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ANALYSIS OF IMPLICIT LES METHODS

ANDREW ASPDEN, NIKOS NIKIFORAKIS,
STUART DALZIEL AND JOHN B. BELL

Implicit LES methods are numerical methods that capture the energy-containing
and inertial ranges of turbulent flows, while relying on their own intrinsic dissi-
pation to act as a subgrid model. We present a scheme-dependent Kolmogorov
scaling analysis of the solutions produced by such methods. From this analysis we
can define an effective Reynolds number for implicit LES simulations of inviscid
flow. The approach can also be used to define an effective Reynolds number for
under-resolved viscous simulations. Simulations of maintained homogeneous
isotropic turbulence and the Taylor–Green vortex are presented to support this
proposal and highlight similarities and differences with real-world viscous fluids.
Direct comparison with data from high resolution DNS calculations provides
validation of the effective viscosity and effective Kolmogorov length scale.

1. Introduction

The broad range of time and length scales present in high Reynolds number turbulent
flows is prohibitively expensive for direct numerical simulation (DNS) to capture
completely, and various techniques are used to attempt to overcome this problem.
An approach that is receiving increasing attention is the use of a form of large eddy
simulation (LES) known as implicit LES (ILES), where numerical schemes are used
such that the inviscid energy cascade through the inertial range is captured accurately
and the inherent numerical dissipation emulates the effects of the dynamics beyond
the grid-scale cut-off. This approach was introduced in [5] (see also [6]), and
referred to there as the Monotone Integrated Large Eddy Simulation (MILES), but
has recently come to encompass a broader range of schemes under the name of
ILES.

Many ILES codes are run without the inclusion of a viscous term, but others
include a small amount of explicit viscosity (see, for example, [14]), with the viscous
scales not fully resolved. Both approaches are considered to be ILES simulations
in the literature, but although there is likely to be little difference for practical
applications, there is a subtle difference in theory that will be discussed below.
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For this reason, we consider the three situations to be distinct: fully-resolved DNS,
completely inviscid ILES, and ILES with viscosity (a subset of under-resolved DNS).

Since turbulence is characterised by high levels of fluctuating vorticity and,
therefore, sharp velocity gradients similar to compressible shocks, the schemes used
in ILES are inspired by ideas from shock-capturing schemes used for compressible
flows. High-order, nonoscillatory, finite volume (NFV) schemes are particularly
well suited here. In the early 90’s, several authors published successful applications
of these types of schemes, for example [29] and [36], but it was Boris [6] who first
identified the convenient conspiracy, as it was later dubbed by Oran and Boris [27],
specifically that the numerical dissipation inherent in these schemes acts at the small
scales in a manner similar to a subgrid-scale model. Furthermore, the cell-averaging
discretisation of the flow variables can be thought of as an implicit filter. Particular
success has been found in free shear flows, where the influence of small-scale
viscous dissipation is small; see, for example, [14]. Using a PPM-based method,
Sytine et. al. [33] and Porter et. al. [30] showed that it is possible to recover energy
spectra with a minus five-thirds decay. A collection of works that provides an
overview of the technique, including a history and applications, can be found in
[18].

Efforts to derive effective viscosities for ILES computations include Grinstein and
Guirguis [17], who compared simulations using a flux-corrected transport algorithm
with viscous theory for a two-dimensional (laminar) shear layer, and the modified
equation analysis of Fureby and Grinstein [14], Grinstein and Fureby [16], Margolin
and Rider [23; 24], who relate the modified equation to an implicit subgrid-scale
model. The latter can lead to useful insights, but is heuristic in nature because
modified equation analysis is valid at long wavelengths, but not at the length
scales where the numerical dissipation is acting. An additional issue with modified
equation analysis is that the analysis can become prohibitively cumbersome without
drastic simplifying assumptions about the numerical method that may render the
results meaningless. For example, the scheme used in the present study involves
projections to enforce the incompressibility constraint [1], which cannot be readily
incorporated into the analysis.

We will use the notion of a hypothetical fluid described by an ILES scheme
and the term ILES fluid. The concept of a hypothetical fluid that arises from
numerical simulation has been suggested before by Muschinski [26], where a
similar framework is used. A Smagorinsky model is used there to specify an
explicit eddy-viscosity coefficient, and so the analysis differs from the approach
used here. What we do instead in this paper is use scaling to examine the turbulence
that arises in an ILES fluid and compare it to real turbulence; we then use this
comparison to validate the use of ILES in special cases and highlight its limitations.
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2. Theory

An incompressible homogeneous viscous flow is characterised by three parameters:
the integral length scale l, the energy dissipation rate ε, and the fluid viscosity ν.
An important dimensionless parameter is the Reynolds number

Reε ≡
ε

1
3 l

4
3

ν
. (1)

