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Building upon the recent experimentally verified modelling of turbulent plumes which
are subject to decreases in their source strength (Scase et al., J. Fluid Mech., vol. 563,
2006b, p. 443), we consider the complementary case where the plume’s source
strength is increased. We consider the effect of increasing the source strength of
an established plume and we also compare time-dependent plume model predictions
for the behaviour of a starting plume to those of Turner (J. Fluid Mech., vol. 13, 1962,
p. 356).

Unlike the decreasing source strength problems considered previously, the relevant
solution to the time-dependent plume equations is not a simple similarity solution.
However, scaling laws are demonstrated which are shown to be applicable across a
large number of orders of magnitude of source strength increase. It is shown that
an established plume that is subjected to an increase in its source strength supports
a self-similar ‘pulse’ structure propagating upwards. For a point source plume, in
pure plume balance, subjected to an increase in the source buoyancy flux F0, the rise
height of this pulse in terms of time t scales as t3/4 while the vertical extent of the
pulse scales as t1/4. The volume of the pulse is shown to scale as t9/4. For plumes in
pure plume balance that emanate from a distributed source it is shown that the same
scaling laws apply far from the source, demonstrating an analogous convergence to
pure plume balance as that which is well known in steady plumes. These scaling law
predictions are compared to implicit large eddy simulations of the buoyancy increase
problem and are shown to be in good agreement.

We also compare the predictions of the time-dependent model to a starting plume in
the limit where the source buoyancy flux is discontinuously increased from zero. The
conventional model for a starting plume is well approximated by a rising turbulent,
entraining, buoyant vortex ring which is fed from below by a ‘steady’ plume. However,
the time-dependent plume equations have been defined for top-hat profiles assuming
only horizontal entrainment. Therefore, this system cannot model either the internal
dynamics of the starting plume’s head or the extra entrainment of ambient fluid into
the head due to the turbulent boundary of the vortex ring-like cap. We show that the
lack of entrainment of ambient fluid through the head of the starting plume means
that the time-dependent plume equations overestimate the rise height of a starting
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plume with time. However, by modifying the entrainment coefficient appropriately,
we see that realistic predictions consistent with experiment can be attained.

1. Introduction
In the field of turbulent plume and jet dynamics the model of Morton, Taylor &

Turner (1956) has dominated for over 50 years. Motivated by meteorological
observations, in particular plume–puff transition, a time-dependent turbulent plume
and jet model has recently been developed and presented (Scase et al. 2006b). This
time-dependent model is based on the Morton et al. (1956) model and has been
successfully compared to laboratory turbulent plumes that experience a rapid decrease
in their source strength (Scase, Caulfield & Dalziel 2008) (usually, but not exclusively,
we take ‘source strength’ to refer to the source buoyancy flux). However, the time-
dependent system of equations is not restricted to modelling source buoyancy flux
reductions, and in the present paper we look at the effects of buoyancy increases on
turbulent plumes.

1.1. Review of time-dependent turbulent plume models

The time-dependent model is a generalization of the well-established ‘steady’ plume
model of Morton et al. (1956). To date, research based on this time-dependent model
has focused primarily on the effects of reducing the ‘source strength’ of the plume, to
investigate the so-called ‘plume–puff’ transition. It has been observed, in areas such
as the deserts of the US, that a plume, once established, persists and remains in a
given location for long periods of time (see Scorer 1954). However, it has also been
observed in countries such as the UK, that although plumes can become established,
they often only persist for a short time, before being observed to ‘pinch-off’ into an
isolated thermal. One possible explanation is as follows. Radiation from the sun passes
through our atmosphere, which is largely transparent to the sun’s rays. The radiation
is absorbed by the ground which then re-emits the energy at a different wavelength,
warming the surrounding air. Variations in the ground’s albedo (due to variation in
colour as a result of vegetation or highway infrastructure for example) can cause
‘hot-spots’ to form which can, in turn, trigger the formation of a warm buoyant patch
of fluid just above the ground. As this buoyant patch warms and convects vertically
away it removes energy from the ground. If the ground is conductive enough, more
energy can be supplied to the surrounding air beneath the buoyant patch and a plume
can become established. However, if the ground is not conductive enough the cool
ground cannot supply any buoyancy to the surrounding air and the buoyant patch
rises as an isolated thermal. For a full discussion, with diagrams, see Hunt et al.
(2003).

In Scase et al. (2006b) the authors conjectured that if an established plume, obeying
the steady Morton et al. (1956) model, was subjected to a sudden reduction in source
buoyancy flux, a narrow transient region would form in the plume. The Morton et al.
(1956) model predicts a steady plume will have radius b(z) = 6αz/5, where α is the
‘entrainment constant’ relating the velocity of ambient fluid entrained horizontally
into the plume, at a given height, to the mean local vertical velocity of the plume. The
narrow transient region in the time-dependent case was predicted to have a radius
given by b(z) = 2αz/3. This prediction has recently been observed and supported
experimentally (Scase et al. 2008). The time-dependent model was shown to be a
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good predictor of the plume radius, velocity and tracer concentration throughout the
height of the plume.

The model presented in Scase et al. (2006b) considered not only point-source
Boussinesq plumes propagating through homogeneous ambient fluids, but also plumes
with distributed sources (in some circumstances referred to as ‘lazy plumes’), non-
Boussinesq plumes and stratified ambient fluids. In Scase, Caulfield & Dalziel (2006a)
it was predicted that a Boussinesq plume rising through a uniformly stratified fluid
of density ρ∞, with buoyancy frequency N = {−g/ρ∞dρ∞/dz}1/2

, where g is the
acceleration due to gravity, would stall and collapse at a time t = π/N after its source
strength is suddenly reduced. This prediction has had some initial experimental
support (Scase et al. 2006c), but is yet to be exhaustively tested. Given a value of
N ∼ 10−2 s−1 in the troposphere, this predicts a collapse time, or ‘rain-out’ time from
a volcanic eruption of order 5 min after the eruption has ceased.

The key prediction of the theory is that while a plume remains turbulent, and the
entrainment assumption can be considered to hold, the plume cannot be separated into
puffs by a sharp reduction in source strength – a conclusion supported experimentally
in Scase et al. (2008). However, a plume in a stratified ambient can be made to stall
and collapse by such a reduction in source strength. This suggests that the plume–puff
transition is associated with an as-yet unmodelled physical process above and beyond
a mere reduction in source strength. To understand plume–puff transition successfully
it may be necessary to set a clear threshold concentration for what may be considered
plume fluid or ambient fluid. In its existing form, the time-dependent plume model
regards any fluid of differing concentration or density to the ambient fluid ‘at infinity’
as ‘plume fluid’. It is to be expected therefore that a model that explicitly assumes the
plume to be entraining at all times predicts that it is impossible to form a region con-
taining absolutely no plume fluid, i.e. it is impossible to separate the plume into puffs.
Further investigations are required. Possible areas of investigation include the effects
of a non-constant entrainment constant (see e.g. Kaminski et al. 2005), the influence
of a non-passive, i.e. strongly advecting or convecting, ambient fluid and the role of
vertical velocity in the entraining eddies at the plume edge, which are not modelled.

On the other hand, it is a completely open question as to what happens when the
source strength of an established plume is increased. We address this question in the
present paper. We consider both the effect of increasing the source strength of an
established plume, and we also examine how successful the time-dependent model is
in capturing the bulk behaviour of a starting-plume (see e.g. Turner 1962; Middleton
1975), which is the natural limit of a very large increase in source strength. The
effect of buoyancy increases on established plumes and the understanding of starting
plumes has a large number of important applications. These include, but are not
limited to, turbulent mixing and dispersion in the atmosphere with application to
industrial accidents such as the fallout ejected by the nuclear accidents at Chernobyl,
Three Mile Island and Mihama. Further applications include the explosive release of
toxins (e.g. the Buncefield fuel depot disaster 2005 or sarin gas attacks on the Tokyo
Metro 1995), volcanic eruptions, large-scale forest fires and cloud formation.

1.2. The time-dependent plume model

Dimensional quantities will be denoted by a subscript � throughout unless otherwise
stated, all other quantities are non-dimensional. The time-dependent plume model
was derived in Scase et al. (2006b) from the vertical Euler equation using two key
assumptions. Firstly it was assumed that the plume was slender, i.e. the ratio of plume
width at a given height, b�(z�), to z� was much smaller than 1. Typically this ratio is of
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order 0.1. This assumption allows the vertical pressure gradient to be ignored, and so
the fluid pressure may be ignored throughout (as the horizontal Euler equation is not
exploited). The second key assumption is the well-known ‘entrainment assumption’
that relates the horizontal velocity of the ambient fluid at the plume’s edge ue� to
the plume’s vertical velocity at the same height w�. The non-Boussinesq form of the
entrainment assumption, given by Ricou & Spalding (1961), was employed, specifically

ue� = −α(P )

(
ρ�

ρ∞�

)1/2

w�. (1.1)

Here we use a superscript p, denoting a plume quantity, to avoid confusion with
entrainment into thermals in later discussions in § 4. The fluid density within the
plume is ρ� (z�, t�) and the ambient fluid density is taken to be the constant ρ∞�.
Taking the Boussinesq limit (1.1) becomes the usual Morton et al. (1956) entrainment
assumption.

Top-hat mass, momentum and buoyancy fluxes are defined, respectively, as

Q� =

∫ 2π

0

∫ b�

0

ρ�w�r� dr� dθ, M� =

∫ 2π

0

∫ b�

0

ρ�w
2
�r� dr� dθ,

F� =

∫ 2π

0

∫ b�

0

g� (ρ∞� − ρ�) w�r� dr� dθ, (1.2 a–c)

where (r�, θ, z�) are cylindrical polar coordinates with z� aligned in the direction in
which gravity is acting. The governing equations of motion are then

∂

∂t�

(
Q2

�

M�

)
+

∂Q�

∂z�

= 2α(P ) (πρ∞�)
1/2 M1/2

� , (1.3 a)

∂Q�

∂t�
+

∂M�

∂z�

=
Q�F�

M�

, (1.3 b)

∂

∂t�

(
Q�F�

M�

)
+

∂F�

∂z�

= 0, (1.3 c)

since the ambient fluid is homogeneous. The Boussinesq plume radius, vertical velocity
and reduced gravity are given, respectively, by

b� =
Q�√

πρ∞�M�

, w� =
M�

Q�

, g′
� = g�

ρ∞� − ρ�

ρ∞�

=
F�

Q�

. (1.4 a–c)

Governing equations (1.3) may be non-dimensionalized by a reference buoyancy
flux F00� and a length scale z��. We set

Q� =
(
4α(P ) 2πρ∞�

)2/3
F

1/3
00� z

5/3
�� Q, M� =

(
4α(P ) 2πρ∞�

)1/3
F

2/3
00� z

4/3
�� M, F� = F00�F,

z� = z��z, t� =
(
4α(P ) 2πρ∞�

)1/3
F

−1/3
00� z

4/3
�� t. (1.5)

The non-dimensional governing equations have the same form as (1.3) with the
factor 2α(P ) (πρ∞�)

1/2 in (1.3a) replaced by 1. (For further details of the non-
dimensionalization see Scase et al. 2008.)

