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Abstract

Lévy processes are becoming increasingly important in Mathematical Finance. This thesis

aims to contribute to the development of theoretical representations of Lévy processes and

their �nancial applications. The �rst part of the thesis presents a computational explicit

formula of the chaotic representation property (CRP) for the powers of increments of a

Lévy process. The formula can be used to obtain the integrands of the CRP in terms of

the orthogonalised compensated power jump processes and the CRP in terms of Poisson

random measures.

The second part of the thesis presents hedging strategies for European and exotic

options in a Lévy market. By applying Taylor�s theorem, dynamic hedging portfolios are

constructed and in the case of European options, static hedging is also implemented. It

is shown that perfect hedging can be achieved by investing in power jump assets, moment

swaps or some traded �nancial derivatives depending on the same underlying asset. Note

that variance swaps are special cases of moment swaps and are traded in OTC (Over-The-

Counter) markets. We can also hedge by constructing the minimal variance portfolios

that invest in the risk-free bank account, the underlying stock and variance swaps. The

numerical algorithms and performance of the hedging strategies are presented.

The third part of the thesis contributes to the design of an option trading strategy,

where the stock price is driven by a Lévy process. The trading strategy is based on

comparing the deviations between the density implied by historical time series and that

implied by current market prices of the options. The performance of the trading strategy

under di¤erent market conditions is reported and optimal parameters are obtained using

e¢ cient frontier analysis. The analysis compares the expected returns with the Conditional

Value at Risks (CVaRs). Simulation results show that the trading strategy has a high

earning potential.
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Introduction

This thesis contributes to the development of theoretical representations and �nancial

applications of Lévy processes and comprises of three main parts. The �rst part is

concerned with chaotic representations of a Lévy process. The second part investigates

hedging strategies for European and exotic options in a Lévy market with the use of the

representation property of Lévy processes. The third part proposes a trading (speculating)

strategy investing in European options in a Lévy market.

Part I

To price and hedge derivative securities, it is crucial to have a good model for the

evolution of the underlying asset. Despite the popularity of the Black-Scholes model,

empirical evidence suggests that it is not su¢ ciently �exible to describe some of the im-

portant statistical properties observed in realised market data. Cont (2001), Schoutens

(2003, Chapter 4) and Cont & Tankov (2003, Chapter 1) discussed various stylised empir-

ical facts emerging from statistical analysis of price variations in various types of �nancial

markets. There are two main problems that give rise to the need of more general mod-

els. Firstly, abrupt downward jumps have been observed in stock price processes while

the Brownian motion, that is used in the Black-Scholes model, is a continuous process.

Barndor¤-Nielsen & Shephard (2006) performed hypothesis tests on exchange data under

the null of no jumps, which was found to be rejected frequently. Secondly, the log return

data series has heavy tails and is negatively skewed, which cannot be described by the

normal distribution implied by the Black-Scholes formulation. To remedy these prob-

lems, market models driven by Lévy processes, that is, processes with independent and

stationary increments, were introduced to replace the Black-Scholes model in describing

the dynamics of asset price process.

The Lévy-Khintchine formula (see equation (2.1) below) states that a Lévy process

can be decomposed into three components: a deterministic drift component, a Brownian

component and a pure jump component. A Brownian motion is a special case of a Lévy

process in which the pure jump component equals zero. The pure jump component

provides more �exibility in describing the shape of the distribution of the log asset price

14



INTRODUCTION 15

processes since heavy tails and asymmetry are potential characteristics of processes with

jumps.

In this thesis, we focus on the di¤erent stochastic representations of Lévy processes.

The chaotic representation of a square integrable functional of a Lévy process is an expan-

sion via its expectation plus a sum of iterated stochastic integrals, see Solé et al. (2006)

for a recent review of such representations. The chaotic representations are important in

mathematical �nance since they provide the decomposition of a random variable adapted

to the �ltration generated by the underlying Lévy process into orthogonal components.

Such representations are useful in the construction of hedging strategies of �nancial deriv-

atives. We discuss this in more details in Part II of this introduction. There are two

di¤erent types of chaos expansions: Itô (1956) proved a Chaotic Representation Property

(CRP) for any square integrable functional of a general Lévy process. Note that the spe-

cial cases of the CRP for Brownian motion and Poisson process are in much simpler forms

and are commonly treated in the literature. The CRP is written in terms of multiple inte-

grals with respect to a two-parameter random measure associated with the Lévy process.

Nualart & Schoutens (2000) proved the existence of a new version of the CRP, which

states that every square integrable Lévy functional can be represented as its expectation

plus an in�nite sum of stochastic integrals with respect to the orthogonalised compensated

power jump processes of the underlying Lévy process. Benth et al. (2003) and Solé et al.

(2006) derived the relationships between these two representations. However, these rep-

resentations are computationally intractable. The �rst part of the thesis addresses this

issue. For the powers of increments of a Lévy process, we derive computationally explicit

formulae for the integrands of these two chaotic expansions.

Power jump processes are important in mathematical �nance. The jumps can be

understood both in terms of a Poisson random measure, or equivalently, by using the

Power jump processes. Note that Nualart & Schoutens (2000, Proposition 2) proved that

all square integrable random variables, adapted to the �ltration generated by the Lévy

process denoted by X = fXt; t � 0g ; can be represented as a linear combination of powers
of increments of X, see Proposition 3.0.1 below. In fact, for any square integrable random

variable, F , with derivatives of all orders, we can apply Taylor�s theorem to express F in

terms of a polynomial of powers of increments of X. Thus, the chaotic representations of

certain �nancial derivatives can be found using this method, which is discussed further in

Section 5.1.

The derivation of an explicit formula for the chaotic representation has been the focus

of considerable study, see for example Nualart & Schoutens (2001), Léon et al. (2002),

Løkka (2004) and Eddahbi et al. (2005). All the explicit formulae for general Lévy

functionals derived in these papers used Malliavin-type derivatives to derive explicit rep-
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resentations of stochastic processes for applications in �nance. Malliavin Calculus was

originally developed as a new probabilistic technique to �nd smooth densities for solutions

of stochastic di¤erential equations. Note that the use of Malliavin Calculus in �nance is

mainly in the computation of the Greeks of options. By expressing the Greeks in terms of

some stochastic integrals using Malliavin Calculus, their values can then be approximated

quickly and accurately, see Davis & Johansson (2006) and Huehne (2005). Accordingly,

the explicit formula derived using Malliavin Calculus is generally not designed to be used

to �nd the explicit representation of a contingent claim in terms of the integrals with

respect to the power jump processes. The derivative operator D is, in all of these cases,

de�ned by its action on the chaos expansions. In other words, the explicit chaos expansion

must in fact be known before D can be applied to �nd the explicit form of the chaotic

representation, thus yielding a circular speci�cation. We will discuss this in further details

in Sections 2.3 and 5.3. As pointed out by Solé et al. (2007), �in order for the Malliavin

calculus to be genuinely useful, there is the need for practical rules to compute the deriv-

atives.� In the case of Brownian motion, Nualart (1995) proved a chain rule through the

identi�cation of the Malliavin derivative with a weak derivative on the canonical space.

For Poisson process, Nualart & Vives (1990) proved that the Malliavin derivative coincides

with a di¤erence operator on the canonical space. The derivatives with respect to the

compensated power jump processes introduced in Léon et al. (2002) were only alternative

de�nitions for the derivative and useful formulae were only developed for a jump-di¤usion

process with only a �nite number of jump sizes. As pointed out by Davis & Johansson

(2006), a drawback of this approach used in Léon et al. (2002) is that there is no general

chain rule. In this thesis, we take a di¤erent approach by deriving an explicit formula

for the power of increment of a Lévy process directly using Itô formula. For any smooth

square integral random variable, we apply Taylor�s theorem to express it in terms of those

power of increments and hence our explicit formulae can be applied.

Apart from the Malliavin approach, Jamshidian (2005) extended the CRP in Nualart &

Schoutens (2000) to a large class of semimartingales and derived the explicit representation

of the power of a semimartingale with respect to the corresponding non-compensated

power jump processes. In this thesis, we derived an explicit representation of the power

of a Lévy process with respect to the corresponding orthogonalised compensated power

jump processes. Note that Lévy processes are included in the class of semimartingales,

see Kannan & Lakshmikantham (2001, Corollary 2.3.21, p.92). The explicit formula

derived in this thesis is designed for those stochastic processes with compensators equal

to a constant times t only (which is satis�ed by all Lévy processes). This formula can

be easily extended to semimartingales when the form of the compensator is known. Our

result is therefore complementary to Jamshidian�s formula, since our explicit formula gives
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the CRP with respect to the orthogonalised processes, as de�ned by Nualart & Schoutens

(2000). Note that it is a non-trivial extension from the representation in terms of non-

compensated power jump processes to that in terms of orthogonalised compensated power

jump processes. In other words, Jamshidian�s formula can be deduced from ours (in the

Lévy case), but ours cannot be deduced from Jamshidian�s by a non-trivial calculation.

