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Abstract

In this paper, we use a variety of mathematical techniquegptore existence, local stabil-
ity, and global stability of equilibria in abstract modefsmoitochondrial metabolism. The
class of models constructed is defined by the biologicalrg#&m of the system, with min-
imal mathematical assumptions. The key features are atn@idcansport chain coupled to
a process of charge translocation across a membrane. Ibdbaee of charge translocation
these models have previously been shown to behave in a vepfesimanner with a single,
globally stable equilibrium. We show that with charge ttanation the conclusion about a
unique equilibrium remains true, but local and global sitytilo not necessarily follow. In
suficiently low dimensions —i.e. for short electron transpdiios — it is possible to make
claims about local and global stability of the equilibriu@n the other hand, for longer
chains, these general claims are no longer valid. Somecpkaticonditions which ensure
stability of the equilibrium for chains of arbitrary lengtine presented.
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1 Introduction

The processes of electron transport and oxidative phoglati@mn in mitochondria
are of vital biological importance, being central to cedlutespiration and hence
energy production in most eukaryotic cells. Summaries e$é¢hprocesses can be
found in many modern biochemistry textbooks such as [1] pi[&e basic features
of mitochondrial electron transport and oxidative phosplation are now well
understood, but elucidation of many of the detailed med@masiis still in progress

[3].
1 Funded by an EPSREIRC grant to the MIAS IRC (Grant Ref: GR1424801)
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Mitochondrial electron transport occurs via a series ofpbed redox reactions in
the mitochondrial inner membrane. After the initial redostof a first electron
donor (e.g. NADH or FADH produced by glycolysis and the TCA cycle) elec-
trons are transferred from substrate to substrate, finallygoaccepted by oxygen.
During some of these electron transfers a second process [#ce — protons
are pumped across the mitochondrial inner membrane pnoglagproton gradient
across this membrane. These protons then return down traglregt, either pas-
sively (termed leak current) or through a particular enzyAid® synthase, leading
to the phosphorylation of ADP.

Generic models of electron transport chains were explar¢d]j where the main
emphasis was on the input-output response of such modetlse Isimplest case,
where the proton gradient across the membrane was igndresk tmodels were
found to have very simple behaviour — at all physically meghil parameter val-
ues there was a single, globally stable, equilibrium. In {Bis result was shown
to generalise to the case of electron transfer networks mvire general topology
than a chain. On the other hand in the more biologically séalcase — where the
build up of a proton gradient has an inhibitoffiezt on electron transport — analysis
of the models proved harder. In this paper we analyse in metagldhe behaviour
in this case.

Before discussing generic models, it is worth mentionirad there are several de-
tailed models of electron transport and oxidative phosghtion such as [6], [7],

[8], [9]. These ordinary dierential equation models have been designed with nu-
merical data in mind, and reflecting the complexity of thegaisses involved, the
functional forms are quite involved. Our interest in mitookria was originally
inspired by analysis and simulation of some of these nuraemodels, but the ap-
proach here is quite flerent, and more akin to work in [4], [5], [10]. The generic
model we construct could be instantiated in a great varietyumerical models,
and the claims we make are valid for all possible instancéiseofeneric model.

2 The model

2.1 The basic reaction scheme

The basic reaction scheme of interest here was describexia detail in [4] but
will be summarised here. Assume that there mibstrates, each of which can
exist in an oxidised state;and a reduced state Bo that

Ai+e =B



Further, assume that protons can exist in two compartmettg mitochondrial
matrix (where they are termed/}§ and the intermembrane space (where they are
termed H) — with the possibility of transfers of the form

H. = Hg

We are interested in reactions which are in general the awetibn of three pro-
cesses, a reduction, an oxidation, and the transport of post@ns across the mem-
brane. So for example, if substrateid reduced to B B; is oxidised to A, andp
protons are pumped across the mitochondrial membrane wheaybtlf reactions

Ai+e =B, Bj=Aj+e and pH; = pH;

which combine to give

A+ Bj + pH,, = Aj + B; + pH;

We also allow the possibility that a reducjogidising agent may be external to the
model giving reactions such as

