
Towards Modelling Obligations in Event-B

Juan Bicarregui?, Alvaro Arenas?, Benjamin Aziz?,
Philippe Massonet† and Christophe Ponsard†

?e-Science Centre, STFC Rutherford Appleton Laboratory, UK
†Centre of Excellence in Information and Communication Tech. (CETIC), Belgium
{j.c.bicarregui, a.e.arenas, b.aziz}@rl.ac.uk, {phm, cp}@cetic.be

Abstract. We propose a syntactic extension of Event-B incorporating
a limited notion of obligation described by triggers. The trigger of an
event is the dual of the guard: when a guard is not true, an event must
not occur, whereas when a trigger is true, the event must occur. The
obligation imposed by a trigger is interpreted as a constraint on when
the other events are permitted. For example, the simplest trigger next,
which states that the event must be the next one to be executed when
the trigger becomes true, is modelled as an extra guard on each of the
other events which prohibits their execution at this time. In this paper
we describe the modelling of triggers in Event-B, and analyse refinement
and abstract scheduling of triggered events.

1 Introduction

In Event-B, a system is defined as a state consisting of a set of variables and some
events that cause the state to change by updating the values of the variables as
defined by the generalised substitution of the event.

Each event is guarded by some condition, which when satisfied implies that
the event is permitted in the current state. However, the guard is not an obliga-
tion to perform the event as an event may be delayed as a result of, for example,
the interleaving with other permitted events. The choice to schedule permitted
events is made non-deterministically.

In this paper, we introduce a dual of guards which we call triggers. The
trigger of an event expresses an obligation on when the event must be executed.
This is useful in a number of modelling situations, for example to ensure that
if a request for a service is made, then the service will eventually be delivered,
or that if a hazard state is encountered an alarm will be promptly raised. Often
there is a caveat to the obligation, for example, if the receiver remains ready to
receive the service, or if the alarm system is in working order.

Triggers model such obligations as constraints on when other events are per-
mitted. For example, the simplest trigger is next which states that the event
must be the next one executed when the trigger becomes true. This is in effect
an extra guard on each of the other events which prohibits their execution at
this time.

Event-B also incorporates a refinement methodology which is used to in-
crementally develop a model of the system. Our model of triggers enables the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

abstract specification of certain constraints on the ordering of events. In re-
finement, further constraints can be added as these reduce the non-determinism
inherent in the choice of events. Thus triggers can be strengthened in refinement.

This work is motivated by a desire to close the gap between requirements and
specifications, in particular, when using the KAOS goal-oriented requirements
methodology for describing requirements [15] and Event-B for specifying soft-
ware systems. In KAOS, system goals are refined into requirements under the
responsibility of agents. Agents performs operations in order to fulfill require-
ments. Operations are specified by pre- and post-conditions, which represent
state transitions in the usual way, and a trigger condition, which captures an
obligation to perform the operation when the condition becomes true provided
the domain precondition is true.

The structure of the paper is as follows. Triggers are introduced to Event-B in
section 2. The use of triggers is demonstrated and compared with classical Event-
B on a motivating exemplar in section 3. The way obligations are interpreted in
Event-B is fully described in section 4. Refinement with triggers is discussed in
section 5. Then, section 6 discusses abstract schedulability, as triggers introduce
constraints on the order of event which may introduce deadlocks for which extra
proof obligations are required. Section 7 explores some related work. Finally the
paper summarises main results and highlights future work in section 8.

2 Events in Event-B

An Event-B model describes number of events which manipulate the state.
Events are defined by the following syntax:

ev ::= EVENT e WHEN G THEN S END

Where G is the guard, expressed as a first-order logical formula in the state
variables, and S is the generalised substitution, defined by the syntax of Figure 1.

S ::= SKIP Do nothing
| x := E(var) Deterministic substitution
| ANY t WHERE P (t, var)

THEN x := F (t, var) END Non-deterministic substitution
| S ‖ S′ Parallel substitution

Fig. 1. The syntax of generalised substitutions.