This is further discussed in Remark 3.2.1.

It is important to be able to express the chaos expansion with respect to orthogo-

nalised compensated power jump processes since it facilitates the applications of the CRP.

An immediate result of the CRP is the predictable representation property (PRP), which

states that every square integrable functional of a Lévy process can be expressed as an

expansion via its expectation plus a stochastic integral with predictable integrand. In

practical applications, it is often convenient to truncate the representation given by the

PRP. The truncated representation of a stochastic process yields a practically imple-

mentable approximation to the stochastic process. This approximation would be used for

simulating the process, or for a �nite number of traded higher order options, providing

hedging formulae as will be discussed in Part II. The advantage of expressing the sum in

terms of stochastic integrals with respect to the orthogonalised processes is that the error

terms omitted will be uncorrelated with the terms remaining in the approximation.

Part II

The second part of the thesis presents hedging strategies for European and exotic

options in a Lévy market. By applying Taylor�s theorem, we construct dynamic hedging

portfolios under di¤erent market assumptions, such as the existence of power jump assets

or moment swaps. In the case of European options or baskets of European options, static

hedging is also implemented. It is shown that perfect hedging can be achieved.

It is well known, see Schoutens (2000, p.71), that Brownian motion has an elegant

version of the CRP: every square integrable random variable adapted to the �ltration gen-

erated by a Brownian motion can be represented as a sum of its mean and an in�nite sum

of iterated stochastic integrals with respect to the Brownian motion, with deterministic in-

tegrands. This is distinct from the CRP for Lévy processes, which are in terms of power

jump processes or Poisson random measures rather than the Lévy process itself. The

PRP for Brownian motion states that every square integrable random variable adapted to

the �ltration generated by a Brownian motion can be represented in the same form, but

with a single stochastic integral, where the integrand is a predictable process. The PRP

implies the completeness of the Black-Scholes option pricing model. The aforementioned

predictable process gives the admissible self-�nancing strategy of replicating a contingent

claim whose price only depends on the time to maturity and the current stock price, which

can be hedged by investing in a risk-free bank account and the underlying asset.
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Unfortunately, this kind of PRP, where the stochastic integral is with respect to the

underlying process only, is an exceptional property, which is only possessed by a few mar-

tingales, including the Brownian motion, the compensated Poisson process, and the Azéma

martingale (see Schoutens (2003) and Dritschel & Protter (1999)). When the underlying

asset is driven by a Lévy process, perfect hedging using only a risk-free bank account and

the underlying asset is not in general possible. The market is therefore incomplete. How-

ever, even in this case, further developments are possible. As mentioned in Part I, Nualart

& Schoutens (2000) proved the existence of a new version of the CRP for Lévy processes

which satisfy some exponential moment conditions. This new version states that every

square integrable random variable adapted to the �ltration generated by a Lévy process

can be represented as an in�nite sum of iterated stochastic integrals with respect to the

orthogonalised compensated power jump processes of the underlying Lévy process. The

market can thus be completed by allowing trades in these processes while risks due to

jumps and fat tails are considered. In light of the new version of the PRP, Corcuera et al.

(2005) suggested that the market should be enlarged with power jump assets so that per-

fect hedging could still be implemented. Corcuera et al. (2006) used this completeness to

solve the portfolio optimisation problem using the martingale method. Another form of

commonly traded �nancial derivative is the variance swap which depends functionally on

the volatility of the underlying asset. Since variance swaps are already traded commonly

in the over-the-counter (OTC) markets, Schoutens (2005) suggested trading in moment

swaps, which are a generalisation of variance swaps. Based on the CRP derived by Itô

(1956), Benth et al. (2003) derived a minimal variance portfolio for hedging contingent

claims in a Lévy market.

Inspired by these papers, we derive practical and implementable hedging strategies

based on the PRP derived from Taylor approximations to the option pricing formulae. We

apply Taylor�s theorem directly to the option pricing formulae and derive perfect hedging

strategies by investing in power jump assets, moment swaps or some traded derivatives

depending on the same underlying asset. The hedging of the higher moments terms

in the Taylor expansion of a contingent claim using other contingent claims in a Lévy

market is a technique introduced by this thesis. When these �nancial derivatives are not

available, we demonstrate how to use the minimal variance portfolios derived by Benth

et al. (2003) to hedge the higher order terms in the Taylor expansion. While we apply

Taylor expansions to decompose the pricing formula into an in�nite sum of higher moment

terms, Corcuera et al. (2005) applied the Itô formula to obtain the PRP of a contingent

claim. Note that the Itô formula is derived as a result of an elementary Taylor expansion,

see Kijima (2002). In practice, when implementing a hedging strategy numerically, we

have to discretise the time variable. Hence, it is more natural to work directly from
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Taylor�s theorem as this discretisation can be acknowledged explicitly. In fact, the delta

and gamma hedges commonly used by traders in the market, given in Section 6.2.4, are

derived using a Taylor expansion. We construct static and dynamic hedging strategies for

European and exotic options in a Lévy market. Although static hedging is only applied

to European options, exotic options can be decomposed into a basket of European options

so that static hedging can be achieved, in this case see for example Derman et al. (1995).

It is practically important to be able to statically hedge since static hedging has several

advantages over dynamic hedging. Static hedging is less sensitive to the assumption of

zero transaction costs (both commissions and the cost of paying individuals to monitor the

positions). Moreover, dynamic hedging tends to fail when liquidity dries up or when the

market makes large moves, but especially in these situations e¤ective hedging is needed.

We discuss how hedging can be implemented by applying Taylor�s theorem to a pricing

formula. We investigate the approximation of the derivatives of the pricing formula and

present the numerical procedures used to construct the hedging strategies. The Perfor-

mance of the hedging is assessed and the di¢ culties encountered are discussed. Thus,

this part of the thesis constitutes a practical development for the hedging of contingent

claims, where the underlying asset is driven by a Lévy process.

Part III

In the third part of the thesis, we construct an option trading strategy in a Lévy

market, where the price processes of the underlying assets are driven by Lévy processes.

We compare the risk-neutral density of the log returns of the underlying at maturity

implied by the historical data series of the underlying to that implied by the current

option prices in the market. This comparison gives a strategy for speculating options in a

Lévy market. This represents an important practical advance in utilizing the Lévy process

model. According to the European option pricing formula, the price P (St;K; r; T � t) is
given by:

P (St;K; r; T � t) = e�r(T�t)
Z 1

0
H (x;K) f� (x; St) dx; (1)

where H is the payo¤ function of the option, St is the current price of the underlying, K is

the strike price of the option, r is the continuously compounded risk-free interest rate, T�t
is the time to maturity, x is the price of the underlying at maturity and f� (x; St) is the

risk-neutral density of the underlying at maturity, depending on the current option price,

St. This pricing formula states that the price of an European option today is given by

the discounted expected payo¤ with respect to a risk-neutral measure. Aït-Sahalia et al.

(2001), Blaskowitz (2001), Blaskowitz & Schmidt (2002) and Blaskowitz et al. (2004)

considered the pro�tability of trading on the deviations of the risk-neutral density of the

underlying inferred from the historical time series and that implied by the option prices
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under the Black-Scholes model. There are well-known indications, such as the volatility

smile, suggesting that the Black-Scholes model is not su¢ ciently �exible to capture the

statistical behaviour of the underlying. More importantly, it is assumed in the Black-

Scholes model that, the market is complete and there is a unique equivalent martingale

measure (EMM). Hence, there should not be any deviations of the two density functions if

the model can accurately re�ect the market prices of the options. In an incomplete market,

there are in�nitely many EMMs, which give di¤erent option prices. This is because an

EMM gives an arbitrage-free price of an option but not necessarily the market price of the

option. In other words, the market chooses an EMM and the market prices of options are

obtained under such a measure. Therefore, if we choose a change of measure method to

obtain a risk-neutral density from the historical data of the underlying, deviations between

the two densities are expected since they are obtained from two di¤erent EMMs. Under

an incomplete model, choosing an EMM, rather than using the market implied one, is

essentially specifying the investors� risk preference. Hence, objective comparison (that

is, independent of investors� preference) of the two risk-neutral densities inferred from

the historical time series of the underlying and implied from the option prices, as in the

papers cited above, is indeed not possible in an incomplete (realistic) market. To allow for

realistic comparison of the two risk-neutral densities, we must adopt a model which would

lead to the existence of non-unique EMMs. Lévy model is a straight forward extension

to the Black-Scholes model since the extra parameters handle the skewness and kurtosis

explicitly.