Turbulence involves a cascade of kinetic energy from large scales (the ones
that contain most of the energy) to small scales where the energy is dissipated by
viscosity. Kolmogorov introduced the length scale

η ≡

(
ν3

ε

) 1
4

, (2)

now known as the Kolmogorov length scale, which allows the Reynolds number to
be written as

Reε ≡
(

l
η

)4/3

, (3)

which is assumed here to be large.
In terms of a kinetic energy wavenumber spectrum, dimensional analysis suggests

κ5/3 E
ε2/3 = ϕν (κl, κη) , (4)

for some dimensionless function ϕν .
Kolmogorov’s first similarity hypothesis states that at length scales r � l, that is,

κl � 1, the turbulent statistics are universal, determined uniquely by the energy
dissipation rate and the viscosity, that is, κ5/3ε−2/3 E = ϕ(κη). This range of
scales is known as the universal equilibrium range. Furthermore, Kolmogorov’s
second similarity hypothesis states that for scales η� r � l, that is, κη� 1, the
statistics are independent of viscosity and so are determined uniquely by the energy
dissipation rate, that is, there is complete similarity [3] and κ5/3ε−2/3 E = Cκ , the
Kolmogorov constant. This range of scales is known as the inertial (sub)range. The
range of scales comparable to the Kolmogorov length scale, where kinetic energy is
dissipated, is known as the dissipation (sub)range. This analysis implicitly assumes
that the Reynolds number

Reε =
(κl)4/3

(κη)4/3
(5)

is large.
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Experimental observation and direct numerical simulation suggest a value for Cκ
between 1.2 and 2. In the dissipation range, ϕν has been observed to decay expo-
nentially, for example in large-scale experiments by Saddoughi and Veeravalli [31]
and in DNS calculations by Kerr [21].

The same approach can be taken for an ILES fluid. The characteristic parameters
are now ε and l (as before), but now the computational cell width 1x replaces
the fluid viscosity. A new dimensionless group that can be formed with these
parameters is N ≡ l/1x , the number of cells across the integral length scale.

As before, dimensional analysis can be used to form an expression for the kinetic
energy wavenumber spectrum:

κ5/3 E
ε2/3 = ϕi (κl, κ1x) , (6)

for some dimensionless function ϕi .
A theory can then be formed by analogy with Kolmogorov’s theory. The first

similarity hypothesis asserts that for length scales r � l, that is, κl� 1, turbulent
statistics are universal (for a particular numerical algorithm), determined solely by
the energy dissipation rate and the computational cell width, that is, κ5/3ε−2/3 E =
ϕi (κ1x); each numerical algorithm possesses a universal equilibrium range. The
second similarity hypothesis can then be restated as, for scales 1x � r � l, that
is, κ1x � 1, the statistics are independent of the computational cell width, that is,
again there is complete similarity and the normalised energy spectrum is a constant.
Furthermore, assuming that the algorithm captures the advection term with sufficient
accuracy, then this constant should be the same as in a viscous fluid, that is, the
Kolmogorov constant.

There is no reason to assume that the dissipation range in an ILES fluid should be
the same as in a viscous fluid, or that we can directly associate the transition between
the inertial and dissipation subranges with 1x ; at best, only the inertial range can
be expected to be similar. It will be shown in the next section that normalising κ
with 1x does not collapse the kinetic energy spectrum, and another length scale
has to be used.

The extent of the inertial range is directly related to the Reynolds number, and
so, given l, the shortest length scale in the inertial range will be indicative of the
Reynolds number. Consider the integral

D=
1
V

∫
V

u · ∇2u dV . (7)

In spectral space, u·∇2u will resemble κ2 E(κ), and so it can be expected to grow as
κ1/3 in the inertial range and decay exponentially in the dissipation range. Therefore,
the dominant contribution to the integral D will come from length scales at the



ANALYSIS OF IMPLICIT LES METHODS 107

transition between the two subranges. Furthermore, in a viscous fluid, D arises in
the kinetic energy equation, and is related to the energy dissipation rate according
to ε = νD, and so provides a link between an ILES fluid and a viscous fluid.

We propose that D can be used to derive expressions for effective viscosity and
effective Kolmogorov length scale that are loosely independent of the structure of
the dissipation range, and are common to both an ILES fluid and a viscous fluid.
Specifically, νe = ε/D and ηe = ε

1/2/D3/4, which makes the relation ν3
e = εη

4
e

consistent with a viscous fluid.
Dimensional analysis suggests that

ηe

1x
≡

ε1/2

1xD3/4 =5i

( l
1x

)
(8)

for some dimensionless function5i , noting that l/1x ∼Re3/4
e . Complete similarity

would imply that ηe/1x is a constant, but this will be shown not to be the case, at
least for the numerical scheme used here.

