
Correcting a Delegation Protocol for Grids

Benjamin Aziz

School of Computing
University of Portsmouth

Portsmouth PO1 3HE, United Kingdom
http://azizb.myweb.port.ac.uk/contact.html

Abstract. Delegation is one important aspect of large-scale distributed
systems where many processes and operations run on behalf of system
users and clients in order to achieve highly computational and resource
intensive tasks. As such, delegation is often synonymous with the concept
of trust, in that the delegator would expect some degree of reliability re-
garding the delegatee’s ability and predictability to perform the delegated
task. The delegation protocol itself is expected to maintain certain basic
properties, such as integrity, traceability, accountability and the ability
to determine delegation chains. In this paper, we give an overview of the
vulnerabilities that one such delegation protocol exhibits, namely DToken,
a lightweight protocol for Grid systems, as interesting examples of design
mistakes. We also propose an alternative protocol, DToken II, which fixes
such vulnerabilities.

Keywords: Delegation Protocols, Grid Systems, Security, Trust

1 Introduction

Delegation is a concept that is usually mentioned in the context of trust, where
generally a delegator would hold some trust in the ability and predictability of
the delegatee in carrying out some task on behalf of the delegator or perform-
ing some behaviour related to the purpose of the delegation. There have been
numerous definitions of what delegation is in the context of computing systems
(e.g. [1, 2, 5, 18]). In Grid systems, a common mechanism used to achieve dele-
gation is via proxy certificates [20]. However, proxy certificates have often been
criticised in the past [20–22] for their weak performance, the lack of symmetric
non-repudiation (only the identity of the delegator is preserved in the delega-
tion) and the various security implications arising from the fresh generation of
encryption key pairs at each delegation level.

Hence, DToken was proposed as a lightweight protocol [22] that could re-
place proxy certificates as a reliable and secure solution for the problem of del-
egation in large-scale Grid systems. Grid middleware systems, such as Globus1

or GLite2, adopt a model of the Grid often referred to as Virtual Organisa-
tions (VOs), where in a VO, users from one organisation are permitted access

1 www.globus.org
2 glite.web.cern.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Benjamin Aziz

and usage of resources such as computational power, storage and network band-
width, belonging to another organisation under certain constraints. However,
such cross-organisational provisioning of resources requires critical issues of trust
and security to be managed in a reliable manner. One such issue is related to
delegations by users to Grid gateways that allow the gateways to perform tasks
on behalf of the users within the scope of the delegated permissions. DToken
was designed to achieve such delegations in an integrity-preserving, accountable,
traceable and determinisitic manner.

In this paper, we provide an overview of the results of a formal analysis that
applied to the DToken protocol in [4] and that uncovered serious vulnerabilities
in the protocol related to the above properties. We furthermore propose a second
corrected version of the protocol, DToken II, which we claim fixes the vulnerabil-
ities of the original version by changing slightly the specification of the protocol
to allow agreement on the session identity number between the delegator and
the delegatee, prevent the immature passing of permissions from the delegator
to the delegatee and finally, use ordered lists instead of sets to pass information
about delegation chains.

In the rest of the paper, we give an overview of the DToken protocol in the
next Section 2 and discuss three essential properties that we expect to hold of
this protocol, namely integrity, traceability and accountability, and deterministic
delegation chains. In Section 3, we demonstrate that the protocol in fact suffers
from vulnerabilities that undermine all of these desirable properties. In Section
4, we propose a new version of the protocol, DToken II, which implements fixes
to the vulnerabilities in the original version. Finally, in Section 5, we discuss
related work and conclude in Section 6.