We �t the two sets of data, that is, the historical series of the underlying and the

current option prices, to a market model to obtain two sets of parameters. We then

simulate the underlying from today to maturity with these two sets of parameters to see

which options are overpriced. We sell the overpriced options and also buy far out of

money options to prevent in�nite loss and hold them until maturity, which is discussed

in further detail in Section 8.5. We use the Variance Gamma (VG) model, introduced

by Madan et al. (1998), to describe the dynamics of the underlying price process. A

VG process is a Brownian motion with a stochastic time change determined by a Gamma

process. Note that other stochastic models can be used, for example, the stochastic

volatility model using a VG process (VGSAM), introduced by Carr et al. (2003). The

VG model is used because of its simplicity and ability to handle skewness and kurtosis,

which correspond to asymmetry and fat tails of the distribution function, respectively.

Since in a Lévy market model, the market is incomplete and there are in�nitely many

EMMs, we have to choose one to obtain the risk-neutral density implied by the historical

data of the underlying. For simplicity, we use the mean-correcting martingale measure,

see Schoutens (2003, Section 6.2.2). Miyahara (2005) discussed the di¤erent properties
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of a few common kinds of equivalent martingale measures (EMMs) for geometric Lévy

processes. The choice of the EMM in this thesis is left to the preference of the investor.

The thesis instead will focus on constructing the option trading strategy after an EMM is

chosen and a stochastic model is �tted to market data. Therefore, the most appropriate

choices of the EMM and the stochastic model for the underlying price process are out of

the scope of this discussion.

We choose the mean-correcting martingale measure to obtain the risk-neutral density

of the historical time series and compare it to the risk-neutral density implied by the

option prices, hence identifying overpriced options today under our subjective belief that

the mean-correcting martingale measure gives �more accurate�prices. The performance

of the trading strategy under di¤erent market conditions are reported and it suggests that

the trading strategy has a high earning potential.

The trading strategy presented is a speculative strategy since we believe that the prices

of the underlying should behave according to its historical performance and investors in

the market are too risk averse. Although it has a high earning potential, occasionally it

would lead to losses. To make the strategy more attractive to risk averse investors, we

can combine the trading strategy with risk-free investment to guarantee the capital, which

is known as portfolio insurances in �nance, see Leland (1979). We discuss this in further

details in Section 8.8.

These results presented in this thesis thus comprise both theoretical and practical

developments for the usage of Lévy processes in practice.



Chapter 1

Background and Notation

In the introduction, we have discussed the motivation behind the use of market models

driven by Lévy processes. In this chapter, we give fundamental results about probabil-

ity theory, Lévy processes and martingales. Bertoin (1996), Sato (1999) and Applebaum

(2004) provide comprehensive details of Lévy processes and stochastic calculus. Schoutens

(2003) and Cont & Tankov (2003) provide recent overviews of �nancial applications of Lévy

processes.

1.1 Martingales and random measures

In this section, we give the de�nitions of martingales and random measures, which are

important components of stochastic calculus.

A stochastic process is a family fXt : t � 0g of random variables on Rd with parameter
t 2 [0;1) de�ned on a common probability space. Let fXtg and fYtg be two stochastic
processes. If

P [Xt = Yt] = 1 for t 2 [0;1) ;

then fYtg is called a modi�cation of fXtg : If, for every t � 0 and " > 0; the stochastic

process fXtg on Rd satis�es

lim
s!t

P [jXs �Xtj > "] = 0;

it is said to be stochastically continuous or continuous in probability. Suppose F is a

�-algebra of subsets of a given set 
: A �ltration is a family fFt; t � 0g of sub �-algebra
of F such that

Fs � Ft for all s � t:

A probability space (
;F ; P ) is said to be �ltered if it is equipped with such a family

22
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(Ft; t � 0) : Suppose X = fXt; t � 0g is a stochastic process de�ned on a �ltered prob-
ability space (
;F ; P ) : It is said to be adapted to the �ltration (or Ft-adapted) if Xt

is Ft-measurable for each t � 0: Note that any process fXtg is adapted to its own
�ltration FXt = � fXs : 0 � s � tg, which is known as the natural �ltration. We have

E [XsjFs] = Xs a.s. if fXtg is adapted, that is, Fs contains all the information required
to predict the behaviour of fXt : t � 0g up to and including time s: A stopping time is a
random variable T : 
! [0;1] such that the event (T � t) 2 Ft for each t � 0:

De�nition 1.1.1 (Martingales) A martingale is an adapted process X de�ned on a

�ltered probability space satisfying E [jXtj] <1 for all t � 0 and E [XtjFs] = Xs a.s. for

all 0 � s < t <1: The mapping t! E [Xt] is constant if X is a martingale. Let X be d-

dimensional and its i-th element at time t be Xi;t. A submartingale is an adapted process

X satisfying E [jXtj] < 1 for all t � 0 and E [Xi;tjFs] � Xi;s a.s. for all 0 � s < t < 1
and 1 � i � d: X is a supermartingale if �X is a submartingale. Let M = fMt; t � 0g
be an adapted process. If there exists a sequence of stopping times �1 � � � � � �n ! 1
a.s. such that each of the processes

�
Mmin(t;�n); t � 0

	
is a martingale, then M is a local

martingale.

Note that a driftless process may not be a martingale, but if E [X� ] = E [X0] for any

stopping time � then X is a martingale. A familiar example of a martingale is the Wiener

process. If fSt; 0 � t � Tg is a martingale then for any simple predictable process1 �, the
stochastic integral

R t
0 �sdSs is also a martingale.

Suppose I is some index set and X = fXi; i 2 Ig is a family of random variables. X

is said to be uniformly integrable if

lim
n!1

sup
i2I

E
�
jXij 1fjXij>ng

�
= 0:

A process X is said to be in the Dirichlet class or class D if fX� ; � 2 T g is uniformly
integrable, where T is the family of all �nite stopping times on our �ltered probability

space. A process X is said to be integrable if E (jXtj) <1 for all t > 0: A process X said

to be predictable if the mapping X : R+�
! R given by X (t; !) = Xt (!) is measurable

with respect to the smallest �-algebra generated by all adapted left-continuous mappings

from R+ � 
! R.

De�nition 1.1.2 (Random measure) Let (S;A) be a measurable space and (
;F ; P )
be a probability space. A collection of random variables fM (B) ; B 2 Ag is said to be a

1A stochastic process (�t)t2[0;T ] is called a simple predictable process if it can be represented as �t =
�01t=0+

Pn
i=0 �i1]Ti;Ti+1](t), where T0 = 0 < T1 < T2 < � � � < Tn < Tn+1 = T are nonanticpating random

times and each �i is bounded random variable whose value is revealed at Ti (it is FTi -measurable).
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random measure, denoted by M , on (S;A) if the following are satis�ed:
(1) M (;) = 0.
(2) For any sequence fAn; n 2 Ng of mutually disjoint sets in A,

M

 [
n2N

An

!
=
X
n2N

M (An) a.s.

(�-additivity).

(3) Given any disjoint family (B1; :::; Bn) in A, the random variables M (B1) ; :::;M (Bn)

are independent.

Next we give the de�nition of variation of a mapping. Before doing so, we �rst recall

the concept of a compact space. A topological space S is compact if, for every collection

fUigi2I of open sets in S whose union is S, there exists a �nite subcollection
�
Uij
	n
j=1

whose union is also S. A compact subset of Rd is a bounded closed subset.

De�nition 1.1.3 (Variation) Suppose P = fa = t1 < t2 < � � � < tn < tn+1 = bg is a par-
tition of the interval [a; b] in R and let its mesh (the width of the largest sub-interval) be
� = max1�i�n jti+1 � tij : The variation varP (g) of a cádlág mapping gt : [a; b]! Rd over
the partition P is given by

varP (g) =
nX
i=1

jg (ti+1)� g (ti)j :

A cádlág mapping g is said to have �nite or bounded variation on [a; b] if V (g) =

supP varP (g) < 1: g is said to have �nite variation if it is de�ned on the whole of

R (or R+) and has a �nite or bounded variation on each compact interval. Every non-

decreasing g is of �nite variation. Conversely, g can always be written as the di¤erence

of two non-decreasing functions if it is of �nite variation, since

g =
V (g) + g

2
� V (g)� g

2
:

A stochastic process fXt; t � 0g is of �nite variation if for almost all ! 2 
; the paths
fXt (!) ; t � 0g are of �nite variation.

