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Abstract 

 

Three methods have previously been presented in Computer and Industrial Engineering for 

the selection of a statistical distribution to describe a data-set: the weighted sum model, the 

weighted multiplication model and data envelopment analysis. These are based on distinctive 

preset of parameters and result in three different rankings. In these approaches there is no 

interaction with the decision-maker (DM). This leads to the question: which method should a 

DM choose? In this paper, we adopt another approach where the DM is the central actor. 

Based on the multi-criteria decision aid methods, PROMETHEE and GAIA, we will show 

that different preference parameters (given by the DM) lead to different rankings. Finally, a 

group decision can be reached using its extension: PROMETHEE GDSS. 

 

Keywords: PROMETHEE, GAIA, ranking, statistical distribution, multi-criteria decision 

analysis 

1. Introduction 

A debate has arisen recently over the best method for selecting a probability distribution to 

represent a set of data (Ramanathan, 2005; Tofallis, 2008; Wang et al., 2004). Wang et al. 

(2004) have proposed a simple weighted additive model, whereas Ramanathan (2005) prefers 

data envelopment analysis and Tofallis (2008) supports a weighted multiplicative model. 

These three multi-criteria decision making methods produce a ranking (which may all be 

different) based on setting parameters distinctive to each method:  

 The weighted additive model assumes linear indifference functions.  

 The weighted multiplicative model has convex indifference curves, which favours 

compromises over extreme solutions.  

 The data envelopment analysis (DEA) will, through a linear optimisation, choose weights 

which show each candidate under their best profile. Unlike the two other methods, it is not 

compensatory in the sense that bad scores may be ignored. 

These three proposed methods have a prescriptive approach based on normative hypotheses, 

which are included in the method and do not depend neither on the data nor the type of 

problem. They aim to prescribe an optimal solution based on a rational model, established a 

priori to represent a simplified version of the reality. For example, in a weighted additive 

model, we assume that a 4% error is twice worse than a 2% error. In a multiplicative model, 

4% is n power (where n is the weight of the criterion) worse than a 2% error. This is not 
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always the case: nor an additive neither a multiplicative modelling would be appropriate if 

break-downs take place only above 3% error. The expertise of the decision-maker is therefore 

essential to model the problem. In the American school (or classical school) of Multi-Criteria 

Decision Making (MCDM), the weighted additive model have been improved to incorporate 

the expertise and preferences of the decision-maker, for example in MAUT and AHP. 

However, these methods still keep the normalisation problem of the weighted additive model 

(Triantaphyllou, 2001; Wang & Luo, 2009). In order to avoid the normalisation problem, 

outranking methods are used. They belongs to the French (or European) school and have also 

the advantage to prefer a constructive approach based on an interaction between the decision-

maker and an analyst (the specialist in decision aid methods) (e.g.(Vincke, 1992)). These 

methods belong to the Multi-Criteria Decision Aid (MCDA) field. Because real decision 

problems are complex, fuzzy, unclear and not well specified, it is not possible to have 

completely stable and defined preference system in the mind of the decision-maker before 

even beginning the decision aiding process. It is only during the decision process and its 

interactions with the analyst, that the structure of the problem will become clear. This jointly 

constructed model must be a tool for looking, exploring, interpreting, debating and even 

arguing the problem (Roy, 2009; Tsoukiàs, 2008). Then, the parameters characterising the 

preference model are defined. Several sets of parameters may be accepted or investigated in 

order to evaluate the impact of each one on the produced results. In the American conception, 

these parameters are predefined at the exception of the weights of the criteria and sometimes 

the utility functions. The French school certainly requires a longer process needing several 

revisions but the decision-maker will better understand the results and potentially explain and 

defend them (Roy, 1996).  