For a comprehensive description of the Event-B language and its formal
meaning, we refer the reader to more detailed references such as [14].

2.1 Events with Triggers

As mentioned above, in standard Event-B systems the next event to be executed
is chosen non-deterministically from all those whose guards are true. If a par-

ticular order of execution of events is required this must be described explicitly
through the guards by incorporating any required flags or other protocol in the
model of the state In this paper, we introduce the ability to implicitly model a
particular form of obligation, which we believe gives some of the benefits of richer
expressibility without changing the underlying semantic framework of Event-B.

For this purpose, we introduce a new syntactic construct to Event-B which
we define within the standard semantics by extending the model. This syntac-
tic sugar provides a way to abstractly describe requirements on the order of
execution of events without explicitly detailing a model of how the scheduling
is performed. Methodologically, triggers have the advantage of associating with
each event any obligation as to when it is performed, but the disadvantage is that
they implicitly impose constraints on other events which may be unwelcome.

Note that the obligation imposed by a trigger is similar to a partial correct-
ness guarantee: it ensures that if something happens, it will be the right thing
but it does not guaranteed that anything will happen at all. That is, it does not
guarantee that the system will not deadlock.

The new construct replaces the guard with a trigger and is indicated by
changing the THEN keyword to NEXT. In the simplest case it forces the
event to be the next event which happens

ev ::= EVENT e WHEN T NEXT S END .

A weaker form requires the event to happen some time in the future

ev ::= EVENT e WHEN T EVENTUALLY S END .

Both of these are special cases of the WITHIN construct which gives an upper
bound to the number of other events which may occur before the triggered event

ev ::= EVENT e WHEN T WITHIN n NEXT S END

where n is zero for NEXT and n is unboundedly non-deterministically chosen
for EVENTUALLY.

The above syntax introduces a trigger condition, T , into the specification
of an event. This condition is a predicate on states which defines those states
which, if reached, oblige a particular behaviour to follow. This behaviour can
be seen as a bounded form of the leads-to modality [12]. Let 2 denote the
always temporal operator and 3 denote the eventually operator. Given a certain
predicate P defined on the states variables of an evolving system, then 2P means
that P always holds whatever the evolution of the system. The statement 3P
means that P holds at system start up or that it will certainly hold after system
start up whatever the evolution of the system. Given predicates P and Q, the
statement P leads-to Q means that it is always the case that once P holds then
Q holds eventually, which is formalised as 2(P ⇒ 3Q). Our triggered events
are modelling the behaviour 2(P ⇒ 3≤n(P ⇒ Q)), meaning that once P holds
then (P ⇒ Q) will occur before at most n time units. So the WITHIN event
introduced above models the behaviour 2(T ⇒ 3≤n(T ⇒ e)).

Our triggers model a class of queuing behaviour which are common in re-
source management but also occur in other situations such as in telephone ser-
vices or ticket controlled supermarket counters. If on entering the queue, the
requester is ready to be served, and thereafter remains ready to be served, the
service will eventually be delivered. But if the requester leaves the queue, the
request is cancelled. In the next section, we introduce a very simple example
to motivate the most basic form of such requirement, when the service must be
delivered in the next cycle.

3 Motivating Example

We illustrate the use of triggers with a very small example, which although
simplified to the point of triviality still illustrates some of the advantages and
disadvantages of triggers. The example, taken from [11], is about the sump in
a mine which is used to control the drain water out of the main areas. In this
system, water seeps into the sump from the mine and the level of water is kept
within bounds by operating a pump. Additionally, an alarm must be immediately
sounded if methane is detected in the sump. The requirements on the system
are as follows:

1. The pump must be activated when the water level reaches a high water
sensor in order to keep the mine dry.

2. The pump must be deactivated when the water level reaches a low water
sensor in order to avoid the pump running dry which would damage it.

