

f 2

A 2

ψ

Fig. 1. A schematic representation of the reaction network.The quantities Ai and Bi refer
to oxidised and reduced states of the substrates. The functions fi define the forward rates
of reaction of then + 1 coupled redox reactions. The quantityψ represents the electrical
and chemical gradient across the mitochondrial membrane, which has an inhibitory effect
on any redox reactions which involve proton pumping.

Because the total quantity – oxidised plus reduced – of any substrate in the chain
is conserved, reduced forms of the substrates are not explicitly introduced. Instead,
the concentration of Ai is referred to asxi, and the total concentration of Ai + Bi is
assumed constant atmi. We arrive at a model of the form:

ẋ1 = − f1(x1, ψ) + f2(x1, x2, ψ)

ẋi = − fi(xi−1, xi, ψ) + fi+1(xi, xi+1, ψ) i = 2, . . . , n − 1

ẋn = − fn(xn−1, xn, ψ) + fn+1(xn, ψ)

ψ̇ =
n+1
∑

i=1
pi fi − L(ψ)
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











(1)

The phase space of this system is defined by the equations:

0 ≤ xi ≤ mi i = 1, . . . , n
−∞ < ψ < ∞

and is hencen + 1 dimensional, being the product of a closedn-dimensional box
and the real line.
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2.2 Assumptions

All the functions fi, along withL, are assumed to beC1 (once differentiable in all
their arguments with continuous derivatives). The following notation is used for the
derivatives of the functionsfi:

fi j ≡
∂ fi

∂x j
, Fi j ≡ − fi j , fiψ ≡

∂ fi

∂ψ
, Fiψ ≡ − fiψ (2)

At finite substrate concentrations, all reaction rates are finite, so that at any fixedψ
eachfi is bounded on its domain of definition.

Sinceψ represents a potential against which some of the reactions must do work,
the following relations are obtained:

fiψ < 0 if pi , 0 and fiψ = 0 if pi = 0 (3)

If pi , 0, thenψ inhibits the forward reaction and we assume that sufficiently large
values ofψ make the reaction rate arbitrarily small or negative, i.e.

lim
ψ→∞

fi(·, ψ) ≤ 0 i = 1, n + 1

lim
ψ→∞

fi(·, ·, ψ) ≤ 0 i = 2, . . . , n

This reflects the fact that the energy required to pump a proton against a chemi-
cal and electrical gradient becomes large as the gradient increases. Similarly−ψ
inhibits the backward reaction so that:

lim
ψ→−∞

fi(·, ψ) ≥ 0 i = 1, n + 1

lim
ψ→−∞

fi(·, ·, ψ) ≥ 0 i = 2, . . . , n

The following equations imply that no reaction can proceed in the absence of any
of its substrates:

f1(0, ·) = 0

fi(·, 0, ·) = 0 i = 2, · · · , n

fi(mi−1, ·, ·) = 0 i = 2, · · · , n

fn+1(mn, ·) = 0


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


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








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



















(4)
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The final set of conditions imply that increased substrate concentration increases
the rate of reaction unless one of the substrates is entirelyabsent:

f11 > 0

fii ≥ 0 and fii > 0 if xi−1 < mi−1 i = 2, · · · , n

fi+1,i ≤ 0 and fi+1,i > 0 if xi+1 > 0 i = 1, · · · , n − 1

fn+1,n < 0


























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

















(5)

The fact that the first and final inequalities are always strict implies that there is al-
ways some electron donor to reduce the initial substrate, and some electron acceptor
to oxidise the final substrate, and ensures nondegenerate behaviour. The assump-
tions from (5) mean thatfii, Fi j andFiψ as defined in (2) are all nonnegative. The
definition of these nonnegative quantities is solely to simplify later arguments.

3 General behaviour of the system

In this section we outline some properties of the model that hold regardless of the
numbern of redox pairs.