Ai+pH, = Bi+pH, or Bi+pH;, = A+ pHg

A set of reactions of the kind just described can be combintxa network of re-
actions. A chain structure (as opposed to a more generabridtderives from the
assumption that each oxidised substrate accepts an eldadra only one donor,
and each reduced substrate transfers its electron to oehacteptor. This intro-
duces a natural ordering on the substrates, so thatfar, theith substrate is able
to donate electrons to the { 1)th substrate, while for > 1, theith substrate is
able to accept electrons from thie-(1)th substrate. The first substrate is able to
accept electrons from outside the chain (reflecting théiméduction of NADH

or FADH,), and thenth substrate is able to donate electrons to an acceptodeutsi
the chain (reflecting the action of,P

Thus there ar@ + 1 redox reactions and thé reaction has forward ratg. We
make no assumptions about the sign of theotentially allowing reactions to be
reversible. For < n, theith reaction involves the reduction fand fori > 2, the
ith reaction involves the oxidation of,B. We definep; as the number of protons
pumped across the mitochondrial membrane bytthesaction. Assuming that the
guantitiesp; are constant discounts the possibility of “redox slip” [2/hich does
not appear to be very important in normal circumstances. [A2juantity s can
be defined so that transfer of a single proton across the namaloreates one unit
of ¥. ¢ can take any real value and is a strictly increasing functibthe elec-



trical/chemical gradient against which protons are pumped achessiémbrane,
generally termed the proton motive force.

Finally, reflecting the combinedfect of proton leak and ADP phosphorylation,
there is a process with rate representing the “decay” af. When there is no
gradient, no protons leak through the membrane, soltf@t = 0. FurtherL is
assumed to be strictly increasingyn

The structure of the model is illustrated in Figure 1.
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Fig. 1. A schematic representation of the reaction netwbhe quantities Aand B refer
to oxidised and reduced states of the substrates. The dusdii define the forward rates
of reaction of then + 1 coupled redox reactions. The quantgtyrepresents the electrical
and chemical gradient across the mitochondrial membrahighvwas an inhibitory féect
on any redox reactions which involve proton pumping.

Because the total quantity — oxidised plus reduced — of ahgtgate in the chain
is conserved, reduced forms of the substrates are not gkpitroduced. Instead,
the concentration of As referred to a%;, and the total concentration of A B; is
assumed constant at. We arrive at a model of the form:

X1 = —f1(xe, ¢) + fo(Xe, X2, ¥)

X = —fi(%-1. %, ¥) + fia(X, X yp) 1=2,...,n-1 1)
Xo = = Fa(Xn-1, X0, ¥9) + o1 (Xn, ¥)

b =% phi-Lw)

The phase space of this system is defined by the equations:
O<x<m i=1,...,n
—00 <Y < 00

and is hencen + 1 dimensional, being the product of a clogedimensional box
and the real line.



2.2 Assumptions

All the functionsf;, along withL, are assumed to @' (once diterentiable in all
their arguments with continuous derivatives). The follogvnotation is used for the
derivatives of the function§:

_an’

of
FijE_fija fil/,E—l, Fil//E_fil// (2)

At finite substrate concentrations, all reaction rates artefiso that at any fixeg
eachf; is bounded on its domain of definition.

Sincey represents a potential against which some of the reactiass do work,
the following relations are obtained:

f, <0ifp#0 and f, =0ifp =0 3)

If pi # 0, theny inhibits the forward reaction and we assume théicently large
values ofyy make the reaction rate arbitrarily small or negative, i.e.

wlim fi(,y) <0 i=1Ln+1
Jim fi(,,¢) <0 i=2,...,n
This reflects the fact that the energy required to pump a pragainst a chemi-

cal and electrical gradient becomes large as the gradiergases. Similarly-y
inhibits the backward reaction so that:

wlirp fi(,y) >0 i=1Ln+1
wlirp fi(-,, ) >0 i=2,...,Nn

The following equations imply that no reaction can proceethe absence of any
of its substrates:

f1(0,) =0

fi(,0,)=0 i=2---,n
film_y,-,:)=0 1=2,---,n
fara(my, ) = 0

(4)




The final set of conditions imply that increased substratecentration increases
the rate of reaction unless one of the substrates is enéibesgnt:

f11>0
fi >0andf; >0ifx_1<m_; 1i=2,---,n

(5)
fi,ii <0andf,y; >0ifx,; >0 i=1,---,n-1

frein <O

The fact that the first and final inequalities are always tsitmiplies that there is al-
ways some electron donor to reduce the initial substratesame electron acceptor
to oxidise the final substrate, and ensures nondegenetadwibar. The assump-
tions from (5) mean that;, F;; andF;, as defined in (2) are all nonnegative. The
definition of these nonnegative quantities is solely to sifyfater arguments.