3. If methane is detected in the sump then the pump must be deactivated
immediately in order to avoid the risk of explosion, and an alarm sounded
in the main areas in order to warn of the eventual risk of flooding.

A partial specification in Event-B is given in Figure 2 in two versions, one us-
ing triggers and the other without. Note how the use of the trigger allows the
specification of the events to closely reflect the description of the problem given
in the requirements in that it captures the immediacy specified in the third re-
quirement alongside other aspects of that requirement. On the other hand, it
has the disadvantage of being rather implicit. In order to fully understand the
behaviour of the pump, the reader will now have to consider the specification of
the methane event.

Note also how the conflict between requirements 1 and 3, in the case where
high water and methane are both detected, is handled. The extra guard in the
event which switches the pump on ensures that requirement 3 is met. We will
show in section 4.1 that the two specifications are equivalent by definition.

In this simple example, both versions can be easily created and understood
but as we will see later, the situation is not so simple when there are several
more complex timing requirements. In these situations, triggers can be used to
raise the level of abstraction by formalising requirements concerning the order of
execution of events without explicitly elaborating a model which exhibits them.

INVARIANTS

lowwater : Bool

highwater : Bool

methane : Bool

pump : {ON, OFF}
bell : {ON, OFF}

EVENTS

high water detected

WHEN highwater = true

THEN pump := ON

END

low water detected

WHEN lowwater = true

THEN pump := OFF

END

methane detected

WHEN methane = true

NEXT pump := OFF || bell := ON

END

INVARIANTS

lowwater : Bool

highwater : Bool

methane : Bool

pump : {ON, OFF}
bell : {ON, OFF}

EVENTS

high water detected

WHEN highwater = true

AND not (methane = true)

THEN pump := ON

END

low water detected

WHEN lowwater = true

AND not (methane = true)

THEN pump := OFF

END

methane detected

WHEN methane = true

THEN pump := OFF || bell := ON

END

Fig. 2. A simple example with and without the use of triggers

4 The Interpretation of Triggered Events

4.1 NEXT Events

Let us consider the interpretation of triggers for the simplest case, that is, when
a trigger forces an event to be the next one executed. Consider a system with
two events e and f , as shown in the upper box of Figure 3.

EVENT e WHEN G THEN S END
EVENT f WHEN T NEXT R END

EVENT e WHEN G ∧ ¬T THEN S END
EVENT f WHEN T THEN R END

Fig. 3. Simple case of NEXT trigger and its interpretation

In this case, whenever T become true, then e must be prohibited so that the
only remaining possibility is that f is the next event, representing the obligation
2(T ⇒ ◦f), where ◦ denote the next temporal operator. This can be modelled
by extending the guard on e with the negation of T as shown in the lower box
of Figure 3. Thus the trigger in f can be considered as a syntactic sugar for an

extra guard on e which ensures that e will be disabled when trigger T is true.
It is clear that if G is always false when T is false, that is if G ⇒ T , then the
un-triggered event will never be executed.

The case where there are several triggered events is given in Figure 4. Here
all other events must be disabled when any trigger becomes true so if more than
one trigger becomes true simultaneously, the machine will be “deadlocked”.

EVENT e1 WHEN G1 THEN S1 END
EVENT e2 WHEN G2 THEN S2 END
EVENT f1 WHEN T1 NEXT R1 END
EVENT f2 WHEN T2 NEXT R2 END

EVENT e1 WHEN G1 ∧ ¬T1 ∧ ¬T2 THEN S1 END
EVENT e2 WHEN G2 ∧ ¬T1 ∧ ¬T2 THEN S2 END
EVENT f1 WHEN T1 ∧ ¬T2 NEXT R1 END
EVENT f2 WHEN T2 ∧ ¬T1 NEXT R2 END

Fig. 4. The interpretation of NEXT triggers as extra guards on other events

This will show up in the following deadlock-freeness condition which must be
shown alongside the usual one that at least one guard (or trigger) must always
be true.