3.1 Boundedness of solutions

It is convenient to define ann × (n + 1) matrix which can be regarded as a stoichio-
metric matrix for the redox reactions:

S ≡



















































−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1



















































Defining the vector of reactant concentrationsx = [x1, x2, . . . , xn]T , the vector of re-
action ratesv(x, ψ) = [ f1, f2, . . . fn+1]T , and the nonnegative vectorP ≡ [p1, . . . , pn+1]T ,
we can rewrite the system of equations (1) more briefly as

ẋ= S v(x, ψ)
ψ̇= PT v(x, ψ) − L(ψ)
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We now show that all forward trajectories of the system are bounded. Since the
phase space is bounded inx, what needs to be shown is that all trajectories en-
ter a bounded region in theψ direction. This amounts to showing thatψ̇ > 0
for ψ sufficiently large and negative, and thatψ̇ < 0 for ψ sufficiently large and
positive. By assumption, for any giveni, either pi = 0 or fiψ is strictly nega-
tive and limψ→∞ fi(·, ·, ψ) ≤ 0, limψ→−∞ fi(·, ·, ψ) ≥ 0. This in turn implies that
limψ→∞ PT v(x, ψ) ≤ 0 and limψ→∞ PT v(x, ψ) ≥ 0. In additionL is strictly increasing
from zero asψ increases. Thus for any fixed value ofx, limψ→∞ PT v(x, ψ)− L(ψ) <
0 and limψ→−∞ PT v(x, ψ) − L(ψ) > 0. Defineψ0(x) as the value ofψ at which
PT v(x, ψ) − L(ψ) = 0. ψ0(x) is uniquely defined sincePT v(x, ψ) − L(ψ) is strictly
decreasing. By the implicit function theorem,ψ0(x) is a differentiable function since
PT v(x, ψ) − L(ψ) is a differentiable function ofx. Since it has a compact domain,
ψ0(x) achieves a maximum value which we callψmax, and a minimum value which
we callψmin. By these definitions,̇ψ(ψ, x) < 0 for all ψ > ψmax, andψ̇(ψ, x) > 0 for
all ψ < ψmin.

Thus all trajectories enter a closed box,B, bounded by the hyperplanesxi = 0,
xi = mi, ψ = ψmin andψ = ψmax, and this box forms a trapping region for the system
in all dimensions.

3.2 The Jacobian

Direct calculation gives that the Jacobian,J, of the system is:

J =







































































− f11 − F21 f22 · · · 0 F1ψ − F2ψ

F21 − f22− F32 · · · 0 F2ψ − F3ψ

...
...

. . .
...

...

0 0 · · · − fnn − Fn+1,n Fnψ − Fn+1,ψ

p1 f11−p2F21 p2 f22−p3F32 · · · pn fnn−pn+1Fn+1,n −Lψ−
n+1
∑

i=1
piFiψ
















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



















































Here Lψ ≡ dL
dψ . The structure of this Jacobian can be made clearer by defining

two further quantities: A nonnegative vector inR
n, F ≡ [F1ψ, . . . , Fnψ]T ; and an
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(n + 1)× n matrix

V ≡
∂v
∂x
=



















































































f11 0 0 · · · 0

−F21 f22 0 · · · 0

0 −F32 f33 · · · 0
...

...
...
. . .

...

0 0 0 · · · fnn

0 0 0 · · · −Fn+1,n
















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
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
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
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

































Then the Jacobian can be written in the block form:

J =





















S V S F

PT V −PT F − Lψ





















(6)

S V is the Jacobian of the system without feedback, which is tridiagonal, and can
easily be shown to have real negative eigenvalues [4]. It wasshown in [13] that the
structures ofS andV along with the nonnegativity ofP andF imply that J is a so
calledP(−) matrix (see Appendix A for the definition)2 . This result is independent
of n, the length of the chain. It has the consequence that the system is injective; this
is discussed further in the next section.