 

PROMETHEE has already been used successfully in several cases. Behzadian et al. (2010) 

enumerated 195 papers, from its conception until 2008, where PROMETHEE is applied in 

environment management (47 papers), business and financial management (25), hydrology 

and water management (28), chemistry (24), logistics and transportation (19), manufacturing 

and assembly (19), energy management (17), social (7), design (2), agriculture (2), education 

(2), sports (1), information technology (1) and medicine (1) . Recently, PROMETHEE has 

been used in water management (Kodikara et al., 2010; Silva et al., 2010), banking 

(Doumpos & Zopounidis, 2010), energy management (Ghafghazi et al., 2010; Oberschmidt et 

al., 2010), manufacturing and assembly (Kwak & Kim, 2009; Saidi Mehrabad & Anvari, 

2010; Tuzkaya et al., 2010; Venkata Rao & Patel, 2010; Zhu et al., 2010), logistics and 

transportation (Lanza & Ude, 2010; Safaei Mohamadabadi et al., 2009; Semaan & Zayed, 

2010), quality (Nikolic et al.), chemistry (Cornelissen et al., 2009; Ni et al., 2009), maritime 

commerce (Castillo-Manzano et al., 2009), strategy (Ghazinoory et al., 2009), project 

management (Halouani et al., 2009), construction (Castillo-Manzano et al., 2009; Frenette et 

al., 2010), urban development (Juan et al., 2010), location analysis (Luk et al., 2010), 

environment (Nikolić et al., 2010; Soltanmohammadi et al., 2009; Zhang et al., 2010; Zhang 

et al., 2009), safety (Ramzan et al., 2009) and e-commerce (Andreopoulou et al., 2009). 

PROMETHEE method is on the basis of two sorting methods: Promsort (Araz & Ozkarahan, 

2007) and FlowSort (Nemery & Lamboray, 2008).  

As selecting a statistical distribution is a complex, fuzzy and unclear problem, which needs 

interactions with the decision-maker, PROMETHEE method complemented by GAIA (Brans 

& Mareschal, 1994) is appropriate. This method permits easily the modelling of this decision 

problem according to the preferences of the decision-maker. Moreover, the developed 

software iDA (interactive Decision Analysis) supporting PROMETHEE and GAIA has a 

user-friendly graphical interface, which facilitates the interaction.  
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In this paper, we first discuss the methods proposed in the previous papers. In the next 

section, we present three different scenarios modelled with PROMETHEE and GAIA, which 

lead to different results. Then, we introduce PROMETHEE Group Decision Support System 

(GDSS) in order to incorporate the view of several decision-makers. Finally, we conclude the 

paper with a discussion on the advantages of the proposed approach.  

 

2. Review of proposed methods 

2.1. Description of the problem 

The problem consists in the selection of a probability distribution to represent a set of data 

based on the following criteria:  

 Dmax: the Kolmogorov-Smirnov statistic test, 

 f: the average deviation between the theoretical probability distribution function and the 

empirical one, 

 F: the average deviation between the theoretical cumulative distribution function and the 

empirical one, 

 D: the deviation in skewness and kurtosis, 

 E: a subjective score obtained from a group of experts in the field of study and statistics on 

the user friendliness of the distribution and the frequency of its use in the field, and the 

fitness of properties and characteristics of the distribution to the sampled data. 

Wang et al.(2004) provides the following data from an engineering problem involving 

machine tools (table 1).  

 
Table 1: Performances of each distribution 

Distribution Dmax F f D E 

Beta 0.144612 0.000845215 0.0404891 2.79466 0.22 

Gamma 0.09821 0.000431302 0.0088562 0.66035 0.22 

Weibull 0.056581 0.000397474 0.0110291 1.288 0.18 

Lognormal 0.10316 0.000660129 0.0205139 3.15615 0.18 

Normal 0.404622 0.00172495 0.23522 4.06326 0.1 

Extreme-

value 

0.176833 0.00155293 0.0402712 1.03315 0.1 

 

It is not the scope of this paper to discuss these criteria. If appropriate, other criteria could be 

used. The focus here will be on the selection method.  