As we shall see, the assumption that the plume is slender is not strictly valid at all
times. However, given the success of the steady Morton et al. (1956) plume model in
stratified ambient background fluids, and the apparent success of the time-dependent
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model, also in stratified ambient fluids, where the plume cannot be considered slender,
we proceed.

1.3. Summary of paper

The layout of the paper is as follows: in § 2 we consider the solutions to the
time-dependent plume equations when a step buoyancy increase is applied to an
established plume and we examine the scaling laws that govern the evolution of
the adjustment to the new source conditions. This can be regarded as analogous to
the buoyancy decreases considered in Scase et al. (2006b). We consider solutions to
both point source plumes and plumes with distributed sources. In § 3 we report on
high-resolution implicit large eddy simulations (ILES) of step buoyancy increases
applied to an established plume and compare the results to the model predictions of
§ 2. Then in § 4 we consider the natural limiting case of the time-dependent plume
equations (i.e. as the step buoyancy increase at the source becomes arbitrarily large)
to the behaviour of starting plumes, in particular in relation to the model of Turner
(1962). In § 5 we draw our conclusions.

2. An increase in the source buoyancy flux of a turbulent plume
2.1. Introduction

In Scase et al. (2006b) the case of an established pure plume subjected to a rapid
reduction in its source buoyancy flux by a factor of 20 was considered. The plume
source conditions remained ‘pure’ for all time in the sense that the plume source
laziness Γ0 defined by

Γ0 =
5

8α(P ) (πρ∞�)
1/2

Q2
0�F0�

M
5/2
0�

, (2.1)

(or equivalently Γ0 = (5/4)Q2
0F0/M

5/2
0 ) was equal to unity throughout, where subscript

0 indicates evaluation at the source, z = 0. As described in the Appendix of Scase et
al. (2006b), the numerical solution to the time-dependent plume model was found by
considering perturbations to a steady plume. By reducing the source buoyancy flux
by a factor of 20, the perturbation to the source momentum flux must be reduced
by a factor 202/3 and the perturbation to the source mass flux must be reduced by a
factor 201/3, in order to maintain pure plume balance at the source, Γ0 = 1.

In the present paper we examine a number of different strength buoyancy flux
increases to an established steady plume. In each case we consider an initially
‘weak’ plume which has its source buoyancy flux increased to a non-dimensional
source buoyancy flux 1. At t = 0 the source buoyancy flux is increased from
F (z = 0, t = − 0) =F0 to F (z = 0, t = + 0) = F1 = 1, where subscript 1 indicates
evaluation at the source after the buoyancy flux increases. We primarily consider
seven separate solutions for initial values of F0 = 10−7 increasing by factors of 10 up
to F0 = 10−1, and examine the evolution of the properties of the plume. Independence
of the solution to numerical resolution is demonstrated in appendix B.

The non-dimensional forms of the governing equations are solved numerically for
0 � z � 7 and 0 � t � 10 with z discretized using greater than nz =5 × 103 cells and
t discretized using nt =2.5 × 105 cells. Details are given in table 1. Figure 1 shows
typical plots of the evolution of the three primary dependent variables, Q, M and F

against height z. The thick solid line corresponds to the solution at a time t = 0.50
after the source buoyancy flux has been increased from F0 = 10−3 to F1 = 1. Earlier
solutions for t = 0.13, 0.25 and 0.38 are shown as dashed lines. The mass flux and
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nz nt F0 F1 λ′ λ k Comment

– – 1 1
√

20/9 1 3/4 Morton et al. (1956)

104 2.5 × 105 100 1 1.564 1.049 0.730 Model
104 2.5 × 105 10−1 1 1.392 0.934 0.755 Model
104 2.5 × 105 10−2 1 1.254 0.841 0.755 Model
104 2.5 × 105 10−3 1 1.193 0.801 0.756 Model
104 2.5 × 105 10−4 1 1.165 0.782 0.758 Model

5 × 103 2.5 × 105 10−5 1 1.150 0.771 0.758 Model
5 × 103 2.5 × 105 10−6 1 1.139 0.764 0.758 Model
5 × 103 2.5 × 105 10−7 1 1.131 0.759 0.760 Model

– – 10−∞ 1 1.123 0.753 – Extrapolated

– – 0 1 0.91 0.61 3/4 Turner (1962)

Table 1. Tabulated results from numerical solutions to our model. Using the errors in the
power k, compared to the steady Morton et al. (1956) solution, the errors at this high resolution
are of order 2 %. The resolution in the spatial and temporal directions is given by nz and nt

respectively.
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Figure 1. Typical plots of the evolution of the three primary dependent variables, Q, M and
F , against height z, as the buoyancy flux at the source has been increased from F0 = 10−3

to F1 = 1. The solution at t = 0.5 is shown as the thick solid line, the initial condition is the
left-hand thin solid line in each image and the final state is the right-hand thin solid line in
each image. Solutions at t = 0.13, 0.25 and 0.38 are shown as dashed lines. It can be seen
that as the pulse propagates upwards the time-dependent solution adheres to the initial state
solution above the pulse, but follows the final state solution below the pulse. The mass flux
and momentum flux at the source remains zero throughout.

momentum flux at the source remains zero throughout. The boundary condition at
the source is a step change in the buoyancy flux over one time step. Since backward
differencing is used in the vertical direction, no boundary conditions are required at
the top of the numerical box. The final states, shown as the right-hand thin solid line
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zh(t)

b(z,t)
bh(t)

Figure 2. The evolution of a generic pulse propagating up a plume. The height of the pulse is
denoted by zh(t). The extra volume entrained due to the pulse is found by rotating the hatched
region about the axis of symmetry.

in each of the three images, are given respectively by

Q =

(
5

4

)1/3 (
3z

5

)5/3

, M =

(
5

4

)2/3 (
3z

5

)4/3

, F = 1. (2.2 a–c)

The left-hand thin solid line in figure 1(a) is found by dividing (2.2a) by 10, the
left-hand thin solid line in figure 1(b) is found by dividing (2.2b) by 102 and finally
the left-hand thin solid line in figure 1(c) is found by dividing (2.2a) by 103. It is
seen that as the pulse propagates upwards the time-dependent solution adheres to the
initial state solution above the pulse, but follows the final state solution below the
pulse.

The fundamental behaviour of this system is shown in figure 2. Several time instants
are shown. As was first demonstrated in Morton et al. (1956), the conical shape of a
steady point source pure plume is independent of the source buoyancy flux. Hence,
when an established plume is subjected to a rapid increase in its source buoyancy flux
a new steady-state plume begins to establish itself near the source with the expected
b = 3z/5 plume profile first established in Morton et al. (1956). The propagation
velocity of information about the change in source strength means that far away
from the source the plume is as yet unaffected and so still retains its initial b = 3z/5
plume profile. In between these near and far regions we observe the added feature of
a bulging pulse propagating up the plume.

In the buoyancy decrease problem a transient region is formed which is narrower
than the initial b =3z/5 profile. This narrower region extends over some non-
degenerate height and is defined by the plume radius itself. Since this narrower
region of interest is given by the plume radius it follows that the time-dependent
equations can support similarity power-law solutions that determine the nature of
the narrower region. On the other hand, in the buoyancy increase problem shown
schematically in figure 2, such simple power-law solutions of the equations are not
going to yield information about the evolution of the envelope of the plume radius
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(the thin solid line) as at a given time, the envelope only intersects the instantaneous
solution to the time-dependent system at a single height, zh (a horizontal, circular
intersection).

It will be shown that, to a good approximation, the pulse that is formed is self-
similar not only with time in a given solution, but also across all seven source
buoyancy flux increases considered. That is, the form of the pulse is self-similar across
a range of seven orders of magnitude of buoyancy flux increase. Scaling laws for
the extent of the pulse are established. The method of solution is as described in
the Appendix of Scase et al. (2006b) except that in the present paper solutions were
stepped forward in time using a fourth-order Runge–Kutta scheme.

2.2. Comparison with the time-dependent model

Figure 2 shows generic time shots of the evolution of the plume’s radius. It is well
known that the vertical velocity of a steady plume scales as w� ∼ F

1/3
0� z−1/3

� (see e.g.
Zeldovich 1937; Morton et al. 1956) and so by increasing the strength of the source
buoyancy flux we increase the vertical velocity of the plume fluid leaving the source
(observing that exactly at the source this law predicts non-physical infinite velocities
for all source buoyancy fluxes). This creates a region of fast-moving plume fluid with
slower moving plume fluid ahead of it. As in the buoyancy decrease case, a steady-
state plume’s radius is independent of the source buoyancy flux and so after time a
new fast-moving plume with radius b = 3z/5 is established near to the plume source.
Within the framework of top-hat plumes (or indeed any height-wise self-similar plume
model) no mechanism exists for this faster moving plume fluid to be able to overtake
the slower moving fluid ahead, and so a bulge appears in the plume radius (see
figure 2). This bulge can be regarded as a ‘pulse’ which propagates up the plume.
We denote the height of the maximum radius of this pulse at time t by zh(t) and the
maximum radius of the pulse at this time by bh(t), as marked in figure 2.

The pulse rises up the plume, separating slower moving plume fluid ahead of the
pulse from faster moving plume fluid behind the pulse. As the pulse rises the overall
effect of fast-moving fluid entering the pulse from behind together with slower moving
plume fluid ahead of the pulse and the entrainment of ambient fluid with no vertical
momentum (see Scase et al. 2007) is to decrease the velocity of the pulse. It can
also be observed that the pulse’s volume (defined by rotating the hatched region in
figure 2 azimuthally about the axis of symmetry) also increases.