The fact thatJ is a P(−) matrix has another consequence of importance to us: It
means that its eigenvalues are excluded from a certain wedgearound the positive
real axis: Ifλ = reiθ is an eigenvalue of anm ×m P matrix, then it is proved in [14]
that:

|θ − π| > π/m

and equivalently for aP(−) matrix,

|θ| > π/m

Clearly whenm = 2, this means that both eigenvalues lie in the left half plane,
so that 2× 2 P(−) matrices are Hurwitz stable (see Appendix A for a definition of
“Hurwitz stable” which we will abbreviate to “Hurwitz”). However form > 2, P(−)

matrices may be unstable.

2 The nondegeneracy conditions presented in [13] are met because thenth substrate is
terminal, and all substrates are able to transfer electronsalong the chain to thenth substrate.
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3.3 A unique equilibrium

The existence of a unique equilibrium for this system was shown in [4] by a direct
method. It also follows from the arguments presented above:That an equilibrium
must exist follows, by the Brouwer fixed point theorem, from the existence of the
compact, convex, trapping region,B constructed above; That this equilibrium must
be unique follows from the fact that the Jacobian is aP(−) matrix, and hence the
system is injective [15]. Thus as our first result we can statethat

Electron transport chains coupled to charge translocationacross a membrane
have exactly one equilibrium.

It is interesting that the possibility of multistability isimmediately ruled out. How-
ever this in itself does not tell us whether all trajectoriesmust necessarily converge
to the unique equilibrium, or whether periodic or chaotic behaviour is still possible.

4 Stability of the equilibrium

In this section, we analyse stability of the unique equilibrium, starting with low
dimensions (i.e. short chains). For two dimensions we provethat the equilibrium
is globally asymptotically stable. In three dimensions we show that the addition
of an extra, reasonable, constraint implies that the equilibrium is locally stable,
and further constraints ensure that it is globally stable. We then demonstrate that
these constraints do not suffice to guarantee stability in four dimensions and higher.
Finally, we outline some additional special conditions that guarantee the Jacobian
is Hurwitz in all dimensions.

4.1 The system in two dimensions

The system in 2D consists of a single redox pair subject to a reduction process
and an oxidation process, both possibly coupled to proton translocation across the
membrane. It takes the form

ẋ1=− f1(x1, ψ) + f2(x1, ψ)
ψ̇= p1 f1 + p2 f2 − L(ψ)

The Jacobian of the system in this case is:
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J2 =





















− f11− F21 F1ψ − F2ψ

p1 f11−p2F21 −Lψ−p1F1ψ −p2F2ψ





















(7)

We have already mentioned that 2DP(−) matrices are Hurwitz stable, and it fol-
lows that the matricesJ2 are Hurwitz stable (This can also be shown with a direct
calculation).

SinceJ2 is Hurwitz stableeverywhere, not just at the unique equilibrium, the Markus-
Yamabe Theorem (e.g. [16], [17], [18]) ensures that the equilibrium is globally
stable. We also offer an alternative, elementary, proof of global stability. By the
Poincaré-Bendixson Theorem (see, for example, [19]),ω-limit sets of a flow on
compact subsets ofR2 must either contain equilibria or consist of a periodic orbit.
In this case we can rule out the possibility of periodic orbits: The divergence of the
vector field is equal to

Tr(J) = − f11 − F21 − p1F1ψ − p2F2ψ − Lψ

which is negative. Thus the vector field satisfies the Dulac criterion (e.g. [20]) and
there are no periodic orbits. We know that there is only one equilibrium, which is
locally stable, and therefore there are no heteroclinic or homoclinic orbits either.
Since every forward trajectory enters the boxB, the unique equilibrium must be
theω-limit of every trajectory, and is hence globally stable.