2 The Delegation Protocol

We give an overview here of the DToken delegation protocol as was defined
in [22]. The protocol comprises secure communications between a Delegator,
Dor, and a Delegatee, Dee. The following sequence of messages describes the
interactions in the protocol:

1. Dor→ Dee : CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee0,SigDor→Dee

2. Dee→ Dor : CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee,SigDor→Dee,

SigDee→Dor, CDorCAs

where,
CDor: Long-term public key identity certificate of Dor,
CDee: Long-term public key identity certificate of Dee,
Vfr: The starting validity date of the delegation,
Vto: The expiry date of the delegation,
TS: A timestamp representing the time the message is generated,
PDor→Dee: The delegated permissions from Dor to Dee, which include the dele-
gation policies,

Correcting a Delegation Protocol for Grids 3

DSDor→Dee: A number representing the delegation session identifier,
DSDor→Dee0: Initial empty value of DSDor→Dee, which for simplicity is assumed
to be Null,
SigDor→Dee: The signature of the delegation information in the first message
signed by the private key of Dor, KDor, where

SigDor→Dee
def
= |{CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee0}|KDor ,

SigDee→Dor: The signature of Dor’s signature in the first message signed by the

private key of Dee, KDee, where SigDee→Dor
def
= |{SigDor→Dee}|KDee

, and
CDorCAs

: The list of subordinate CAs linking CDor to the trusted root authority.

Where we write |{M}|K to represent the signing of the message M by the
private key K, which is also a syntactic sugar for applying an encryption {|− |}K
to the hash of the message; i.e. |{M}|K

def
= {|hash(M)|}K , such that hash(-) is any

of the MD5 or SHA hashing functions.

From this definition of the protocol, there are a few points to note as high-
lighted in [22]. In the first message, DSDor→Dee has an empty value, which we
assume to be some default value like Null. The choice of the delegatee’s deci-
sion to assign the delegation session identifier rather than the delegator was not
explained by the designers of the protocol. Timestamps in both messages are
neglected in our analysis, as these are often non-reliable means of sequencing
events in distributed systems due to the problem of clock synchronisation.

The second message is referred to as the DToken (Delegation Token) from Dor
to Dee, written as DTDor→Dee, which represents the mutual delegation agree-
ment between Dor and Dee. In this message, Dee will update the value for
DSDor→Dee assigning it the current delegation session identifier. Furthermore,
in between the two messages, Dee performs some verification tests to ensure that
Dor is authorised to delegate permissions to Dee and to ensure that the security
information Dor has sent in the first message is indeed valid. For example, Dee
will ensure that the certificates are valid and can be traced up to the root of
trust and that the token has not expired.

Another main assumption in the protocol is that all the communications be-
tween Dor and Dee are carried over Secure Sockets Layer (SSL)-based channels
[11]. This means that Dor and Dee are sure of each others identities and the
privacy of messages is guaranteed against external intruders. However, commu-
nication security does not imply that such external intruders cannot participate
in the protocol like any other agents.

The protocol is claimed to form chains of delegation. Once the last delega-
tee in the delegation chain decides to stop delegating, it is assumed that it will
execute the delegated permissions, PDor→Dee, by applying them to a Delegation
Enforcement Point (DEP), typically a service or a resource. The DEP will per-
form a couple of validation steps to check the integrity of the DToken containing
the permissions and other DTokens forming the full delegation chain. In [22],
the authors give an example of a delegation chain in Grid systems as shown in
Figure 1.

4 Benjamin Aziz

CG, KG

Gateway G Job Queue System JQS

User 1. Mutual Authentication
3. Mutual Authentication

2. Generate DTU -> G

4. Pass DTU -> G
CU, KU

Trusted Machine TM:

his own computer

0. Login

5. Generate DTG -> JQS

6. Mutual Authentication

7. Pass DTU -> G, DTG -> JQS
CFS, KFS

File System FS

CJQS, KJQS

Fig. 1. DToken Chained Delegation through a Gateway (cited from [22, Figure 5]).

This chain consists of the user as the delegation root, who then delegates
some permissions to run a job to a gateway (a computer on which the user can
login). Then the gateway delegates the job to a job queueing system, which itself
is the end of the delegation chain. The job queueing system will then execute
the job on a file system (the DEP). One aspect of the communication between
the job queueing system and the file system is that the DTokens generated in
the previous communications are passed as a set. We demonstrate later how this
aspect introduces a vulnerability in the protocol.

2.1 Protocol Properties

The DToken protocol was designed to achieve lightweight delegation focusing on
traceability of the participants rather than their privacy (in contrast to protocols
such as [20]), therefore, it should sustain a few properties related to its purposes
and functionality.

DToken Integrity. This property refers to the success of a DEP in validating
the integrity of a DToken. This implies that the two hash comparisons mentioned
in Section IV in [22] must always succeed.