The prediction of a bulging pulse within a top-hat plume model could manifest
itself in two ways in a real plume. As described in Scase et al. (2008, § 5.3), in order
to calculate an effective top-hat radius from a real plume, both the plume fluid
concentration and plume radius must be combined. It does not therefore follow that
a bulging pulse in the top-hat model will lead to an increase in a real plume’s radius.
In fact it was observed in the buoyancy reduction studies that almost all of the
predicted narrowing in the top-hat model was accounted for by a reduction in plume
fluid concentration at a given height, not in the standard deviation of a best Gaussian
fit, which remained approximately linear.

For an ideal steady plume (in pure plume balance with a point source) obeying
the Morton et al. (1956) model, there exists no length scale in the problem – the
plume looks identical for all observers regardless of their horizontal distance from
the source. For the case of the buoyancy increase described above, at time t� a length
scale is available, namely zh�. Hence, we may expect the volume of the pulse Vh� to
scale as Vh� ∼ z3

h� on dimensional grounds.
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Figure 3. The self-similar form of the pulse; the thick solid line is the mean scaled and
translated form of the pulse, the greyed area shows the maximum deviation from the mean.
The dashed line is a Gaussian curve, for reference, and the thin solid line is the mean pulse
form calculated from the lower resolution solutions.

If a tracer is introduced to the source of a steady ideal plume it is straightforward
to show that the tracer reaches a height

z� =

(
10

9α(P )

)1/2 (
F0�

πρ∞�

)1/4

t3/4
� , (2.3)

at some time t� later (see e.g. Scase et al. 2006b, (5.3)). Equivalently, in non-dimensional
terms, z = (20/9)1/2t3/4. Guided by the result in (2.3), and on dimensional grounds, we
therefore expect the pulse height to scale as zh� ∼ t3/4

� and the pulse volume to scale
as Vh� ∼ t9/4

� .
We translate and scale b to show the self-similarity of the pulse over a large range

of buoyancy increases and times. We define the following quantities:

Λ� =

∫ ∞

0

(b̃ − 1) dz�, E (z�) =
1

Λ�

∫ ∞

0

(b̃ − 1)z� dz�, E(z2
�) =

1

Λ�

∫ ∞

0

(b̃ − 1)z2
� dz�,

(2.4)
where b̃ =5b/ (3z). The quantity b̃ may thus be thought of as the fractional deviation
of the actual plume radius from the steady solution, b =3z/5. Equation (2.4) leads to
a natural and robust definition of a vertical length scale σ� given by

σ� =
{
E(z2

�) − E (z�)
2
}1/2

. (2.5)

It follows that Λ�/σ� is therefore a measure of the horizontal fractional deviation
from the steady plume radius, and so we take Λ�zh�/σ� as a measure of the horizontal
extent of the pulse. The quantities Λ� and E(z�) have dimensions of length and
E(z2

�) has dimensions of length squared (their non-dimensional counterparts are
given by Λ = Λ�/z��, E(z) = E(z�)/z�� and E(z2) = E(z2

�)/z
2
��). Figure 3 shows the

rescaled pulses for the seven different buoyancy increases. The thick black solid
line is the mean across all times and all buoyancy increases, the greyed area shows
the maximum deviation from the mean for all times and all buoyancy increases.
There is an extremely small deviation from the mean. The thin solid line shows
the mean from a low-resolution solution (see appendix B for further discussion of
low-resolution solutions), demonstrating that the self-similar shape is independent
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of resolution to a good approximation. The dashed line shows the Gaussian curve
exp{−[z − E(z)]2/(2σ 2)}/

√
2π for reference. Comparison between the mean pulse

shape and the Gaussian curve shows that the pulse is slightly skewed towards the
top of the plume, i.e. the pulse is negatively skewed. If the pulse was symmetric E (z)
would equal zh (t), but in fact, due to the skewness, E(z) < zh(t).

The self-similarity of the pulse over such a large range of buoyancy increases, and
the fact that it persists is perhaps remarkable. It is certainly encouraging as it offers
the opportunity for a general description of the effects of buoyancy increases, as was
found for buoyancy decreases, although the methodology must differ for the reasons
described in § 2.1.

Figure 4(a) shows the evolution of the rise height of the maximum amplitude of
the pulse, zh (t). The legend indicates which buoyancy increase corresponds to which
data points. For clarity on the graphs the data points for each data set are separated
by non-dimensional time 1.4 and each data set is staggered in steps of t = 0.2, i.e.
only seven data points from a set of 2.5 × 105 have been plotted for each of the
seven solutions. The data points for the different buoyancy increases were best fitted
to a λ′ t3/4 curve (where λ′ depends on F0 and F1) on a log–log plot and have been
rescaled by 1/λ′ in (b) so that, for a perfect fit, all the data points would sit exactly
on the t3/4 line. The values of λ′ are reported in table 1. Figure 4(a) supports the
prediction of a t3/4 scaling for the rise height of the pulse across a large number of
orders of magnitude of buoyancy increase.

Figure 4(b) shows the evolution of the volume of the pulse Vh (t). The same method
of scaling and plotting as used in (b) has been repeated except that for a perfect
fit all the data points would sit exactly on the t9/4 line. As discussed above, it is
perhaps expected that since the length scale zh ∼ t3/4, the volume of the pulse scales
as Vh ∼ t9/4.

The scalings of the rise height and volume of the pulse are consistent with the
existing scaling laws for steady plume behaviour, as described above (see (2.3)).
However, figure 4(c, d) shows that there exist vertical and horizontal length scales for
the pulse which have t1/4 and t scalings, respectively.

Figure 5 shows the typical variation of the plume’s vertical velocity w and reduced
gravity g′ with height z. It can be seen that there is a sharp transition in both
quantities at the height of the pulse zh. Figure 5(a) shows the vertical velocity field
against height for a plume that has been subjected to a change in source strength
from F0 = 10−2 to F1 = 1 at a time t =0.38 after the increase. The height z = zh is
calculated from the values given in table 1 giving zh = 0.60 at t = 0.38. Information
about the change in source strength has not yet propagated above the line z = zh, and
so the data points sit on the curve

w(z) =
5

3

(
9

20

)1/3

F
1/3
0 z−1/3, (2.6)

which is the left-hand dashed line in figure 5(a). Below the line z = zh the plume has
adjusted to its new source strength and so the data points sit on the curve (2.6) with
F0 replaced by F1 (the right-hand dashed line in figure 5(a)).

Figure 5(b) is the corresponding reduced gravity field to plot (a). Above the line
z = zh the data points sit on the curve

g′(z) =
5

3

(
20

9

)1/3

F
2/3
0 z−5/3, (2.7)
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Figure 4. For the seven different buoyancy increases considered: (a) shows the scaled evolution
of the pulse’s height, zh (t), and the solid line is t3/4; (b) shows the scaled evolution of the
pulse’s volume, Vh (t), the solid line is t9/4; (c) shows the scaled evolution of the pulse’s vertical
length scale, σ , the solid line is t1/4; (d) shows the scaled evolution of the pulse’s horizontal
length scale, Λzh/σ , the solid line is linear t . The legend in (a) also applies to the plots in
(b) – (d).

which is the left-hand dashed line in (b). Below the line z = zh the data points sit
on the curve (2.7) with, again, F0 replaced by F1 (the right-hand dashed line in fig-
ure 5(b)). The sharp transition in both (a) and (b) is due to the small vertical extent
σ of the pulse.

2.3. Distributed source plumes

Real-life turbulent jets and plumes originate from non-point sources, and in that
sense we refer to their sources as ‘distributed’ (Caulfield & Woods 1995) since the
source is distributed over an area. Very often a plume with a distributed source has
large source buoyancy and mass fluxes compared to its source momentum flux in
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Figure 5. (a) The variation of the vertical velocity w in the plume after the plume has been
subjected to an increase in source strength from F0 = 10−2 to F1 = 1. The dashed lines follow
the usual z−1/3 power law. The solid line is z = zh, where zh has been calculated using the
constants given in table 1. (b) The variation of the reduced gravity g′ in the plume after the
plume has been subjected to the same increase in source strength as in (a). The dashed lines
follow the usual z−5/3 power law. The solid line is as in (a). (Not all data points are shown.)

the sense that the plume’s source laziness Γ0 is greater than unity. Such plumes have
become known as ‘lazy’ (Hunt & Kaye 2001) since, equivalently, they may be thought
of as plumes with a deficiency of momentum flux compared to a pure plume. Not
all plumes with distributed sources are necessarily lazy; in the present section we
consider pure plumes (Γ0 = 1) originating from a distributed source.

A common approach to modelling distributed source plumes emanating from a
horizontal circular source of radius b0� is to consider a ‘virtual-origin’ correction,
whereby the plume behaviour far from the source, z� � b0�/(2α(P )), is as if the plume
originated from a point source located at a virtual origin situated at some z� = − zvs�.
For a plume in pure plume balance it is straightforward to show that zvs� = 5b0�/ (6α(P ))
by means of a ‘conical correction’ (Caulfield 1991; Caulfield & Woods 1995; Hunt &
Kaye 2001). For non-pure plumes with Γ0 �= 1 the value of zvs� becomes harder to
find and is a function of both b0� and Γ0 (see Hunt & Kaye 2001, Scase et al. 2008).
For a pure plume originating at a distributed source, all plume quantities develop
in pure plume balance immediately from the source with no region of adjustment.
However, the situation is qualitatively different for time-dependent problems.

The introduction of a length scale b0� is important when considering buoyancy
increases to plumes. In § 2.2 it was shown that the volume of a pulse formed due to a
buoyancy increase at the source of an established plume scaled as the rise height of
the pulse to the third power. It was suggested that this might be expected since zh�

is the natural length scale. With the introduction of an imposed length scale on the
system this dimensional argument may no longer apply for all heights, however, far
from the source it must still be expected that the scaling laws established in § 2.2 can
be applied.

Figures 6 and 7 show the results of four solutions to the time-dependent plume
equations. The numerical box used for the solutions is the same as in § 2.2, as was the
resolution employed. In each of the four solutions the buoyancy flux of an established
plume was increased from an initial value of F0 = 10−2 to a final value F1 = 1. Four
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Figure 6. The self-similar pulse shape for the different source sizes. The thick solid line is the
average across all source sizes and times, the greyed area show the maximum deviation of the
individual source size mean profiles. The thin solid line is the mean point source pulse profile
from figure 3.

different source sizes were considered, b0 = 10−2, b0 = 10−1, b0 = 100 and b0 = 101,
where z�� =1m.