3 General behaviour of the system

In this section we outline some properties of the model téd hegardless of the
numbem of redox pairs.

3.1 Boundedness of solutions

It is convenient to define amx (n+ 1) matrix which can be regarded as a stoichio-
metric matrix for the redox reactions:

(1 1...0 0]

0-1---0 0
S=

|0 0. -1 1]

Defining the vector of reactant concentrations [xy, X, . . ., X,] ', the vector of re-
actionrates(x, ) = [f1, f2, ... f1,1]T, and the nonnegative vectBr= [p, .. ., Pna] ",
we can rewrite the system of equations (1) more briefly as

X =Sv(X, )
¥ =PTV(X, 1) — L)



We now show that all forward trajectories of the system arended. Since the
phase space is boundedxnwhat needs to be shown is that all trajectories en-
ter a bounded region in the direction. This amounts to showing that > 0
for ¢ sufficiently large and negative, and that< 0 for ¢ sufficiently large and
positive. By assumption, for any given eitherp; = 0 or fj, is strictly nega-
tive and limy_. fi(-,-,¥) < O, limy_,_. fi(,-,¥) > 0. This in turn implies that
limy—e PTV(X,¢) < 0 and lim,_. PTv(x,¢) > 0. In additionL is strictly increasing
from zero ag increases. Thus for any fixed valuexofim, ., PTv(x,¥) — L(¥) <

0 and lim,__., PTv(x,¢) — L(¥) > 0. Defineyo(x) as the value ofy at which
PTv(x, ) — L(y) = 0. yo(X) is uniquely defined sincBTv(x, y) — L(y) is strictly
decreasing. By the implicit function theoremy(x) is a diferentiable function since
PTv(x,y) — L(y) is a diferentiable function ok. Since it has a compact domain,
Yo(X) achieves a maximum value which we agll.x, and a minimum value which
we callyin. By these definitionsy (i, x) < 0 for all > Ymax, andy(, x) > 0 for
all ¥ < Yin.

Thus all trajectories enter a closed bdk, bounded by the hyperplanes = 0,
X = M, ¥ = Ymn andy = Ynax, and this box forms a trapping region for the system
in all dimensions.

3.2 The Jacobian

Direct calculation gives that the Jacobidnpf the system is:

[ty —Fa f22 0 Fi, — Fay
Fa1 —f2-Fs - 0 Foy — Fay
;- : : . :
0 0 o —fn=Fnan  Fry—Frigy
| P1 fli—pP2Fo1 Pafoo—pPsFa2 -+ Pnfan—PreiFrewn —Lw—g piFiy |

HereL, = g—bj The structure of this Jacobian can be made clearer by dgfinin
two further quantities: A nonnegative vectorltf, F = [Fy,,...,Fy]"; and an



(n+ 1) x n matrix

fu 0 O 0
—F21 2 O 0
VE@: 0 —Fs2fsz--- O
OX
0O O O- fon
0 0 O —Fpun|

Then the Jacobian can be written in the block form:

SV SF
P'V -PTF - L,

J= (6)

SV is the Jacobian of the system without feedback, which isagiohal, and can
easily be shown to have real negative eigenvalues [4]. Itskaw/n in [13] that the
structures ofs andV along with the nonnegativity d andF imply thatJ is a so
calledP™) matrix (see Appendix A for the definiti This result is independent
of n, the length of the chain. It has the consequence that themystinjective; this
is discussed further in the next section.

The fact that] is a P matrix has another consequence of importance to us: It
means that its eigenvalues are excluded from a certain wabged the positive
real axis: IfA1 = ré? is an eigenvalue of amx m P matrix, then it is proved in [14]
that:

0 — 7| > n/m

and equivalently for #£) matrix,

16| > /m

Clearly whenm = 2, this means that both eigenvalues lie in the left half plane
so that 2x 2 P&) matrices are Hurwitz stable (see Appendix A for a definitibn o
“Hurwitz stable” which we will abbreviate to “Hurwitz”). Heever form > 2, PO
matrices may be unstable.

