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An ellipse describes the polarized part of a partially polarized quasi-monochromatic
plane wave field. Its azimuth angle and aspect ratio are functions of the elements of
the covariance matrix associated with the polarized part at a particular time instant.
Given an ensemble of K independent samples at that time, the distributions of the
estimators of these parameters are derived. The estimation is thus based on a sample
ensemble at any time, and does not assume temporal stationarity. Additionally, the
azimuth angle estimator has an angular distribution so that non-standard statistical
methods are needed when deriving its mean and standard deviation.
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1. Introduction

When a quasi-monochromatic (narrow-band) plane wave propagates in the z−
direction of a Cartesian coordinate system, it is found that, in the x− y plane per-
pendicular to the direction of travel, the end point of the vector traces out an instan-
taneous ellipse, whose shape changes continuously with time, (e.g., Brosseau 1998);
the wave is partially polarized. A wave whose ellipse maintains a constant azimuth
angle and aspect ratio, but whose size varies, is called completely polarized, and if
no regular pattern is exhibited the wave is unpolarized.

As well as being of fundamental importance in optics, polarization is of great
interest in many other fields such as astronomy (Simmons and Stewart 1985), atmo-
spheric science (Hayashi 1979), oceanography (Emery & Thomson 1998), geophysics
(Park et al 1987) and elsewhere (Schreier 2007). Parameters describing the state of
polarization can be calculated from observations but these are only estimates of the
true parameter values (e.g., Simmons and Stewart 1985). Modern data-acquisition
systems can often record multiple, (K, say), independent views of a propagating
wave in the form of a set of discrete-time finite-length data series. For example, the
presence of an ultra-low-frequency (ULF) wave in the solar magnetic field was cap-
tured simultaneously by K = 4 spacecraft in the Cluster mission, an international
solar physics experiment, in February 2003 (Archer et al 2005); see Figure 1 and
§ 6. Assuming spatial homogeneity, these multiple samples can be used to reduce
variance in the estimation of instantaneous polarization ellipse parameters, a proce-
dure known as ensemble averaging. Considering the instantaneous ellipse describing
the polarized portion of the signal, we shall look at estimators of its azimuth angle,
the angle which the major axis of the ellipse makes with the x-direction, and its
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Figure 1. Narrowband observations of ULF wave, February 2003, by four spacecraft in the
Cluster mission. In each case the solid line is the component V1(t) measured parallel to
the ecliptic plane, and the dotted line is the component V2(t) measured perpendicular to
the ecliptic plane.

aspect ratio, the ratio of length of the minor axis to that of the major axis, (signed
according to right- or left-handedness). New statistical results are required for the
estimation of polarization parameters from such data and are the subject of this
paper.

A commonly-used model for a partially polarized plane wave is the complex rep-
resentation whereby Z1(t) and Z2(t), say, are the analytical signal representations of
the x and y components of the field (Barakat 1985): Zj(t) = Vj(t)+iṼj(t), j = 1, 2,

where Vj(t) is the real field component and Ṽj(t) is its Hilbert transform. The real-
valued stochastic processes V1(t) and V2(t) are taken to be zero mean and Gaus-
sian distributed, justified by the central limit theorem (Brosseau 1998, sec. 3.3). Let
Zk = [Z1,k, Z2,k]T , k = 0, . . . , K−1, denote the K independent complex-valued ob-
servations (‘random samples’) of [Z1(t), Z2(t)]T at an arbitrary time, where super-
script ‘T ’ denotes transpose. Associated with these observations is an instantaneous
sample Hermitian covariance matrix of the form

Σ̂ =
1
K

K−1∑
k=0

[ |Z1,k|2 Z1,kZ∗
2,k

Z∗
1,kZ2,k |Z2,k|2

]
= (1/K)

K−1∑
k=0

ZkZH
k , (1.1)

where superscript ‘∗’ denotes complex conjugate, superscript ‘H’ denotes Hermi-
tian (complex-conjugate) transpose, and the samples have zero mean and positive-
definite covariance matrix E{Σ̂} = Σ. Since Σ̂ is constructed from K independent
complex-valued vectors, the parameter K is also the number of complex degrees of
freedom in Σ̂, and limK→∞ Σ̂ = Σ.

Regarding the partially polarized quasi-monochromatic wave field as an incoher-
ent superposition of a fully polarized monochromatic wave field and a completely
unpolarized wave field, Σ can be uniquely decomposed as (Born & Wolf 1970),

Σ = ΣP + ΣN , (1.2)

respectively, where ΣP has a determinant of zero. The estimators are based on
the sample covariance matrix Σ̂ of (1.1) at any arbitrary time and could thus
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be described as providing instantaneous estimates of the azimuth angle and aspect
ratio. The results in Barakat (1985) are a special case of our results, since his results
correspond to taking K = 1; also the azimuth angle estimator has an angular
distribution so that we provide non-standard statistical methods for deriving its
mean and standard deviation.

In § 2 we carefully define the azimuth angle and aspect ratio of the ellipse
describing the polarized portion of the signal. Some fundamental statistical back-
ground is provided in § 3, and the forms of the parameter estimators are derived
from the K-sample covariance matrix of (1.1). In § 4 we derive the probability
density function (PDF), mean and standard deviation of the azimuth estimator,
taking into account that it has an angular distribution, and a simulation experi-
ment is carried out showing that the standard definitions of these quantities are,
by comparison, quite unsatisfactory. The PDF of the aspect ratio is discussed in
§ 5. The ULF wave in the solar magnetic field is analysed in § 6. Our results are
summarized in § 7.