4.2 The system in three dimensions

Slightly more complex than the two dimensional system is thesystem in three
dimensions which takes the form

ẋ1=− f1(x1, ψ) + f2(x1, x2, ψ)
ẋ2=− f2(x1, x2, ψ) + f3(x2, ψ)
ψ̇= p1 f1 + p2 f2 + p3 f3 − L(ψ)

with Jacobian

J3 =



































− f11 − F21 f22 F1ψ − F2ψ

F21 − f22 − F32 F2ψ − F3ψ

p1 f11−p2F21 p2 f22−p3F32 −Lψ−p1F1ψ −p2F2ψ −p3F3ψ



































(8)
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As it stands,J3 is not always Hurwitz. For example, the Jacobian constructed using
the following values:p1 = 3, p2 = 0, p3 = 88, F1ψ = 33, F2ψ = 4, F3ψ = 0.6, f11 =

23, f22 = 3, F21 = 94, F32 = 76, Lψ = 6 has two eigenvalues with positive real part.

J3 can be shown to be Hurwitz everywhere in 3D provided one extracondition is
met: p1 and p3 must have the same ordering asF1ψ andF3ψ. For a real numberz,
define the function

sign(z) ≡



































1 (z > 0)

0 (z = 0)

−1 (z < 0)

(9)

Then the ordering assumption translates to the following statement:

sign(F3ψ − F1ψ) = sign(p3 − p1) (10)

With this assumption, the Jacobian is everywhere Hurwitz, and hence the equilib-
rium is locally asymptotically stable. The proof is simple but requires some lengthy
evaluations, and the details are presented in Appendix B.

Unlike in the 2D case it does not follow that the equilibrium is globally stable, since
the Markus-Yamabe conjecture does not hold in dimensions greater than 2 [21].
However we can prove global stability in this case too subject to a strengthened
version of the ordering assumption on the quantitiespi andFiψ. We now require

sign(Fiψ − F jψ) = sign(pi − p j) (11)

for i, j ∈ {1, 2, 3}.

With this assumption we are able to use a version of Li and Muldowney’s au-
tonomous convergence theorem (Theorem 4.1 in [22]) to show that the unique
equilibrium is globally stable. In order to use this theoremtwo concepts are needed:

(1) Thesecond additive compoundof a matrix
(2) Logarithmic norms of a matrix

Both quantities are defined for square matrices. The second additive compound ma-
trix of any n × n matrix J is a square matrix of dimensionnC2 which we will term
J[2] . Logarithmic norms are scalar quantities, and corresponding to any given ma-
trix norm, there is a logarithmic norm. Unlike matrix norms,however, logarithmic
norms may take negative values. The definitions are given in Appendix A.
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Consider a dynamical system with JacobianJ(x) at some point of phase spacex.
Define J to be the set of all these Jacobians. For our purposes, the autonomous
convergence theorem states the following: If a logarithmicnorm µ can be found
such that

µ(J[2]) < 0 for all J ∈ J (12)

then the limit set of each bounded semi-trajectory of the dynamical system is an
equilibrium.

Since all trajectories enter the trapping regionB in our system, and sinceB contains
a unique equilibrium, finding a suitable logarithmic norm satisfying (12) will suffice
to prove global stability of the equilibrium.

The second additive compound in this case is:

J[2]
3 =













































− f11−F21− f22−F32 F2ψ − F3ψ −(F1ψ − F2ψ)

p2 f22−p3F32 − f11−F21−Lψ−
3
∑

i+1
piFiψ f22

−(p1 f11−p2F21) F21 − f22−F32−Lψ−
3
∑

i+1
piFiψ













































We will construct a logarithmic normµT such thatµT

(

J[2]
3

)

< 0. For a realn × n
matrix, the logarithmic norm corresponding the usual‖ · ‖1 norm takes the form:

µ1 = max
i∈{1,...,n}

















xii +
∑

k,k,i

|xki|

















From the definition it is clear that a matrix has negative logarithmic normµ1 if and
only if every diagonal entry is negative and it is strictly diagonally dominant in
every column. Next we define a constant diagonal coordinate transformation

T =



































1 0 0

0 1
pmax

0

0 0 1
pmax



































wherepmax = max
i∈{1,2,3}

(pi).