2 The nondegeneracy conditions presented in [13] are meubechenth substrate is
terminal, and all substrates are able to transfer electatamg the chain to theth substrate.



3.3 Aunique equilibrium

The existence of a unique equilibrium for this system wasvshio [4] by a direct
method. It also follows from the arguments presented abbhat an equilibrium
must exist follows, by the Brouwer fixed point theorem, frdme existence of the
compact, convex, trapping regidfi,constructed above; That this equilibrium must
be unique follows from the fact that the Jacobian iB@ matrix, and hence the
system is injective [15]. Thus as our first result we can dtaé

Electron transport chains coupled to charge translocamnss a membrane
have exactly one equilibrium.

It is interesting that the possibility of multistability ismediately ruled out. How-
ever this in itself does not tell us whether all trajectorasst necessarily converge
to the unique equilibrium, or whether periodic or chaotibda&our is still possible.

4 Stability of the equilibrium

In this section, we analyse stability of the unique equilibr, starting with low
dimensions (i.e. short chains). For two dimensions we pthaéthe equilibrium

is globally asymptotically stable. In three dimensions Wwevs that the addition

of an extra, reasonable, constraint implies that the dxjuilin is locally stable,
and further constraints ensure that it is globally stable.tid®n demonstrate that
these constraints do notffige to guarantee stability in four dimensions and higher.
Finally, we outline some additional special conditions tipaarantee the Jacobian
is Hurwitz in all dimensions.

4.1 The systemin two dimensions

The system in 2D consists of a single redox pair subject todaatéon process
and an oxidation process, both possibly coupled to proemstocation across the
membrane. It takes the form

X1 =—f1(X1, ¥) + f2(X1, ¥)
Y=pifi+ p2fa— L(Y)

The Jacobian of the system in this case is:



-f11—-F Fio,-F
3= 11 21 1y 2y 7)

Prfii—pP2F21 —Ly—pP1Fy, —p2Fay

We have already mentioned that H%) matrices are Hurwitz stable, and it fol-
lows that the matriced, are Hurwitz stable (This can also be shown with a direct
calculation).

SincelJ, is Hurwitz stablesverywhere, not just at the unique equilibrium, the Markus-
Yamabe Theorem (e.g. [16], [17], [18]) ensures that the ldxgjiwim is globally
stable. We also féer an alternative, elementary, proof of global stability. tBe
Poincaré-Bendixson Theorem (see, for example, [1Himit sets of a flow on
compact subsets @ must either contain equilibria or consist of a periodic trbi
In this case we can rule out the possibility of periodic abithe divergence of the
vector field is equal to

Tr(J) = _fll —Fo - plFll// - ngzl/, — Ll/,

which is negative. Thus the vector field satisfies the Dul@eron (e.g. [20]) and
there are no periodic orbits. We know that there is only oneliggium, which is
locally stable, and therefore there are no heteroclinicamdclinic orbits either.
Since every forward trajectory enters the Bxthe unique equilibrium must be
the w-limit of every trajectory, and is hence globally stable.

4.2 The systemin three dimensions

Slightly more complex than the two dimensional system isdp&tem in three
dimensions which takes the form

Xg = —F1 (X1, ) + fa(X1, X2, )
X2 = f2(xl7 X2, l/’) + f3(X2, l/’)
Y=pifL+ p2fo+ pafs — L(¥)

with Jacobian

—f11—-Fxn f2o Fi, —F2y
Jz = Fo1 —fo - F3 Fay — Fay (8)
P1fia—pP2F21 Pofoo—pPsFa2 —Ly—piF1y —P2F2y —psFay

10



As it stands,J; is not always Hurwitz. For example, the Jacobian constdugsing
the following valuesp, = 3, p, = 0, p3 = 88 Fy, = 33 F3, = 4,F3, = 0.6, f1; =
23, Ty = 3,F»1 = 94, F3, = 76, L, = 6 has two eigenvalues with positive real part.