2. Stokes and ellipse parameters

We write the matrices in (1.2) as

Σ =
[
Σ11 Σ12

Σ∗
12 Σ22

]
; ΣP =

[
ΣB ΣD

Σ∗
D ΣC

]
; ΣN =

[
ΣA 0
0 ΣA

]
,

where ΣB ,ΣC ,ΣA ≥ 0, and det{ΣP } = ΣBΣC − |ΣD|2 = 0, where ‘det’ denotes
determinant. The elements of these matrices are given by (Born & Wolf 1970)

ΣA = 1
2 (Σ11 + Σ22) − 1

2 [(Σ11 − Σ22)2 + 4|Σ12|2]1/2

ΣB = 1
2 (Σ11 − Σ22) + 1

2 [(Σ11 − Σ22)2 + 4|Σ12|2]1/2

ΣC = 1
2 (Σ22 − Σ11) + 1

2 [(Σ11 − Σ22)2 + 4|Σ12|2]1/2; ΣD = Σ12.

If Im{Σ12} �= 0, then Im{ΣD} �= 0, and the polarized part ΣP of Σ is asso-
ciated with elliptical motion in the original coordinates. If, further, Σ11 = Σ22,
and Re{Σ12} = 0, then ΣB = ΣC , and the polarization component is circular
(Hayashi 1979), a special case of elliptical polarization.

Associated with the partial polarization covariance matrix, Σ, are the usual
Stokes parameters (Eliyahu, 1994) given by,

s0(Σ) = Σ11 + Σ22; s1(Σ) = Σ11 − Σ22

s2(Σ) = Σ12 + Σ21 = 2Re{Σ12}; s3(Σ) = i[Σ21 − Σ12] = 2Im{Σ12}.

For notational simplicity we denote s0(Σ), s1(Σ), s2(Σ), s3(Σ) by s0, s1, s2 and s3.
The Stokes parameters associated with the full polarization covariance matrix,

ΣP , are

s0(ΣP ) = ΣB + ΣC = [(Σ11 − Σ22)2 + 4|Σ12|2]1/2

s1(ΣP ) = ΣB − ΣC = Σ11 − Σ22 = s1

s2(ΣP ) = 2Re{ΣD} = 2Re{Σ12} = s2

s3(ΣP ) = 2Im{ΣD} = 2Im{Σ12} = s3.
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So s2
0(ΣP ) = s2

1(ΣP ) + s2
2(ΣP ) + s2

3(ΣP ) = s2
1 + s2

2 + s2
3, while the other Stokes

parameters are the same for Σ and ΣP .
The azimuth angle, ψ, satisfies (Born & Wolf 1970, pp. 31, 555)

ψ = 1
2 tan−1

[
s2(ΣP )
s1(ΣP )

]
= 1

2 tan−1

[
s2

s1

]
= 1

2 tan−1

[
2Re{Σ12}
Σ11 − Σ22

]
. (2.1)

Given s2/s1, no distinction can be made between a solution ψ0 and a solution
ψ0 ± π/2; there is not enough information to know which is which. Hence, as done
by Eliyahu (1993) we in fact take ψ to be the angle of the major or minor axis of
the ellipse from the x-direction, with −π/4 ≤ ψ < π/4; see Figure 2.

For circular polarization, both the numerator and denominator of the ratio in
(2.1) are zero, and the angle is undefined, as it should be since the idea of the
orientation of an ellipse axis is meaningless in the case of a circle.

Let 2a and 2b (a ≥ b) be the lengths of the major and minor axes of the ellipse, as
in Figure 2, and χ, (−π/4 ≤ χ < π/4), be the angle which characterizes the elliptic-
ity and the sense in which the ellipse is being described. Then, (Born & Wolf 1970,
p. 555), tanχ = ±b/a (χ ≷ 0 according as the polarization is right or left-handed)
and in terms of the Stokes parameters

sin 2χ = s3(ΣP )/s0(ΣP ) = s3/[s2
1 + s2

2 + s2
3]

1/2. (2.2)

But cos 2χ = [1−sin2 2χ]1/2 =
[
(s2

1 + s2
2)/(s2

1 + s2
2 + s2

3)
]1/2 for (−π/4 ≤ χ < π/4).

If we define y = tan 2χ, and ε = tanχ = ±b/a, then

y = tan 2χ = s3/[s2
1 + s2

2]
1/2, (2.3)

and

y = tan 2χ = (2 tanχ)/(1 − tan2 χ) = (2ε)/(1 − ε2), −1 ≤ ε ≤ 1. (2.4)

The only solution for ε in (2.4) for which −1 ≤ ε ≤ 1 is

ε = [−1 + (1 + y2)1/2]/y, (2.5)

a sigmoidal-shaped curve. Using (2.3) and (2.5) we see that the (signed) aspect
ratio, ε, is given by

ε = [(s2
1 + s2

2 + s2
3)

1/2 − (s2
1 + s2

2)
1/2]/s3. (2.6)

The degree of polarization is (Born & Wolf 1970, p. 555)

P = (s2
1 + s2

2 + s2
3)

1/2/s0. (2.7)

3. Statistical fundamentals

(a) Complex Bivariate Gaussian distribution

Z0 = [Z1,0, Z2,0]T is said to have the bivariate proper (or circular) complex
Gaussian distribution with zero mean and covariance matrix E{Z0Z

H
0 } = Σ,
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(a)

ψ

 a

 b

(b)

ψ

 a

 b

Figure 2. Illustration of the azimuth angle. ψ is the angle of (a) the major, and (b)
the minor, axis of the ellipse from the x-direction. ψ is the same in both cases and
−π/4 ≤ ψ < π/4. The semi-major and semi-minor axes of lengths a and b are shown
as dashed lines.

det{Σ} > 0, written Z0 ∼ NC
2 (0,Σ), if Z0 has PDF (Goodman 1963, Picin-

bono 1993, p. 122)

fZ0(z) =
1

π2det(Σ)
exp

[
−Σ22|Z1|2 + Σ11|Z2|2 − 2Re(Σ12Z

∗
1Z2)

det(Σ)

]
. (3.1)

Under the Gaussian asumption on the real-valued stochastic processes V1(t) and
V2(t), the random vector Zk is obviously a bivariate complex Gaussian vector, but
it is only proper and hence has probability density (3.1), if (Picinbono 1993, p. 120)
E{ZkZT

k } = 0. For this to be true we need to show that E{Z2
1,k} = E{Z2

2,k} =
0 and E{Z1,kZ2,k} = E{Z2,kZ1,k} = 0. These follow immediately from results
on Hilbert transform relationships given in Bendat & Piersol (1986, Table 13.2,
p. 499) and thus we conclude that Zk has the bivariate proper (or circular) complex
Gaussian distribution with PDF (3.1).