According to Lemma 2.2 of [23], given any invertible transformationT , µT (M) ≡
µ1(T MT−1) defines a new logarithmic norm. In this case, sinceT is a diagonal
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matrix, the diagonal entries ofM are the same as those ofT MT−1. Thus in order to
prove thatµT (J[2]

3 ) < 0, we need to show thatJ′ ≡ T J[2]
3 T−1 is strictly diagonally

dominant in every column.

For the first column, we have

J′11 +
∣

∣

∣J′21

∣

∣

∣ +
∣

∣

∣J′31

∣

∣

∣=− f22 − F32 − f11− F21

+

∣

∣

∣

∣

∣

p2

pmax
f22−

p3

pmax
F32

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

p2

pmax
F21−

p1

pmax
f11

∣

∣

∣

∣

∣

It can easily be seen that the term on the right hand side is negative since for any
two nonnegative scalars|a − b| ≤ max{|a|, |b|}.

For the second column, we have

J′22 +
∣

∣

∣J′12

∣

∣

∣ +
∣

∣

∣J′32

∣

∣

∣ = −

3
∑

i=1

piFiψ − Lψ − f11+ pmax

∣

∣

∣F2ψ − F3ψ

∣

∣

∣

For the final column, we have

J′33 +
∣

∣

∣J′13

∣

∣

∣ +
∣

∣

∣J′23

∣

∣

∣ = −

3
∑

i=1

piFiψ − Lψ − F32 + pmax

∣

∣

∣F2ψ − F1ψ

∣

∣

∣

In order to show that the right hand sides of the last two expressions are negative
we need to show in each case that our ordering assumption (11)implies that the
final term (which may be positive) is dominated in magnitude by the other terms.

Note that|Fiψ−F jψ| ≤ max{Fiψ, F jψ} ≤ max
k∈{1,2,3}

(Fkψ). Then there are only three cases:

(1) if pmax = p1, thenpmax

∣

∣

∣F2ψ − F3ψ

∣

∣

∣ ≤ p1F1ψ, andpmax

∣

∣

∣F2ψ − F1ψ

∣

∣

∣ ≤ p1F1ψ.
(2) if pmax = p2, thenpmax

∣

∣

∣F2ψ − F3ψ

∣

∣

∣ ≤ p2F2ψ, andpmax

∣

∣

∣F2ψ − F1ψ

∣

∣

∣ ≤ p2F2ψ.
(3) if pmax = p3, thenpmax

∣

∣

∣F2ψ − F3ψ

∣

∣

∣ ≤ p3F3ψ, andpmax

∣

∣

∣F2ψ − F1ψ

∣

∣

∣ ≤ p3F3ψ.

Each of these possibilities leads to the same conclusion – that J′ii +
∑

k,k,i
|J′ki| < 0 for

eachi. Hence we haveµT

(

J[2]
3

)

< 0.

This result means that if the ordering assumption (11) holds, then the unique equi-
librium is globally stable. The ordering assumption itselfhas the following reason-
able physical meaning which we would expect to be fulfilled inpractice: If redox
reactioni is involved in pumping more protons across the membrane thanredox
reactionj, then reactioni is correspondingly more inhibited byψ than reactionj. It
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is interesting to note however that this assumption is not necessary to prove global
stability in the 2D case. It is also unknown to us whether the weaker assumption
(10), which guarantees that the Jacobian is everywhere Hurwitz, actually guaran-
tees global stability in 3D.

4.3 Unstable examples in higher dimensions

The ordering assumption (11) does not guarantee global or even local stability of
the equilibrium in dimensions greater than 3. It is easy to construct counterex-
amples. For example, in four dimensions, the Jacobian constructed by choosing
p1 = 2, p2 = p3 = 0, p4 = 73, F1ψ = 167, F2ψ = F3ψ = 0, F4ψ = 176, f11 = 4,
f22 = 7, f33 = 1, F21 = 32, F32 = 64, F43 = 174,Lψ = 33, satisfies all the con-
straints, including the ordering assumption on the values of pi andFiψ. However it
has, two eigenvalues with positive real part.