J; can be shown to be Hurwitz everywhere in 3D provided one exdralition is
met: p; and ps must have the same orderingfag, andF3,. For a real numbez,
define the function

1 (z>0)
sigh@ ={0 (z=0) 9
-1(z<0)

Then the ordering assumption translates to the followiatestent:

sign(Fs, — F1,) = sign(s — p1) (10)

With this assumption, the Jacobian is everywhere Hurwitd, lzence the equilib-
rium is locally asymptotically stable. The proof is simplé bequires some lengthy
evaluations, and the details are presented in Appendix B.

Unlike in the 2D case it does not follow that the equilibritsygiobally stable, since
the Markus-Yamabe conjecture does not hold in dimensioeatgr than 2 [21].
However we can prove global stability in this case too sulie@ strengthened
version of the ordering assumption on the quantitieandF;,. \WWe now require

sign(Fiy, — Fjy) = sign(pi — p;) (11)

fori, j €{1,2,3}.

With this assumption we are able to use a version of Li and Blwitky’s au-
tonomous convergence theorem (Theorem 4.1 in [22]) to shawthe unique
equilibrium is globally stable. In order to use this theot®rm concepts are needed:

(1) Thesecond additive compouncdf a matrix
(2) Logarithmic norms of a matrix

Both quantities are defined for square matrices. The seatshithee compound ma-
trix of any n x n matrix J is a square matrix of dimensid&, which we will term
JP, Logarithmic norms are scalar quantities, and correspantti any given ma-
trix norm, there is a logarithmic norm. Unlike matrix nornrh@wever, logarithmic
norms may take negative values. The definitions are giverppeAdix A.

11



Consider a dynamical system with Jacobi{®) at some point of phase spaxe
Define J to be the set of all these Jacobians. For our purposes, tbe@ubus
convergence theorem states the following: If a logarithnoom u can be found
such that

u(J?y <oforallded (12)
then the limit set of each bounded semi-trajectory of theadyical system is an
equilibrium.

Since all trajectories enter the trapping regi®m our system, and sinc contains
a unique equilibrium, finding a suitable logarithmic normisging (12) will sufice

to prove global stability of the equilibrium.

The second additive compound in this case is:

—f11—F21—f—Fa Fay — F3y —(Fy — Fa)
3
J?] = P2 foo—paFaz —f11—F21—|—¢/—_21 piFiy f22
1+
3
—(p1 f11—p2F21) Fo1 —fzz—Fsz—Lw—_Zl piFiy
1+ 7

We will construct a logarithmic normy such thaiur (JE]) < 0.Forareahxn
matrix, the logarithmic norm corresponding the ugld); norm takes the form:

= ier{gaﬁg}(m £ |xki|]

""" k ki

From the definition it is clear that a matrix has negative tagenic normy; if and
only if every diagonal entry is negative and it is stricthagonally dominant in
every column. Next we define a constant diagonal coordimatestormation

10 O
- 1
T=loL 0

1
00 5

where = max(p).
pmax ie{1,2,3}(pl)

According to Lemma 2.2 of [23], given any invertible transf@tionT, ur(M) =
u1(TMT1) defines a new logarithmic norm. In this case, sifices a diagonal

12



matrix, the diagonal entries &ff are the same as thoseMT 1. Thus in order to
prove thatur(J¥') < 0, we need to show that = TIPTis strictly diagonally
dominant in every column.

For the first column, we have

Jin+ || + |Jé1| =—f—Fs— f11—F21
+’&f22— &Fsz + &le— ﬁfll
pmax max max max

It can easily be seen that the term on the right hand side iatwegsince for any
two nonnegative scalata— b| < max|al, |b|}.

For the second column, we have

+

3
Jo0 + |Jpo| + |J3o| = —Z PiFiy = Ly = f11+ Prax|F2y — Fay
i-1

For the final column, we have

3
= _Z PiFiy — Ly —Fa2+ pmaX|F2w - F1W|

i=1

313| + |J§3

7
I+

In order to show that the right hand sides of the last two esgioms are negative
we need to show in each case that our ordering assumptioriniplies that the
final term (which may be positive) is dominated in magnitugéh® other terms.