(b) Complex Wishart distribution

Let Z = [Z0,Z1, . . . ,ZK−1], where Z0, . . . ,ZK−1 are K independent bivariate
proper complex Gaussian random vectors, each with the NC

2 (0,Σ) distribution.
When K ≥ 2, the random 2 × 2 matrix ZZH =

∑K−1
k=0 ZkZH

k is full-rank and

W = ZZH =
K−1∑
k=0

ZkZH
k =

[
w11 w12

w∗
12 w22

]
∼ WC

2 {K,Σ }, (3.2)

i.e., W has the non-singular 2-dimensional complex central Wishart distribution
with K complex degrees of freedom and mean KΣ. Goodman (1963) pointed out
that Σ̂ in (1.1) is the maximum likelihood estimator of the covariance matrix Σ.
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(c) Parameter estimators

From the sample covariance matrix Σ̂ in (1.1) can be defined the random vari-
ables,

X0 = s0(Σ̂) = Σ̂11 + Σ̂22; X1 = s1(Σ̂) = Σ̂11 − Σ̂22;
X2 = s2(Σ̂) = 2Re{Σ̂12}; X3 = s3(Σ̂) = 2Im{Σ̂12}.

(3.3)

From (2.1) the estimator for the azimuth ψ is the random variable

Ψ = 1
2 tan−1(X2/X1). (3.4)

The estimator of the aspect ratio ε is, from (2.6), the random variable E given by

E =
[
(X2

1 + X2
2 + X2

3 )1/2 − (X2
1 + X2

2 )1/2
]
/X3. (3.5)

Hence we seek the PDFs of (3.4) and (3.5).

4. Statistical properties of azimuth estimator

(a) Distribution of Ψ

The PDF can be derived via the unitary transformation matrix

A = 1√
2

[
1 i
1 −i

]
.

Applying it to Z0 gives Y0 ≡ AZ0 ∼ NC
2 (0,Υ), where the Hermitian covariance

matrix Υ is given by Υ = AΣAH with elements

Υ11 = 1
2 (Σ11 + Σ22) + Im(Σ12) = 1

2 [s0 + s3]
Υ12 = Υ∗

21 = 1
2 (Σ11 − Σ22) + iRe(Σ12) = 1

2 [s1 + is2]
Υ22 = 1

2 (Σ11 + Σ22) − Im(Σ12) = 1
2 [s0 − s3].

Then |Υ12|2/[Υ11Υ22] = (s2
1 + s2

2)/(s2
0 − s2

3) = ρ2, while arg Υ12 = tan−1(s2/s1) =
2ψ. We note also that ρ2 is the squared correlation coefficient between the variables
(Z1 + iZ2)/

√
2 and (Z1 − iZ2)/

√
2.

Now let Y0, . . . ,YK−1 be K independent bivariate proper complex Gaussian
random vectors, each with the NC

2 (0,Υ) distribution. The maximum likelihood
estimator of the true covariance matrix Υ is given by Υ̂ = (1/K)

∑K−1
k=0 YkY H

k .

The random variable ω̂ = arg Υ̂12,−π/2 ≤ ω̂ < π/2, has PDF (Miller 1980, p. 91)

fΩ(ω̂) =
(1 − ρ2)K

π
2F1

(
1, K; 1

2 ; ρ2 cos2(ω̂ − ω)
)
, (4.1)

where ω = arg Υ12, ρ
2 < 1, K ≥ 2. Here 2F1(α1, α2;β1; z) is the hypergeometric

function with 2 and 1 parameters, α1, α2 and β1, and scalar argument z, which
may be written explicitly as

∞∑
m=0

Γ(α1 + m)Γ(α2 + m)Γ(β1)zm

Γ(α1)Γ(α2)Γ(β1 + m)m!
. (4.2)
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(It is a special case of pFq(α1, . . . , αp;β1, . . . , βq; z), the generalized hypergeometric
series, defined by (Gradshteyn & Ryzhik 1980, p. 1045)

∞∑
m=0

(α1)m . . . (αp)m

(β1)m . . . (βq)m

zm

m!
, (4.3)

where (y)m is defined in terms of the Gamma function Γ(·) as (y)m = y(y+1) . . . (y+
m − 1) = Γ(y + m)/Γ(y) with (y)0 = 1.)

On transforming (4.1) with ψ̂ = ω̂/2 and ψ = ω/2, we get

fΨ(ψ̂) = 2fΩ(2ψ̂) = C 2F1

(
1, K; 1

2 ; ρ2 cos2 2(ψ̂ − ψ)
)

, (4.4)

−π/4 ≤ ψ̂ < π/4, where C = 2
π (1 − ρ2)K and

ρ2 = (s2
1 + s2

2)/(s2
0 − s2

3) < 1. (4.5)

The PDF in (4.4) is valid for K = 1 as well as K ≥ 2. For K = 1, fΨ(ψ̂) = fB(ψ̂)+
fB(ψ̂±π/2), where fB(·) denotes Barakat’s PDF, (Barakat 1985, eqn. 5.27), defined
over −π/2 ≤ ψ < π/2; this is exactly what we should obtain (Eliyahu 1993, p. 2885).
Of course the importance and novelty of (4.4) is its validity for K ≥ 2. Note that
the PDF in (4.4) depends on ρ2 and the true value, ψ, of the azimuth. If we define

δ = s3/s0 = (2Pε)/(1 + ε2), (4.6)

then

ρ2 =
{
[(s2

1 + s2
2 + s2

3)/s2
0] − [s2

3/s2
0]

} / {
(s2

0 − s2
3)/s2

0

}
= (P 2 − δ2)/(1 − δ2),

so that the degree of polarization, P, and the aspect ratio, ε, together determine ρ2,
and so the PDF could alternatively, but not so neatly, be directly parameterized in
terms of these quantities.