With this definition of an effective Kolmogorov length scale, the analogy with
Kolmogorov’s theory, Equation (6), can be recast in the form of Equation (4).

3. Simulations

The numerical code used throughout this study is IAMR, which is available from
the Center for Computational Sciences and Engineering at the Lawrence Berkeley
National Laboratory. IAMR is an incompressible, variable-density Navier–Stokes
solver that is suitable for ILES calculations. Before briefly discussing the algorithmic
approach in IAMR, we emphasise that our focus here is on developing a methodology
for assessing ILES approaches, not on advocating for a particular method.

IAMR employs a finite volume approach with a two-step predictor-corrector
method based on the unsplit second-order Godunov methodology introduced for
gas dynamics by Colella [9]. The advective velocities are constructed using a
monotonicity-limited fourth-order centred-difference slope approximation [8]. An
intermediate MAC projection [4] is used to ensure these velocities are discretely
divergence free before the flow variables are advected. Finally, an approximate
projection [2] is used to enforce the divergence-free constraint on the updated
velocity field. The overall algorithm is second-order in both space and time. (For
further details, see [1] and the references therein.) It should be noted that second-
order accuracy is sufficient to be considered “high-order” and suitable for the ILES

approach; see [11] or [19]. Moreover, Margolin et. al. [25] argue that second-order
may be the only suitable way to construct an ILES scheme.

http://seesar.lbl.gov/CCSE/index.html
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The equations of motion are the standard incompressible Navier–Stokes equa-
tions,

∇ ·u= 0,

∂u
∂t
+ (u · ∇)u=−

1
ρ
∇ p+ ν∇2u+F,

where the density, velocity, pressure and viscosity are denoted by ρ, u, p and ν,
respectively, and F is a forcing term to be defined. In the following simulations,
the viscosity is simply set to zero for inviscid ILES calculations, and the viscosity
of under-resolved calculations will be specified when appropriate.

3.1. Maintained Homogeneous Isotopic Turbulence. Simulations of homogen-
eous isotropic turbulence were run in a triply-periodic cube1. To reduce the
detrimental impact of long-range correlations that affect decaying turbulence (see
[10], for example), a zero-mean time-dependent low-wavenumber forcing term was
prescribed as

F(x, t)=
∑
|κ |∈[1,3]

ai, j,k cos( fi, j,k t +ψi, j,k) cos(2πκi x + pi, j,k)

× cos(2πκ j y+ qi, j,k) cos(2πκkz+ ri, j,k),

for random amplitudes ai, j,k ∈ [0, 1), frequencies fi, j,k ∈ [π, 2π), and phases
ψi, j,k , pi, j,k , qi, j,k and ri, j,k ∈ [0, 2π). The flow was initiated with a low-level
low-wavenumber velocity field, and unit density.

Inviscid (ILES) simulations were performed at resolutions from 323 to 10243.
Viscous simulations were performed at 2563 (with viscosities of ν = 10−2, 10−3

and 10−4), 5123 (with viscosities of 10−3 and 10−4) and at 10243 (with viscosities
of 2.5× 10−4, and 10−4). Not all of the viscous simulations were expected to
be fully-resolved; evaluating 5ν ≡ ε

1/2/(ηD) provides a way to establish which
simulations are well-resolved (5ν = 1) and which are not (5ν > 1). Simulations
were run until t = 8, except for the 10243 cases, which were run until times between
3 and 4 due to computational expense.

Figure 1(a-d) shows the evolution of the terms in the kinetic energy equation
for all of the simulations; (a) is the total kinetic energy, (b) is the energy injected
by the forcing term, (c) is the actual energy dissipation evaluated according to
ε=φ−dE/dt , where φ= (1/V )

∫
u ·F dV , and (d) is D as defined in Equation (7).

Inviscid and viscous runs are denoted by solid and broken lines, respectively, and
colour denotes resolution. The flow passes through an initial transient as the energy
cascade begins, the dissipation rate reaches a peak at around t ≈ 1, and shortly

1Throughout this section, the units are arbitrary, and Reynolds numbers will be presented where
appropriate.
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Figure 1. Evolution of (a) total kinetic energy E , (b) injection of
kinetic energy due to the forcing term φ, (c) energy dissipation rate
ε, and (d) the Laplacian term D. Inviscid and viscous simulations
are denoted by solid and broken lines, respectively, and colour
denotes resolution. The forcing term dominates the flow, but
maintains a dissipation rate that is independent of resolution or
viscosity.

thereafter becomes fully-developed. It is clear from these plots that the forcing term
dominates the flow, but importantly maintains a time-dependent zero-mean velocity
field with a dissipation rate that is independent of the resolution and viscosity.
Figure 1 demonstrates that the resolution and viscosity affect only the small-scale
energy dissipation; it is only the Laplacian term D in Figure 1(d) that is affected by
changes in resolution or viscosity. In the most viscous case, the Reynolds number
is too low for a sufficient separation of scales, and both the initial transient and the
late-time evolution are heavily damped.