Figure 6 shows again that the shape of the pulse remains to a good approximation
self-similar across three orders of magnitude of source size. The dashed line is a
reference Gaussian curve and the thin solid line is the mean pulse shape from a point
source plume taken from figure 3 (note that this is a mean across all seven buoyancy
flux increases considered in § 2.2, not just F0 = 10−2 to F1 = 1 considered here). The
thick dashed line is the mean pulse shape for all four source sizes considered, the
greyed area shows the maximum deviation of the individual source size means from
the overall mean. As for the point source plumes considered in § 2.2 the pulse shape
is again negatively skewed towards the top of the plume.

It follows from the non-dimensionalization in (1.5) that the introduction of a length
scale z�� automatically introduces a time scale

t�� =
(
4α(P )2πρ∞�

)1/3
F

−1/3
0� z

4/3
�� . (2.8)

Therefore, for a given length scale z��, a plume emanating from a large source
b0�/(2α(P )z��) � 1 may equivalently be thought of as the early time evolution of
a plume emanating from a source b0�/(2α(P )z��) = 1. Similarly a plume emanating
from a small source b0�/(2α(P )z��) 	 1 may equivalently be thought of as the late time
evolution of a plume emanating from a source b0�/(2α(P )z��) = 1. From this observation
we note that the point source scaling laws found in § 2.2 can be considered as limiting
scaling laws for the long-time behaviour of plumes from distributed sources.

Figure 7(a) shows the rise height of the pulse on a log–log plot with the non-
dimensional lengths now rescaled by b0 and the non-dimensional times rescaled by
b

4/3
0 . The four solutions for the differing source sizes all dovetail onto the same curve.

Applying a rescaling of the non-dimensional steady Morton et al. (1956) equations,
based on the source radius, yields a rise height, equivalent to (2.3), given by

zh =
5

3

⎧⎨
⎩

[(
4

5

)2/3

t + 1

]3/4

− 1

⎫⎬
⎭ . (2.9)



150 M. M. Scase, A. J. Aspden and C. P. Caulfield

(a)

10–2

100

102

104

b0 = 10–1

b0 = 10–2

b0 = 10–3

b0 = 10–4

(b)

Vhzh

(c)

10–4 10–2 100 102 104

10–3

10–2

10–1

100

102

104

106

100

104

106

t
10–4 10–2 100 102 104

t

10–4 10–2 100 102 104 10–4 10–2 100 102 104

σ

(d)

Λzh
σ

Figure 7. (a) The change in scaling for the rise height of the pulse for a distributed source
plume against time. The thick solid line is given by (2.9). The thin solid line is z = (20/9)1/2t3/4

and the dashed line is z = (4/5)1/3t . (b) The change in scaling for the volume of the pulse for
a distributed source plume against time. The thick solid line is given by (2.10). The thin solid
line is z = (4/9)(4/5)1/2t9/4 and the dashed line is z = (5/4)1/3t . (c) The scaling for the height of
the pulse for a distributed source plume against time. The solid line is proportional to t1/4 but

the different rescaling, b
1/3
0 , for the length σ must be used. (d) The scaling for the horizontal

extent of the pulse for a distributed source plume against time. The solid line is linear in t and

the dashed line is proportional to t1/2. The quantity Λzh/σ has been rescaled by b
4/3
0 .

This curve (2.9) is shown as the thick solid line in figure 7(a). It can be seen
from (2.9) that for small t 	 1 the rise height is asymptotically linear in t with
zh ∼ (5/4)1/3 t + O

(
t2

)
. This linearity is because the velocity near to the source is

dominated by the initial velocity, and convective and entrainment effects have not
yet had a significant effect. For large t � 1 the rise height in (2.9) is asymptotically
given by zh ∼ (20/9)1/2 t3/4 + O(1), i.e. the rise height is asymptoting towards the
same rise height as if the plume had originated from a point source. This is because
far from the source the plume’s behaviour is dominated by the entrainment and
convection along the plume’s length and the exact conditions at the source can only
have an O(1) effect (analogously to a virtual origin correction). The thin solid line
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in figure 7(a) follows a t3/4 power law and it can be seen that as time increases
the power law dependence of each of the four solution sets tends towards this t3/4

scaling. Furthermore, the data set with the smallest source size (b0 = 10−2 indicated by
diamonds) which, dimensionally, is most similar to the point source solution of § 2.2,
and can be considered equivalently as the late time solution of a generic distributed
source with unit source radius, follows the t3/4 scaling closely. The data also suggest
that the early time scaling for the rise height of the pulse indeed goes linearly in t .

Figure 7(b) shows the evolution of the volume of the pulse, as defined in § 2.2. We
make the approximation

Vh ≈
∫ t

0

Q [zh(t)] dt =
5

9

⎧⎨
⎩

[(
4

5

)2/3

t + 1

]9/4

− 1

⎫⎬
⎭ , (2.10)

and curve (2.10) is shown as the thick solid line. The thin solid line follows a t9/4

scaling and the dashed line follows in linear scaling in t . The data point symbols are
as in figure 7(a). Again, the data have been non-dimensionalized, by 4πα(P ) 2z3

�� for the
volume and (2.8) for the time, and rescaled to fit onto a single curve. As before, the late
time behaviour, far from the source, follows the point source plume scaling of Vh ∼ t9/4.
This can be predicted from (2.10) since for large t , Vh ∼ (4/9)(4/5)1/2t9/4 + O(t5/4).
However, the effect of the introduction of the length b0 is to force an early time,
near source, scaling of the volume that is linear in t . From (2.10), for small t ,
Vh ∼ (5/4)1/3t + O(t2), as for the pulse rise height.

Figure 7(c) shows the evolution of the vertical extent of the pulse σ . The data point
symbols are as in figure 7(a). In § 2.2 it was shown that although the height zh ∼ t3/4

and the volume of the pulse Vh therefore scaled as Vh ∼ t9/4, the vertical extent of the
pulse scaled as σ ∼ z

1/3
h ∼ t1/4. In figure 7(c) the time has been non-dimensionalized

by (2.8) and the solid line follows a t1/4 scaling. Since the vertical extent of the pulse
scaled as z

1/3
h for the point source plume, here the vertical extent of the pulse has

been scaled by b
1/3
0 . As in figure 7(a, b), the data points dovetail onto the same curve

and reveal that there is no significant change in the scaling in the vertical extent of
the pulse as regards early or late times, or near or far source distances. Figure 7(d)
demonstrates that initially Λzh/σ follows a t1/2 before reverting to the linear point
source t scaling, where Λ� is defined as in (2.4).

2.4. Discussion

The vertical velocity of a mass of plume fluid exiting from a distributed source
in pure plume balance has three factors contributing to its evolution. The fluid
experiences acceleration due to its density difference with its surroundings. The fluid
also experiences some deceleration due to the entrainment of ambient fluid which
has no vertical momentum. Near the distributed source, however, since its velocity is
dominated by the initial velocity required to keep the plume in pure plume balance, the
fluid has some inertia due to its mass, unlike a point source plume. So, for early times,
near the plume source, since the velocity is dominated by its initial value, and thus
remains approximately constant, before any significant acceleration or deceleration
can take place, it follows that the rise height zh scales linearly with time t . Similarly to
the vertical velocity, the mass flux near a distributed source is dominated by the initial
value required to keep the plume in pure plume balance. Hence, when the source
strength is increased there is an excess mass flux Q1� − Q0� and the volume of the
pulse therefore initially evolves as (Q1� − Q0�) t�/ρ∞�. The reason for the t1/4 scaling
for the vertical extent of the pulse, σ , is perhaps less clear, as is the reason that σ
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seems unaffected by whether the plume originates at a point source or a distributed
source.

3. Numerical modelling of turbulent plumes
3.1. Introduction

Three-dimensional numerical simulations were conducted using a publicly
available incompressible Navier–Stokes solver (IAMR Center for Computational
Sciences and Engineering, Lawrence Berkeley National Laboratory: http://seesar.
lbl.gov/CCSE/index.html). IAMR employs a finite-volume approach on a three-
dimensional Cartesian mesh with a two-step predictor-corrector method based on
the unsplit second-order Godunov methodology introduced for gas dynamics by
Colella (1990). The advective velocities are constructed using a monotonicity-limited
fourth-order centred-difference slope approximation (Colella 1985). An intermediate
marker-and-cell (MAC) projection (Bell, Colella & Howell 1991) is used to ensure
these velocities are discretely divergence free before the flow variables are advected.
Finally, an approximate projection (Almgren, Bell & Crutchfield 2000) is used to
enforce the divergence-free constraint in the updated velocity field. IAMR utilizes
adaptive mesh refinement to focus resolution where it is required, significantly
reducing computational expense. The code is also parallelized and scales well to
many thousands of processors. The overall algorithm is second-order in both space
and time. For further details see Almgren et al. (1998) and the references therein.

IAMR is capable of implicit large eddy simulations (ILES), which use non-
oscillatory finite-volume schemes to capture the inviscid cascade of kinetic energy
through the inertial range, where small-scale motions, larger than the Kolmogorov
length scale, behave inviscidly and their evolution depends solely upon the rate of
energy dissipation. The inherent numerical dissipation acts as an implicit subgrid
model meaning that no extra modelling, or explicit turbulence closure scheme, is
required. The approach was introduced by Boris (1990) (see also Boris et al. 1992),
and is becoming widely used for many applications (for examples, see Youngs 1991;
Porter, Pouquet & Woodward 1992; Fureby & Grinstein 1999; Margolin, Rider &
Grinstein 2006; Drikakis et al. 2007). An overview of the technique, including a
historical background and other applications, can be found in the book by Grinstein,
Margolin & Rider (2007). Aspden et al. (2008) used simulations of homogeneous
isotropic turbulence to investigate the performance of IAMR for ILES, and proposed
a methodology for characterizing its behaviour. It was demonstrated that for fully
developed turbulence, the effective Kolmogorov length scale was approximately
0.3 times the computational cell width, making the approach significantly less
expensive than direct numerical simulation.