The PDF fΨ(ψ̂) is plotted in Figures 3(a)-(c) for three values of K, ψ and
ρ2, respectively. We see, that as K increases, then as expected, the distribution
becomes concentrated around the true value of ψ = 0.2 in Figure 3(a). The same
effect can be seen when ρ2 increases for a fixed K in Figure 3(c). It is also easy to see
that when ψ = π/5, in Figure 3(b), that the distribution shows its circular nature,
clearly wrapping around in a circular manner. This is an important observation
when thinking about the mean and variance of such a distribution, and we look at
two specific examples to illustrate the more complicated approach required.

We consider the two covariance matrices, Σ1 and Σ2, where

Σ1 =
[

6 7 + i

7 − i 10

]
; Σ2 =

[
10 −1 + 2i

−1 − 2i 3

]
. (4.7)

The PDF fΨ(ψ̂) is shown in Figure 4 for both matrices.

(b) Mean and standard deviation for the angular distribution

Since fΨ(ψ̂) = fΨ(ψ̂ + [π/2]) the PDF corresponds to an angular distribution
on the range [−π/4, π/4). As a result, special techniques are required to sensibly
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Figure 3. PDFs fΨ(ψ̂). (a) K = 1, 5, 20 (solid, dashed, dotted) with ρ2 = 0.6, ψ = 0.2. (b)
ψ = π/32, π/16, π/5 (solid, dashed, dotted) with ρ2 = 0.6, K = 5. (c) ρ2 = 0.1, 0.5, 0.9
(solid, dashed, dotted) with K = 5, ψ = 0.2. (The true value of the azimuth, 0.2, is marked
by a vertical dashed-dot line in (a) and (c).)
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Figure 4. PDFs fΨ(ψ̂) for (a) Σ1 and (b) Σ2. In both cases K = 5. The true value of the
azimuth, ψ, is marked by a vertical dashed line.

define the mean and variance for Ψ; in particular, care must be taken with the fact
that the distribution is defined on a quarter circle.

We look firstly at the mean direction. Let A = ei4Ψ. The first trigonometric
moment about zero is µ′ = E{A} = E{ei4Ψ}. Now write µ′ = aei4µ0 , where µ0

is the mean direction. The first central trigonometric moment (about the mean
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direction) is defined as

µ = E{ei4(Ψ−µ0)} = E{cos 4(Ψ − µ0)} + iE{sin 4(Ψ − µ0)} (4.8)
= e−i4µ0E{ei4Ψ} = e−i4µ0µ′ = e−i4µ0aei4µ0 = a, (4.9)

so that, from (4.8),

E{sin 4(Ψ − µ0)} = 0, (4.10)

and the mean direction is hence given by the value µ0 satisfying (4.10), agreeing
with Mardia (1972, p. 70).

Using (4.2) we can write fΨ(ψ̂) in (4.4) as

fΨ(ψ̂) =
C π1/2

Γ(K)

∞∑
m=0

Γ(K + m)
Γ(m + 1

2 )
ρ2m cos2m[2(ψ̂ − ψ)]. (4.11)

But E{sin 4(Ψ − µ0)} = E{2 sin 2(Ψ − µ0) cos 2(Ψ − µ0)} and so

E{sin 4(Ψ − µ0)} =
2C π1/2

Γ(K)

∞∑
m=0

Γ(K + m)
Γ(m + 1

2 )
ρ2m Jm,

where Jm is given by∫ π/4

−π/4

sin 2(ψ̂ − µ0) cos 2(ψ̂ − µ0) cos2m[2(ψ̂ − ψ)]dψ̂. (4.12)

But Jm = 0 if µ0 = ψ since the overall function to be integrated is odd. Hence the
solution to (4.10) is µ0 = ψ, and we see that the mean direction is precisely ψ, so
that ψ̂ is an unbiased estimator of the exact azimuth ψ.

The circular variance is a measure of circular dispersion for points on the unit
circle (Mardia 1972, p. 21); for Ψ it is defined as (Mardia 1972, pp. 45, 71),

V0 = 1 − E{cos 4(Ψ − µ0)}. (4.13)

After considerable algebra, it is found that V0 may be written as

V0 =


1 if ρ2 = 0,

(1 − ρ−2) log(1 − ρ2) if K = 1; 0 < ρ2 < 1,

(1 − ρ−2)[(1 − ρ2)K−1 − 1]/(K − 1) if K ≥ 2; 0 < ρ2 < 1.

(4.14)

Now (4.13) means that V0 takes values between 0 and 1, which is very different
to the usual variance of a random variable which can take any positive value. To
relate V0 to the standard deviation on the positive real line, the circular standard
deviation is defined as (Mardia 1972, p. 74),

σ0 = [−2 log(1 − V0)]1/2/4, (4.15)

where the divisor of 4 takes into account that −π/4 ≤ ψ̂ < π/4. σ0 is plotted as
a function of K and ρ2 in Figure 5; it increases with decreasing K and ρ2 and is
maximized for ρ2 = 0 which corresponds to circular polarization.
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Figure 5. σ0 as a function of K and ρ2.

µ0 µ̂0 µ̂ σ0 σ̂0 σ̂

Σ1 −0.646 −0.647 −0.587 0.078 0.078 0.273

Σ2 −0.139 −0.140 −0.122 0.247 0.244 0.257

Table 1. Results of the simulation study on azimuth estimation for K = 5. See text for
notation.

Consider again the two covariance matrices Σ1 and Σ2. The columns labelled
µ0 and σ0 of Table 1 give the exact values of ψ and the circular standard deviations
for these two matrices.