2.2. Weighted Sum Approach  

In a weighted sum approach, performances of the actions on each criterion are simply 

weighted according to the importance of the criteria and then added. When measures are not 

commensurate (like in table 1), a standardisation is necessary. Wang et al. (2004) proposes 

the transformation function: 

 

r(v) = 1/(1+cv
2
) (1) 

 

where c is a positive constant 
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Ramanathan (2005) gives an example where different values of the constant c lead to 

different final rankings. Tofallis (2008) adds that there are several ways of standardizing: z-

transformation, dividing the performances by their sum, dividing the performances by the 

highest performance, … and all have merits and drawbacks but may lead to different results, 

without knowing the causal effect. To overcome this problem, approaches which do not 

require any standardization have been proposed. 

 

The weighted sum approach is a very simple model, where the utility functions are linear 

positive. For example, a deviation of 4% is always twice worse than a deviation of 2% and 

four times worse than a deviation of 1%. Furthermore, the incomparability is not considered 

but assimilated to indifference in this model as well as in the weighted multiplicative model. 

Two alternatives reaching the same score are said to be indifferent, even if the way they 

obtained this score is very different and therefore incomparable (Vincke, 1992).  

 

2.3. Data envelopment analysis 

Ramanathan (2005) proposes the use of the data envelopment analysis (DEA), which is an 

often used ranking technique (Adler et al., 2002; Mannino et al., 2008; Serrano-Cinca et al., 

2005; Sueyoshi & Goto, 2009a, 2009b) and does not require any normalisation and even any 

subjective input (e.g. weight of the criteria) from the user. However, Tofallis (2008) points 

out three major problems with DEA: 

 DEA is not designed for selecting a single winner, it indicates only the non-dominated 

solutions, 

 DEA may completely ignore the weakness of some candidates, 

 DEA becomes less discriminating as more information is provided. 

These remarks are only valid for the traditional radial DEA model. In fact, new models based 

on multiplier restriction (e.g., cone ratio, cross-efficiency, super-efficiency,…), which 

disallow extreme values, have been developed to reduce the number of efficient alternatives 

(or DMUs). It is possible to identify a single best alternative and to incorporate weakness of 

some candidate in the decision using DEA (Glover & Sueyoshi, 2009; Sueyoshi & Goto, 

2009a, 2009b).  

Nevertheless, with the several models developed, a problem remains as the rankings of 

alternatives depends upon which DEA model is used for the performance evaluation 

(Sueyoshi & Sekitani, 2009). This choice may be cumbersome for the decision-maker and 

somehow random. 

2.4. Weighted Multiplicative approach  

Tofallis (2008) proposes multiplicative aggregation, which does not need any normalisation 

either. The multiplicative model is based on convex indifference curves, which are also called 

Cobb-Douglas in economics (Varian, 1999). In this case, compromises are preferred over 

extremes. For example, where a person is indifferent (same weight) to apples and pears, (s)he 

would prefer a crate with 5 apples and 4 pears (total score is 5·4 = 20) over a crate with 15 

apples and 1 pear (total score is 15·1 = 15). This seems illogical as the preferred alternative 

has far lower total number of fruits (9 against 16 fruits). Again, this model imposes 

preferences to the decision-maker that may not represent his/her preferences. 
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3. PROMETHEE and GAIA 

The PROMETHEE method belongs to the outranking family (Vincke 1992). The actions are 

first pair-wise compared on each criterion according to the decision-maker’s preferences, 

resulting to local scores. These local scores are then aggregated to a global score, which lead 

to the PROMETHEE I or PROMETHEE II ranking (Brans, 1982; Brans & Vincke, 1985). In 

PROMETHEE I, the resulting ranking is a partial pre-order whereas in PROMETHEE II the 

resulting ranking is a complete pre-order.  