Property 1 (DToken Integrity Validation). A DToken is said to be valid if the
following equations are true:
hash(CU , CG, Vfr, Vto, TS, PU→G, DSU→G) = decrypt(SigU→G, CU)
hash(SigU→G) = decrypt(SigG→U , CG) ut

Where decrypt({|M |}KA
, CA) is a decryption function that if applied to a

message encrypted with the private key KA of some agent A using the public
certificate CA for that agent, will yield back the plaintext M corresponding to
the ciphertext.

The first of the above equations compares the hash of the delegation infor-
mation to the decryption of the signature of the delegator. The success of this
validation implies the consent of the delegator to the delegation. The second
compares the hash of the delegator’s signature with the decryption of the del-
egatee’s signature. This second validation implies the consent of the delegatee
to the delegation. In general, the success of both comparisons ensures that the
DToken’s integrity is preserved.

Correcting a Delegation Protocol for Grids 5

Traceability and Accountability. Traceability is defined in [22] as the ability
of the delegatee to uniquely identify the identity of any of the previous delegators.
Accountability, on the other hand, is verifiable traceability where such identity
is cryptographically identifiable. Accountability is also called non-repudiation.
More specifically, we define non-repudiation as the property that neither the
delegator nor the delegatee can deny their acceptance of the delegation at the
point of permission execution. This implies further that the delegatee must not
be able to use the delegated permissions before at least having signed the DToken
containing those permissions initiated by the delegator.

We define the property of verifiable non-repudiation as follows, assuming
Perms is the set of all permission.

Property 2 (Verifiable Non-repudiation). Given a delegator, Dor, and a delega-
tee, Dee, then we say that neither can deny the delegation if the following holds:
∀PDor→Dee ∈ Perms : use(Dee, PDor→Dee)⇒
(signed(Dee,PDor→Dee) ∧ signed(Dor,PDor→Dee)) ut

Where use(Dee, PDor→Dee) is a predicate implying that Dee is able to use the
permissions PDor→Dee it has received from the delegator Dor, and signed(A,PA→B)
is another predicate meaning that the signature SigA→B exists and has been cre-
ated by A. Hence, the above property says that it must hold that each time a
delegatee is able to use some permissions, then those permissions must have been
signed by both the delegator and the delegatee agents.

Deterministic Delegation Chains. The property of deterministic delegation
chains implies the ability of determining the delegation chain ending at a DEP
based on the set of DTokens received by that DEP. The property is deterministic
since the delegation chain consists of a single trace of delegation events.

In order to define this property, we first need to establish what is meant by a
delegation chain according to the DToken protocol, assuming Agents is the set
of all possible agents that can participate in the protocol.

Definition 1 (Delegation Chains). Given a set of DTokens, DTset, then we
name the set of all DToken chains that can be constructed from DTset as DTchain.
Every element in DTchain is a finite list, dc, where |dc| > 1 and such that for
any two adjacent DToken elements, a, b ∈ dc, then the following holds:
∃Dor,Dee, H ∈ Agents : (a = DTDor→Dee) ∧ (b = DTDee→H) ut

Hence, in a delegation chain, adjacent elements have common adjacent par-
ticipating agents (i.e. Dee). Now, we can define the property of deterministic
delegation chains as follows.

Property 3 (Deterministic Delegation Chains). Given a set of DTokens, DTset,
then a deterministic delegation chain implies that |DTchain| = 1. ut

6 Benjamin Aziz

If however, |DTchain| > 1, then a DEP validating the delegation path from a
specific root delegator will not be able to determine the exact chain of delegations
leading to itself.

3 Vulnerabilities of the Current Protocol

In [4], we carried out a verification of the DToken protocol using static analysis
techniques based on abstract interpretation. The analysis revealed several vul-
nerabilities in the protocol, which we summarise in the following sections. The
assumption we made regarding the nature of the intruder was that the intruder
was just another protocol participant (same assumptions made in [22]) who has a
well-known certified identity who is only able to divert the protocol via messages
that make sense to other participants. The use of secure communications in the
protocol prevented external intruders from interfering with the protocol mes-
sages. This assumption yields our intruder less powerful than Dolev-Yao’s most
powerful attacker [10, 8], since for example, we do not assume that the intruder
is capable of listening passively to communications among other participants or
injecting data into the exchanged messages without participating in a protocol
session.