For Σ1 the PDF fΨ(ψ̂) appears like a periodic Gaussian (Figure 4). The interval
µ0 ± 1.96σ0 is [−π/4,−0.493)∪ (0.771, π/4), and numerical integration of the PDF
shows that this interval covers probability of 0.95, as in the Gaussian case.

For Σ2 the interval µ0±1.96σ0 is (−0.623, 0.345). The corresponding probability
coverage is 0.93. It appears then that ψ̂ ± 1.96σ0 will be an approximate 95%
confidence interval for ψ = µ0; in practice σ0 will need to be estimated as σ̂0, say,
so that

ψ ∈ (ψ̂ − 1.96σ̂0, ψ̂ + 1.96σ̂0) (4.16)

defines a rough 95% confidence interval.

(c) Simulation

For each of the model covariance matrices Σ1 and Σ2 we simulated Σ̂ in (1.1)
a number N of times. (For each of these repetitions Z = [Z0,Z1, . . . ,ZK−1] was
simulated from NC

2 (0,Σ) with Σ replaced by Σ1 or Σ2, using the technique given
in Medkour & Walden (2007, section V). K = 5 was used. Each repetition allows the
computation of a sample azimuth ψ̂. So we obtain ψ̂1, . . . , ψ̂N with −π/4 ≤ ψ̂j <

π/4. Since ψ̂j covers only a quarter circle we next create ψ̃j = 4ψ̂j , j = 1, . . . , N
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(Mardia 1972, p. 26). Then let C̄ = (1/N)
∑

cos ψ̃j and S̄ = (1/N)
∑

sin ψ̃j and
calculate µ̃ = tan−1(S̄/C̄), where −π/2 ≤ µ̃ < π/2. The four-quadrant inverse
tangent is then obtained from

µ̃0 =


µ̃ if S̄, C̄ > 0,

µ̃ + π if C̄ < 0,

µ̃ + 2π if S̄ < 0, C̄ > 0.

(4.17)

(The result produced from (4.17) is the same as that obtained with the mathe-
matical function atan2(S̄, C̄), with −π ≤ µ̃0 < π.) Finally, the estimated mean
direction is given by µ̂0 = µ̃0/4. For N = 10 000 repetitions, µ̂0 was obtained as
−0.647 for Σ1, and −0.140 for Σ2, very close to the exact azimuths of −0.646 and
−0.139 respectively.

The sample circular variance is given by (Mardia 1972, p. 22)

V̂0 = 1 − 1
N

N∑
j=1

cos(ψ̃j − µ̃0),

and then this is converted to a measure on the positive real line as in (4.15),
σ̂0 = [−2 log(1 − V̂0)]1/2/4. Using the N = 10 000 repetitions, σ̂0 was obtained as
0.078 for Σ1,and 0.244 for Σ2, compared to the theoretical values of 0.078 and
0.247, respectively, given by (4.15).

(d) Comparison with usual mean and standard deviation

It is interesting to compare our results properly formulated for an angular distri-
bution with what we would obtain using standard methods. We took our simulated
values ψ̂1, . . . , ψ̂N and computed the sample mean, µ̂, and standard deviation, σ̂,
in the usual way, obtaining, for Σ1, −0.587 and 0.273, respectively, very different to
the values of µ̂0 = −0.647 and σ̂0 = 0.078. The standard method does not recognize
that the distribution is angular, finding the mean as the centre of gravity of the
PDF exactly as shown in Figure 4(a), and then inflating the standard deviation
due to the probability density near π/4, to the right of the incorrect mean. By
way of contrast, the properly formulated approach basically circularizes the PDF
of Figure 4(a) before determining the centre of gravity and spread.

For Σ2 the sample mean and standard deviation of ψ̂1, . . . , ψ̂N are given by
−0.122 and 0.257 compared to the values of µ̂0 = −0.140 and σ̂0 = 0.244. The
mean is affected by the increasing tail of the PDF near π/4 (Figure 4(b)), but the
overall effect of this on the standard deviation is relatively small for this particular
example.

5. Aspect Ratio

Using the estimators in (3.3), equations (2.3) and (2.4) give the random variable

Y =
X3

[X2
1 + X2

2 ]1/2
(5.1)

=
2E

1 − E2
, (5.2)
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Figure 6. PDFs fE(ε̂). (a) K = 1, 5, 20 (solid, dashed, dotted) with P = 0.6, ε = 0.5. (b)
ε = −0.6, 0.2, 0.8 (solid, dashed, dotted) with P = 0.6, K = 5. (c) P = 0.1, 0.5, 0.9 (solid,
dashed, dotted) with K = 5, ε = 0.5. (The true value of the aspect ratio, 0.5, is marked
by a vertical dashed-dot line in (a) and (c).)

say, where E is given by (3.5). Firstly the PDF of Y in (5.1) may be derived, and
then the PDF of E found by the transformation in (5.2). The resulting PDF, fE(ε̂),
is found in Appendix A. For K = 1,

fE(ε̂) =
(1 − P 2)(1 − ε̂2)(ε̂2 − 2δε̂ + 1)

{(ε̂2 − 2δε̂ + 1)2 − (P 2 − δ2)(1 − ε̂2)2}3/2
, (5.3)

which agrees with Barakat (1985, eqn. 5.9) as corrected in Eliyahu (1993, p. 2885).
For K ≥ 2,

fE(ε̂) =
2K+1Γ(K + [1/2])(1 − P 2)K(1 + ε̂2)K−1(1 − ε̂2)

π1/2(ε̂2 − 2δε̂ + 1)K+1

K−2∑
n=0

Γ(K − 1 + n)
Γ(K − 1 − n)Γ(K + 2 + n)

(−β′)n

n!
×

4F3(K, K+[1/2],[3/2],2; 1, [K+n+2]/2, [K+n+3]/2;α′) , (5.4)

with α′ and β′ given in (A 7). This PDF is plotted in Figures 6(a)-(c) for three
values of K, ε and P , respectively. We see, that as K increases, then as expected, the
distribution becomes concentrated around the true value of ε = 0.5 in Figure 6(a).
The same effect can be seen when the degree of polarization increases for a fixed
K in Figure 6(c).