3.2. The numerical scheme

The equations of motion solved by IAMR for the present paper are the incompressible
Euler equations, with buoyancy described by a temperature perturbation under the
Boussinesq approximation. Specifically

Du�

Dt�
= −∇�P� + g�β� (T� − T∞�) ez, (3.1 a)

DT�

Dt�
= 0, ∇� · u� = 0. (3.1 b, c)
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The buoyancy acceleration in (3.1) is expressed in terms of a temperature T�, reference
temperature T∞� and thermal expansion coefficient β�. The modified pressure is given
by P� =p�/ρ∞� − g�z�.

The plume source was modelled by a mass, momentum and buoyancy inflow
through a ‘circular nozzle’ in the centre of the base of the solution domain. The
velocity at the source was perturbed using a three-dimensional velocity field output
from a homogeneous isotropic turbulence simulation. Transmissive lateral boundary
conditions were used to allow fluid to be drawn into the domain horizontally and
enable entrainment without creating large recirculation regions. The upper boundary
condition was also transmissive, with negative vertical velocities prohibited. Adaptive
mesh refinement was used to reduce computational expense. The grid was refined
around areas of high temperature gradient, where vorticity is generated due to
baroclinic instability. A base Cartesian grid of 128 × 128 × 192 zones was used, with
two levels of refinement giving an effective resolution of 512 × 512 × 768. Refinement
was restricted to the lower 80 % of the domain, making a buffer zone at the top of
the domain to minimize the effect of the upper boundary condition. The nozzle was
resolved by eight cells across the diameter, which makes the domain 64 × 64 × 96
nozzle diameters in size.

The numerics were run to simulate the model description in § 2 as closely as
possible. An initial turbulent buoyant plume was established, then the source strength
was instantaneously increased. A simulation with statistically steady source conditions
was run to provide initial conditions for the ‘time-dependent’ simulations. The classical
steady-state plume was achieved after approximately 2500 iterations. The ensemble
statistics were calculated from 12 separate realizations, where each realization was
azimuthally averaged. The azimuthal averaging was achieved in the following manner.
The data was interpolated onto a single-level fine grid with resolution 1024×1024×768
using a standard central differencing scheme. In each of the 768 horizontal planes each
data point was assigned an associated horizontal radial distance from the vertical r =0
axis. The 1024 × 1024 data points within the horizontal plane were then partitioned
into 256 cells according to their associated radius. The partitioned cell value was then
assigned to be the arithmetic mean of all its members. This process was repeated for
each of the 768 horizontal planes yielding a two-dimensional azimuthal average of
size 256 × 768.

The initial conditions for the time-dependent simulations were taken from the
steady-state solution at intervals of 500 iterations. Each realization was run for 800
iterations, and data points output every 100 iterations. The time step at each iteration
was set dynamically, controlled by the Courant–Friedrichs–Lewy (CFL) condition, but
was approximately 0.064 s. The CFL number in the presented simulations was 0.7. The
physical dimensions of the solution domain were 1.024 m × 1.024 m × 1.568 m with a
plume source diameter �� = 0.016 m. The fluid density was taken as ρ∞� = 1000 kg m−3,
the acceleration due to gravity was taken as g� =9.81 m s−2, the thermal expansion
coefficient was taken as β� = 2.1 × 10−4 K−1 and the reference temperature was
taken as T∞� = 293.00 K. The initial conditions prescribed at the source, prior
to the source strength increase, were the vertical velocity w0� = 0.024 m s−1 and
temperature T0� = 294.00 K. After the source strength was increased, w1� =0.065 m s−1

and T1� = 300.37 K. The boundary conditions in terms of mass, momentum and
buoyancy fluxes are described in table 2. These boundary conditions gave an initial
and final plume laziness at the source of Γ0 = 0.26, a forced (or ‘jetty’) plume. The
effective top-hat radius was calculated using the method described in Scase et al.
(2008, § 5.3).



1
5
4

M
.
M

.
S
ca

se,
A

.
J
.
A

sp
d
en

a
n
d

C
.
P
.
C

a
u
lfi

eld

General simulation values Non-dimensional initial and final values Dimensional simulation values

Plume nozzle �� = 1.6 × 10−2 m Mass flux Q0 = 0.62 Q1 = 1.69 Mass flux Q0� = 4.82 × 10−3 kg s−1 Q1� = 1.31 × 10−2 kg s−1

diameter

Reference ρ∞� = 1000 kgm−3 Momentum flux M0 = 0.39 M1 = 2.86 Momentum flux M0� = 1.16 × 10−4 kgm s−2 M1� = 8.49 × 10−4 kgm s−2

density

Reference T∞� = 273.00 K Buoyancy flux F0 = 0.05 F1 = 1.00 Buoyancy flux F0� = 1.01 × 10−5 kgm s−3 F1� = 2.02 × 10−4 kgm s−3

temperature

Thermal β� = 2.1 × 10−4 K−1 Laziness Γ0 = 0.26 Γ1 = 0.26 Plume source T0� = 294.00 K T1� = 300.37 K
expansion temperature

Gravitational g� = 9.81 m s−2 Reynolds Re0 = 384 Re1 = 1040 Plume source w0� = 2.4 × 10−2 m s−1 w1� = 6.5 × 10−2 m s−1

acceleration number velocity

Solution 512 × 512 × 678 Solution 1.024 m × 1.024 m × 1.568m
domain domain

Table 2. The values used in the IAMR simulations of § 3. The Reynolds number is given by Re = ��w�/ν� where ν� =1.00 × 10−6 m2 s−1 is the
kinematic viscosity of the fluid.
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(a) (b)

Figure 8. Instantaneous images of the temperature field. The field of view is the vertical plane
(y� = 0 m) and the extent shown is 0.704 m × 1.568 m. The times shown are: (a) before the
source strength is increased; (b) 15 s after the source strength is increased, the pulse is the red
area at a height of approximately one third of the field of view above the source.

Instantaneous images from the numerical solutions are shown in figure 8. The field
shown is the temperature field and the plane shown is the central, y� = 0 m, plane
with horizontal and vertical extent 0.704 m and 1.568 m, respectively. Figure 8(a) is
the temperature field before the source strength is increased. It can be seen that the
plume takes the expected slender form and the temperature decreases with distance
from the source. Figure 8(b) is the temperature field 15 s after the source strength is
increased. Again the plume has the slender form of figure 8(a), but it can now be
seen that although the temperature initially decreases with distance from the source,
there is an area, at a height of approximately one third of the field of view above the
source, where the temperature increases. This area is the pulse and is hotter than the
plume fluid ahead of it and behind it.

Figure 9 is a comparison between the predicted form of the pulse from § 2, using the
time-dependent plume equations (thin solid line), and the form found from the IAMR
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Figure 9. A comparison of the predicted pulse shape from the time-dependent plume
equations in § 2 (thin solid line) to the IAMR numerical simulation (thick solid line). The
dashed line is a reference Gaussian.

simulations (thick solid line). A reference Gaussian is also shown (dashed). It can be
seen that the time-dependent plume equations well predict the observed negatively
skewed Gaussian form of the pulse, although the IAMR realizations indicate more
area in the lower tail. This is not unexpected since the simulations model the vertical
extent of the eddies within the plume, unlike the time-dependent plume equations.
As observed in Scase et al. (2008), the vertical extent of the eddies means that some
vertical homogenization occurs due to their overturning and mixing.

In figure 10(a) the evolution of the pulse rise height is plotted against time. The
thin solid line is a best fit t3/4 line, the dashed line is a best-fit power-law line and
the thick solid line is from (2.9). It can be seen that there is an excellent agreement
between the two best fit lines and that the zh ∼ t3/4 prediction from both dimensional
arguments and § 2 works well. The data points generated by IAMR are seen to be
far enough from the source to be well within the point source scaling regime, rather
than the near distributed source scaling regime. Since the data points lie below the
thick solid line, the height of the pulse is marginally over predicted.

Figure 10(b) shows the evolution of the pulse’s volume against time. The thin solid
line is a best fit t9/4 line, the dashed line is a best-fit power-law line and the thick solid
line is from (2.10). The agreement between the two best fit lines is good, but the t9/4

prediction is slightly above the observed best fit power-law evolution of t2.002. As the
data points lie above the thick solid line, the volume of the pulse is under predicted,
however this is consistent with the slight over prediction of the height pulse. Since the
pulse is not moving as rapidly as predicted, more plume fluid enters the pulse from
below than predicted.

The greatest discrepancy between the predictions of § 2 and the IAMR simulations
lies in the expected vertical extent of the pulse, shown in figure 10(c). The solid line
is a best fit t1/4 line and the dashed line is a best-fit power-law line. The model
predictions of § 2 are clearly inconsistent with the numerical simulations. The best-
fit power law indicates a behaviour much closer to σ ∼ t1/2 (in fact the fit shown
is σ ∼ t0.56). Again, we appeal to the missing physics in the time-dependent plume
equations, the lack of any eddy structure, to explain this discrepancy. However, in
the horizontal direction figure 10(d) indicates that the predicted linear t scaling for
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Figure 10. Plots comparing the IAMR simulations with the power-law predictions of § 2.
The thin solid lines are the best fits for the expected power-law behaviour and the dashed
lines are best fit power-law lines. (a) The evolution of the pulse height zh against time t with
an expected zh ∼ t3/4 behaviour. The thick solid line is from (2.9). The best-fit power law
is t0.772. (b) The evolution of the pulse volume Vh against time t with an expected Vh ∼ t9/4

behaviour. The thick solid line is from (2.10). The best-fit power law is t2.002. (c) The evolution
of the pulse’s vertical extent σ against time t with an expected σ ∼ t1/4 behaviour. In fact the
behaviour is much closer to σ ∼ t1/2 as the best-fit power law is t0.562. (d) The evolution of the
pulse’s horizontal extent Λzh/σ against time t with an expected linear Λzh/σ ∼ t behaviour.
The best-fit power law is t1.071.

Λzh/σ is indeed reasonable. It is possible that a similar inconsistency in Λ cancels the
inconsistency in σ favourably, leading to reasonable predictions for horizontal extent.