Usually, this prescriptive approach is combined with a descriptive approach, the GAIA-

method. We describe briefly these two methods but refer the interested reader to (Brans & 

Mareschal, 1994, 2005) for more detailed information about these two methods. 

3.1. PROMETHEE  

We consider a problem with a set of possible actions A = {a, b, ... } which are evaluated on a 

set of k criteria F = { f1, f2,.., fk}. We can suppose, without loss of generality that all the 

criteria have to be maximized.  

A decision-maker expresses his preference of action a over action b considering the criterion 

 by computing a single-criterion preference degree  which is in function of dj(a,b) = 

fj(a)-fj(b). The value of this preference function Pj(a,b) is included between 0 and 1, with: 

 

 
 

Several typical shapes are proposed (Brans & Mareschal, 2005) for the preference functions 

like the linear, the step or Gaussian preference function (see figure 1 for the linear function).  

 

Pj(a,b) 

q p fj(a)-fj(b)

0

1

 
 

Figure 1:  Preference linear function where q and p represent respectively the indifference and preference 

thresholds. fj(a) denotes the performances of action a on criterion j and Pj(a,b) the preference of action a 

over b on criterion fj. 

 

These pair-wise comparisons are aggregated to the positive and negative flows by using the 

weights  defined by the decision-maker:  

 

Positive flow: 

  

  (2) 
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 where : cardinal of the set of actions A 

  wj:  weight of criteria fj 

  Pj(a,x): preference of action a over x on criterion fj. 

  k: number of criteria 

 

This score represents the global strength of action a in comparison to all the other actions. 

Indeed, this score has to be maximised.  

 

Negative flow: 

  

  (3) 

 where : cardinal of the set of actions A 

 wj:   weight of criteria fj 

 Pj(a,x): preference of action a over x on criterion fj. 

 k: number of criteria 

 

This score represents the global weakness of a in comparison to all the other actions. Indeed, 

this score has to be minimised. 

 

The PROMETHEE I partial ranking is defined as follows: 

 

- a is preferred to b iif.  and  

- a is indifferent to b iif.  and  

- a is incomparable to b iif.  and 

 or   

   and  

However, the two flows are usually combined to obtain the net flows defined as follows:  

  (4) 

 

which leads to the complete PROMETHEE II pre-order: 

 

- a is preferred to b iif.  

- a is indifferent to b iif.   

Let us remark that the net flow can also be written as (Mareschal et al., 2008): 

  (5) 

 

where  is the single criterion net flow of 

criterion . 

 

These single criterion net flows may be summarized for each action and each criterion in the 

following matrix (Brans & Mareschal, 1994): 
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  (7) 

  

This matrix is similar to a performance table since each row  of this matrix represents an 

action i and each column represents a criterion. This matrix contains indeed preference 

information given by the decision-maker but does not provide inter-criteria information (i.e., 

how the actions behave on all the criteria simultaneously). 

3.2. GAIA 

The aim of the GAIA method is to represent on a two dimensional view as much as possible 

the decision- maker’s preferences and its implications (Brans & Mareschal, 1994). For this 

purpose, a plane in the hyperspace is found with the principal component analysis (PCA) of 

the matrix Φ. In the PCA, the variance-covariance matrix of the decision problem, noted C, is 

at first calculated. This matrix can be obtained by using the following relation: 

 

 

 nC= Φ’ Φ (8) 

 

where  C:  variance-covariance matrix 

 Φ’:  the transposed matrix of Φ  

  n: positive integer 

 

Then, two eigenvectors, noted  and , are selected such as they have the greatest 

eigenvalues  and . These two eigenvectors are orthogonal ( ) and define the best 

plane, called the GAIA plane, to use for the projection of the actions (the  points) while 

minimising the loss of information (Brans & Mareschal, 1994).  