Article submitted to Royal Society



Estimation of ellipse parameters 13

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

K

m
se

−1 −0.5 0 0.5 1
0

0.1

0.2

ε

m
se

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

P

m
se

Figure 7. Mean squared error E{(ε̂ − ε)2} with varying (a) K, for P = 0.6, ε = 0.5, (b) ε,
for P = 0.6, K = 5, and (c) P, for K = 5, ε = 0.5.

The mean squared error (MSE) of estimation of ε is given by E{(ε̂ − ε)2} =
E{E2} − 2εE{E} + ε2 and comprises the bias (squared) plus variance; it is a more
useful measure of the accuracy of estimation than either the bias or variance singly.
Due to the complexity of the PDF the rth moments, E{Er} =

∫ 1

−1
ε̂rfE(ε̂)dε̂, are

most easily computed by numerical integration. The MSE is shown in Figure 7; it
falls with increasing K or with increasing degree of polarization P. We also see that
the MSE increases with the absolute value of the aspect ratio, so that, as would be
expected, the estimate worsens the closer the polarization approaches circular.

6. ULF wave example

The two-component narrowband series for the ULF wave in the solar magnetic
field recorded by each of the the four Cluster mission spacecraft were shown in
Figure 1. The measurement unit is nanoTeslas, each series has 70 values, the sample
interval is 2s, and the bandpass interval 0.02-0.05Hz. Archer et al (2005) found that
the wave could be assumed uniform and planar over the separations of the craft.
Figure 8 shows plots of the instantaneous estimated values of (a) ρ2 defined in
(4.5), estimated using ρ̂2 = (X2

1 + X2
2 )/(X2

0 − X2
3 ), (b) the azimuth ψ estimated

using (3.4), and (c) the standard deviation of the azimuth estimator σ0 given in
(4.15) estimated using (4.14) with ρ2 replaced by its estimate ρ̂2, (d) the degree of
polarization P , defined in (2.7), estimated using P̂ = (X2

1 + X2
2 + X2

3 )1/2/X0, (e)
the aspect ratio ε estimated using (3.5). The degree of polarization is just a little
less than unity at all times.
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Figure 8. Analysis of ULF series. Instantaneous estimated values of (a) ρ2, (b) azimuth
ψ, (c) the standard deviation of the azimuth estimator, (d) the degree of polarization, P ,
and (e) the aspect ratio ε.

No assumption of temporal stationarity was necessary to produce the estimates
of Figure 8. However, the PDFs for the azimuth and aspect ratio estimators, which
assume Gaussianity, could change with time if any of the governing parameters in
(4.4) and (5.4) are time-varying.

But, if a temporally stationary vector process is assumed, then the governing
parameters will be time-invariant. Suppose we treat the estimated azimuth values
in Figure 8(b) as a random sample of azimuth estimates from the distribution in
(4.4) where we take K = 4, the now time-invariant ψ to be the estimated mean
direction equal to 0.4, calculated as in §4c and the now time-invariant ρ2 to be
the median of the ρ̂2 values in Figure 8(a). A histogram of the sample values is
compared to the resulting theoretical PDF in Figure 9(a). The fit appears quite
good, despite the fact that the estimated azimuth values are of course correlated in
time, rather than independent as for a random sample. Our distributional results
thus appear consistent with temporal stationarity holding here.

Again, under the assumption of temporal stationarity, suppose we treat the es-
timated aspect ratio values in Figure 8(e) as a random sample of azimuth estimates
from the distribution in (5.4) where we take K = 4, the now time-invariant ε to
be the median of the ε̂ values in Figure 8(e), and the now time-invariant P to be
the median of the P̂ values in Figure 8(d). A histogram of the sample values is
compared to the theoretical PDF in Figure 9(b); again the fit is reasonable consid-
ering the necessarily crude approximations, and appears consistent with temporal
stationarity.

The standard deviation of the azimuth estimator in Figure 8(c) defines, via
(4.16), an approximate 95% confidence interval of the form ±1.96σ̂0 about the
instantaneous estimate. With σ̂0 averaging about 0.3, we can see that the value of
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Figure 9. Sample histograms versus theoretical PDFs for (a) estimated azimuth, ψ̂ and
(b) estimated aspect ratio, ε̂.

ψ is barely constrained within its range. The difficulty of estimating the azimuth is
consistent with the fact that here polarization is near circular — the aspect ratio
has a median of 0.91.

7. Summary

We have derived the statistical distributions for instantaneous estimators of the
azimuth and aspect ratio of the polarization ellipse derived from a sample covariance
(coherence) matrix formed from a number K of independent samples under the
Gaussian assumption. We showed that the estimation accuracy improves as (i) K
increases, as expected, or (ii) as ρ2 increases (azimuth) or P increases (aspect ratio)
for a fixed K. The distribution of the azimuth is angular and special techniques
were used to derive its mean and standard deviation. An assumption of temporal
stationarity of the vector process is not necessary for the validity of the theoretical
results.

For the ULF wave data analysis, the empirical temporal distributions of az-
imuth and aspect ratio matched quite well the theoretical distributions with fixed
parameters, suggesting that in this example at least temporal stationarity might
hold.

Tarek Medkour thanks the government of the People’s Democratic Republic of
Algeria for financial support. The authors are very grateful to Dr. Tim Horbury for
supplying the Cluster mission time series.

Appendix A.