3.1 Non-Matching Hash Validation

The first vulnerability we discovered was in the case of a single delegation step,
i.e. where there is one delegator, Dor, and one delegatee, Dee, though it is also
applicable to the more general case of n delegation steps. The vulnerability is
simply an incorrect specification of the protocol that prevents the integrity of
a DToken from being validated. This is caused by the fact that the delegator
(Dor) agent always signs a Null value for the delegation session identifier, which
is DSDor→Dee0 in Message 1. This is, in Message 2., assigned a different value
by the delegatee (Dee), which is the value of the identifier DSDor→Dee. In the
protocol of Section 2, this is equivalent to the first integrity check:

hash(CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee) =
decrypt(|{CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee0}|KDor

, CDor)

Applying the decryption of the signature, we further simplify the equation to:

hash(CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee) =
hash(CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee0)

which clearly does not hold, due to the difference in the value of DSDor→Dee in
both messages. This reveals a lack of agreement on the delegation session identi-
fier values as assigned by the delegator and the delegatee, and it is a significant
result as it undermines the claims in [22] of the ability of the DEP to validate

Correcting a Delegation Protocol for Grids 7

the integrity property of any DTokens it receives and further brings in to ques-
tion some of the evaluation results presented for the case of chained delegations,
since any such chains could not possibly have been successfully validated since
the first DToken validation will always fail.

3.2 Delegation Repudiation

The second vulnerability that we uncovered was that delegations in the DToken
protocol can be repudiated. This is relevant to the case of a delegation where the
delegatee attempts to execute permissions received from the delegator on a DEP.
For example, in the case of a Grid system, the delegator could be the user U and
the delegatee the gateway G. G then attempts to execute permissions received
from U say on a file system. The case assumes that both U and DEP play their
normal roles in an honest manner, whereas G is playing a man-in-the-middle role
where in addition to being able to run its normal protocol behaviour (delegatee
for U and user of DEP), it is also running extra code that attempts to subvert
the protocol. A “robust” protocol, hence, would be expected to withstand such
subversive behaviour.

Assuming that U delegates to G and G attempts to execute the delegated
permissions on the DEP, the attack occurs with the following run of messages
from two sessions:

1. U → G : CU , CG, Vfr, Vto, TS, PU→G, DSU→G0,SigU→G

1′. G→ G : CG, CG, Vfr, Vto, TS, PU→G, DSU→G0,SigG→G

2′. G→ G : CG, CG, Vfr, Vto, TS, PU→G, DSU→G,SigG→G, |{SigG→G}|KG
, CGCAs

In the first session, the user U attempts to delegate some permissions PU→G in
Message 1 to G. This session is left incomplete by G, and so it does not sign
anything (i.e. there is no Message 2 for the first session). In the second session, G
simply delegates the received permissions to itself in order to create a syntacti-
cally valid but semantically dummy DToken. The DEP will successfully validate
(on the condition that the integrity validation vulnerability of the previous sec-
tion is fixed) the token as it is syntactically correct and will assume that G has
delegated the permissions to itself. Therefore, the delegation that occurred in
the first session can easily be repudiated by the delegatee.

The vulnerability works because it is possible, with the above run of mes-
sages, to show that:

∃PU→G ∈ Perms : use(G,PU→G) ⇒ ¬(signed(G,PU→G) ∧ signed(U,PU→G))

As a result, the right hand side of the implication will always be false in either
of the two sessions. In the first session, G does not sign the delegation token
and so can repudiate the delegation, and in the second session, U has not signed
the delegation, and so it can repudiate the delegation as well. The main reason
behind this vulnerability is that the delegatee always receives permissions pre-
maturely from the delegator, therefore, it is able to subvert its part on signing

8 Benjamin Aziz

the DToken, whereas it is too late for the delegator to sign those permissions in
the second session.