Figure 2(a) shows the evolution of the dimensionless quantity 5i ≡ ε
1/2/(1x D)

for the ILES simulations. For the resolutions presented here, the effective Kol-
mogorov length scale ηe =5i1x is between about one quarter and one third of
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Figure 2. (a) Evolution of the dimensionless quantity 5i for the
ILES simulations. In each case, the value settles to a constant after
the initial transient. (b) Reynolds number dependence of 5i . Data
shown are for t > 1.2. The best fit is 5i = 0.169Re0.085

ε .

a computational cell width, which is much smaller than would be required for a
well-resolved DNS calculation.

In each simulation, the value of 5i becomes approximately constant once the
flow has become well-developed, but the lack of complete similarity alluded to
in Section 2 is evident here. Figure 2(b) considers the dependence of 5i on the
effective Reynolds number. The solid black line is a best fit to the power law
5i = 0.169Re0.085

e , which can be stated equivalently in terms of resolution as
5i = 0.203N 0.102, where N is the number of cells across the integral length scale.
This relationship demonstrates an incomplete similarity in Equation (8).

The source of this dependency is not clear, but two possible influences have
been discounted: the numerical slope limiting used to preserve monotonicity, and
the use of a large scale forcing term. The simulations were run without utilising
slope limiting, but this only resulted in slightly smaller values for 5i ; the Reynolds
number dependency remained. The decaying simulations in the next section will
also be shown to possess a similar degree of dependency, discounting the forcing
term.

It may be the case that the Reynolds number dependency is just a manifestation
of an underlying limitation in relating an ILES simulation to a viscous fluid, which
may be related to some other property of turbulence not considered here, such as
intermittency. Recently, Sreenivasan [32] has argued that the resolution requirements
for well-resolved DNS calculations grow at a rate that exceeds the three-quarters
that natural scaling suggests, which may be related to the observations presented
here.
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Figure 3. Evolution of the dimensionless quantity 5ν . 5ν ≈ 1
corresponds to a well-resolved viscous calculation, and 5ν > 1
denotes lack of resolution.

The measure 5ν , shown in Figure 3, distinguishes the viscous simulations that
are well-resolved (5ν ≈ 1) from those that are not (5ν > 1). The simulations at
2563 with ν= 10−2, 5123 with ν= 10−3 and 10243 with ν= 2.5×10−4 are thought
to be well-resolved as the maxima in5ν after the initial transient are 1.0052, 1.0045,
and 1.0054, respectively (some error is expected due to evaluating the numerical
derivatives for the temporal change in the total kinetic energy and the Laplacian).
The simulations at 2563 with ν = 10−3 and 10243 with ν = 10−4 are close, but not
quite fully-resolved, where the maxima in 5ν are 1.0145 and 1.0295, respectively.
The other two simulations at ν = 10−4 are clearly not well-resolved.

Using the measured effective Kolmogorov length scales, the kinetic energy
spectra can be normalised according to ε−2/3η

−5/3
e E(κηe), and are plotted in Figure

4; the low Reynolds number DNS simulation has been omitted. The same colour
scheme as before has been used, and the dashed black line shows the theoretical
inertial range decay Cκκ−5/3 with a Kolmogorov constant of Cκ = 2. Even though
ILES spectra are not expected to be identical to the viscous spectra, this normalisation
appears to collapse both kinds of spectra in the universal equilibrium range. Not
only do the ILES spectra collapse to a single profile, that profile does not appear to
be too far removed from the viscous profile. In particular, it should be noted that
the ILES spectra have a much shorter dissipation range than the viscous spectra; in
the viscous simulations it is necessary to dedicate a significantly higher proportion
of resolution to the dissipation range. Consequently, at the other end of the spectra,
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Figure 4. Normalised kinetic energy wavenumber spectra
ε−2/3η−5/3 E(κη). There is a clear collapse of both inviscid and
viscous spectra. The high resolution simulation present an inertial
range with decay close to the expected minus-five thirds. Note,
in particular, how the viscous simulations are required to dedicate
significantly more resolution to the dissipation range.