Note thatFi, —F;,| < maxFi,, Fj,} < krﬂ%}(':k*”)' Then there are only three cases:

(1) if Prax = P, thenPrax|[F2 — Fay| < p1F1y, andprax |F2) — Fu| < piF .
(2) if Prex = P2, thenPmax [F2y — Fay| < PaF2y, andpmex [F2y — Fy| < paFay.
(3) if Prex = Ps, thenPmax [F2, — Fay| < PsFay, andpmex [F2, — Fy| < psFsy.

Each of these possibilities leads to the same conclusioatdfh > |J;| < O for
Kk

eachi. Hence we haver (J5') < 0.

This result means that if the ordering assumption (11) haokds the unique equi-
librium is globally stable. The ordering assumption itdet the following reason-
able physical meaning which we would expect to be fulfilleghiactice: If redox
reactioni is involved in pumping more protons across the membrane tbeaox
reactionj, then reactiomis correspondingly more inhibited lythan reaction. It

13



is interesting to note however that this assumption is noésgary to prove global
stability in the 2D case. It is also unknown to us whether tleaker assumption
(10), which guarantees that the Jacobian is everywhere ithjractually guaran-
tees global stability in 3D.

4.3 Unstable examplesin higher dimensions

The ordering assumption (11) does not guarantee globalesr lecal stability of
the equilibrium in dimensions greater than 3. It is easy tostmct counterex-
amples. For example, in four dimensions, the Jacobian rartet by choosing
pP1 = 2, P2 =pP3 = 0, Ps = 73, Fll// = 167,F2¢, = F3l/, =0, F44/, = 176, fll = 4,
f22 =17, f33 =1,Fy = 32,F3 = 64,F,; = 174, Ll/, = 33, satisfies all the con-
straints, including the ordering assumption on the valdgs andF;,. However it
has, two eigenvalues with positive real part.

We make the following remarks:

(1) By continuity, the fact that a non-Hurwitz Jacobian candonstructed in 4
dimensions guarantees that such examples also exist iigh#ihdimensions.

(2) Systems with non-Hurwitz Jacobian satisfying the ardgassumption (11)
seem to be rare. Through use of an automated computer saniping in the
open source numerical computation program Scilab [24]ntarexamples in
dimension 4 were found by randomly choosing values for tiffedint terms
in the Jacobian, such that all the assumptions were satiSigidof hundreds
of millions of sets of values, less than ten were non-Hurwitz

(3) The counterexamples found appear always to be close#king the ordering
assumption. For instance, in the example showyris much greater thap,,
wheread,, is close in magnitude tB,,.

4.4 A special case: Reaction rates dependent on potentials

In this section we consider an interesting assumption weigures that the Jaco-
bian is Hurwitz everywhere (and hence the unique equilibris locally stable).
The assumption is as follows:

(1) Associated with each half reaction is some “potentikd’the case of a redox
reaction of the form A+ e = B, a potential means any strictly increasing
scalar function of [4; In the case of a charge transfer across a membrane a
potential means any strictly increasing scalar functiou.of

(2) The rate of any full reaction depends only on siuen of the potentials for the
half reactions involved, and is a strictly decreasing figrcof this sum.

14



This assumption can be interpreted, loosely, as sayingttieaeénergetics of the
system determine the reaction rates. For example, congideglectron transfer
coupled to some proton pumping

Ai + B+ pH;, = A + Bi + pH{

derived from the half reactions

Ai+e =Bj, Bj=Aj+e and pH; = pH{

In this case, the assumption would imply that the forware #tthe combined
reaction can be writte(-g;(x;) + gi(%) — pg,(¥)) where the only stipulation is
thatf, g;, g; andg, are strictly increasing in their arguments. When this aggtion
is made about all reaction rates in the system, the full aysiecomes:

X1 =—F1(01(X1) — P19y (¥)) + F2(=01(X1) + G2(X2) — P29, (¥))
X =—fi(=gi-1(Xi-1) + Gi(%) — Pigy(¥)) +

fi+1(—gi(Xa) + gi+l(xi+l) - pi+lgl//(w)) i=2....n
X = —fn(—gn—l(xn—l) + gn(xn) - pngw(L//)) + fn+1(_gn(xn) - pn+1g¢//(l/’))

n+1

=2 pifi - L)
i=1

The termfi(-gi_1(Xi-1) + 9i(%) — P9, (¥)) represents the rate at which title sub-
strate receives electrons from thie-(1)th substrate. Denoting by, g andg;b the
derivatives of the function§, g; andg;b, the Jacobian of this system can be written
J = JoD whereJ, is the symmetric matrix