In the following, we give a brief introduction of Lévy processes, see Sato (1999) and

Applebaum (2004) for a detailed discussion.
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De�nition 1.1.4 (Lévy process) A Lévy process, fXt : t � 0g ; is a stochastic process
on Rd satisfying:
(1) The random variables Xt0 ; Xt1 � Xt0 ; Xt2 � Xt1 ; :::; Xtn � Xtn�1 are independent for

any choice of n � 1 and 0 < t0 < t1 < � � � < tn:

(2) X0 = 0 a.s.

(3) The distribution of Xs+t �Xs is independent of s:

(4) The process is stochastically continuous.

(5) There exists 
0 2 F with P [
0] = 1 such that, for every ! 2 
0; Xt (!) is right-

continuous in t � 0 with left limits in t > 0, that is, fXtg is cádlág.
If only (1)-(4) are satis�ed, fXtg is called a Lévy process in law. Note that every Lévy

process in law has a cádlág modi�cation that is a Lévy process.

The characteristic function of a random variable uniquely determines its distribution.

The famous Lévy-Khintchine formula, given in Theorem 2.1.1, gives the decomposition of

the characteristic function of a Lévy process. The characteristic function of a probability

measure � on Rd is denoted by �� (z) and de�ned by

�� (z) =

Z
Rd
exp (i hz; xi)� (dx) ; z 2 Rd;

where hz; xi =
Pd

j=1 zjxj : The characteristic function �X (z) of the distribution PX of a

random variable X on Rd is given by

�X (z) =

Z
Rd
exp (i hz; xi)PX (dx) = E [exp (i hz; xi)] : (1.1)

Let � be a probability measure on Rd: Let M1

�
Rd
�
denote the set of all Borel

probability measures on Rd. We de�ne the convolution of two probability measures as

follows:

(�1 � �2) (A) =
Z
Rd
�1 (A� x)�2 (dx)

for each �i 2 M1

�
Rd
�
, i = 1; 2; and each A 2 B

�
Rd
�
, where we note that A � x =

fy � x; y 2 Ag : We de�ne �n = � � � � � �� (n times) and say that � has a convolution nth
root, if there exists a measure �1=n 2M1

�
Rd
�
for which

�
�1=n

�n
= �. If, for any positive

integer n, there is a probability measure �n on Rd such that � = (�n)
n ; then � is said to

be in�nitely divisible. The next theorem shows that in�nitely divisibility is closely related

to Lévy processes.

Theorem 1.1.5 Suppose fXt : t � 0g is a Lévy process in law on Rd: Then, for any

t � 0; PXt is in�nitely divisible and if PX1 = �; we have PXt = �t: Conversely, let
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� be an in�nitely divisible distribution on Rd. Then there exists a Lévy process in law

fXt : t � 0g such that PX1 = �:

Note that a measure � on Rd is in�nitely divisible if and only if for each n 2 N,
there exists �1=n such that �u (z) =

h
��1=n (z)

in
for each z 2 Rd: Some famous exam-

ples of Lévy process include Brownian motions (see De�nition 1.3.1), Poisson processes,

compound Poisson processes, Gamma processes, Inverse Gaussian processes, Generalized

Inverse Gaussian processes and Variance Gamma processes (see Section 6.4.1).

In the following, we give the de�nition of a Poisson random measure of a Lévy process.

De�nition 1.1.6 (Poisson Random Measure) Let X = fXt; 0 � t � Tg be a Lévy
process. Its Poisson random measure counts the jumps up to time t that are in a given

Borel set A :

N (t; A) = # f0 � s � t;�Xs 2 Ag :

Note that N is a function of three variables: time t, the Borel set A and the sample

point !: Fixing A, N (A) is a Poisson random variable with intensity � (A) ; where � is

the Lévy measure of X: Therefore, E [N (A)] = � (A).

In the following, we give the de�nition of a semimartingale, which is an important

generalisation of Lévy process. In stochastic calculus (see Section 2.2), semimartingales

are important in that they are stable under stochastic integration while Lévy processes

are not. In other words, a stochastic integral with respect to a semimartingale is also

a semimartingale while a stochastic integral with respect to a Lévy process may not be

a Lévy process anymore, but will be a semimartingale. A semimartingale is also stable

under other operations such as change of measure, change of �ltration and �time change�.

De�nition 1.1.7 (Semimartingale) A process X = fXt; t � 0g is called a semimartin-
gale if it is an adapted process such that, for each t � 0;

Xt = X0 +Mt + Ct:

where M = fMt; t � 0g is a local martingale and C = fCt; t � 0g is an adapted process of
�nite variation.

Note that every �nite variation process, for example a Poisson process, is a semimartin-

gale. Moreover, every square integrable martingale, for example a Wiener process, is a

semimartingale. Any linear combination of a �nite number of semimartingales is a semi-

martingale, for example, all Lévy processes are semimartingales because a Lévy process

can be split into a sum of a square integrable martingale and a �nite variation process
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using the Lévy-Itô decomposition, given in Theorem 2.1.4. Every (local) martingale is a

semimartingale. A deterministic process is a semimartingale if and only if it is of �nite

variation so all in�nite variation deterministic processes are examples of processes that are

not semimartingales.

1.2 Important concepts in mathematical �nance

In this section, we recall some of the important concepts in mathematical �nance. We re-

call the de�nitions of a self-�nancing portfolio, market completeness, equivalent martingale

measure and the fundamental theorems of asset pricing.

We start with the de�nition of a self-�nancing portfolio. Suppose there are K assets

in the market, A(1); A(2); :::; A(K): Let SAt (!) be the price of asset A at time t under

market scenario !. Assume we hold a portfolio consisting of shares (possibly held short)

of each of the traded assets A(j) and we may adjust our portfolio as time progresses. Let

�A
(j)

t (!) be the amount of asset A(j) held in a dynamically rebalanced portfolio during

the t-th trading period (that is, during the period following completion of trading at

time t until the beginning of trading at time t + 1) under scenario !, then the sequencen
�A

(j)

t ; 0 � t � T
o
must be adapted to the natural �ltration. Denote the total value of

the portfolio � after rebalancing at time t in scenario ! by V �
t (!) and we have

V �
t (!) =

KX
i=1

�A
(j)

t (!)SA
(i)

t (!) :

Note that V �
t may not equal V

�
t+1, as the share prices of the underlying assets A

(j) will

generally change between times t and t+ 1: Assuming there is no transaction cost, if we

do not invest (or withdraw) additional resources in our portfolio at time t + 1, the total

value of the portfolio just before rebalancing at time t + 1 must be the same as its value

just after, that is, X
A

�At (!)S
A
t+1 (!) =

X
A

�At+1 (!)S
A
t+1 (!) ;

which is equal to

V �
t+1 (!)� V �

t (!) =
X
A

�At
�
SAt+1 (!)� SAt (!)

�
: (1.2)

A dynamically rebalanced portfolio satisfying (1.2) is called self-�nancing since it requires

no investments or withdrawals except at the initial time t.

In the introduction, we mentioned that the market under the Black-Scholes model is
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complete while the Lévy market is incomplete. Here we give a proper de�nition of market

completeness. De�ne a contingent claim, with maturity date T , to be a non-negative

FT -measurable random variable.

De�nition 1.2.1 (Market Completeness) A market model is said to be complete if

every contingent claim can be replicated by a dynamic trading strategy: For any contingent

claim H; adapted to the natural �ltration generated by the price of the underlying process

fSt; t 2 [0; T ]g, there exists a self-�nancing strategy
�
�0t ; �t

�
such that

H = V0 +

Z T

0
�tdSt +

Z T

0
�0tdBt; P -a.s. (1.3)

where V0 is the initial investment and fBt; t 2 [0; T ]g is a risk-free bank account.

In the market driven by Lévy processes, contingent claims do not in general possess

the representation in (1.3) and hence the market is incomplete. Later we will give the

relationship between market completeness and the uniqueness of equivalent martingale

measure. We �rst give the de�nition of an equivalent martingale measure. Suppose

P represents the probability of occurrence of scenarios in the market and let r be the

continuously compounded risk-free interest rate.

De�nition 1.2.2 (Equivalent Martingale Measure) Let P;Q be two probability mea-
sures de�ned on (
;FT ) : Q is called an equivalent martingale measure of P; denoted

Q � P; if

(1) Q is equivalent to P , that is, they have the same null sets (events which are impossible

under P are also impossible under Q and vice versa).

(2) the discounted stock price process ~S =
n
~St = exp (�rt)St; t � 0

o
is a martingale under

Q .