One argument against the validity of such a vulnerability is that the local
policies at the DEP should be able to prevent G from using PU→G. However, we
consider this argument to be weak as it associates the robustness of the protocol
with the expressivity of the DEP policies. There are simply no guarantees that
the DEP will enforce such policies, specifically in scenarios where the anonymity
of the agents is required or where the DEP is a stateless Web service.

3.3 Non-deterministic Delegation Chains

This case is an interesting one since it did not feature in the original design of
the DToken protocol presented in [22] and it assumes the presence of four agents,
two of which are playing men-in-the-middle roles, though the vulnerability also
applies to the general case of n ≥ 4 number of agents. The original protocol
of [22] assumes in several occasions3 that the protocol is indeed able to form
deterministic delegation chains. This is true in the specific case where the number
of participating agents is less than or equal three. However, in the case of four
agents, the possibility of internal circular delegations arises. In order to explain
this, consider the following example.

Example 1. Assume agents A, B, C and D with the following scenario of dele-
gation: A delegates to B, B delegates to C, C delegates to A, A delegates to C
and C delegates to D. This scenario results in D receiving the following set of
DTokens: {DTA→B ,DTB→C ,DTC→A,DTA→C ,DTC→D}

However, due to the presence of the delegation cycle - C delegates to A and
A delegates to C-, D is able to form the following chain using the same set of
tokens: A delegates to C, C delegates to A, A delegates to B, B delegates to C
and C delegates to D. This is clearly different chain from the actual one above.
The implication of this is that D will not be able to determine the exact set of
delegations leading to itself. ut

From our analysis in [4], we were able to show that |DTchain| > 1 in the
case of four agents or more participating in the protocol. Since delegation is a
form of trust, this vulnerability breaks the trust chain and does not preserve
the deterministic delegation chain property of Section 2. Chains of trust are
common in many sensitive scenarios, such as in the case of digital forensics
evidence preservation, where Chains of Custody (CoC) require that every step
in the handling of a criminal evidence is well documented and its integrity can be
proven for the evidence to be acceptable in a court. Hence, the CoC (A delegates
to B, B delegates to C, C delegates to A, A delegates to C and C delegates to
D) may be trusted in a court, whereas the CoC (A delegates to C, C delegates
to A, A delegates to B, B delegates to C and C delegates to D) may not.

3 See, for example, Verification 3 of page 7 and Section V of page 8.

Correcting a Delegation Protocol for Grids 9

Technically, this vulnerability arises from the fact that DTokens are passed
as a set, rather than as a list as is expected from the definition of delegation
chains in Property 3. A set has no notion of ordering or indeed multiplicity. A
richer structure, like lists, is needed when grouping and passing DTokens, such
that some reasoning on their temporal ordering can be achieved.

4 DToken II: The Corrected Version

We now propose a new version of the DToken protocol, which we believe does
not suffer from any of the above vulnerabilities in the original protocol. The
protocol consists of the following steps:

1. Dor→ Dee : RfDDor

2. Dee→ Dor : |{DSDor→Dee,RfDDor}|KDee

3. Dor→ Dee : CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee,SigDor→Dee

4. Dee→ Dor : CDor, CDee, Vfr, Vto, TS, PDor→Dee, DSDor→Dee,SigDor→Dee,

SigDee→Dor, CDorCAs

In this corrected version, the delegator commences the protocol by sending a
request for delegation message RfDDor. This messages can be considered as a
negotiation message, which may include description of the delegated permissions
or any other delegation information. If the delegatee accepts the request, it will
reply by proposing the delegation session identifier signed with its signature
along with the original request from the delegator. Next, we discuss the three
properties we introduced in Section 2.1 in light of this new protocol.

4.1 DToken Integrity Validation

One suggestion to fix the vulnerability of non-matching hash validation in the
current protocol is to simply allow the delegator to choose the session identifier
instead of the delegatee. In this way, the delegator will agree on the same value
of the identifier as the one chosen by the delegatee. Hence, in DToken II, both
messages 3 and 4 (corresponding to messages 1 and 2 in the original protocol)
use the same value for delegation session identifier, DSDor→Dee , therefore both
validation steps of Property 1 involving the comparison of the hashes of the
two signatures will succeed, since they both are applied to the same value of
DSDor→Dee.