We make the following remarks:

(1) By continuity, the fact that a non-Hurwitz Jacobian can be constructed in 4
dimensions guarantees that such examples also exist in all higher dimensions.

(2) Systems with non-Hurwitz Jacobian satisfying the ordering assumption (11)
seem to be rare. Through use of an automated computer script running in the
open source numerical computation program Scilab [24], counterexamples in
dimension 4 were found by randomly choosing values for the different terms
in the Jacobian, such that all the assumptions were satisfied. Out of hundreds
of millions of sets of values, less than ten were non-Hurwitz.

(3) The counterexamples found appear always to be close to breaking the ordering
assumption. For instance, in the example shown,p4 is much greater thanp1,
whereasF4ψ is close in magnitude toF1ψ.

4.4 A special case: Reaction rates dependent on potentials

In this section we consider an interesting assumption whichensures that the Jaco-
bian is Hurwitz everywhere (and hence the unique equilibrium is locally stable).
The assumption is as follows:

(1) Associated with each half reaction is some “potential”:In the case of a redox
reaction of the form Ai + e− ⇌ Bi, a potential means any strictly increasing
scalar function of [Ai]; In the case of a charge transfer across a membrane a
potential means any strictly increasing scalar function ofψ.

(2) The rate of any full reaction depends only on thesumof the potentials for the
half reactions involved, and is a strictly decreasing function of this sum.
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This assumption can be interpreted, loosely, as saying thatthe energetics of the
system determine the reaction rates. For example, considerthe electron transfer
coupled to some proton pumping

A i + Bj + pH+m ⇌ A j + Bi + pH+e

derived from the half reactions

A i + e− ⇌ Bi , Bj ⇌ A j + e− and pH+m ⇌ pH+e

In this case, the assumption would imply that the forward rate of the combined
reaction can be writtenf (−g j(x j) + gi(xi) − pgψ(ψ)) where the only stipulation is
that f , gi, g j andgψ are strictly increasing in their arguments. When this assumption
is made about all reaction rates in the system, the full system becomes:

ẋ1=− f1(g1(x1) − p1gψ(ψ)) + f2(−g1(x1) + g2(x2) − p2gψ(ψ))
ẋi =− fi(−gi−1(xi−1) + gi(xi) − pigψ(ψ)) +

fi+1(−gi(xi) + gi+1(xi+1) − pi+1gψ(ψ)) i = 2, . . . , n
ẋn =− fn(−gn−1(xn−1) + gn(xn) − pngψ(ψ)) + fn+1(−gn(xn) − pn+1gψ(ψ))

ψ̇=

n+1
∑

i=1

pi fi − L(ψ)

The term fi(−gi−1(xi−1) + gi(xi) − pigψ(ψ)) represents the rate at which theith sub-
strate receives electrons from the (i − 1)th substrate. Denoting byf

′

i , g
′

i andg
′

ψ the
derivatives of the functionsfi, gi andg

′

ψ, the Jacobian of this system can be written
J = J0D whereJ0 is the symmetric matrix

J0 =







































































−( f
′

1 + f
′

2) f
′

2 · · · 0 p1 f
′

1 − p2 f
′

2

f
′

2 −( f
′

2 + f
′

3) · · · 0 p2 f
′

2 − p3 f
′

3
...

...
. . .

...
...

0 0 · · · −( f
′

n + f
′

n+1) pn f
′

n − pn+1 f
′

n+1

p1 f
′

1−p2 f
′

2 p2 f
′

2−p3 f
′

3 · · · pn f
′

n−pn+1 f
′

n+1 −
n+1
∑

i=1
p2

i f
′

i −
Lψ
g
′

ψ







































































(13)
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andD is the positive diagonal matrix

D =



































































g
′

1 0 · · · 0 0

0 g
′

2 · · · 0 0
...
...
. . .

...
...