[+ 1) 6 0 puf; - p2f,
f,  =(f+ 1) 0 P2f, - psfy
Jo = : : : : (13)
0 0 e (4 fr;+1) Pnfo — P fr;+1
» Pt —P2fy Pafy=Psfy -+ Paf—Priafi _?gll pEfy _;_Z ]

15



andD is the positive diagonal matrix

(g, 0---0 0]

og’z...o 0
D=|: . & (14)

..g’no

09,

From the discussions earliek is aP™) matrix. Further it is symmetric, and hence
sign symmetric (see Appendix A for a definition of sign symmetThis implies
[25] that Jy is D-stable, i.e. the product ak with any positive diagonal matrix is
Hurwitz. HenceJ is Hurwitz. Thus the assumption that reaction rates depend o
the sum of potentials of the half reactions involved enstlrasthe Jacobian of the
system is everywhere Hurwitz.

5 Discussion and conclusions

We have analysed in some detail, and using a variety of mattieahtechniques,
the behaviour of electron transport chains coupled to epehtaanslocation process.
In all cases trajectories are bounded, and there is a unmuiglgium, but ques-
tions about the stability of this equilibrium have provedde. Where the chain
consists of a single redox pair, the unique equilibrium isbglly stable. When
there are two redox pairs the same conclusions can be reacibgect to some
extra conditions on the feedback process. In higher dimessno such general
conditions could easily be found. Thus the length of thetedectransport chain is
crucial in deciding on stability of the equilibrium.

It is somewhat surprising that the coupling of electrondfanto a membrane po-
tential — a negative feedback loop — can serve to destatfiksenique equilibrium

in these systems. Interestingly, when the reaction ragesanotonic functions of
a sum of potentials, then the system in any dimension coulgrtréed to be ev-

erywhere Hurwitz. Reaction rates cannot in general be sednd way, but in the

case of reactions which are primarily about charge trangferassumption could
be reasonable. Certainly some of the choices of reacties mtnumerical models
such as [6] satisfy this assumption.

There are some interesting open questions, both biologimchinathematical. From

a biological point of view, it is of interest to find out whethexperiments on mi-
tochondria with constant inputs ever display behaviouepbthan convergence to
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an equilibrium, such as periodic or chaotic behaviour.if th never the case, then
this suggests that our very general model may be omittingicemportant biolog-
ical/thermodynamic restrictions on the reaction rates, whichld/tend to stabilise
the system. It would also be interesting to see how additipracesses such as
transport processes in the full numerical models ([6], [9] éxample) &ect the
conclusions presented here.

An open mathematical question is whether there are equivatnditions to the
ordering condition in 3D which ensure that the Jacobian efdystem is Hurwitz
in arbitrary dimension, or better still that the second &delicompound has nega-
tive logarithmic norm, and hence the unique equilibriumlabglly stable. If such
conditions exist can they be given general biological negsf?

It would also be interesting to explore when the results gareed here survive
weakening of the assumption that electrons are transfatoed) a chain. Although
electron transfers taking place in the mitochondrial meanbrare often described
via a “chain” it is likely that this description is a conventesimplification rather
than the whole truth. General electron transfer networkkeérabsence of a poten-
tial were analysed in [5] and found to have simple behavidpplication of the
theory presented in [13] should allow determination of wheese networks give
rise toP() Jacobians when interacting with a membrane potential.

Finally, although conditions ensuring sign-symmetry @& fystem imply that the
Jacobian is everywhere Hurwitz, it is an open question ashiether this implies
global stability of the unique equilibrium. Since the Maskdamabe conjecture
does not hold in dimensions greater than 2 [21], global ktaloioes not follow
automatically from local stability, and requires indepentiproof.

A Definitions

A.1 Hurwitz stability of matrices

A square matrix is defined to béurwitz stable if all its eigenvalues lie in the open
left half of the complex plane — i.e. the real parts of all igemvalues are negative.