We then introduce the risk-neutral pricing formula and risk-neutral measure. Suppose

Q is an equivalent martingale measure to P and �t (H) be the value of a contingent claim

with payo¤H and maturity T at time t: The risk-neutral pricing formula is given by

�t (H) = e
�r(T�t)EQ [HjFt] ; (1.4)

that is, the value of a random payo¤ is given by its discounted expectation under Q; which

is called a risk-neutral measure.

Lemma 1.2.3 Let Q be a risk-neutral measure and let fXtg be the value of a portfolio.
Under Q, the discounted portfolio value e�rtXt is a martingale.
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Next we give the de�nition of an arbitrage.

De�nition 1.2.4 (Arbitrage) An arbitrage is a portfolio value process fXtg satisfying
X0 = 0 and also satisfying for some time T > 0,

P fXT � 0g = 1; P fXT > 0g > 0: (1.5)

An arbitrage is a way of trading such that one starts with zero capital and at some

time later T sure not to lose any money and also has a positive probability of making

money. We can summarize in the following theorem in the discrete case:

Theorem 1.2.5 (Fundamental Theorem of Asset Pricing in discrete time) The

market model de�ned by (
;F ; fFtg ; P ) and asset prices fSt; t 2 [0; T ]g is arbitrage-free
if and only if there exists a probability measure Q � P such that the discounted assets�
e�rtSt; t 2 [0; T ]

	
are martingales with respect to Q:

The next theorem gives the relationship between market completeness and the unique-

ness of equivalent martingale measure in the discrete case. The next theorem gives the

relationship between market completeness and the uniqueness of equivalent martingale

measure.

Theorem 1.2.6 (Second Fundamental Theorem of Asset Pricing) A market
de�ned by the assets

�
Bt; S

1
t ; :::; S

d
t

�
t2[0;T ], described as stochastic processes on (
;F ; P ) ;

is complete if and only if there is a unique martingale measure Q equivalent to P:

In continuous time the situation is far more complicated and this has been the fo-

cus of considerable study, see Bingham & Kiesel (2001). We need the following de-

�nitions. Let S (t) = (S0 (t) ; S1 (t) ; :::; Sd (t)) for a vector of prices of d + 1 assets

at time t. Let ' be a trading strategy, which is a Rd+1 vector stochastic process
' = (' (t))Tt=1 = ('0 (t; !) ; '1 (t; !) ; :::; 'd (t; !))

T
t=1 which is predictable, that is, each

'i (t) is Ft�1-measurable:

De�nition 1.2.7 The wealth process of the trading strategy ' is de�ned to be the scalar
product

V' (t) = ' (t) � S (t) =
dX
i=0

'i (t)Si (t) for t > 0 and V' (0) = ' (1) � S (0) :

De�nition 1.2.8 A simple predictable trading strategy is �-admissible if the relative wealth
process V' (t) � �� for every t 2 [0; T ] :
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De�nition 1.2.9 A price process S satis�es NFLVR (no free lunch with vanishing risk)
if for any sequence ('n) of simple trading strategies such that 'n is �n-admissible and the

sequence �n tends to zero, we have

V'n (T )! 0 in probability as n!1.

In continuous time, the fundamental theorem of asset pricing is stated as follow.

Theorem 1.2.10 (Fundamtal Theorem of Asset Pricing in continuous time) In

a �nancial market model with bounded prices, there exists an equivalent martingale mea-

sure if and only if the condition NFLVR holds.

The theorem is proved in Delbaen & Schachermayer (1994). We refer the reader to

the academic literature on this topic, see Delbaen & Schachermayer (1998), Cherny &

Shiryaev (2002), Harrison & Pliska (1981), Harrison & Kreps (1979) and Schachermayer

(2002). A market driven by Lévy processes is incomplete and there are in�nitely many

equivalent martingale measures.

1.3 Brownian motion and the Black-Scholes model

In this section, we recall the de�nition of a Brownian motion and the famous Black-

Scholes model in �nance. Please refer to Schoutens (2003) and Cont & Tankov (2003) for

a detailed discussion.

De�nition 1.3.1 (Brownian motion) A standard Brownian motion X = fXt; t � 0g
is a stochastic process on some probability space (
;F ; P ) such that
(1) X0 = 0 a.s.,

(2) X has independent increments,

(3) X has stationary increments,

(4) Xt+s � Xt is normally distributed with mean 0 and variance s > 0 : Xt+s � Xt �
N (0; s) :

We denote a standard Brownian motion by W = fWt; t � 0g : Brownian motion is

also an example of martingale, de�ned in De�nition 1.1.1.
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Proposition 1.3.2 (Martingale property) Let F = FW = fFt; 0 � t � Tg be the nat-
ural �ltration of W: For all 0 � s � t;

E [WtjFs] = E [WtjWs] =Ws:

Note that from this property, we have E [WtWs] = min fs; tg :

The proof is given in Klebaner (2005, Theorem 3.7). The path of a Brownian motion is

very special in that it is continuous but nowhere di¤erentiable. The following proposition

gives a proper description of its properties.

Proposition 1.3.3 (Path properties) The paths of Brownian motion are continuous,
which means that Wt is a continuous function of t, but has very erratic paths, which are

nowhere di¤erentiable and are of in�nite variation (see De�nition 1.1.3). The paths

�uctuate between positive and negative values since we have

P

�
sup
t�0

Wt = +1 and inf
t�0

Wt = �1
�
= 1:

Another nice property of a Brownian motion is that it has the scaling property. By

multiplying a Brownian motion with a constant and change the time variable accordingly,

we get another Brownian motion:

Proposition 1.3.4 (Scaling property) For every c 6= 0; ~W =
n
~Wt = cWt=c2 ; t � 0

o
is

also a standard Brownian motion.

In the Black-Scholes model, the stock price S = fSt; t � 0g is modelled by the stochas-
tic di¤erential equation:

dSt = St (�dt+ �dWt) ; S0 > 0;

where Wt is a standard Brownian motion, the parameters � and � > 0 represent the mean

rate of return of the stock and the degree of �uctuation of the stock respectively. Applying

the Itô formula (Theorem 2.2.2), we have

St = S0 exp

��
�� 1

2
�2
�
t+ �Wt

�
; (1.6)

known as the geometric Brownian motion. The model assumes that investors can trade

continuously up to some �xed �nite planning horizon T and the uncertainly is modelled

by a �ltered probability space (
;F ; P ) : The market is assumed to be frictionless, that
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is, there are no transaction costs, no bid/ask spread, no taxes, no margin requirements,

no restrictions on short sales, no transaction delays and the markets are perfectly liquid,

market participants act as price takers and prefer more to less. There are two assets in

the market: a risk-free bank account modelled by B = fBt = exp (rt) ; 0 � t � Tg ; where
r is the continuously compounded risk-free interest rate, and a risky stock S which pays

a continuous dividend yield q � 0 and modelled by the geometric Brownian motion (1.6).
As noted in the introduction, the Black-Scholes model is complete (see De�nition 1.2.1)

because of the PRP of Brownian motion.

To derive the dynamic of S under the risk-neutral measure, we need the following

results. Consider now a measurable space (E; E) with measures �1 and �2 de�ned on it.

De�nition 1.3.5 (Absolute continuity) A measure �2 is said to be absolutely contin-
uous with respect to �1 if for any measurable set A

�1(A) = 0) �2(A) = 0:

Theorem 1.3.6 (Radon-Nikodym theorem) If �2 is absolutely continuous with re-
spect to �1 then there exists a measurable function Z : E ! [0;1[ such that for any
measurable set A

�2 (A) =

Z
A
Zd�1 = �1 (Z1A) :

The function Z is called the density or Radon-Nikodym derivative of �2 with respect to �1
and denoted as d�2

d�1
. For any �2-integrable function f

�2 (f) =

Z
E
fd�2 = �1 (fZ) =

Z
E
d�1Zf:

Theorem 1.3.7 (Cameron-Martin Theorem) Let (X;P ) and (X;Q) be two Brown-
ian motions on (
;FT ) with volatilities �P > 0 and �Q > 0 and drifts �P and �Q. P

and Q are equivalent if �P = �Q and singular otherwise. When they are equivalent the

Radon-Nikodym derivative is

dP

dQ
= exp

(
�Q � �P

�2
XT �

1

2

�
�Q � �P

�2
�2

T

)
:

A more general version of this result, valid for di¤usion processes with random drift

and volatility is known as the Girsanov Theorem, see Jacod & Shiryaev (2002) and Revuz

& Yor (1999). Hence, using the Girsanov Theorem, we can transform W in (1.6) to get a
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new Brownian motion ~W , say. Then the discounted stock price ~St = e�rtSt is driven by

d ~St = � ~Std ~Wt

and the martingale property is explicit.