0 0 · · · g
′

n 0

0 0 · · · 0 g
′

ψ



































































(14)

From the discussions earlier,J0 is aP(−) matrix. Further it is symmetric, and hence
sign symmetric (see Appendix A for a definition of sign symmetry). This implies
[25] that J0 is D-stable, i.e. the product ofJ0 with any positive diagonal matrix is
Hurwitz. HenceJ is Hurwitz. Thus the assumption that reaction rates depend on
the sum of potentials of the half reactions involved ensuresthat the Jacobian of the
system is everywhere Hurwitz.

5 Discussion and conclusions

We have analysed in some detail, and using a variety of mathematical techniques,
the behaviour of electron transport chains coupled to a charge translocation process.
In all cases trajectories are bounded, and there is a unique equilibrium, but ques-
tions about the stability of this equilibrium have proved harder. Where the chain
consists of a single redox pair, the unique equilibrium is globally stable. When
there are two redox pairs the same conclusions can be reachedsubject to some
extra conditions on the feedback process. In higher dimensions no such general
conditions could easily be found. Thus the length of the electron transport chain is
crucial in deciding on stability of the equilibrium.

It is somewhat surprising that the coupling of electron transfer to a membrane po-
tential – a negative feedback loop – can serve to destabilisethe unique equilibrium
in these systems. Interestingly, when the reaction rates are monotonic functions of
a sum of potentials, then the system in any dimension could beproved to be ev-
erywhere Hurwitz. Reaction rates cannot in general be seen in this way, but in the
case of reactions which are primarily about charge transfer, the assumption could
be reasonable. Certainly some of the choices of reaction rates in numerical models
such as [6] satisfy this assumption.

There are some interesting open questions, both biologicaland mathematical. From
a biological point of view, it is of interest to find out whether experiments on mi-
tochondria with constant inputs ever display behaviour other than convergence to
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an equilibrium, such as periodic or chaotic behaviour. If this is never the case, then
this suggests that our very general model may be omitting certain important biolog-
ical/thermodynamic restrictions on the reaction rates, which would tend to stabilise
the system. It would also be interesting to see how additional processes such as
transport processes in the full numerical models ([6], [9] for example) affect the
conclusions presented here.

An open mathematical question is whether there are equivalent conditions to the
ordering condition in 3D which ensure that the Jacobian of the system is Hurwitz
in arbitrary dimension, or better still that the second additive compound has nega-
tive logarithmic norm, and hence the unique equilibrium is globally stable. If such
conditions exist can they be given general biological meanings?

It would also be interesting to explore when the results presented here survive
weakening of the assumption that electrons are transferredalong a chain. Although
electron transfers taking place in the mitochondrial membrane are often described
via a “chain” it is likely that this description is a convenient simplification rather
than the whole truth. General electron transfer networks inthe absence of a poten-
tial were analysed in [5] and found to have simple behaviour.Application of the
theory presented in [13] should allow determination of whenthese networks give
rise toP(−) Jacobians when interacting with a membrane potential.

Finally, although conditions ensuring sign-symmetry of the system imply that the
Jacobian is everywhere Hurwitz, it is an open question as to whether this implies
global stability of the unique equilibrium. Since the Markus-Yamabe conjecture
does not hold in dimensions greater than 2 [21], global stability does not follow
automatically from local stability, and requires independent proof.

A Definitions

A.1 Hurwitz stability of matrices

A square matrix is defined to beHurwitz stable if all its eigenvalues lie in the open
left half of the complex plane – i.e. the real parts of all its eigenvalues are negative.

A.2 P matrices and related classes

For somen×m matrixA, A(α|γ) will refer to the submatrix ofA with rows indexed
by the setα ⊂ {1, . . . , n} and columns indexed by the setγ ⊂ {1, . . . ,m}. A principal
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submatrix of A is a submatrix containing columns and rows from the same index
set, i.e. of the formA(α|α). A minor is the determinant of any square submatrix
of A. If A(α|γ) is a square submatrix ofA (i.e. |α| = |γ|), thenA[α|γ] will refer to
the corresponding minor, i.e.A[α|γ] = det(A(α|γ)). A principal minor of A is the
determinant of a principal submatrix ofA.