 

Every action of the decision problem will be projected in this plane and its coordinates are 

obtained as follows:  

 

  (9) 

 where : transposed row i of matrix Φ 

 

In order to represent the intra criteria information, each criterion fj will be projected to on 

the GAIA plane. The angle between the projections of two criteria is a measure of similarity 

or conflict between the criteria. The smaller the angle, the more similar two criteria are. A 

large angle means conflicting criteria.  

 

Finally, the information on the weights chosen by the decision-maker can be added by 

finding the projection of the weights vector: . The obtained vector 

is called Decision Stick, noted , and represents the decision-maker’s priorities:  
 

  (10) 
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 The GAIA plane facilitates the decision aid process as easy conclusions can be drawn 

visually. Near actions on the plane will often have very similar rows in the variance-

covariance matrix Ф. The decision-maker can thus easily identify actions with similar or 

opposite performances. Moreover, the decision-maker can compare criteria since their 

position on the plane is an indication of their conflicting or correlated behaviour. Their length 

represents their distinguishing power between actions. A wash criterion has a short length; a 

discriminating criterion has a long length. 

 

3.3 PROMETHEE GDSS 

The PROMETHEE Group Decision Support System (GDSS) permits to rank actions 

according to several criteria and decision-makers (Macharis et al., 1998). In fact, in this 

approach each individual ranking given by the net flows is considered as a criterion.  

So, for each decision-maker, the net flow vector (4) is collected in a global investigation 

matrix and PROMETHEE II (see section 3.1) is applied on it. Each decision-maker (i.e. 

criterion) may have the same or a different weight.  

 

4. Selection of the best distribution 

In this section, we will present four scenarios, where three hypothetical DM expresses 

different preference parameters. As the purpose of the exercise is to illustrate the advantages 

of the methods, the parameters are selected in order to highlight them but still keeping them 

into a plausible range. In a real application, they would be selected in accordance to the set of 

data, the problem where the probability distribution would be used on, the expertise of the 

decision-maker, the range of the acceptable errors,... In the first scenario, we observe the 

same ranking than Wang (2004). In the second one, other preferences functions are 

introduced (with the same weights) which leads to a swap of the two best ranked actions. In 

the third scenario, weights and preferences functions are changed, which leads to another 

ranking with incomparabilities. In the last scenario, the view of all first three scenarios is 

incorporated in PROMETHEE GDSS for a group decision. 

 

Scenario 1 

The first scenario uses the values of table 1, and the weights proposed by Wang: w: (0.18, 

0.28, 0.28, 0.13, 0.13). All the criteria have to be minimized apart E, the score given by the 

group of experts. Let us suppose at first that the decision-maker chooses for each criterion the 

usual preference function (see figure 1, with indifference q and preference p thresholds=0). 

This means that the preference function Pj(a,b) = 0 only if the actions are identical on 

criterion j, otherwise Pj(a,b) = 1. In other words, small or large criteria differences have the 

same effect. These parameters lead to the results represented in the figure 2 and table 2.  

Table 2: Positive, negative and net flows for scenario 1 

 

 

 

 

 

 

 

Rank Distribution 
   

1 Gamma  0.882 0.092  0.79 

2 Weibull 0.814 0.16  0.654 

3 Lognormal 0.522 0.452  0.07 

4 Beta 0.396 0.578 -0.182 

5 Extreme Values 0.308 0.666 -0.358 

6 Normal 0 0.974 -0.974 
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Figure 2: Net flows for Scenario 1. 

From table 2 and figure 2, we may notice that the Gamma distribution is the recommended 

choice, followed closely by the Weibull distribution. The other distributions are far away. 