Law 1 (Deadlock-free of NEXT events) Let M be a system with k next
events EVENT ei WHEN Ti NEXT Si, for i = 1 · · · k. System M is deadlock-
free with relation to its NEXT events if all the trigger conditions associated
with the NEXT constructor are pairwise disjoint, i.e. ¬(Ti ∧ Tj) for i 6= j.

A more general discussion of this law, including the general form of this proof
obligation is presented in section 6.

4.2 WITHIN Events

A generalisation of the NEXT constructor is the WITHIN constructor. In this
case, if the trigger becomes true the triggered event must be executed before at
most n other events are executed (provided the trigger remains true). If the
trigger becomes false within these n steps, the obligation is cancelled.

Again let us consider the simple case of a system with just two events, one
of them being a triggered one, as shown in the upper box of Figure 5.

To “un-sugar” this system, as shown in lower box of Figure 5, we must ex-
tend the state with a counter for event f. We add an integer valued counterf ,
which is set with the value n whenever T becomes true, and is decremented
each time e is executed whilst T remains true. Here, we borrow the conditional
operator from UTP [9], and write x := exp1(var) / b(var) . exp2(var) to denote
the substitution ANY z WHERE ((b(var) ⇒ z = exp1(var)) ∧ (¬b(var) ⇒

EVENT e WHEN G THEN S END
EVENT f WHEN T WITHIN n NEXT R END

Inv
4
= . . . ∧ 0 ≤ counterf ≤ n

Init
4
= . . . ‖ counterf := n

EVENT e WHEN G ∧ (¬T ∨ counterf > 0) THEN
S ‖ counterf := ((counterf − 1) / T . n) END

EVENT f WHEN T THEN R ‖ counterf := n END

Fig. 5. Simple case of WITHIN trigger and its interpretation

z = exp2(var))) THEN x := z END . If counterf reduces all the way to zero,
then e becomes disabled and consequently f becomes obliged. If T becomes false
while the counter is active, then it is reset to n. Here we are modelling obliga-
tion 2(T ⇒ ♦≤nf), which corresponds to a bounded version of the leads-to

modality.

The case where there are several triggered events is given in Figure 6. Here
the state is extended with a counter for each triggered event and each event is
extended with extra clauses in the guards and substitutions to manipulate these
counters.

EVENT e1 WHEN G1 THEN S1 END
EVENT e2 WHEN G2 THEN S2 END
EVENT f1 WHEN T1 WITHIN n1 NEXT R1 END
EVENT f2 WHEN T2 WITHIN n2 NEXT R2 END

Inv
4
= . . . ∧ 0 ≤ counterf1 ≤ n1 ∧ 0 ≤ counterf2 ≤ n2

Init
4
= . . . ‖ counterf1 , counterf2 := n1, n2

EVENT e1 WHEN G1 ∧ (¬T1 ∨ counterf1 > 0) ∧ (¬T2 ∨ counterf2 > 0) THEN
S1 ‖ counterf1 := ((counterf1 − 1) / T1 . n1)
‖ counterf2 := ((counterf2 − 1) / T2 . n2) END

EVENT e2 . . .
EVENT f1 WHEN T1 ∧ (¬T2 ∨ counterf2 > 0) THEN

R1 ‖ counterf1 := n1

‖ counterf2 := ((counterf2 − 1) / T2 . n2) END
EVENT g1 WHEN T2 ∧ (¬T1 ∨ counterf1 > 0) THEN

R2 ‖ counterf2 := n2

‖ counterf1 := ((counterf1 − 1) / T1 . n1) END

Fig. 6. The interpretation of WITHIN triggers introduces a counter for each trigger

It is clear that this model will quickly become quite complex if there are
several triggers. In fact the analysis of deadlock for such systems is not trivial
as we will see in section 6.

The NEXT trigger corresponds to the particular case of WITHIN with n
equal to 0.