Figure 2 indicated the envelope of the pulses’ evolution. Finally in this section we
compare the evolution of this envelope for all the buoyancy flux increases considered
in § 2 (both point sources and distributed sources) and the numerical simulations in
§ 3. As indicated in figure 2, for a point source plume subjected to an increase in
its source strength the rising pulse creates an envelope of initially zero horizontal
extent that spreads faster than the conical steady plume profile. From the observed
power laws in § 2 it follows that there is no single power-law behaviour for the
pulse envelope. It comprises both a z contribution from the conical spreading, and
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Figure 11. The pulse envelope. The origin of the distributed source data points and the
IAMR data points are offset by a virtual origin correction. Far from the source the envelope
is well modelled by a z4/3 power law.

a z4/3 contribution from the pulse’s horizontal extent. However, if the horizontal
extent of the pulse dominates the slender conical spreading, the envelope will be well
approximated by a z4/3 power law. Indeed, the triangular data points in figure 11
indicate that z4/3 is a reasonable scaling for the pulse envelope for a point source
plume subjected to a buoyancy increase (over seven orders of magnitude of buoyancy
increase). The point source data has been scaled in the horizontal direction to sit on
the bh = z4/3 line. The initial spreading of the pulse for a distributed source plume
(cross data points in figure 11) is more rapid than its point source equivalent. The
scalings in § 2 indicate that if the pulse width dominates the steady conical plume
width then bh ∼ (z + zvs)

1/2 initially. In fact the calculated solutions indicate even
more rapid growth with bh ∼ (z + zvs)

0.4 near the distributed source. However, we
observe that far from the source the evolution is governed by the point source power
laws and bh ∼ (z + zvs)

4/3 is a good approximation. The distributed source data points
and IAMR data points have been non-dimensionalized and scaled in the horizontal
direction. The result that zh ∼ t3/4 and bh ∼ t4/3 far from the source means that bh

increases approximately linearly in time far from the source.

4. Starting plumes
4.1. Introduction

We consider the same set of seven solutions of the time-dependent plume equations
as considered in § 2.2 but in particular we investigate the limiting behaviour of the rise
height, zh as F0 → 0, with F1 = 1. This behaviour is analogous to the starting plume
problem. In order to verify that the rise height of an infinitesimal pulse, generated by
F0 =F1 − 0, is given by (2.3) we also include the numerical solution with F0 = 0.9999,
F1 = 1. For all eight cases we are interested in the coefficient λ where

zh� (t�) = λ

(
10

9α(P )

)1/2 (
F1�

πρ∞�

)1/4

t3/4
� . (4.1)

The numerical results for λ are given in table 1. The relationship between λ′ and λ is
given by λ′ = (20/9)1/2 λ. Turner (1962) found the vertical velocity of a starting-plume
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rises at approximately 0.61 times the vertical velocity of an established plume at the
same height, i.e. λ= 0.61.

4.2. The top-hat starting plume model

The starting plume model of Turner (1962) is a combination of the steady plume
theory of Morton et al. (1956) and the buoyant vortex ring theory of Turner (1957).
The key idea is that the lower section of the starting plume behaves as a ‘steady
plume’ and this lower section feeds the front of the starting plume. The front of
the starting plume is modelled as a thermal, which can itself be thought of as a
buoyant vortex ring (Turner 1957). In particular, Levine (1959) modelled thermals as
Hills’ spherical vortex rings and this model was adopted by Turner (1962) for the
starting-plume model.

Hill’s (1894) spherical vortex solution of the Euler equations with radius a�, volume
V� and mean propagation velocity W� has impulse I � and circulation Γ� given by

I � =
ρ�

2

∫∫∫
V�

x� × ω� dx� = (0, 0, 2πρ�W�a
3
� ), Γ� =

∮
γ

u� · dx� = 5W�a�. (4.2 a, b)

where γ is a contour around the vortex ring core.
A buoyant vortex ring does not conserve its impulse I � = (0, 0, I�) due to a buoyancy

force B� = (0, 0, B�), acting because the density of the vortex ring is lower than the
density of the surrounding ambient fluid. Taking the acceleration due to gravity to be
g�, the ambient fluid density to be ρ∞� and the density of the thermal to be ρ(T )

� then

dI�

dt�
= B� = g�V�

(
ρ∞� − ρ(T )

�

)
. (4.3)

As noted in § 1.2, throughout this section a superscript t denotes quantities for
thermals. Even though ρ(T )

� and V� change in time, the total buoyancy force B�

remains constant since no buoyant fluid is supplied or removed during the flow.
Figure 12 shows the schematic set-up for a starting plume in a top-hat framework.

We choose the top-hat framework for illustrative purposes, and for consistency with
the time-dependent plume model in Scase et al. (2006b). A steady plume, of the form
considered by Morton et al. (1956) extends from a point source at z� = 0 to the base
of the thermal cap at z� = zh� where it has radius bh�. The thermal cap is assumed
to be spherical and has radius a�. The centre of the thermal cap is at z� = zc� and
rises with velocity w� = wc�. The base of the thermal cap is located at z� = zh� and
rises with velocity w� = w

(T )
h� . The flow is similar at all times (Turner 1973) and so we

define the ratio
a�

zc�

= α(T ), (4.4)

a constant. It follows that da�/dt� = α(T )wc� which governs the entrainment into
the thermal cap. This relation shows that the entrainment into the thermal cap is
proportional to the vertical velocity at the centre of the thermal cap, similarly to
the standard entrainment assumption for a plume. It follows from the geometrical
relation zc� = zh� + a� (see figure 12) that

w
(T )
h� =

(
1 − α(T )

)
wc�. (4.5)

The plume’s vertical velocity at z� = zh� is given by w� =w
(P )
h� and is greater than

vertical velocity of the base of the thermal cap at the same height, i.e. w
(P )
h� > w

(T )
h� .

For the plume in the top-hat framework the mass flux Q�, momentum flux M� and
buoyancy flux F� are as defined in (1.2). The steady plume equations of Morton et al.
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Figure 12. Schematic set-up of the top-hat equivalent of Turner’s (1962) starting-plume model.
The top of the plume is at z� = zh� and the thermal is of radius a� centred at z� = zc�. The

vertical velocity in the plume at z� = zh� is w� =w
(P )
h� and is greater than the vertical velocity in

the thermal at the same height, w� = w
(T )
h� . The velocity of the centre of the thermal is w� =wc�.

(1956) corresponding to (1.3) are

dQ�

dz�

= 2α(P ) (πρ∞�)
1/2 M1/2

� ,
dM�

dz�

=
Q�F�

M�

,
dF�

dz�

= 0. (4.6 a–c)

The vertical velocity and the plume radius at the top of the plume at height z� = zh�

are then given, respectively, by

w
(P )
h� =

5

6α(P )

(
9α(P )

10

)1/3 (
F0�

πρ∞�

)1/3

z
−1/3
h� , bh� =

6α(P )

5
zh�. (4.7 a, b)

The surface z� = zh� rises with vertical velocity w
(T )
h� and so because w

(P )
h� > w

(T )
h� the

plume supplies mass, momentum and buoyancy to the thermal. Denoting the mass,
momentum and buoyancy fluxes from the plume at z� = zh� into the thermal at z� = zh�

by Q̂�, M̂� and F̂�, respectively, it follows that

Q̂� =

∫ 2π

0

∫ b�

0

ρ(P )
�

(
w

(P )
h� − w

(T )
h�

)
r� dr� dθ = Q�(zh�)

[
1 − w

(T )
h�

w
(P )
h�

]
, (4.8 a)

and similarly

M̂� = M�(zh�)

[
1 − w

(T )
h�

w
(P )
h�

]
, F̂� = F�(zh�)

[
1 − w

(T )
h�

w
(P )
h�

]
. (4.8 b, c)

Unlike the isolated thermal, the buoyancy force on the starting-plume thermal cannot
be considered constant due to the supply of buoyancy from the plume below, i.e.
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since F̂� �= 0. The buoyancy force acting on the starting-plume thermal obeys

dB�

dt�
= F̂�. (4.9)

The rate of change with time of the impulse of the starting-plume thermal can also
no longer be considered constant due to the supply of momentum from the plume.
Hence

dI�

dt�
= B� + M̂�. (4.10)

Following Turner (1962) we appeal to similarity to write w
(T )
h� = c1w

(P )
h� . It follows

therefore from (4.7 a) that

zh� =

(
10

9α(P )

)1/2 (
F0�

πρ∞�

)1/4

(c1t�)
3/4 , (4.11)

and hence

M�(zh�) = F0�c1t�. (4.12)

It follows from (4.8 b, c), (4.9), (4.10), (4.11) and the conditions B�(0) = 0 kg m s−2,
I�(0) = 0 kgm s−1 that

B� = F0� (1 − c1) t�, I� = F0�

(
1 − c2

1

) t2
�

2
. (4.13 a, b)

Finally, based on the observation that the impulse behaves similarly to the Hill’s
spherical vortex ring model described above (4.2) we write I� ∝ πρ∞wc�a

3
� and

therefore for some constant c

I� =
πρ∞�

c
wc�a

3
� =

πρ∞�c1

c (1 − α(T ))
w

(P )
h� a3

� , (4.14)

where we have applied the similarity assumption and (4.5) to write wc� in terms of
w

(P )
h� . The expression for the impulse in (4.14) is equated to that given in (4.13 b) and

t� is substituted for by integrating the right-hand side of (4.7 a) multiplied by c1 (since
the required vertical velocity is that of the base of the thermal, not that of the plume
velocity) yielding

a3
� =

5

16

c
(
1 − c2

1

)
(1 − α(T ))

c3
1α

(P )
b3

h�. (4.15)

As bh� is linearly dependent on z� (4.7 b) the thermal cap radius a� is also linearly
dependent on z�. We now make the final observation that since a�/zc� = α(T ) we have
then

a� =
5

6α(P )

α(T )

1 − α(T )
bh�. (4.16)

The relations in (4.15) and (4.16) demonstrate the internal consistency of Turner’s
(1962) model.

The mass flux into the thermal cap from the ambient fluid, not including the mass
flux from the plume into the thermal, is denoted as Q(E)

� . The total mass flux into the
thermal cap, including entrained ambient fluid as well as buoyant fluid supplied by
the plume, is denoted by Q(T )

� . Hence

Q(T )
� = Q(E)

� + Q̂�. (4.17)
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Since the thermal radius a� obeys (4.16) it follows that

Q(T )
� =

d

dt�

(
ρ∞�

4π

3
a3

�

)
= ρ∞�4πa2

�α
(T )wc�. (4.18)

Hence the ratio of plume fluid entering the cap at any instant to the total entrainment
into the thermal cap at any instant is given by

Q̂�

Q
(T )
�

=

(
6α(P )

5

)2
1 − c1

4c1

(
1 − α(T )

α(T )

)3

. (4.19)

Turner (1962) stated that ‘about half the fluid entering the spherical cap at any
instant comes from below’. However, a small typographical error in (18) in his paper
whereby, in his notation, the factor β should be replaced by (R/b)2, leads to this ratio
changing from 0.49 to 0.40.