We seek first the PDF of Y given by (5.1). For K ≥ 2, the joint PDF of the four
Stokes variables (X0, X1, X2, X3) is (Touzi & Lopes 1996, eqn. 59)

f(x0, x1, x2, x3) =
C0

HK
(x2

0 − x2
1 − x2

2 − x2
3)

K−2e−
2K
H (s0x0−s1x1−s2x2−s3x3), (A 1)

where C0 = 2K2K/[πΓ(K)Γ(K − 1)] and H = s2
0 − s2

1 − s2
2 − s2

3 = 4 det{Σ} > 0.
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16 A.T. Walden and T. Medkour

Starting with (A 1) we first transform to variables X1, X2, X3 and Z = X0/(X2
1+

X2
2 + X2

3 )1/2 and integrating with respect to Z over [1,∞) using (Gradshteyn &
Ryzhik 1980, 3.387(3)), we get,

f(x1, x2, x3) = B0(x2
1 + x2

2 + x2
3)

[K−(3/2)]/2 exp
[
2K

H
(s1x1 + s2x2 + s3x3)

]
×

KK−(3/2)

[
2K

H
s0(x2

1 + x2
2 + x2

3)
1/2

]
,

where B0 = 2KK+(3/2)s
(3/2)−K
0 /[(πH)3/2Γ(K)] and Kn(·) denotes the modified

Bessel function of the second kind and order n.
Next we transform from X1, X2, X3 to R, ϕ, Y where X1 = R cos ϕ, X2 =

R sinϕ, X3 = RY. (We note that Y is thus of the form in (5.1).) Integrating with
respect to ϕ over (0, 2π) using Gradshteyn & Ryzhik (1980, 3.937(2)), we get,

f(r, y) = 2πB0r
K+(1/2)(1 + y2)[K−(3/2)]/2 exp

[
2K

H
s3yr

]
×KK−(3/2)

[
2K

H
s0r(1 + y2)1/2

]
I0

[
2K

H
r(s2

1 + s2
2)

1/2

]
.

I0(·) denotes the modified Bessel function of the first kind and order 0. But since

I0(a) =
∞∑

l=0

(a/2)2l/(l!)2, (A 2)

(Gradshteyn & Ryzhik 1980, 8.447(1)), we can write f(r, y) as

f(r, y) = 2πB0(1 + y2)[K−(3/2)]/2 exp
[
2K

H
s3yr

]
KK−(3/2)

[
2K

H
s0r(1 + y2)1/2

]
×

∞∑
l=0

[
K2

H2
(s2

1 + s2
2)

]l
rK+2l+(1/2)

(l!)2
.

Using Gradshteyn & Ryzhik (1980, 6.621(3)) to integrate with respect to r over
(0,∞), followed by considerable manipulation yields,

fY (y) = B1
(1 + y2)K−(3/2)

[s0(1 + y2)1/2 − s3y]2K
×

∞∑
l=0

[
s2
1 + s2

2

4[s0(1 + y2)1/2 − s3y]2

]l Γ(2K + 2l)Γ(2l + 3)
(l!)2Γ(K + 2l + 2)

×

2F1

(
2K + 2l, K − 1;K + 2l + 2;

s3y + s0(1 + y2)1/2

s3y − s0(1 + y2)1/2

)
,

where B1 = HK/[2Γ(K)]. This is valid if (2K/H)[s0(1 + y2)1/2 − s3y] > 0. Now

s3 = [s2
1 + s2

2 + s2
3]

1/2 sin 2χ =
[
[s2

1 + s2
2 + s2

3]
1/2

s0

]
s0 sin 2χ = Ps0 sin 2χ,
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where P is the degree of polarization. But |P | < 1, since we have assumed that
det{Σ} > 0. So, since H, K, s0 > 0 also, the condition reduces to showing g(y; q) =
(1 + y2)1/2 − qy > 0, where q = P sin 2χ and −1 < q < 1. Differentiating g(y, q)
we find that there is a single minimum at y = q/(1 − q)1/2 at which g(y, q) takes
the positive value (1 − q2)1/2. Hence g(y, q) > 0, as required.

The form of the PDF, f(y), just found, is not convenient for computational pur-
poses as it involves an infinite sum of hypergeometric functions. Using Abramowitz
& Stegun (1965, 15.3.5) we can rewrite the hypergeometric function in the sum as[

2s0(1 + y2)1/2

s0(1 + y2)1/2 − s3y

]1−K

2F1

(
2 − K, K − 1;K + 2l + 2;

s3y

2s0(1 + y2)1/2
+ 1

2

)
.

Hence,

fY (y) = B1
(2s0)1−K(1 + y2)(K−2)/2

[s0(1 + y2)1/2 − s3y]K+1
×

∞∑
l=0

αlΓ(2K+2l)Γ(2l+3)
4l(l!)2Γ(K+2l+2) 2F1(2−K, K−1;K+2l+2;β) ,

where we have defined

α =
s2
1 + s2

2

[s0(1 + y2)1/2 − s3y]2
; β =

s3y

2s0(1 + y2)1/2
+ 1

2 .

Using Abramowitz & Stegun (1965, 15.4.1), 2F1(2−K, K−1;K+2l+2;β) can be
written as

K−2∑
n=0

Γ(2 − K + n)Γ(K − 1 + n)Γ(K + 2l + 2)
Γ(2 − K)Γ(K − 1)Γ(K + 2l + 2 + n)

βn

n!
,

so

fY (y) = B1
(2s0)1−K(1 + y2)(K−2)/2

[s0(1 + y2)1/2 − s3y]K+1

K−2∑
n=0

Γ(2 − K + n)Γ(K − 1 + n)
Γ(2 − K)Γ(K − 1)

βn

n!
×

∞∑
l=0

αlΓ(2K+2l)Γ(2l+3)
4l(l!)2Γ(K+2l+2 +n)

.