Theorem 1 (Relation between NEXT and WITHIN). The event
EVENT e WHEN T NEXT R is equivalent to the event
EVENT e WHEN T WITHIN 0 NEXT R.

The proof which is omitted relies on the counter being always zero.

4.3 Events with Guards and Triggers

So far, our examples of triggered events have not included guards. We have
interpreted this as the guard being the same as the trigger, that is the event is
triggered exactly when it is permitted. Another possibility is that the guard of
the triggered event is always true. In the most general case, a triggered event
can have specified a guard indicating the states in which the event is permitted,
as well as a trigger indicating when it is obliged

ev ::= EVENT e WHEN (Trigger T,Guard G) WITHIN n NEXT S END

In this case the following healthiness condition, which relates triggers and
guards would apply: if an event is obliged, then surely it must be permitted.

Definition 1 (Well formedness of triggers). For all events
EVENT e WHEN (Trigger T,Guard G) WITHIN n NEXT S END , we
have that T ⇒ G.

On the other hand, the classical definition of an event in Event-B corresponds
to an event with false trigger.

Theorem 2 (Relating un-triggered and triggered events). The event
EVENT e WHEN G THEN R is equivalent to
EVENT e WHEN (false,G) WITHIN n NEXT R, where n is any arbitrary
integer greater than or equal to 0.

The proof is omitted for brevity.

4.4 EVENTUALLY Events

The unbounded case, described by WHEN T EVENTUALLY S, is modelled
by WITHIN with an unbounded non-deterministic choice of n. Note that in
this approach, the choice of n is made when the trigger becomes true and so the
deadline would be set at that time although it would be only known internally.

5 Refinement with Triggers

Refinement allows one to build a model incrementally by making it more and
more precise, that is closer to the reality. In this section we analyse refinement
with triggers. We use notation e v f to indicate that abstract event e is refined
by concrete event f , meaning that feasibility, guard and invariant refinement
laws hold between e and f , as stated in the Event-B manual [14, pp. 11, Fig.
20].

5.1 Refinement of Duration

It is clear that the addition of triggers to a system restricts its possible behaviours
by strengthening its guards and so constitutes a refinement of that system. This
is formalised in the theorem below. On the other hand, it may of course introduce
the possibility of deadlock which is considered in the next section.

Theorem 3 (Refinement of duration). Let P be a predicate on states, S be
a substitution and let 0 ≤ n ≤ m be integers. Then we have:

EVENT e WHEN P EVENTUALLY S
v EVENT e1 WHEN P WITHIN m NEXT S
v EVENT e2 WHEN P WITHIN n NEXT S
v EVENT e3 WHEN P NEXT S

5.2 Refinement of the Trigger Predicate

As mentioned above, guards can be strengthened in refinement and so, by duality,
we would expect that triggers can be weakened in refinement[8]. To motivate this,
consider the abstract obliged behaviours. These are a minimal set of behaviours
necessary for the requirement to be satisfied. During refinement we would expect
to ensure that the set of obliged behaviours does not decrease as this could
invalidate a requirement.

This can also be understood mechanistically as the trigger is interpreted by
adding its negation to the other guards, weakening a trigger is in effect strengthen
ing the other guards.

Theorem 4 (Refinement of trigger predicates). Let M be a system deadlock-
free of NEXT events (as defined in Law 1), which includes abstract event
EVENT ea WHEN Ta WITHIN n NEXT S. If system M is deadlock-
free of NEXT events when event ea is replaced by event
EVENT ec WHEN Tc WITHIN n NEXT S and Ta ⇒ Tc, then we have
that

EVENT ea WHEN Ta WITHIN n NEXT S
v EVENT ec WHEN Tc WITHIN n NEXT S

Proof. The proof is straightforward by the usual refinement of guards.