Let K and T be the strike and maturity of a contingent claim respectively. Let Vt be

the price of a contingent claim at time t with payo¤ function G (ST ), depending solely on

the value of the stock at maturity. If G (ST ) is a su¢ ciently integrable function, the price

of the contingent claim is given by Vt = F (t; St) ; which solves the following Black-Scholes

partial di¤erential equation,

@

@t
F (t; s) + (r � q) s @

@s
F (t; s) +

1

2
�2s2

@2

@s2
F (t; s)� rF (t; s) = 0;

F (T; s) = G (s) :

The explicit formulae for European call and put options are given by

C (K;T ) = exp (�qt)S0N (d1)�K exp (�rT )N (d2) ;

P (K;T ) = � exp (�qt)S0N (�d1) +K exp (�rT )N (�d2) ;

where

d1 =
log (S0=K) +

�
r � q + 1

2�
2
�
T

�
p
T

;

d2 = d1 � �
p
T

and N (�) is the cumulative probability distribution function for a Normally distributed
random variable.

As mentioned in the introduction, Black-Scholes model has been proved to be insu¢ -

cient in describing the behaviour of the price processes in �nancial markets. Barndor¤-

Nielsen & Shephard (2006) performed hypothesis tests on exchange data under the null of

no jumps, which were found to be rejected frequently. In fact, at intraday scales, prices

move essentially by jumps and even at the scale of months, the discontinuous behaviour

cannot be ignored in general. Only after coarse-graining their behaviour over longer time

scales do we obtain something similar to Brownian motion. Another problem is that the

log return data series have heavy tails and are negatively skewed. Although an appro-

priate choice of a nonlinear di¤usion coe¢ cient in the Black-Scholes model can generate

processes with arbitrary heavy tails, we often end up choosing extreme value for the pa-

rameters, see Cont & Tankov (2003, Chapter 1). Even so, the di¤usion processes are still
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continuous, that is, no jumps can be truly created by di¤usion models. Heavy left tails of

the distributions of asset price processes corresponds to large sudden jumps in the price

processes. Without the ability to create jumps, di¤usion models underestimate the risks

incurred from jumps in the market. To remedy these problems, market models driven

by Lévy processes (see De�nition 1.1.4) were introduced to replace Black-Scholes model

in describing the dynamics of asset price processes. A Lévy process has independent

and stationary increments generated by a so-called in�nitely divisible distribution, which

has a one-to-one relationship with the Lévy process, see Theorem 1.1.5. General Lévy

processes allow jumps and provide more �exibility in describing log asset price processes

since heavy tails and asymmetry can be handled by extra parameters of the in�nitely

divisible distributions. Since large sudden moves are generic properties of models with

jumps, �ne-tuning of parameters to extreme values is not required as in di¤usion models.

Models with jumps capture the unexpected, sudden price movement, which is perceived as

risk in the market. As Cont & Tankov (2003) pointed out, �the question of using continu-

ous or discontinuous models has important consequences for the representation of risk and

is not a purely statistical issue.� Apart from the inability to replicate price movements,

the Black-Scholes model also fails to reproduce the main features of option prices in the

market. The well-known volatility surface is obtained by plotting the implied volatilities

of the Black-Scholes model across maturities and across strikes. If the option pricing

model is describing the market perfectly, the value of the implied volatilities should be

constant throughout. However, this is not the case in practice. In fact, the main driving

force behind the generalisation of the Black-Scholes model is to improve the calibration of

option prices in the market.

1.4 Orthogonalised processes

In this section, we introduce the orthogonalised compensated power jump processes intro-

duced by Nualart & Schoutens (2000) and give the alternative notation used by Jamshidian

(2005). We derive the explicit formula for the CRP in terms of orthogonalised compen-

sated power jump processes in Part I following Nualart and Schoutens notation but since

Jamshidian derived an explicit formula for the CRP in terms of non-compensated power

jump processes, we include Jamshidian�s notation for comparison. Let X = fXt; t � 0g
be a Lévy process (see De�nition 1.1.4). In the rest of the thesis, we assume that all Lévy

measures concerned satisfy, for some " > 0 and � > 0,Z
(�";")c

exp (� jxj) � (dx) <1: (1.7)
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This condition implies that for i � 2;
R +1
�1 jxji � (dx) < 1; and that the characteristic

function E [exp (iuXt)] is analytic in a neighborhood of 0.

1.4.1 Nualart and Schoutens notation

Denote the i-th power jump process by X(i)
t =

P
0<s�t(�Xs)

i; i � 2; and for completeness
let X(1)

t = Xt. In general, it is not true that Xt =
P
0<s�t�Xs; this holds only in the

bounded variation case (see De�nition 1.1.3), with �2 = 0: By de�nition, the quadratic

variation of Xt; [X;X]t =
P
0<s�t(�Xs)

2 = X
(2)
t when �2 = 0. These power jump

processes are also Lévy processes and jump at the same time as Xt; but with jump sizes

equal to the i-th powers of those of Xt, see Nualart & Schoutens (2000).

Clearly E[Xt] = E[X
(1)
t ] = m1t, where m1 < 1 is a constant and by Protter (2004,

p.32), we have

E[X
(i)
t ] = E[

X
0<s�t

(�Xs)
i] = t

Z 1

�1
xi�(dx) = mit <1; for i � 2; (1.8)

thus de�ning mi. Nualart & Schoutens (2000) introduced the compensated power jump

process (or Teugels martingale) of order i,
n
Y
(i)
t

o
; de�ned by

Y
(i)
t = X

(i)
t � E[X(i)

t ] = X
(i)
t �mit for i = 1; 2; 3; :::: (1.9)

Y
(i)
t is constructed to have a zero mean. It was shown by Nualart & Schoutens (2000,

Section 2) that there exist constants ai;1; ai;2; :::; ai;i�1 such that the processes de�ned by

H
(i)
t = Y

(i)
t + ai;i�1Y

(i�1)
t + � � �+ ai;1Y (1)t ; (1.10)

for i � 1 are a set of pairwise strongly orthogonal martingales, and this implies that for
i 6= j, the process H(i)

t H
(j)
t is a martingale, see Léon et al. (2002). For convenience,

we de�ne ai;i = 1. Nualart & Schoutens (2000) proved that this strong orthogonality

is equivalent to the existence of an orthogonal family of polynomials with respect to the

measure

d� (x) = �2d�0 (x) + x
2�(dx);

where �0 (x) = 1 when x = 0 and zero otherwise, that is, the polynomials pn de�ned by

pn (x) =
nX
j=1

an;jx
j�1
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are orthogonal with respect to the measure �:Z
R
pn (x) pm (x) d� (x) = 0; n 6= m:

1.4.2 Jamshidian�s notation

In Jamshidian (2005), which extends the CRP to semimartingales, the power jump processes

and compensators were denoted and de�ned di¤erently from Nualart & Schoutens (2000).

The power jump processes were de�ned in Jamshidian (2005) by

[X]
(2)
t = [Xc]t +

X
s�t

(�Xs)
2 and [X](n)t =

X
s�t

(�Xs)
n for n = 3; 4; 5; :::; (1.11)

where [Xc]t = [X]
c
t is the continuous �nite-variation (not martingale) part of [X]

(2)
t . Note

that Jamshidian suppressed the time index t; but we add it here for clari�cation. The

compensator, hXi(n)t ; is the predictable right-continuous �nite variation process such that

[X]
(n)
t � hXi(n)t is a uniformly integrable martingale. The compensated power jump

process, denoted by X(n)
t , is thus de�ned by

X
(n)
t = [X]

(n)
t � hXi(n)t for n = 2; 3; 4; :::: (1.12)



Part I

Martingale Representations for
Lévy processes

An explicit formula for the chaotic representation of the powers of increments of a

Lévy process, (Xt+t0 �Xt0)
n ; is presented. There are two di¤erent chaos expansions

of a square integrable functional of a Lévy process: one with respect to the compensated

Poisson random measure and the other with respect to the orthogonal compensated powers

of the jumps of the Lévy process. Computationally explicit formulae for both of these

chaos expansions of (Xt+t0 �Xt0)
n are given in this part. Simulation results verify that

the representation is satisfactory. The CRP of a number of �nancial derivatives can be

found by expressing them in terms of (Xt+t0 �Xt0)
n using Taylor expansion.

This part is arranged as follow: Chapter 2 gives a quick review of martingale repre-

sentations in the literature. We give the explicit formulae for the CRP for the powers of

increments of a Lévy process X in terms of power jump processes in Chapter 3 and in

terms of Poisson random measure in Chapter 4. We show that our formula is an non-

trivial extension of Jamshidian�s formula in the Lévy case, which is an important subclass

of semimartingales. Chapter 5 gives discussion and further applications of the topic.