Next we use the duplication formula for gamma functions (Abramowitz & Stegun
1965, 6.1.18), namely Γ(2z) = π−1/222z−1Γ(z)Γ(z + [1/2]). Applying this to the
gamma terms involving 2l in the infinite summation we get

fY (y) =
B1

π1/2

(2s0)1−K(1 + y2)(K−2)/2

[s0(1 + y2)1/2 − s3y]K+1

K−2∑
n=0

2K−n Γ(2 − K + n)Γ(K − 1 + n)
Γ(2 − K)Γ(K − 1)

βn

n!
×

∞∑
l=0

Γ(K+l)Γ(K+l+[1/2])Γ(l+[3/2])Γ(l+2)αl

Γ([K+n]/2+1+l)Γ([K+n]/2+[3/2]+l)Γ(l+1)l!
.

But from (4.3), the infinite sum is equal to

4F3(K, K+[1/2], [3/2], 2; 1, 1+[K+n]/2, [K+n+3]/2;α)

× Γ(K)Γ(K + [1/2])Γ(3/2)Γ(2)
Γ([K + n + 2]/2)Γ([K + n + 3]/2)

.
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Application of the duplication formula to the ratio of gamma functions shows that
this term can be written as π1/22−K+nΓ(2K)Γ(3)/Γ(K + 2 + n). So

fY (y) = B1
(2s0)1−K(1 + y2)(K−2)/2

[s0(1 + y2)1/2 − s3y]K+1

K−2∑
n=0

Γ(2 − K + n)Γ(K − 1 + n)Γ(2K)Γ(3)
Γ(2 − K)Γ(K − 1)Γ(K + 2 + n)

βn

n!

×4F3(K, K+[1/2], [3/2], 2; 1, 1+[K+n]/2, [K+n+3]/2;α).

For computational purposes we need to evaluate Γ(2− K + n)/Γ(2 − K). We note
that Γ(z)Γ(1 − z) = π/ sinπz, (Abramowitz & Stegun 1965, 6.1.17). Hence,

Γ(2 − K + n)Γ(K − 1 − n) = π sinπ(2 − K + n) = (−1)nπ sinπ(2 − K)
Γ(2 − K)Γ(K − 1) = π sinπ(2 − K),

so [Γ(2−K +n)/Γ(2−K)] = (−1)n[Γ(K − 1)/Γ(K − 1−n)]. Then fY (y) becomes

fY (y) = B2
s1−K
0 (1 + y2)(K−2)/2

[s0(1 + y2)1/2 − s3y]K+1

K−2∑
n=0

Γ(K − 1 + n)
Γ(K − 1 − n)Γ(K + 2 + n)

(−β)n

n!
×

4F3(K, K+[1/2], [3/2], 2; 1, 1+[K+n]/2, [K+n+3]/2;α),

where B2 = B1Γ(2K)Γ(3). Use of the duplication formula for gamma functions
gives B2 = (2H)Kπ−1/2Γ(K + [1/2]). This form for the PDF of Y consists of a
finite sum of hypergeometric series.

Now from (5.1), Y = 2E/[1− E2], and the transformation is one-to-one, and its
derivative is continuous on (−1, 1), so

fE(ε̂) = 2
(1 + ε̂2)
(1 − ε̂2)2

fY

(
2ε̂

1 − ε̂2

)
. (A 3)

The terms α and β now become

α =
(s2

1 + s2
2)(1 − ε̂2)2

[s0(1 + ε̂2) − 2s3ε̂]2
, β =

s3ε̂

s0(1 + ε̂2)
+ 1

2 , (A 4)

and finally

fE(ε̂) = 2B2
s1−K
0 (1 − ε̂2)(1 + ε̂2)K−1

[s0(1 + ε̂2) − 2s3ε̂]K+1

K−2∑
n=0

Γ(K − 1 + n)
Γ(K − 1 − n)Γ(K + 2 + n)

(−β)n

n!
×

4F3(K, K+[1/2],[3/2],2; 1, 1+[K+n]/2, [K+n+3]/2;α), (A 5)

the desired PDF for E , valid for K ≥ 2 and −1 ≤ ε̂ ≤ 1.
For K = 1 the calculations are different but similar in terms of the steps in-

volved; the joint distribution of X1, X2, X3 is given by (Eliyahu 1994, eqn. 10)

f(x1, x2, x3) =
1

πH
(x2

1 + x2
2 + x2

3)
−(1/2)e−

2
H (s0[x

2
1+x2

2+x2
3]

1/2−s1x1−s2x2−s3x3).

Next we transform from X1, X2, X3 to R, ϕ, Y where X1 = R cos ϕ, X2 = R sinϕ,
X3 = RY. Integrating with respect to ϕ over (0, 2π) using Gradshteyn & Ryzhik
(1980, 3.937(2)), we get,

f(r, y) =
2r

H(1 + y2)1/2
exp

[
− 2

H
[s0(1 + y2)1/2 − s3y]r

]
I0

[
2r

H
(s2

1 + s2
2)

1/2

]
.
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Expanding I0 again as in (A 2), and integrating with respect to r over (0,∞) using
Gradshteyn & Ryzhik (1980, 8.310(1)) we obtain

fY (y)=
H[s0(1 + y2)1/2 − s3y]

2(1+y2)1/2{[s0(1+y2)1/2−s3y]2−(s2
1+s2

2)}3/2
.

Transforming from Y to E using (A 3), gives

fE(ε̂) =
H(1 − ε2)[s0(1 + ε2) − 2s3ε]

{[s0(1+ε2)−2s3ε]2−(s2
1+s2

2)(1 − ε2)2}3/2
, (A 6)

the PDF for E when K = 1, with −1 ≤ ε̂ ≤ 1.
Taking δ as in (4.6), and noting that α and β in (A 4) can be written as

α′ =
(P 2 − δ2)(1 − ε̂2)2

(ε̂2 − 2δε̂ + 1)2
, β′ =

δε̂

(1 + ε̂2)
+ 1

2 , (A 7)

then the PDF of the estimator of the aspect ratio can be written in terms of the
degree of polarization, P , the true aspect ratio ε, and the number of samples, K.
For K = 1 by rewriting (A 6) we get (5.3) and for K ≥ 2, by rewriting (A 5) we get
(5.4).
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