This ranking is the same ranking than those obtained in Wang and al. (2004). In this 

particular case, the ranking of PROMETHEE I and II are identical (all the flows give the 

same ranking) and complete (there is no incomparability). Figure 3 shows the contribution of 

each criterion to the net flow. All the contributions are positive for the Gamma and the 

Weibull distribution. The Gamma distribution scores very high on the δf criterion whilst the 

Weibull distribution is stronger on the δF criterion. All the contributions are negative for the 

Normal distribution. Some contributions are positive and some are negative for the 

Lognormal, the Beta and the Extre-value distribution. Therefore the black point, indicating 

their net flow is not on one extremity of the pile on the figure 3.  
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Figure 3: Composition of the unicriterion net flows for Scenario 1. 

 
Figure 4: GAIA plane for scenario 1. 

 

From the GAIA plane (figure 4) we can conclude that criterion D is highly conflicting with 

criterion E since their projections have a large angle. Dmax and F distinguish the actions in 

the same way (their projections are superposed). Given this set of parameters, the Normal 
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distribution is strongly different from all the other distributions whereas the Beta and 

Lognormal distributions are relatively close. Moreover, the Extreme Values distribution is at 

the opposite from the Beta and Lognormal distributions. This indicates that they have 

different features. 

 

The Normal distribution is clearly outperformed by all the other distributions as it is in the 

opposite direction of the Decision Stick D (in black on the figure 4). The Gamma distribution 

performs the best on criteria f and D, as it is projected on the same direction. The Weibull 

distribution on the other hand, performs much better on Dmax, F and E. The best actions are 

the Weibull and Gamma distribution but they have different strengths.  

 

Scenario 2 

Let us now consider that the decision-maker expresses different preference parameters which 

are given in table 3. The weights are the same than in (Wang et al., 2004) but the preference 

functions and their associated thresholds are modified.  

 
Table 3: Preference parameters for scenario 2. 

 Dmax F f D E 

Weight 0.18 0.28 0.28 0.13 0.13 

Preference Function Usual Linear Step Gaussian Linear 

p 0 0.00132 0.226368 / 0.1 

q 0 0 0.05 3 0 

 

The consequences of changing the preference functions are directly visible in the GAIA plane 

(figure 5). As the usual function highly distinguishes the actions, we may notice that the 

projection of Dmax is bigger than the projections of f and D, where small differences are 

negligible. Given the data and the preference threshold of E, we remark that this preference 

function distinguishes significantly the actions on the criterion E, which explains its long 

projection. Choosing an indifference threshold of 0.05 for f (table 3) leads to the fact that 

most of the actions are indifferent on this criterion; the length of f is thus very small. 

Besides, one may notice that the Normal and Extreme Values distribution are now much 

closer than in scenario 1. Although the Beta and Lognormal scores (table 4) are closer than in 

scenario 1 (table 2), their spatial location on the GAIA plane is further in this scenario. GAIA 

has the descriptive power to detect actions with different behaviour on the criteria, which 

cannot be revealed by the final net flow.  

 

In this scenario, the Weibull distribution is now first instead of the Gamma distribution. 

These consequences are indeed due to the preference parameters given by the decision-

maker. Let us remember that the weights are the same as in scenario 1 which pinpoints the 

importance of the other preference parameters: preference functions and thresholds. 
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Figure 5: GAIA plane for scenario 2. 

 

The flows for scenario 2 are given in table 4. One may thus notice, that compared to the 

scenario 1 and (Wang et al., 2004), the two first actions (Weibull and Gamma) have a 

different ranking. This difference is normal as the decision-makers of scenario 1 and 2 have 

different preferences. As in scenario 1, there is no difference between the rankings of 

PROMETHEE I and II. 

 
Table 4: Positive, Negative and Net Flows for scenario 2. 

 

 

 

 

 

 

 

 

 

Figure 6 indicates the composition of the the unicriterion net flows. In particular, the Weibull 

distribution is scoring first because of its high scores on the criteria Dmax and F. 

 

 

 

 

 

 

 

 
   

A3 – Weibull 0.402 0.021  0.381 

A2 – Gamma 0.4 0.037  0.363 

A4 – Lognormal 0.269 0.132  0.137 

A1 – Beta 0.242 0.165  0.077 

A6 – Extreme Values 0.092 0.401 -0.31 

A5 – Normal 0 0.649 -0.649 
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Figure 6: Composition of the unicriterion net flows for scenario 2. 