the ILES simulations have inertial ranges that extend to smaller wavenumbers than
the viscous spectra, suggestive of higher Reynolds numbers. This behaviour can
be seem more clearly in the compensated spectra, plotted in Figure 5(a,b). Here,
another difference between the two types of spectra can be discerned: the dip
around κη≈ 0.05 appears to be slightly greater in the ILES case. Figure 5(c,d) plots
the compensated spectra semilogarithmically to consider exponential decay in the
dissipation range. The dashed black line is A exp(−βκη), with A= 6.5 and β= 5.2,
taken from the DNS simulations of Kerr [21] and the boundary-layer experiments of
Saddoughi and Veeravalli [31], with which the viscous simulations are in very close
agreement. The ILES simulations, however, present slightly different behaviour;
there is a range with steeper decay followed by a flattening near the grid-scale.
In summary, there are identifiable differences between the universal equilibrium
ranges of ILES and viscous spectra, but these differences are not sufficient to disrupt
the collapse presented in Figure 4, at least for the numerical scheme considered
here. The scheme captures an inertial range close to the Kolmogorov constant, and
the effective Kolmogorov length scale permits a normalisation that collapses the
spectra to an equilibrium range that is universal for the scheme, and close to that of
a real viscous fluid.
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Figure 5. Compensated kinetic energy wavenumber spectra, nor-
malised according to ε−2/3κ5/3 E(κη). Inviscid spectra are shown
in (a) and (c), and viscous spectra in (b) and (d). The inertial
range is highlighted by logarithmic plots in (a) and (b) (the two
black lines denote the range of values found in the literature for the
Kolmogorov constant, that is, 1.2–2), and the dissipation range is
highlighted by semilogarithmic plots in (c) and (d).

Figure 6(a) shows the evolution of the effective viscosity. The same measure is
used in both the viscous and inviscid cases; the actual viscosity is not used explicitly,
and so provides another measure of how well resolved the viscous calculations
are. The vertical dashed line shows t ≈ 2.57, which corresponds to the time at
which the spectra are plotted in Figures 4–5. A key point to note here is that the
extent to which the inertial range of each spectrum extends to low wavenumbers
(Figure 4) corresponds directly to the effective viscosity at the time shown by
the vertical dashed line (Figure 6a). As the Reynolds number increases, a larger
inertial range is observed due to the greater separation of scales, so since all other
quantities are approximately equal, the Reynolds number is represented by the
effective viscosity, which follows exactly the same trend as the energy spectra at
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Figure 6. (a) Evolution of the effective viscosity νe, for both the
inviscid and viscous simulations; note the time-dependency of the
ILES simulations, and that the effective viscosity of the under-
resolved viscous simulations does not agree with the specified
viscosity. (b) Evolution of the Taylor Reynolds number.

large scales. This suggests that the effective viscosity that has been derived is an
accurate representation of the flow; if an ILES simulation and a viscous fluid have
inertial ranges that extend over the same range of wavenumbers, then the method
outlined above provides a way of deriving the effective viscosity of the ILES fluid
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Figure 7. Examination of the dimensionless dependence of the
effective viscosity on the specified viscosity in under-resolved
viscous simulations, νe/ν1x = f (νu/ν1x).
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corresponding to the true viscosity of the real fluid. The resulting effective Taylor
Reynolds numbers

Reλ =
ûλ
νe

for λ2
=

15νeû2

ε
,

where û is the RMS velocity, are plotted in Figure 6(b).
Some ILES schemes are run with small amounts of viscosity, for example, Fureby

and Grinstein [14]. Other viscous simulations are run using a nonoscillatory finite
volume approach, where the resolution may not completely capture the dissipation
range. To account for these circumstances, it is possible to extend the characteri-
sation to the situation of a viscous ILES calculation. There are three measures of
viscosity that need to be considered: the specified (under-resolved) viscosity νu , the
effective viscosity for an inviscid simulation at that resolution ν1x , and the resulting
effective viscosity νe. Dimensional considerations suggest a functional dependence
of the form

νe

ν1x
= f

( νu

ν1x

)
, (9)

for some dimensionless function f , where f (x)→ 1 as x→ 0, and f (x)→ x as
x→∞.

To investigate this dependence, a variety of under-resolved simulations were run
in addition to those already presented, the results of which are shown in Figure 7.
For each simulation, the marker denotes the time t = 2.57, and the surrounding
points shows time dependence. The dotted line shows f (x)= 1 (the inviscid limit),
the dashed line is f (x)= x (the well-resolved viscous limit), and the solid black
line is the heuristic candidate function

f (x)= x + exp(−bx),

which naturally satisfies the restrictions on (9). The value of b shown here is
1/2. There is clear agreement for all simulations, which suggests that an a priori
prediction for the effective viscosity of an under-resolved viscous calculation using
this scheme can be written as

νe = νu + ν1x exp
(
−

1
2
νu

ν1x

)
.