P matrices are square matrices all of whose principal minors are positive. They are
by definition nonsingular. If−A is a P matrix, then we will say thatA is a P(−)

matrix. If A is aP(−) matrix, this means that eachk×k principal minor ofA has sign
(−1)k.

A.3 Sign symmetry

An n × n matrix issign-symmetric if symmetrically placed minors have the same
sign, i.e.A[α|γ]A[γ|α] ≥ 0 for everyα, γ ⊂ {1, . . . , n} with |α| = |γ|.

A.4 Second additive compound matrices

A brief definition of the second additive compound of any square matrix can be
found in [26]. For a more detailed discussion see [27]. For a 3D matrix

A =



































a11 a12 a13

a21 a22 a23

a31 a32 a33



































(A.1)

the second additive compound takes the form3

A[2] =



































a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22+ a33



































This second additive compound was constructed using the standard lexicographic
ordering of basis vectors. It is possible to construct a second additive compound
using a different ordering, but such choices make no difference to the logarithmic
norms of the matrix.

3 In general, the second additive compound of a matrixA has dimensiondC2 whered =
dim(A). When dim(A) = 3, we get dim(A[2]) = 3 also, but this is not generally the case.
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A.5 Logarithmic norms

If ‖ · ‖ denotes a vector norm onRn, and also the induced matrix norm onn × n
matrices, then the logarithmic norm [28], also known as a Lozinskiı̆ measure, of an
n × n matrix A is defined by

µ(A) = lim
h→0+

‖I + hA‖ − 1
h

(A.2)

B Local stability in 3D

In this appendix we prove local stability of the equilibriumin three dimensions,
subject to the assumption in (10), using the Routh-Hurwitz theorem. Consider the
characteristic polynomial of a matrixA:

|λI − A| = λn + b1λ
n−1 + . . . + bn−1λ + bn (B.1)

In this equation,I is then × n identity matrix, and the coefficientsbi are the sums
of all principal minors of−A of dimensioni. For aP(−) matrix,bi > 0 for all i. Now
definebk ≡ 0 for all k > n, and construct a set of numbers∆i as follows:

∆i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 1 0 0 0 0 · · · 0

b3 b2 b1 1 0 0 · · · 0

b5 b4 b3 b2 b1 1 · · · 0
...

...
...

...
...

. . .
... 0

b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 b2i−6 · · · bi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(B.2)

The Routh-Hurwitz theorem states thatA is Hurwitz if and only if∆i > 0 for all
i ≤ n. In three dimensions, we need to check that the three quantities

∆1= b1 (B.3)
∆2= b1b2 − b3 (B.4)
∆3= b3(b1b2 − b3) = b3∆2 (B.5)

are all positive. Since all thebi are positive, all three quantities are positive if and
only if ∆2 > 0. This in turn follows (condition 12 in [25]) if

0 < a12a23a31 + a21a32a13− 2a11a22a33

19



whereai j are elements ofA. Substitutingai j for the elements of the Jacobian and
expanding using the open source symbolic algebra program Maxima [29] gives the
following condition:

a12a23a31+ a21a32a13− 2a11a22a33= F21 F32

(

2p3F3ψ + 2p1F1ψ − p3F1ψ

)

+ f11 f22

(

2p3F3ψ + 2p1F1ψ − p1F3ψ

)

+ positive terms

With the ordering assumption (10), we get:

2p3F3ψ + 2p1F1ψ − p3F1ψ ≥ 0 (B.6)
2p3F3ψ + 2p1F1ψ − p1F3ψ ≥ 0 (B.7)

Thus the Jacobian is everywhere Hurwitz and hence the uniqueequilibrium of
the system must be locally asymptotically stable. Note thatthe restriction (10) is
stronger than necessary to ensure thatJ is Hurwitz, but no other set of conditions
with a clear physical meaning that make the Jacobian Hurwitzhave been discov-
ered. Finding a set of necessary and sufficient conditions forJ to be Hurwitz is a
difficult problem.
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