4.2 Verifiable Non-repudiation

Fixing the vulnerability of delegation repudiation in the original protol, the
delegator should only send the permissions to the delegatee after the latter has
agreed (by signing the delegation information) to participate in the delegation
session. In this way, the delegatee has no means of denying its participation in

10 Benjamin Aziz

the protocol. Also, a monitoring service should be introduced to the architecture
to record the signatures and provide evidence whenever required.

To be able to prove Property 2 holds, the definition of RfDDor in Message 1
of the new protocol will need to include some reference to PDor→Dee. Once this is
signed in Message 2 by the delegatee, the latter cannot repudiate its acceptance
of the session, even though this is proven outside the structure of the DToken
itself (i.e. within RfDDor). This is because the implication in Property 2 will
hold true. Additionally, since the delegatee has signed the session identifier also
in Message 2, the delegator can now prove the association between the delegated
permissions and the delegation session through this identifier.

4.3 Deterministic Delegation Chains

Finally, in order to achieve deterministic delegation chains, we propose that
DTokens be passed in a list structure as opposed to the set structure as it
was done in the original protocol, when performing second and further level
delegations. Let’s consider the same example we discussed in Section 3.3. The set
of DTokens passed will be a list [DTA→B ,DTB→C ,DTC→A,DTA→C ,DTC→D],
which is unique, i.e. adding new elements or changing the ordering sequence of
elements will result in a new list (chain). From a practical point of view, this
implies that in the case of the original design of Figure 1, we propose that the job
queueing system passes the list [DTU → G; DTG → JQS] instead of {DTU →
G, DTG → JQS}. This will ensure that DTokens are ordered in their temporal
sequencing and so non-determinism does not arise when building chains.

5 Related Work

The use of tokens for achieving delegation in distributed systems is a common
technique that has been used in many popular systems throughout the years,
such as for example, Kerberos [14]. A recent taxonomy of delegation methods
has recently been published in [15], where various types of delegation tokens
and credentials are discussed. Further uses of delegation tokens in collaborative
applications include healthcare [13], identity management in service-oriented ar-
chitectures [23] and in the context of Web-based social networking [16].

Literature provides several protocols for achieving delegation. In [7], the se-
curity implications when adopting delegation solutions in Grids are considered.
These implications are discussed in the scope of two delegation schemes for Grids;
delegation chaining and call-back delegations. Another research work closely re-
lated to the DToken protocol is the hierarchical delegation tokens architecture
and protocols proposed by Ding and Petersen [9]. In this work, the authors pro-
pose a number of delegation protocols based on the Schnorr signature scheme
[17], which are either key-based, identity-based or a combination of the two.

The work in [4] is not the first case where formal analysis techniques have been
applied to delegation protocols. In [3], the authors verify the delegation scheme
in the SESAME protocol, a compatible extension version of Kerberos [14], using

Correcting a Delegation Protocol for Grids 11

the Coq theorem prover [6]. In [19], the authors provide a formalisation of the
security of proxy signature schemes and analyse one such scheme, namely the
Kim, Park and Won scheme [12].

6 Conclusion and Future Work

We presented in this paper an overview of the vulnerabilities that were formally
proven in [4] to exist in the DToken protocol [22]; a lightweight delegation proto-
col for Grid systems. As a result our conclusion regarding the protocol is that it
is not suitable for delegations in scenarios where the delegated permissions refer
to stateless Web services or require the anonymity of the participants. Also, it
is limited by its lack of an essential feature in delegations, i.e. deterministic del-
egation chains, which are essential when chains of trust are to be preserved, for
example in cases where forensic evidence on the usage of Grid resources must be
maintained over the chain of custody handling the evidence. We also presented
DToken II, an alternative protocol, which include fixes to the above vulnerabil-
ities. In the future, we plan to formally verify the new DToken II protocol to
analyse its behaviour against the three properties described in this paper.