3.2. The Taylor–Green Vortex. The Taylor–Green vortex [34] has become a pop-
ular test case for ILES methods (see the recent studies of Drikakis et. al. [12] and
Hickel et. al. [20]) and so has been investigated here. Following [12], the domain
used was a triply-periodic cube of length 2π . The velocity field was initialised
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Figure 8. Evolution of the terms in the kinetic energy equation for
the Taylor–Green vortex: (a,b) total kinetic energy, (c) temporal
change in kinetic energy, (d) Laplacian term D. The solid lines are
the inviscid calculations and the dash-dotted lines are the viscous
calculations.

according to

u0(x)= u0

( cos(kx) sin(ky) cos(kz)
− sin(kx) cos(ky) cos(kz)

0

)
,

where k = 1. The inherent symmetry of the problem can be exploited to reduce the
domain size by a factor of 8. Simulations were run at effective resolutions of 323 to
20483. Viscous simulations were run at an effective resolution of 5123, at Reynolds
numbers of approximately 120, 1200, 3000, and 12000, where the Reynolds number
is defined to be Re = u0/kν, corresponding to the initial conditions; as in the
previous section, this range of Reynolds numbers spans the range from being too
viscous for a separation of scales to being under-resolved at the given resolution.
Throughout this section velocities will be nondimensionalised by u0 and lengths by
k−1.
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Figure 9. (a) Evolution of the dimensionless parameters 5i . (b)
Dependence of 5i on Reε. Data shown are for t > 12. Solid black
line denotes best fit, 5i = 0.152Re0.087

ε . Dashed black line is the
best fit from the previous section.

Figures 8 (a,b) show the evolution of the normalised total kinetic energy; (c)
shows the temporal derivative of the kinetic energy, and (d) shows the Laplacian term
D. At early times, kinetic energy is conserved (in the inviscid and high Reynolds
number cases), then as the cascade process begins, a growth in the Laplacian term is
observed along with a corresponding decay in kinetic energy. The energy dissipation
rate reaches a peak at around dimensionless time t ≈ 9, and the late-time energy
decay follows t−2, characteristic of the Taylor–Green vortex. The most viscous
case prevents transition to turbulence, and the vortex spins down at a rate that can
be seen to be faster than t−2 at late times.

In the ILES results of Drikakis et. al. [12] and the DNS results of Brachet [7] at
a Reynolds number of 5000, the energy dissipation is observed to peak at a value
around 0.016, and it is suggested in [13], for example, that a limit independent
of Reynolds number is being approached. However, the peak energy dissipation
in the 10243 case presented in Figure 8(c) is approximately 25% higher, and so
suggests that much higher Reynolds numbers will be needed to draw any definitive
conclusions. The simulation at 20483 does not attain a peak as high as the 10243

case. This is because the Taylor–Green vortex is extremely sensitive to shear
instabilities, which are damped at lower resolutions.

Figure 9(a) shows the dimensionless quantity 5i . There is a slightly greater
variability in the value of 5i for each simulation than there was for the simulations
in the previous section, and again there is a dependence on resolution. Figure 9(b)
shows the Reynolds number dependency of 5i for each simulation. The solid black
line denotes the best fit to the data, which is of the form 5i = 0.152Re0.087

ε . The
dashed black line shows the best fit from the simulations from the previous section,
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Figure 10. (a) Evolution of the dimensionless parameter 5ν . (b)
Evolution of the effective viscosity νe.

which has a similar power-law growth, but a slightly higher coefficient (recall the
best fit from the previous section was 5i = 0.169Re0.085

ε ).
Figure 10 shows the dimensionless quantity 5ν (a), and the effective viscosities

(b). The least viscous case is clearly identified as being under-resolved, but because
the flow is decaying, the simulation approaches the well-resolved limit at late times.
The Re = 3000 case appears to be marginally under-resolved, but the other two
viscous cases appear to be well-resolved.

Figure 11 shows the kinetic energy spectra, normalised as before using the
effective Kolmogorov length scale and energy dissipation rate, along with reference
spectra from the maintained homogeneous isotropic turbulence simulations from the
previous section, specifically the inviscid simulation at 10243 and the well-resolved
viscous simulation at 5123 with ν = 10−3; the dashed black line denotes Cκκ−5/3,
with Cκ = 2. Again, the normalisation collapses the data well, not only the viscous
and inviscid simulations, but also the maintained and decaying flows; a universal
equilibrium range is indeed recovered in these ILES simulations, and appears to be
similar to that recovered in a viscous fluid.