 

Scenario 3 

Let us now consider that the decision-maker expresses different preference parameters and 

weights which are given in table 5. Moreover, in this scenario 3 we do not take into account 

the advice of the expert (E) as done in Ramanathan (2005). 

  
Table 5: Preference parameters for scenario 3. 

 Dmax F f D 

Weight 0.233 0.147 0.15 0.471 

Preference function Linear Linear Step Gaussian 

p 0.348041 0.00132 0.226368 N/A 

q 0.3 0 0.2 3 
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Figure 7: GAIA plane for scenario 3. 

All differences between two actions measured on the criteria Dmax and f falling below the 

indifference threshold (which is not zero), are considered as negligible. The Gaussian 

function used for the criterion D implies that small differences are considered negligible and 

large differences are significant. It explains why on GAIA plane (figure 7) the Weibull and 

Gamma distribution like the Lognormal and the Beta distribution behave similarly on D, 

which was not the case on the two previous scenarios. The length of the projections of criteria 

D, and F explains that the preference functions lead to a better differentiation on these 

criteria. Finally, a stronger weight on criterion D leads to a new orientation of the Decision 

Stick which is closer to the projection of D. The Lognormal and Extreme Values distribution 

have the same projection on the Decision Stick (which is confirmed by the same net flow in 

table 6) although they have different features (they are in a different spatial position on the 

GAIA plane). The Lognormal distribution performs very well on criterion F whereas the 

Extreme Values distribution excels on criterion D. 

 

The Beta and Lognormal distribution have slightly different net flows (see table 6 or figure 8 

and confirmed in figure 7 by their projection on the Decision Stick) but behaves similarly (in 

regards of their projections in the GAIA plane) in comparison to the other actions. In 

PROMETHEE I (figure 9 and table 6), one may notice that Extreme Values, Lognormal and 

Beta distributions are incomparable as well as the Weibull and Gamma distribution because 

the ranking of the positive and negative flows are different. We have thus a partial ranking in 

this scenario where the first two actions are globally incomparable. However, in the 



[Pre-print version], please cite as: Ishizaka A., Nemery P. Selecting the best statistical distribution with 

PROMETHEE and GAIA, Computers & Industrial Engineering, doi: 10.1016/j.cie.2011.06.008, Advance 

Online Publication 

15 

 

PROMETHEE II ranking, the Weibull distribution is the best action. The ranking is similar to 

the one obtained in Tofallis (2008) at the exception of the first two actions, which are 

reversed.  
Table 6: Positive, negative and net flows for scenario 3. 

 

 

 

 

 

 

 

 

 
Figure 8: Representation of the net flows for scenario 3. 

 
 

Figure 9: Representation of the PROMETHEE I flows ranking of scenario 3 

 

 

 
   

Weibull 0.193 0.002  0.191 

Gamma 0.185 0.001  0.184 

Extreme Values 0.077 0.086 -0.009 

Lognormal 0.068 0.077 -0.008 

Beta 0.044 0.07 -0.026 

Normal 0 0.331 -0.332 
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Scenario 4: PROMETHEE GDSS 

In the last scenario, we will consider the problem as a group decision, where it incorporates 

the individual opinion of the three previous decision-makers described in the scenarios 1-3. 

The decision-makers have thus different preference parameters. As we consider each 

participant having the same expertise, they receive the same weight. The actions are identical 

but the decision-makers become now the criteria. The unicriterion net flows of each action 

correspond to the net score of each action for a particular decision-maker. The net flows in 

table 2, 4 and 6 are the thus scores of each criterion. Table 7 gives the net flows and figure 10 

shows its composition, made up by the net flow of each decision-maker (scenarios).  