References

1. Atluri, V., Warner, J.: Supporting conditional delegation in secure workflow man-
agement systems. In: Proceedings of the tenth ACM symposium on Access control
models and technologies. pp. 49–58. SACMAT ’05, ACM, New York, NY, USA
(2005)

2. Aura, T.: On the structure of delegation networks. In: Proceedings of the 11th
IEEE workshop on Computer Security Foundations. pp. 14–26. IEEE Computer
Society, Washington, DC, USA (1998)

3. Ayadi, M., Bolignano, D.: On the formal verification of delegation in SESAME.
In: Proceedings of the 12th Annual Conference on Computer Assurance (COM-
PASS’97). pp. 23–34. IEEE Computer Society (Jun 1997)

4. Aziz, B., Hamilton, G.: Verifying a delegation protocol for grid systems. Future
Generation Computer Systems: The International Journal of Grid Computing and
eScience 27(5), 476–485 (2011)

5. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceed-
ings of the 16th Annual Computer Security Applications Conference. pp. 168–176.
ACSAC ’00, IEEE Computer Society, Washington, DC, USA (2000)

6. Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions.
Springer (2004)

7. Broadfoot, P., Lowe, G.: Architectures for Secure Delegation within Grids. Tech.
Rep. PGR-RR-03-19, Oxford University Computing Laboratory (2003)

8. Cervesato, I.: The dolev-yao intruder is the most powerful attacker. In: Halpern, J.
(ed.) Proceedings of the 16th Annual Symposium on Logic in Computer Science.
pp. 246–265. IEEE Computer Society Press, Boston, MA, U.S.A. (Jun 2001)

9. Ding, Y., Petersen, H.: A New Approach for Delegation using Hierarchical Delega-
tion Tokens. Tech. Rep. TR-95-5-E, University of Technology Chemnitz-Zwickau
(1995)

12 Benjamin Aziz

10. Dolev, D., Yao, A.: On the security of public key protocols. In: Proceedings of the
22nd Annual Symposium on Foundations of Computer Science. pp. 350–357 (Oct
1981)

11. Group, T.L.S.W.: The ssl protocol version 3.0 (Nov 1996)
12. Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: Han, Y., Okamoto, T.,

Qing, S. (eds.) ICICS. Lecture Notes in Computer Science, vol. 1334, pp. 223–232.
Springer (1997)

13. Masi, M., Maurer, R.: On the usage of SAML delegate assertions in an health-
care scenario with federated communities. Tech. rep., Dipartimento di Sistemi e
Informatica, Univ. Firenze (2010)

14. Miller, S.P., Neuman, C., Schiller, J.I., Saltzer, J.H.: Kerberos authentication and
authorization system - project athena technical plan. Tech. Rep. Section E.2.1,
MIT, USA (Oct 1987)

15. Pham, Q., Reid, J., McCullagh, A., Dawson, E.: On a Taxonomy of Delegation.
Challenges for Security, Privacy and Trust 29(5), 565–579 (2010)

16. Schiffman, J., Zhang, X., Gibbs, S.: Dauth: Fine-grained authorization delegation
for distributed web application consumers. IEEE International Workshop on Poli-
cies for Distributed Systems and Networks pp. 95–102 (2010)

17. Schnorr, C.P.: Effecient Signature Generation by Smart Cards. Journal of Cryp-
tology 4, 161–174 (1991)

18. Stein, L.A.: Delegation is inheritance. SIGPLAN Not. 22, 138–146 (December 1987)
19. Tan, Z., Liu, Z.: Provably secure delegation-by-certification proxy signature

schemes. In: InfoSecu ’04: Proceedings of the 3rd international conference on In-
formation security. pp. 38–43. ACM, New York, NY, USA (2004)

20. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: Internet x.509
public key infrastructure (pki): Proxy certificate profile. RFC 3820 (Jun 2004)

21. Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Gawor, J., Meder,
S., Siebenlist, F.: X.509 proxy certificates for dynamic delegation. In: In Proceed-
ings of the 3rd Annual PKI Research and Development Workshop (2004)

22. Yang, E.Y., Matthews, B.: Dtoken: A lightweight and traceable delegation archi-
tecture for distributed systems. In: SRDS ’09: Proceedings of the 2009 28th IEEE
International Symposium on Reliable Distributed Systems. pp. 107–116. IEEE
Computer Society, Washington, DC, USA (2009)

23. Zhang, Y., Chen, J.L.: A Delegation Solution for Universal Identity Management
in SOA. IEEE Transactions on Services Computing 99 (2010)