Section 5.1 gives the representation of a common kind of Lévy functionals with the use

of Taylor�s theorem. Simulation results for the explicit formulae are given in Section 5.2.

Section 5.3 discusses the explicit formula derived by Løkka (2004) and Section 5.4 gives

the Lévy measures of the orthogonalised compensated power jump processes, H(i)
t : Some

concluding remarks are provided at the end of this part. Proofs and plots are included in

Appendix A.



Chapter 2

Martingale representations in the
literature

2.1 Lévy representations

The following theorem, called the Lévy-Khintchine formula, is fundamental to Lévy models

and representations, see Sato (1999). Let X be a random variable and let �X be its

characteristic function as de�ned in (1.1).

Theorem 2.1.1 (The Lévy-Khintchine formula) For every in�nitely divisible ran-
dom variable X 2 Rd

�X (z) = exp

�
�1
2
hz;Azi+ i h; zi

+

Z
Rd

�
exp (i hz; xi)� 1� i hz; xi 1fjxj<1g (x)

�
� (dx)

�
; z 2 Rd; (2.1)

where A is a symmetric nonnegative-de�nite d�d matrix, � is a measure on Rd satisfying

� (f0g) = 0 and
Z
Rd
min

�
jxj2 ; 1

�
� (dx) <1; (2.2)

and  2 Rd: This representation by A; � and  is unique. Conversely, let A be a

symmetric nonnegative-de�nite d� d matrix, � be a measure satisfying (2.2), and  2 Rd:
Then there exists an in�nitely divisible distribution � whose characteristic function is given

by (2.1). (;A; �) is known as the generating triplet of � and � is the Lévy measure of X:

Proof. See Cont & Tankov (2003, Section 3.4) for an outline of the proof. �

38
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If d = 1, we can write

�X (z) = exp

�
iz � 1

2
�2z2 +

Z +1

�1

�
exp (iux)� 1� iux1fjxj<1g

�
� (dx)

�
;

where  2 R and � satis�es (2.2). In this case, the Lévy triplet is given by
�
; �2; �

�
:

Next we give another important decomposition formula for Lévy processes. Before

doing so, we have to give the de�nition of compensated Poisson random measure, following

the notation of Cont & Tankov (2003). Note that the de�nition of Poisson randommeasure

is given in De�nition 1.1.6.

De�nition 2.1.2 (Compensated Poisson random measure) Suppose N is a Pois-

son random measure on [0; T ] � Rd with intensity � (dt;dx) : The compensated Poisson
random measure is de�ned by ~N (A) = N (A)� � (A) = N (A)� E [N (A)].

Theorem 2.1.3 For every measurable set A � Rd with � ([0; T ]�A) < 1, Nt (A) =

([0; t]�A) de�nes a counting process, ~Nt (A) = N ([0; t]�A)� � ([0; t]�A) is a martin-
gale and if A \B = ; then Nt (A) and Nt (B) are independent.

The famous Lévy-Itô decomposition states that a Lévy process can be decomposed

into a sum of deterministic component, Brownian motion and integrals with respect to

non-compensated and compensated Poisson random measures:

Theorem 2.1.4 (The Lévy-Itô decomposition) For any d-dimensional Lévy process
X, there exists b 2 Rd, a Brownian motion W (A)

t with covariance matrix

A = cov

�
W
(A)
t

�
W
(A)
t

�T�
and an independent Poisson random measure N on R+�

�
Rd � f0g

�
with the corresponding

compensated Poisson random measure ~N , such that, for each t � 0;

Xt = bt+W
(A)
t +

Z
jxj<1

x ~N (t;dx) +

Z
jxj�1

xN (t;dx) :

Hence, for any stochastic process built from a Lévy process, the positions and the

amplitudes of its jumps are described by a Poisson random measure and various quantities

involving the jump times and jump sizes can be expressed as integrals with respect to this

measure.
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2.2 Stochastic calculus

The martingale representations we study consist of in�nite sums of stochastic integrals.

This section gives an introduction to stochastic calculus and related concepts.

A stochastic process � = f�t; 0 � t � Tg is called a simple predictable process if it can
be represented as

�t = �01ft=0g +
nX
i=0

�i1]Ti;Ti+1] (t) ;

where T0 = 0 < T1 < T2 < � � � < Tn < Tn+1 = T are nonanticipating random times

and each �i is a bounded FTi-measurable random variable, that is, its value is revealed

at Ti: The stochastic integral of the predictable process � with respect to a process

S = fSt; 0 � t � Tg is de�ned byZ t

0
�udSu = �0S0 +

nX
i=0

�i
�
STi+1^t � STi^t

�
:

In �nancial applications, if S represents the price process of a �nancial asset, then �

represents the trading strategy of a dynamic portfolio. The stochastic integral
R t
0 �udSu

represents the capital accumulated between 0 and t by the strategy �: The value of the

portfolio at time t is given by Vt (�) = �tSt. The cost process associated to the strategy

� is given by

Ct (�) = Vt (�)�
Z t

0
�udSu = �tSt �

Z t

0
�udSu:

Recall Section 1.2, if the cost is (almost surely) equal to zero, the strategy � is said to be

self-�nancing. In this case, we have

Vt (�) =

Z t

0
�udSu = �0S0 +

Z t

0+
�udSu:

Stochastic integrals have the martingale-preserving property. If S = fSt; t 2 [0; T ]g is
a martingale, then for any simple predictable process �, the stochastic integral

R t
0 �udSu

is also a martingale. Moreover, if X = fXt; t 2 [0; T ]g is a real-valued nonanticipating
cádlág process, � = f�t; t � 0g and � = f�t; t � 0g are real-valued simple predictable
processes, then St =

R t
0 �udXu is a nonanticipating cádlág process andZ t

0
�udSu =

Z t

0
�u�udXu:

De�nition 2.2.1 (Nonanticipating random time) Given an information �ow Ft, a
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positive random variable T � 0 is a nonanticipating random time (Ft-stopping time) if

8t � 0; fT � tg 2 Ft:

We now discuss stochastic integrals with respect to Poisson random measure, N , de-

�ned in De�nition 1.1.6. A function � : 
� [0; T ]�Rd ! R is called a simple predictable
function if

� (t; y) =
nX
i=1

mX
j=1

�ij1]Ti;Ti+1] (t) 1Aj (y) ;

where T1 � T2 � � � � � Tn are nonanticipating random times,
�
�ij ; j = 1; :::;m

	
are

bounded FTi-measurable random variables and fAj ; j = 1; :::;mg are disjoint subsets of
Rd with � ([0; T ]�Aj) <1: The stochastic integral with respect to N is de�ned by

Z t

0

Z
Rd
� (s; y)N (ds;dy) =

n;mX
i;j=1

�ij
�
NTi+1^t (Aj)�NTi^t (Aj)

�
and the stochastic integral with respect to the compensated Poisson random measure, ~N ,

de�ned in De�nition 2.1.2, is given byZ t

0

Z
Rd
� (s; y) ~N (ds;dy) =

n;mX
i;j=1

�ij

h
~NTi+1^t (Aj)� ~NTi^t (Aj)

i
:

Our explicit formula for the CRP is derived from the famous Itô formula, see Cont &

Tankov (2003, Section 8.3). We �rstly give the simplest Itô formula which is with respect

to Brownian motion, which implies the market completeness of the Black-Scholes model,

see De�nition 1.2.1.

Theorem 2.2.2 (Itô formula for Brownian integrals) If f is a di¤erentiable func-
tion and Xt =

R t
0 �sdWs, then

f (Xt) = f (0) +

Z t

0
f
0
(Xs)�sdWs +

Z t

0

1

2
�2sf

00
(Xs) ds:

Note that �s is the integrand and is not to be confounded with the � of the Lévy triplet.

Recall that the Lévy process is a generalisation of Brownian motion with jumps.