We make the assumption that the exact form of profile chosen for a given plume
model, e.g. top-hat or Gaussian etc. has no effect on either the ratio w

(T )
h� /w

(P )
h� or

Q̂�/Q
(T )
� . As is usual we choose α(P ) = 0.10 for a top-hat plume and choose α(T ) such

that Q̂�/Q
(T )
� = 0.40 which leads to α(T ) = 0.20. It should be noted then that the ratio

of α(P ) for a Gaussian plume compared to a top-hat plume (0.09/0.10) is then also
equal to the ratio of α(P ) for the Gaussian thermal cap compared to the top-hat
thermal cap (0.18/0.20).

Finally we observe that our time-dependent model, which lacks both the modelling
of the dynamics in the thermal cap and the extra entrainment of ambient fluid through
the surface of the thermal cap, will therefore under-entrain by the ratio

Q(E)

�

Q
(T )
� + Q�(zh�)

= 1 − 2 − c1

1 + 4c1

(
α(T )

1−α(T )

)3 (
5

6α(P )

)2
= 0.36. (4.20)

4.3. Comparison with Turner (1962)

If F0 = F1 − 0 then the rise height of the infinitesimal ‘pulse’ is given by the steady
Morton et al. (1956) model (2.3). We wish to compare this to the situation with F0 = 0
and F1 = 1, the starting plume set up. As in § 2.2, we write

zh = λ

(
20

9

)1/2

t k, (4.21)

the results of numerical simulations are given in table 1 and shown in figure 13. Fig-
ure 13(a) shows the evolution of a ‘starting plume’ as modelled by the time-dependent
plume equations (1.3). The position of the top of the starting plume was found by
defining a passive tracer concentration field (see Scase et al. 2008, (3.3)) that was
initially zero. At t = 0 the concentration at the source was increased to 1 and the
extent of the starting plume was taken to be all heights for which the concentration
was above the numerical noise level of 10−8. The image shows the plume establishing
the usual steady b =3z/5 profile, but its head shape is flatter and wider than is
observed in starting plumes. As before though, top-hat estimates of horizontal extent
need not be the true horizontal extent of a real plume, as discussed in § 2.2.

Figure 13(b) is a plot of the calculated value of Turner’s (1962) factor, λ, for each
of the buoyancy increases considered. The plot demonstrates that, qualitatively, if
the initial plume strength is weak then the pulse propagates up the plume more
slowly than if the initial plume strength is strong. Using the differences between k

and 3/4 as an estimate, the errors are of order 2 % (see table 1). Keeping a fixed
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Figure 13. (a) The evolution of the approximation to a starting plume from the
time-dependent plume equations (1.3). The times shown are t = 0.56, 2.16, 3.76, 5.36, 6.96
(dashed) and t = 8.56 (solid). (b) Graph showing the limiting behaviour of λ as F1 = 1 and
F0 → 0. The horizontal line is Turner’s empirical value of λ=0.61. The cross is the theoretical
value based on the steady Morton et al. (1956) solution. The solid curved line is a best fit
through the data points, predicting a minimum value of λ as F0 → 0 of λ=0.75.

final non-dimensional buoyancy flux, F1 = 1, the initial non-dimensional buoyancy
flux, F0, was reduced from 0.9999 to a value of 10−7. When F0 = 0.9999 the value of
λ and k are in good agreement with the steady Morton et al. (1956) model where
F0 = F1 = 1, i.e. λ=1 and k = 3/4. As F0 is progressively reduced, the value of k

remains approximately constant at k ≈ 3/4. The factor λ reduces and tends to a
constant value ≈ 0.75. Approximately therefore, we find based on the time-dependent
plume model

zh� = 0.75 ×
(

10

9α(P )

)1/2 (
F0�

πρ∞�

)1/4

t3/4
� . (4.22)

There is therefore a discrepancy between Turner’s factor, λ= 0.61 and the present
value λ= 0.75, a difference of 23 %.

We now use (4.20) to compare the prediction given in (4.22) to the known rise-
height velocity given in (2.3) by replacing α(P ) with 1.36 α(P ) (accounting simply for
the extra entrainment through the cap) and find

zh� = 0.65 ×
(

10

9α(P )

)1/2 (
F0�

πρ∞�

)1/4

t3/4
� . (4.23)

The factor λ=0.65 compares well with Turner’s (1962) factor λ= 0.61 ± 0.05 given
that no attempt to model the dynamics of the thermal cap has been made. This
suggests that the main effect of the thermal cap is to entrain ambient fluid with
negligible vertical velocity. This extra entrained mass acts as a drag on the starting
plume which slows its vertical propagation compared to that of an established steady
plume. It would appear that the precise nature of the internal dynamics of the thermal
cap is not significant in determining the rise height.
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5. Conclusions
The time-dependent generalization of the successful plume model (Morton et al.

1956) derived in Scase et al. (2006b) is able to model the evolution of a turbulent
plume that is subjected to changes in its source strength, both decreases and increases.
It has been shown previously in the literature that a plume that is subjected to
a rapid decrease in its source strength forms a narrow region well modelled by
the power-law similarity solution to the governing equations. No such power-law
solution to the equations exists for a plume subjected to a rapid increase in source
strength. We have investigated two buoyancy increase scenarios of practical interest,
the effect of rapid buoyancy increase on an established plume and the ‘starting-
plume’.

In the first of these scenarios it was shown that by increasing the source strength
of an established plume, a pulse travels up the plume. It was shown that for a point
source plume, and a pure distributed source plume far from the source, that the pulse
propagates upwards with a t3/4 scaling. This is the same scaling with time as for a
passive tracer propagating vertically within a classical steady plume. This t3/4 scaling
may have been expected for moderate increases in buoyancy flux given the established
steady plume model. It was shown however that this scaling applies across a large
number of orders of magnitude of buoyancy increase where the inertia of the slow
plume moving fluid ahead of the pulse becomes important. It was also shown that
near the source of a distributed source plume, the initial momentum of the plume fluid
dominates the propagation velocity of the pulse and it initially propagates linearly
in time. The volume of extra plume fluid contained within the pulse was shown to
follow a t9/4 scaling for a point source plume or a distributed source plume far from
the source. This scaling might have been predicted given the t3/4 behaviour of the
pulse’s rise height. Near to the source of the distributed source plume the volume of
the pulse was shown to be dominated by the initial mass flux of the plume and hence
followed a linear scaling.

The implicit LES approach employed in § 3 is well suited to high-Reynolds-number
shear flows. For a sufficiently large Reynolds number turbulent plumes and jets
become, to a good approximation, Reynolds number independent. This independence
is due to the dominance of the Reynolds stresses compared to the viscous stresses.
The details not captured explicitly by the ILES approach therefore do not play a
significant role in the dynamics. For a fuller discussion of ILES methods applied to
high-Reynolds-number shear flows see Oran & Boris (1993) and Fureby & Grinstein
(1999).

The behaviours of the pulse’s rise height and volume with time are the most
important physical results, giving, for example, time scales for evolution and
accumulation of concentrations of pollutants in the atmosphere. However, it was
also shown that the pulse remains self-similar across a large number of orders of
magnitude of buoyancy increase, and persists in self-similar fashion for long times.
Furthermore the pulse remained self-similar across a number of orders of magnitude
of source size. This observation offers encouragement in terms of the possibility of
finding a universal solution.

A starting plume is fundamentally different to an established plume that has its
source strength varied. At the top of a starting plume is a ‘thermal cap’ with a
vortex-ring-like structure that has internal dynamics similar to those of a vertically
propagating vortex ring, and furthermore the plume is entraining ambient fluid
through this thermal cap. The horizontally averaged time-dependent plume equations
cannot account for either of these physical processes. However it is still of interest
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to see how well the model performs in comparison to the accepted starting plume
model with a view to unifying the classical steady plume model of Morton et al.
(1956) and the starting plume model of Turner (1962). It would be preferable to have
one universal model for plume dynamics rather than requiring a specific model for
each different scenario. It was shown that despite the inability of the time-dependent
plume equations to model all the physics of a starting plume it still predicted the rise
height of a starting plume reasonably (over predicting the rise height by 23 %). The
main reason for the over prediction was the lack of entrainment of ambient fluid,
with zero vertical momentum, through a thermal cap. If the entrainment coefficient
was artificially increased to account for the extra entrainment of ambient fluid, with
zero vertical inertia, the predicted rise heights matched extremely closely.

The authors are greatly indebted to Dr S. B. Dalziel and Professor A. W. Woods
for many useful discussions. M. M. Scase gratefully acknowledges funding from
the US–UK Fulbright Commission. C. P. Caulfield gratefully acknowledges the
support of the 2008 Summer Study program in Geophysical Fluid Dynamics at
Woods Hole Oceanographic Institution where the preparation of this manuscript took
place.

Note added in Proof
A similar set of equations to (1.3) was posed for Gaussian profile plumes in

Delichatsios (1979). The authors are grateful to Professor Vul’fson for drawing their
attention to this paper.

Appendix A. Two increases in the source buoyancy flux of a turbulent plume
The non-dimensional time-dependent plume equations (Scase et al. 2008, (2.4 a–c))

can be written as
∂ Q
∂t

+ A
∂ Q
∂z

+ h = 0, (A 1)

where Q = (Q, M, F )T,

A =

⎛
⎜⎜⎜⎜⎝

0 1 0

−M2

Q2
2
M

Q
0

−F M

Q2

F

Q

M

Q

⎞
⎟⎟⎟⎟⎠ and h =

⎛
⎜⎜⎜⎜⎜⎝

−Q F

M
M5/2

Q2
− 2F

F M3/2

Q2
− F 2

M

⎞
⎟⎟⎟⎟⎟⎠ . (A 2)

The matrix A has three real repeated eigenvalues and a set of three linearly
independent left eigenvectors, ei , for i = 1, . . . , 3. We define a matrix L as a matrix of
left eigenvectors such that

L =

⎛
⎝e1

e2

e3

⎞
⎠ =

⎛
⎝ 0 F −M

F 0 −Q

M −Q 0

⎞
⎠ satisfies LA =

M

Q
L.