Compensated spectra are shown in Figure 12 (a,b) for two different times: (a)
is at t ≈ 16.4, the latest time that the highest resolution case was run, and (b) is
at t ≈ 50. At the first time, the compensated spectra demonstrate that the decay is
indeed close to minus five-thirds and the data compares well with the maintained
spectra. However, at the later time, the decay is less than five-thirds. Note, in
particular, that even well-resolved DNS spectra do not achieve a minus five-thirds
decay. This is a consequence, and one of the drawbacks, of decaying turbulence;
it should be emphasised that it is not a consequence of using the ILES approach.
Without a source of energy at the large scales, a much larger domain and separation
of scales is required for truly free decay; Pope [28] suggests that a lower bound on
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Figure 11. Kinetic energy wavenumber spectra, ε−2/3η−5/3 E(κη),
at dimensionless time t ≈ 16.4. Two maintained simulations
from the previous section (labelled HIT) are shown for compar-
ison; specifically the inviscid simulation at 10243 and the viscous
simulation at 5123 with ν = 10−3.

the domain size is around eight integral length scales, and Davidson [10] argues
that the factor should be more like twenty to forty; refer, in particular, to the section
on “the dangers of periodicity” in [10]. This is the likely cause of the lack of
universality in 5i observed here. It also highlights a difference between ILES and
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Figure 12. Compensated kinetic energy wavenumber spectra for
the Taylor–Green vortex, normalised according to ε−2/3κ5/3 E(κη).
(a) t ≈ 16.4, (b) t ≈ 50.
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Figure 13. Vertical slices showing magnitude of vorticity in a
inviscid calculation at 2563 (top) and in a viscous calculation at
5123 with Re= 3000 (bottom) at three different times t ≈ 10 (left),
t ≈ 100 (middle), t ≈ 1000 (right). Note that the small-scale struc-
ture is removed by viscosity in the finite Reynolds number case,
but persists in the ILES calculation due to the imposed separation
of scales.

traditional LES, where the aim it is to extend the minus-five thirds decay to, or
as close as possible to, the cut-off length scale, and may explain the behaviour
observed by Garnier [15].

Another key difference between ILES simulations and real-world viscous or DNS

fluids arises in flows that are decaying, and is due to the fixed effective Kolmogorov
length scale in the ILES case. In a viscous fluid, as the flow decays, the energy
dissipation rate drops, and so the Kolmogorov length scale increases according to
Equation (2). This cannot happen in an ILES fluid; instead, the effective viscosity
decreases. The consequence of this is that all small-scale structure is removed
from the viscous simulation, but high wavenumber velocity gradients persist in
the ILES case. This is highlighted in Figure 13, which shows vertical slices of the
magnitude of vorticity at t = 10, 100 and 1000 for both a viscous calculation (5123,
Re≈ 3000) and an inviscid calculation (2563). Naturally, the plots are similar at
the early time, but at later times diffusive effects dominate the viscous flow and
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Figure 14. Unnormalised kinetic energy spectra corresponding to
the vorticity slices shown in Figure 13 illustrating differences in
relaminarisation for different approaches. The three pairs of spectra
show how energy decreases at the three different times. Note in
particular the lack of energy at large wavenumbers for the viscous
case.

the Kolmogorov length scale grows. The ILES plots are qualitatively similar at the
intermediate and late times because of the fixed effective Kolmogorov length scale.
Unnormalised kinetic energy spectra are shown in Figure 14. Again, at the early
time, the agreement is close, but it is clear that at later times the distribution of
energy across the scales is significantly different.

This is the reason we make the distinction between inviscid ILES simulations
and ILES simulations with viscosity. If an ILES simulation is performed including
a small amount of explicit viscosity, then in a decaying flow, that viscosity will
eventually begin to play a role. If the viscosity is kept constant the small-scale
structure will eventually be removed, regardless of how small the viscosity is.

4. Discussion and conclusions

In this paper, we have presented a scaling analysis of implicit LES methods in general,
and proposed a methodology for characterising individual ILES schemes. This was
achieved by drawing an analogy with the description of viscous fluids given by
Kolmogorov [22]. More specifically, an ILES method can be characterised in terms
of an equilibrium range that is universal to that approach, and is determined uniquely
by the energy dissipation rate ε, as in a viscous fluid, and the computational cell
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width 1x , which replaces the fluid viscosity as the characteristic measure of small-
scale energy dissipation. By using dimensional analysis, a single dimensionless
parameter 5i ≡ ε

1/2/(1x D) was derived that provides a characteristic estimate of
the effect of the numerical dissipation on the small scales in a developed turbulent
flow for an ILES scheme. To mimic the relationships of viscous fluids, an effective
Kolmogorov length scale and effective viscosity can be written as ηe =5i1x and
νe = ε

1/35i
4/31x4/3.

This approach differs philosophically from previous work as it uses a posteriori
diagnostics to evaluate the characteristic estimate 5i , complementing the previous
a priori approaches that consider modified equation analysis. The present method-
ology has the benefit that it assesses a scheme’s performance based on the results,
not on heuristic predictions, and the framework can be applied easily to any ILES

scheme however complicated the algorithm.
For the ILES scheme presented here, in the maintained homogeneous turbulence

simulations, it was found that 5i = 0.169Re0.085
ε or equivalently 5i = 0.203N 0.102,

where N is the number of computational cells across the integral length scale, which
means that the effective Kolmogorov length scales were between approximately one
fifth and one third of a computational cell width. The values obtained for 5i were
slightly smaller for the decaying Taylor–Green vortex. This is likely due to a lack
of independence from the large scales. For this reason, we believe that maintained
turbulence is a more suitable test case for characterising an ILES scheme, and is
more likely to give results consistent with more realistic applications.