A.2 P matricesand related classes

For somenx mmatrix A, A(aly) will refer to the submatrix oA with rows indexed
by the setr c {1,...,n}and columns indexed by the set {1, ..., m}. A principal
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submatrix of A is a submatrix containing columns and rows from the samexinde
set, i.e. of the formA(a|a). A minor is the determinant of any square submatrix
of A. If A(aly) is a square submatrix & (i.e. |a| = |y]), thenA[aly] will refer to

the corresponding minor, i.&[aly] = det(A(aly)). A principal minor of Ais the
determinant of a principal submatrix 8f

P matrices are square matrices all of whose principal min@pasitive. They are

by definition nonsingular. If-A is a P matrix, then we will say thaf\ is a P*)
matrix. If Ais aP™) matrix, this means that ea&tx k principal minor ofA has sign

(-1)"
A3 Sgnsymmetry

An n x n matrix is sign-symmetricif symmetrically placed minors have the same
sign, i.e.Alaly]Alyla] = 0 for everya,y C {1,...,n} with |a| = |y].

A.4  Second additive compound matrices

A brief definition of the second additive compound of any squaatrix can be
found in [26]. For a more detailed discussion see [27]. FdD arfatrix

dig A1 a13
A= ay ax as (A.1)

ds; dz2 dz3

the second additive compound takes the félrm

A1 +ax  adxs —a13
[2] _
A = dzgx A1 t+azz a2
—as; dy1 A2+ a3

This second additive compound was constructed using tinelatd lexicographic
ordering of basis vectors. It is possible to construct a sé@ditive compound
using a diferent ordering, but such choices make nidedence to the logarithmic
norms of the matrix.

3 In general, the second additive compound of a marbas dimensioC, whered =
dim(A). When dim@) = 3, we get dimA®) = 3 also, but this is not generally the case.
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A5 Logarithmic norms

If || - || denotes a vector norm dR", and also the induced matrix norm arx n
matrices, then the logarithmic norm [28], also known as ahskil measure, of an
nx n matrix A is defined by

o lr+hA -1
u(A) = lim = (A.2)

B Local stability in 3D

In this appendix we prove local stability of the equilibriimthree dimensions,
subject to the assumption in (10), using the Routh-Hurvieotem. Consider the
characteristic polynomial of a matrixk

A=A =A"+b A" +... + b 11 +b, (B.1)

In this equation] is then x n identity matrix, and the cdBcientsb; are the sums
of all principal minors of-A of dimensiori. For aP™) matrix,b; > 0 for alli. Now
defineb, = 0 for allk > n, and construct a set of numbetsas follows:

b, 1 0 0 O O0---0
b; b, bp 1 0 O ---0
0
0

Ai = b5 b4 b3 b2 b]_ 1 (B . 2)

Boi_1 D22 D23 Doi_g o5 i -+ by

The Routh-Hurwitz theorem states thais Hurwitz if and only if A; > O for all
i < n. Inthree dimensions, we need to check that the three qigntit

Ay =h, (B.3)
Ay = byloy — g (B.4)
Az =Dbg(b1by — b3) = bsA; (B.5)

are all positive. Since all this, are positive, all three quantities are positive if and
only if A, > 0. This in turn follows (condition 12 in [25]) if

0 < agpdzaz) + Ax1832813 — 2811822833
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wherea;; are elements of\. Substitutinga;; for the elements of the Jacobian and
expanding using the open source symbolic algebra prograrinhdg29] gives the
following condition:

Q1283831 + Q21832813 — 2A11822833 = F21 Fa2 (2p3F3¢, +2p1Fyy - p3F1w)

+f11 T2 (2p3F3¢ +2pFyy — p1F3¢//)
+ positive terms

With the ordering assumption (10), we get:

(B.6)

2psFay + 2piFy, — psFy, > 0
>0 (B.7)

2p3F3y + 2piFy — piFsy

Thus the Jacobian is everywhere Hurwitz and hence the urequéibrium of
the system must be locally asymptotically stable. Note thatrestriction (10) is
stronger than necessary to ensure that Hurwitz, but no other set of conditions
with a clear physical meaning that make the Jacobian Hudtz been discov-
ered. Finding a set of necessary anflisient conditions forJ to be Hurwitz is a
difficult problem.
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