Although intuition may lead us to expect the system to be hyperbolic, L is singular,
A cannot therefore be diagonalized and the system must be regarded as parabolic.
An example of the parabolic nature of the solution space is shown in figure 14. The
presence of the repeated eigenvalue, M/Q, forces wave information to travel through



166 M. M. Scase, A. J. Aspden and C. P. Caulfield

(a)

0 2 4–4 –2 0 2 4–4 –2

0 2 4–4 –2 0 2 4–4 –2

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

z z

z

0

0.5

1.0

1.5

2.0

z

b b

b b

(b)

(c) (d)

Figure 14. (a–d ) The evolution of two increases in the source buoyancy flux. The solid line is
the plume radius, the dotted line is the steady Morton et al. (1956) plume radius. The buoyancy
flux at the source is initially F0 = 1. At t =0.30 the source strength is increased to F0 = 10, and
then at t = 1.04 the source strength is increased again to F0 = 100. The images demonstrate
that the second perturbation catches the first and coalesces with it. (a) t = 0, (b) t = 1.18,
(c) t = 1.57 and (d) t = 1.78.

the system at the local velocity, i.e. waves cannot pass through each other. Figure 14
shows an initially steady plume that is subject to two increases in the buoyancy flux
at the source, separated by time t = 0.74. A slow-moving pulse is seen to propagate up
the plume followed by a much faster moving pulse. The faster moving pulse catches
the slower moving pulse, but does not pass through the slower moving pulse. Instead,
both pulses coalesce and move together as one.

Appendix B. Independence of numerical solutions to resolution
Numerical solutions of the time-dependent plume model indicate that the estimates

for the normalized shape, height and volume of the pulse are robust, as is the t1/4

scaling for the vertical extent of the pulse, see table 3. However, the coefficients for the
scaling of the vertical and horizontal extent of the pulse are sensitive to resolution.
With increasing spatial resolution, the pulse becomes ever smaller in vertical extent
and larger in horizontal extent. Increasing the vertical resolution necessarily requires
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Low resolution nz = 250, nt = 5000 High resolution nz � 5000, nt = 250 000

F0 F1 λ′
z κz λ′

V κV λ′
σ κσ λ′

z κz λ′
V κV λ′

σ κσ

10−1 1 1.334 0.762 0.803 2.199 0.074 0.228 1.392 0.755 0.698 2.228 0.010 0.245

10−2 1 1.200 0.763 0.989 2.186 0.060 0.240 1.254 0.755 0.843 2.229 0.008 0.240
10−3 1 1.136 0.764 1.078 2.173 0.054 0.244 1.193 0.756 0.897 2.227 0.007 0.240
10−4 1 1.092 0.772 1.155 2.157 0.052 0.246 1.165 0.756 0.930 2.224 0.007 0.240
10−5 1 1.074 0.770 1.237 2.138 0.051 0.246 1.150 0.758 0.957 2.220 0.007 0.240
10−6 1 1.044 0.778 1.328 2.117 0.050 0.244 1.139 0.758 0.982 2.215 0.007 0.239
10−7 1 1.013 0.787 1.429 2.096 0.050 0.241 1.131 0.760 1.010 2.209 0.007 0.240

Table 3. The numerical fits for zh = λ′
z tκz , Vh = λ′

V
tκV , σ = λ′

σ tκσ for both the low-resolution and high-resolution solutions. The effect of the
resolution is minimal on the coefficients except for the factor λ′

σ .
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an increase in the temporal resolution for convergence and stability, and an increase
in temporal resolution changes the boundary condition as the ‘step change’ in source
conditions becomes apparently more rapid, promoting a more sharper solution. Due
to the limitations in computational power it is not clear when full convergence will
be attained. A rapid linear increase in source strength over a finite time, that is
therefore independent of temporal resolution unlike the step change, has also been
considered. Initial investigations indicate a small region above the source where yet
another scaling regime exists. Above this region the plume adjusts and behaves as if
a step change occurred at the source. A fuller discussion is beyond the scope of the
present paper and as such only the robust results are discussed.

The solutions found in § 2.2 were calculated using the method described in Scase
et al. (2006b, appendix A) except that in the present case solutions were stepped
forward in time using a fourth-order Runge–Kutta scheme. This solution technique,
whereby perturbations to the steady Morton et al. (1956) solutions are considered, is
necessary to remove the numerical difficulties associated with infinite velocities at a
point source. However this scheme is not suitable for the distributed source plumes
discussed in § 2.3. The solutions in § 2.3 were found using a separate solver based on
the formulation in (A 1) and (A 2). Using two separate solvers based on two different
solution methods demonstrates the robustness of the results presented herein.

REFERENCES

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H. & Welcome, M. L. 1998 A conservative
adaptive projection method for the variable density incompressible Navier–Stokes equations.
J. Comp. Phys. 142, 1–46.

Almgren, A. S., Bell, J. B. & Crutchfield, W. Y. 2000 Approximate projection methods. Part I.
Inviscid analysis. SIAM J. Sci. Comp. 22, 1139–1159.

Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 Analysis of implicit LES methods.
Comm. Appl. Math. Comput. Sci. 3, 103–126.

Bell, J. B., Colella, P. & Howell, L. H. 1991 An efficient second-order projection method
for viscous incompressible flow. In 10th A.I.A.A. Computational Fluid Dynamics Conference,
Honolulu, US.

Boris, J. P. 1990 On large eddy simulation using subgrid turbulence models. Comment 1. In Lecture
notes in Physics (ed. J. L. Lumley), vol. 357, pp. 344–353. Springer Verlag.

Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. L. 1992 New insights into large eddy
simulation. Fluid Dyn. Res. 10, 199–229.

Caulfield, C. P. 1991 Stratification and buoyancy in geophysical flows. PhD thesis, University of
Cambridge, UK.

Caulfield, C. P. & Woods, A. W. 1995 Plumes with non-monotonic mixing behaviour.
Geophys. Astrophys. Fluid Dyn. 79, 173–199.

Colella, P. 1985 A direct Eulerian MUSCL scheme for gasdynamics. SIAM J. Sci. Stat. Comp. 6,
104–117.

Colella, P. 1990 A multidimensional second order Godunov scheme for conservation laws.
J. Comp. Phys. 87, 171–200.

Delichatsios, M. A. 1979 Time similarity analysis of unsteady buoyant plumes in neutral
surroundings. J. Fluid Mech. 93, 241–250.

Drikakis, D., Fuerby, C. Grinstein, F. F. & Youngs, D. L. 2007 Simulation of transition and
turbulence decay in the Taylor–Green vortex. J. Turbul. 8, 1–12.

Fureby, C. & Grinstein, F. F. 1999 Monotonically integrated large eddy simulations of free shear
flows. AIAA J. 37, 544–556.

Grinstein, F. F., Margolin, L. G. & Rider, W. J. 2007 Implicit Large Eddy Simulation. Cambridge
University Press.

Hill, M. J. M. 1894 On a spherical vortex. Phil. Trans. R. Soc. A 185, 213–245.



Buoyancy flux increases in turbulent plumes 169

Hunt, G. R. & Kaye, N. B. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech.
435, 377–396.

Hunt, J. C. R., Vrieling, A. J., Nieuwstadt, F. T. M. & Fernando, H. J. S. 2003 The influence of
the thermal diffusivity of the lower boundary on eddy motion in convection. J. Fluid Mech.
491, 183–205.

Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy.
J. Fluid Mech. 526, 361–376.

Levine, J. 1959 Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteor. 16,
653–662.

Margolin, L. G., Rider, W. J. & Grinstein, F. F. 2006 Modeling turbulent flow with implicit LES.
J. Turbul. 7, 1–27.

Middleton, J. H. 1975 The asymptotic behaviour of a starting plume. J. Fluid Mech. 72, 753–771.

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from
maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–32.

Oran, E. S. & Boris, J. P. 1993 Computing turbulent shear flows – a convenient conspiracy. Comp.
Phys. 7, 523–533.

Porter, D. H., Pouquet, A. & Woodward, P. R. 1992 Three-dimensional supersonic homogeneous
turbulent: a numberical study. Phys. Rev. Lett. 68, 3156.

Ricou, F. P. & Spalding D. B. 1961 Measurements of entrainment by axisymmetrical turbulent
jets. J. Fluid Mech. 8, 21–32.

Scase, M. M., Caulfield, C. P. & Dalziel, S. B. 2006a Boussinesq plumes with decreasing source
strengths in stratified environments. J. Fluid Mech. 563, 463–472.

Scase, M. M., Caulfield, C. P. & Dalziel, S. B. 2008 Temporal variation of non-ideal plumes
with sudden reductions in buoyancy flux. J. Fluid Mech. 600, 181–199.

Scase, M. M., Caulfield, C. P., Dalziel, S. B. & Hunt, J. C. R. 2006b Time-dependent plumes
and jets with decreasing source strengths. J. Fluid Mech. 563, 443–461.

Scase, M. M., Caulfield, C. P., Dalziel, S. B. & Hunt, J. C. R. 2006c Plumes and jets with
time-dependent sources in stratified and unstratified environments. In Proceedings of 6th
International Symposium on Stratified Flows (ed. G. N. Ivey), University of Western Australia,
Perth, Australia, pp. 112–117.

Scase, M. M., Caulfield, C. P., Linden, P. F. & Dalziel, S. B. 2007 Local implications for
self-similar turbulent plume models. J. Fluid Mech. 575, 257–265.

Scorer, R. S. 1954 The nature of convection as revealed by soaring birds and dragonflies.
Q. J. R. Met. Soc. 80, 68–77.

Turner, J. S. 1957 Buoyant vortex rings. Proc. R. Soc. A 239, 61–75.

Turner, J. S. 1962 The ‘starting plume’ in neutral surroundings. J. Fluid Mech. 13, 356–368.

Turner, J. S. 1973 Buoyancy effects in fluids. Cambridge University Press.

Youngs, D. L. 1991 Three-dimensional numerical simulation of turbulent mixing by Rayleigh–
Taylor instability. Phys. Fluids A 4, 1312–1320.

Zeldovich, Y. B. 1937 The asymptotic laws of freely-ascending convective flows. Zhur. Eksper. Teor.
Fiz. 7, 1463–1465 (in Russian). English translation In Selected Works of Yakov Borisovich
Zeldovich, 1992 (ed. J. P. Ostriker), vol. 1, pp. 82–85. Princeton University Press.