 
Table 7: Positive, negative and net flows for scenario 4. 

 

 

 

 

 

 

 

 

 
Figure 10: Composition of the unicriterion net flows for scenario 4. 

 

From the Gaia plane (figure 11), it can be seen that all scenario (i.e. decision-makers) are 

very similar as their arrows are pointing in the same direction. Scenario 1 and 2 are the most 

dissimilar, which can be seen from the large angle of their projection. The group ranking is 

 
   

Gamma 0.48207 0.0  0.48207 

Weibull 0.44773 0.01073  0.437 

Lognormal 0.2208 0.14447  0.07633 

Beta 0.16133 0.20687 -0.04553 

Extreme Values 0.084 0.35087 -0.26687 

Normal 0.0 0.683 -0.683 
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deduced from the projections on the decision stick. Furthermore, the projection of the actions 

on a criterion (as in Figure 12) represents the ranking of a single decision-maker.   

 

 
Figure 11: GAIA plane for the GDSS problem - scenario 4 with projections on the decision stick representing the 

group decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: GAIA plane for the GDSS problem - scenario 4 with projection on criterion 1. 
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Table 8:  Ranking of statistical distribution based on (Wang et al., 2004), (Ramanathan, 2005), (Tofallis, 2008), 

PROMETHEE II for scenario’s 1,2,3 and 4. 

  Method Beta Gamma Weibull Lognorma

l 

Normal Extreme 

Values 

Weighted sum 

 

4 1 2 3 6 5 

DEA 

 

5 1 2 4 6 3 

Weighted 

multiplication 

5 1 2 3 6 4 

PROMETHEE II –

Scenario 1 

4 1 2 3 6 5 

PROMETHEE II –

Scenario 2 

4 2 1 3 6 5 

PROMETHEE II – 

Scenario 3 

4 2 1 3 6 5 

PROMETHEE GDSS 

– Scenario 4 

4 1 2 3 6 5 

Table 9: Correlation coefficients for the rankings in table 8 

 
Method W. sum 

 
DEA 

 
W. 

multipl. 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

Weighted sum 

 

1 0.829 0.943 1 0.943 0.886 1 

DEA 
 

 1 0.943 0.829 0.771 0.8860 0.829 

Weighted 

multiplication 

  1 0.943 0.886 0.943 0.943 

PROMETHEE II –
Scenario 1 

   1 0.943 0.886 1 

PROMETHEE II –

Scenario 2 

    1 0.943 0.943 

PROMETHEE II – 
Scenario 3 

     1 0.886 

PROMETHEE GDSS 

– Scenario 4 

      1 

5. Conclusions 

Three methods have been introduced to select a probability distribution to represent a set of 

data (Ramanathan, 2005; Tofallis, 2008; Wang et al., 2004). These three methods use 

predefined parameters without interaction with the decision-maker. However the correlation 

coefficients are high (table 9), their rankings is different (table 8). The ranking should depend 

on the preference system of the decision-maker, otherwise she/he will be dissatisfied. In this 

paper, we have introduced PROMETHEE and GAIA, which allow such modelling through 

interactions with the decision-maker. Four scenarios modelling different hypothetical 

decision-maker preferences have been discussed.  

This constructive approach does not impose a set of parameters, like in a rational approach, 

but aims to capture the real preferences of the decision-maker. PROMETHEE does not 
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require any normalisation, which avoids the commensurability problem. The ranking of 

PROMETHEE I contains more information than other rankings because it can also highlight 

incomparable actions. GAIA with its visual interface allows a global view of the problem, 

which can lead to constructive discussions between the analyst and the decision-maker. For 

group decisions, PROMETHEE GDSS, an extension of PROMETHEE, can be applied. 

Unless an urgent decision is needed, where a constructive approach cannot be adopted, we 

would recommend using PROMETHEE and GAIA, which are supported by a user-friendly 

software system. 
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