The effective Kolmogorov length scale and effective viscosity for an ILES
simulation were used to normalise kinetic energy spectra, and it was demonstrated,
by comparison with well-resolved DNS calculations, that an ILES flow with an
effective viscosity close to that of a DNS calculation had an inertial range that
spanned the same range of wavenumbers; this measure of effective viscosity is an
accurate representation of an ILES fluid.

Furthermore, under-resolved simulations were investigated, and it was found that
a simple expression could be formulated to predict the effective viscosity a priori:

νe = νu + ν1x exp
(
−

1
2
νu

ν1x

)
.

This demonstrates that the variation between fully-resolved DNS and completely
inviscid ILES simulations is continuous, except for a distinction made for completely
inviscid simulations for late-time decaying flows, summarised below. The expression
can be used to specify the effective viscosity in marginally resolved DNS studies
using an NFV scheme.
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Differences were observed between ILES and viscous spectra, both at the high
wavenumber end of the inertial range, and within the dissipation range. These differ-
ences were small, and only observed under close scrutiny, the physical implications
of which are not yet understood.

A key difference is that the effective viscosity depends on the energy dissipation
rate, which is local in both time and space, and so knowledge of some kind of
measure of the dissipation rate (in whatever average sense applies to the flow) is
required. This means that not only can the effective viscosity vary in time, it can also
be different in different regions of the flow. In a turbulent jet, for example, a higher
effective viscosity will be observed along the jet axis than at the jet edge because
of the decreasing dissipation rate with radius; see Townsend [35] for example.
Furthermore, the Reynolds number will increase with streamwise distance, rather
than remain constant as expected in a round jet.

In decaying flows, a significant consequence is that a completely inviscid ILES

flow cannot undergo relaminarisation; there is no final period of decay. In a decaying
viscous flow, as the energy dissipation rate drops, the Kolmogorov length scale
increases as small-scale structure is removed by viscosity. This cannot happen in
an inviscid ILES fluid; there is an imposed separation of scales due to the fixed
Kolmogorov length scale. The vorticity field will decay, but cannot become smooth;
small-scale structure will persist for all time. However, for ILES schemes run with
a small amount of explicit viscosity, a final period of decay will eventually be
observed, regardless of how small the viscosity is.

An expression for the effective viscosity can be written in the form νe = ε/D,
which has no a priori reason to hold true in an ILES flow. It may be the case
that because this scheme is second-order accurate (Margolin et. al. [25] argue that
second-order may be the only suitable way to construct an ILES scheme), then D is
indeed a close measure of how energy is removed from the system. But the question
remains whether this will be the case in other ILES codes.

Regardless, it can be argued that D provides a suitable way to measure energy
dissipation (even if nonunique) because the wavenumber spectrum of the integrand
will be similar to κ2 E(κ). If an ILES scheme captures the inviscid energy cascade,
then E(κ) ∼ κ−5/3 in the inertial range, and at some wavenumber, energy is
dissipated and decreases rapidly with wavenumber. Therefore, the spectrum of
the integrand of D will peak at a length scale around the transition between the
integral and dissipation ranges. Thus the dominant contribution to the integral will
come from around this length scale, and will not be dominated by the details of
the scheme-dependent dissipation scales, just their physical location. This length
scale is also strongly related to the Reynolds number and given the exact relation
for viscous fluids, we expect D to provide the link between numerical dissipation
and effective viscosity for any ILES algorithm.
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The parameter 5i is the dimensionally correct scaling to characterise a scheme,
and the expression is independent of the numerical scheme. It specifically captures
(through D) the effect of the numerical scheme on small scale dissipation. Its value
(and any Reynolds number dependence) will vary between different algorithmic
approaches. For example, we speculate that higher-order schemes will present
spectra with a longer inertial range, i.e. the dissipation range will be shorter and
begin closer the grid-scale, and consequently present smaller values for 5i . It may
also be the case that in the compensated spectrum, the peak energy at the bottleneck
between the inertial and dissipation ranges will be greater than was found here and
the dip in the spectra observed at smaller wavenumbers will also be exaggerated.

An issue that has not been addressed here is how the parameter 5i will behave
for inhomogeneous flows. Consider a jet or shear layer, where there is a transition
from fully-developed turbulent flow to laminar quiescence. Both the numerator ε
and the denominator D tend to zero. We intend to consider this transition in future
work.
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