5.3 Removing Triggers

From the above we see that we have Ta ⇒ Tc ⇒ Gc ⇒ Ga. That is, during re-
finement, triggers will get ever closer to guards. There are three limiting cases. A
false trigger is the degenerate case where nothing is obliged and the specification
reverts to a standard Event-B semantics. A true trigger means that the event is
always obliged and may therefore block the execution of any other event. The
third limiting case is when the trigger becomes equal to the guard. At this point
there is no choice left and the permitted behaviours are equal to the obliged
ones. Depending on the form of the obligation we have modelled and type of
concurrency in the system, this may mean that only one event can execute at
any given time and therefore that we have, in effect, partitioned the states by
the possible events.

5.4 Implementing Triggers

We have seen how the definition of refinement can be extended to incorporate
triggers and how this ensures that obligations are preserved during refinement.
However, it is still required, at the end of the refinement process, to ensure
that the most concrete specification does indeed implement the triggers and so
satisfies the obliged behaviors all the way back up the refinement chain.

Whilst the usual refinement process will ensure the model developed implic-
itly using triggers is necessarily correct in this sense, it is perhaps unlikely that
this model will yield a satisfactory implementation. So we expect to have to
build into the implementation a mechanism for scheduling the events which has
the desired properties. This concrete model, which itself will have no triggers, is
then shown to be correct against the triggered version in the usual way. Thus
we do not expect to allow triggers in an implementation but instead develop a
model ourselves which implements the required behaviour.

6 Scheduling

The interpretation of triggered events with counters in Event-B is an example of
the inclusion of abstract scheduling in a specification, as advocated in [2]. Such
techniques have been used in the past for modelling dynamic contraints in B [1]
or to specify abstract scheduling of real-time programs [3].

In this section we consider the scheduling of triggered events and develop a
sufficient condition for schedulablity. We begin with the case where an event is
triggered immediately.

6.1 Deadlock Freeness for NEXT

As stated earlier it is clear that the system will deadlock if two “WITHIN 0”
triggers become true at any one time. Let us define an active counter to be one
whose corresponding trigger is currently true, then it is clear that there must be
at most one active counter whose value is equal to zero.

Definition 2 (Active Counter). For all events,
EVENT e WHEN T WITHIN n NEXT S, we say that e has an active
counter if T is true in the current state.

Definition 3 (Deadlock-free for NEXT). A system is deadlock-free for NEXT
if at all times there is at most one active counter whose value is equal to zero.

This condition must be true in addition to the usual condition that at least
one guard is true to ensure that the system is not currently in deadlock. It is
slightly more general than the disjointness of triggers for next events given earlier
as it also requires that any “WITHIN n” event which may have been triggered
earlier does not clash with a “WITHIN 0” event just triggered.

6.2 Schedulability

To generalise the above notion of deadlock for triggered events with non-zero
counters, we develop some properties related to the schedulability of triggered
events.

Definition 4 (Schedulability of a WITHIN event).
Event EVENT e WHEN T WITHIN n NEXT S is schedulable if whenever
T becomes true, there are at most n other active counters whose value is less
than or equal to n.

This says that whenever a “WITHIN n” event is triggered, there are not
too many other events already triggered for the next n + 1 slots. This is not
actually a sufficient condition to guarantee that the system will not deadlock
within this period as it is possible that more events with shorter within clauses
will be triggered whilst this counter is active. Neither is it a necessary condition,
as some triggers which are currently true may become false before their event
is executed and therefore liberate some of the slots. It simply states that as far
as we can tell at the moment, it is not going to be impossible to schedule this
event.

Definition 5 (Schedulability of a system with WITHIN events). An
event system is schedulable if all its WITHIN events are schedulable at all
times.

Schedulability is not easy to prove in general, as it is not at all easy to
characterise which counters are active in any given state as this depends on the
history of the trace to this point, that is, on which triggers have been true in
the past.

Given the above definitions, however, we can give the following characterisa-
tion of schedulability.

Theorem 5 (System schedulability). An event system with WITHIN events
is schedulable iff at all times, for all n, there are at most n + 1 active counters
whose value is less than or equal to n.

This condition can be considered to be an invariant of a well defined system
and can therefore be added as an extra proof obligation for each event which, if
true, ensures that the system is deadlock-free. It states that, for any execution
of any event, if the system is schedulable beforehand, it must still be schedulable
afterwards. This then becomes an inductive prove of deadlock-freeness.

Note that we have assumed that the events meet the healthiness condition
given earlier, that is, that the guards are true whenever the triggers are true.
This is necessary so that if the scheduling of events requires that an event will be
next, we can be sure that it is permitted at this point. The healthiness condition
ensures this since, if the guard were false, then so would be the trigger, and so
the counter would become inactive and the event removed from the queue.

7 Related Work

There has been several proposals to model obligations in event-based languages
like B. In their seminal paper on dynamic constraints in B [1], Abrial and Mussat
propose modelling the leads-to and the until modalities in B. Given P and
Q state predicates, the leads-to modality 2(P ⇒ 3Q) means that it is always
the case that once P holds then Q holds eventually. They model this modality,
for a particular set of events, as a loop which is selected when condition P holds
and then iterates, executing one of the events until condition Q becomes true. A
variant condition guarantees termination of the loop. By contrast, our triggered
events model a bounded leads-to modality 2(P ⇒ 3≤nQ), which means that
once that once P holds then Q will occcur before at most n other events. So,
Abrial and Mussat’s model can be seen as a general case of our trigger model,
but there are some importance differences. For our triggered events, P is an
additional predicates on states and Q is the generalised substitution of the event.
When P becomes true, a counter is set running which ensures that no more than
n other events can occur before the triggered event is executed.

In [13], Méry and Merz propose an event language with deontic concepts
such as permissions, right and obligations, and develop a stepwise refinement
method. Their approach is close to ours in that their notion of obligation corre-
sponds to our trigger condition: a predicate associated to an event indicating the
liveness property that when the predicate is true it may lead to the occurrence
of the associated event. However, we interpret our triggers through an extension
of the usual event-B model rather than introducing a more complex semantic
framework.

In [8], Fiadeiro and Maibaum propose a relationship between deontic logic
structures, which use the notions of permissions and obligations, and temporal
logic through the definition of a consequence operator. This relationship then
permits the derivation of normative behaviours of systems, which could include
both safety and liveness properties, as well as the reasoning on the relationship
between normative states and normative trajectories that could lead to non-
normative states, e.g. the performing of permitted actions that lead to obligations
that cannot be fulfilled. Our work could be considered as the application of one

aspect of their framework, namely the description of a particular class of deontic
property, to Event-B systems.

Other attempts to deal with liveness properties in B include [5], which
presents a proposal of specification and proof of liveness properties in Event-
B. Here proof obligations are defined in terms of weakest preconditions, inspired
by the UNITY logic.

Our work is also related to extensions of Event-B to deal with real-time. In [6],
the authors present a refinement method that allows refined events to be guarded
by time constraints using the concept of active times. The main difference from
our current work is that active times are a form of guards and thus do not express
any obliged behaviour. Colin et al. describe in [7] the alternative approach of
extending the semantic model of B with the duration calculus in order to deal
with real-time issues.

More recent work on CSP‖B allows designers to add control flow annota-
tions to machine operations [10]. One of their possible annotations is NEXT
which introduces the set of operations that should be enabled after an operation
is executed. There is an interesting relation between this annotation and our.
Interpretation of our NEXT event can correspond in some cases to annotat-
ing other events with NEXT annotations although this correspondence is not
straightforward. However, we focus on identifying circumstances when an event
will be executed next, rather that defining directly the order in which events
must occur.

8 Conclusion

This paper has presented a syntactic extension to Event-B to model the notion
of obligation throughout the use of triggers. The obligation imposed by a trigger
is interpreted as a constraint on when other events can be permitted. We have
analysed issues related to the refinement and schedulability of triggered events.

There are some limitations in our proposal that we plan to address as future
work. One restriction is related to the abstract scheduling of events through
counters, which could make it difficult to incorporate other scheduling policies
into the model. One potential solution could be the use of the VARIANT clause
in the model, as advocated in [1]. There are some open questions in relation to
eventuality and scheduling, since the selection of n must not lead to deadlock. We
also plan to develop a more complete proof method for Event-B with obligations,
which will allow one to proof event properties without need to expand events
into the classical Event-B.

As mentioned before, our motivation is to link KAOS requirements with
Event-B specifications. Triggered events as presented here are suitable for mod-
elling the KAOS achieve pattern [16]; we would like to investigate the represen-
tation of other modalities as events, so that we can model other KAOS patterns
such as maintain and cease. Finally, we would like to model and reason about
obligation policies in our framework. Initial work on this line has been reported
in [4].

Acknowledgement

This work is funded by the European Commission under the FP6 IST project
GridTrust (project reference number 033817).

References

1. J. R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert,
editor, B98: Recent Advances in the Development and Use of the B Method, volume
1393 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

2. K. R. Apt and E.-R. Olderog. Proof Rules and Transformations Dealing with
Fairness. Science of Computer Programming, 3(1):65–100, 1983.

3. A.E. Arenas. An Abstract Model for Scheduling Real-Time Programs. In C. George
and H. Miao, editors, Formal Methods and Software Engineering, volume 2495 of
Lecture Notes in Computer Science, pages 204–215. Springer, 2002.

4. A.E. Arenas, B. Aziz, J.C. Bicarregui, and B. Matthews. Managing Conflicts of
Interests in Virtual Organisations. In STM 2007, ERCIM Workshop on Security
and Trust Management, volume 197 of Electronic Notes in Theoretical Computer
Science, pages 45–56. Elsevier, 2008.

5. H. Rúız Barradas and D. Bert. Specification and Proof of Liveness Properties
under Fairness Assumptions in B Event Systems. In International Conference on
Integrated Formal Methods (IFM 2002), volume 2335 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

6. D. Cansell, D. Mery, and J. Rehm. Time Constraint Patterns for Event B Devel-
opment. In B 2007: Formal Specification and Development in B, volume 4355 of
Lecture Notes in Computer Science. Springer, 2007.

7. S. Colin, G. Mariano, and V. Poirriez. Duration Calculus: A Real-Time Semantic
for B. In Theoretical Aspects of Computing - ICTAC 2004, volume 3407 of Lecture
Notes in Computer Science, pages 431–446. Springer, 2005.

8. J. Fiadeiro and T. Maibaum. Temporal Reasoning over Deontic Specifications.
Journal of Logic Computation, 1(3):357–395, 1991.

9. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
Series in Computer Science, 1998.

10. W. Ifill, S. Schneider, and H. Treharne. Augmenting B with Control Annotations.
In B 2007: Formal Specification and Development in B, volume 4355 of Lecture
Notes in Computer Science. Springer, 2007.

11. M. Joseph. Real-Time Systems: Specification, Verification and Analysis. Prentice
Hall International, 1996.

12. Z. Manna and A. Pnueli. The Reactive Behavior of Reactive and Concurrent
System. Springer-Verlag, 1992.

13. D. Méry and S. Merz. Event Systems and Access Control. In D. Gollmann and
J. Jürjens, editors, 6th Intl. Workshop Issues in the Theory of Security, pages
40–54, Vienna, Austria, 2006. IFIP WG 1.7, Vienna University of Technology.

14. C. Métayer, J. R. Abrial, and L. Voisin. Event-B Language. Rodin Deliverable
D3.2, 2005.

15. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.
Fifth IEEE International Symposium on Requirements Engineering, 2001.

16. A. van Lamsweerde and E. Letier. Deriving Operational Software Specifications
from System Goals. In Proceedings of the Tenth ACM SIGSOFT Symposium on
Foundations of Software Engineering 2002, pages 119–128. ACM, 2002.