Therefore, the Itô formula for scalar Lévy process includes a term to deal with the discon-

tinuity:

Theorem 2.2.3 (Itô formula for one dimensional Lévy process) If X = fXt; t � 0g
is a Lévy process with Lévy triplet

�
�2; �; 

�
and f : R! R is a di¤erentiable function,
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then

f (Xt) = f (0) +

Z t

0

�2

2

@f2

@2x
(s;Xs�) ds+

Z t

0

@f

@x
(s;Xs�) dXs

+
X
0�s�t
�Xs 6=0

�
f (Xs� +�Xs)� f (Xs�)��Xs

@f

@x
(s;Xs�)

�
:

The Itô formula for multidimensional Lévy process extends directly from the last the-

orem and is given by

Theorem 2.2.4 (Itô formula for multidimensional Lévy process) If the stochastic
process Xt =

�
X1
t ; :::; X

d
t

�
is a multidimensional Lévy process with characteristic triplet

(�; �; ) ; then for any function f : [0; T ]� Rd! R, continuous in time and di¤erentiable
in Rd,

f (t;Xt)� f (0; 0) =

Z t

0

dX
i=1

@f

@xi
(s;Xs�) dX

i
s +

Z t

0

@f

@s
(s;Xs) ds

+
1

2

Z t

0

dX
i;j=1

�ij
@2f

@xi@xj
(s;Xs) ds

+

�Xs 6=0X
0�s�t

"
f (s;Xs� +�Xs)� f (s;Xs�)�

dX
i=1

�Xi
s

@f

@xi
(s;Xs�)

#
:

Recall that the Lévy process is a special case of semimartingale, de�ned in De�nition

1.1.7. We therefore give the Itô formula for semimartingale as well:

Theorem 2.2.5 (Itô formula for semimartingale) If X = fXt; t � 0g is a semimartin-
gale, then for any function f : [0; T ] � R! R, continuous in time and di¤erentiable in
R,

f (t;Xt)� f (0; X0) =

Z t

0

@f

@s
(s;Xs) ds+

Z t

0

@f

@x
(s;Xs�) dXs

+
1

2

Z t

0

@2f

@x2
(s;Xs�) d [X;X]

c
s

+
X
0�s�t
�Xs 6=0

�
f (s;Xs)� f (s;Xs�)��Xs

@f

@x
(s;Xs�)

�
;

where [X;X]c denotes the continuous part of [X;X] :



Chapter 2. Martingale representations in the literature 43

2.3 Chaotic Representation Property in the literature

Itô (1956) proved a CRP for any square integrable functional for a general Lévy process.

Nonetheless, only in the Brownian and Poisson cases can the representation of the func-

tional be expressed in terms of multiple integrals with respect to the Brownian motion

and Poisson process respectively, see Itô (1951) and Nualart & Vives (1990). The repre-

sentation of a process in terms of its mean plus a stochastic integral with respect to the

underlying process is known as the PRP, which is an immediate result of the CRP. For

general Lévy processes, it is necessary to introduce a two-parameter random measure to

construct a PRP. The representation is then written using multiple integrals with respect

to this two-parameter random measure. In other words, the PRP in terms of a stochastic

integral with respect to the underlying process only is lost for the general Lévy case when

using Itô�s representation. This kind of PRP is important since it provides the market

completeness of the Black-Scholes option pricing model. Recall that a market is said to be

complete if every contingent claim can be replicated by investing in the underlying stock

and a risk-free bond, see De�nition 1.2.1. The predictable process gives the self-�nancing

admissible strategy of replicating a contingent claim, see Section 1.2. To obtain a similar

property in the general Lévy case, Nualart & Schoutens (2000) proved the existence of

a new version of the CRP, which satis�es some exponential moment conditions. This

new CRP states that every square integrable random variable adapted to the �ltration

generated by a Lévy process can be represented as its expectation plus an in�nite sum

of zero mean stochastic integrals with respect to the orthogonalised compensated power

jump processes of the underlying Lévy process. Hence, the market can be completed even

in the case of a general Lévy process if trades in these processes are allowed.

Trying to derive an explicit formula for the CRP has been the focus of considerable

study. However, it is important to note that previous results for general Lévy functionals

available in the literature, namely, the Clark-Ocone-Haussman formulae derived to obtain

the integrands of the predictable, or chaotic, representation are not truly explicit. The
explicit chaos expansion must be known, for these formulae to be applied, making the

speci�cation circular. We will discuss this in further detail later.

Nualart & Schoutens (2001) presented a version of the Clark-Ocone formula for func-

tions of a Lévy process using the solution of a Partial Di¤erential Integral Equation

(PDIE). The Clark-Ocone formula gives the values of the predictable integrands of the

CRP. This version of the formula works for processes derived from certain Backward

Stochastic Di¤erential Equations (BSDEs).

Léon et al. (2002) developed the basic theory for Malliavin calculus for Lévy processes

and derived the Clark-Ocone formula, to give a predictable representation. Simple Lévy
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processes, which are a sum of a Brownian motion and a �nite number of independent

Poisson processes with di¤erent jump sizes, were studied in their paper. The stochastic

integrals in the PRP studied in these cases were with respect to the Brownian motion

and compensated Poisson processes rather than the orthogonalised compensated power

jump processes, H(i)
t �s, introduced originally by Nualart & Schoutens (2000) for the repre-

sentation. Useful formulae presented in the paper for the calculation of the Clark-Ocone

formula were derived in this case. The predictable representation derived using the Clark-

Ocone formula is not truly explicit, as again the explicit chaos expansions must be given

before the formula can be applied.

Løkka (2004) derived a Clark-Ocone-Haussman formula which provides a representa-

tion for Itô�s expansion in the case of pure jump Lévy processes. This formula has a

di¤erent form to the formula of Léon et al. (2002) since it is based on a di¤erent chaotic

representation. Again the Clark-Ocone-Haussman formula derived is not truly explicit.

The author derived an explicit formula for a common kind of functionals of Lévy processes

in Proposition 8 of the paper, which is discussed in Section 5.3 in this thesis.

Benth et al. (2003) and Solé et al. (2006) derived the relationship between the chaos

expansion in terms of iterated stochastic integrals with respect to power jump processes,

and the expansion in terms of iterated integrals with respect to Poisson random measure.

Note that Itô (1956) expressed the chaos expansions in terms of multiple integrals but

one may convert it to iterated integrals as done by Løkka (2004). Solé et al. (2006)

gave the relationship between the Nualart & Schoutens (2000) representation and the Itô

(1956) representation but this is actually equivalent to the Benth et al. (2003) relation-

ship. Thanks to these relations, our explicit formula can be applied to �nd the explicit

representation for Itô�s expansion. Benth et al. (2003) also gave the explicit representa-

tion of the minimal variance portfolio, in markets where the stock prices are modeled by

Lévy martingales, using Malliavin calculus.

Eddahbi et al. (2005) derived a formula, denoted the Stroock formula, for the kernels

of the chaotic decomposition of a smooth random variable as functionals of the underlying

Lévy process using a Malliavin type derivative. The formula was used to obtain the chaos

expansion of the price of an European call option and its underlying asset. Note that

the formulae presented in Nualart & Schoutens (2001), Léon et al. (2002) and Løkka

(2004) give forms for the integrands in the predictable representation while this Stroock

formula gives forms for the integrands in the chaotic representation. As the terms of the

chaotic expansion are orthogonal and uncorrelated, the chaotic approach enables the study

of the asymptotic behaviour of the variance of the integrals, which is useful in deriving

practical hedging strategies. As in Léon et al. (2002), the CRP was only applied to simple

Lévy processes and the stochastic integrals in the chaos expansion were with respect to
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the Brownian motion and compensated Poisson processes, rather than the orthogonalised

compensated power jump processes. The explicit chaos expansion has to be known before

the Stroock formula can be applied.

All the explicit formulae for general Lévy functionals derived in these papers use the

Malliavin type derivatives to derive explicit representations of stochastic processes for

applications in �nance. The derivative operator D is, in all of these cases, de�ned by its

action on the chaos expansions themselves. In other words, the explicit chaos expansion

must in fact be known before D can be applied to �nd the explicit form of the predictable

or chaotic representation, thus yielding a circular speci�cation. For example, Léon et al.

(2002, De�nition 1.7) de�ned the derivative of F in the l-direction by:

D
(l)
t F =

1X
n=1

X
i1;:::;in

nX
k=1

1fik=lgJ
(i1;:::;bik;:::;in)
n�1

�
fi1;:::;in (� � � ; t; � � � ) 1�(k)n (t)

(�)
�
;

and Løkka (2004, Section 3) de�ned the derivative operator by:

Dt;zF =

1X
n=1

nIn�1 (fn (�; t; z)) ;

where

In (fn) =

Z
[0;T ]n�Rn0

fn (t1; :::; tn; z1; :::; zn) d (�� �)
n :

Please refer to the corresponding papers for notation. Note that both of these de�nitions

require the knowledge of the functions ffi1;:::;ing�s or fn (t1; :::; tn; z1; :::; zn)�s; which are
the integrands of the chaos expansion of F:

Jamshidian (2005) extended the CRP in Nualart & Schoutens (2000) to a large class

of semimartingales and derived the explicit representation of the power of a Lévy process

with respect to the corresponding non-compensated power jump processes, which is dis-

cussed further in Remark 3.2.1. Note that Lévy processes are included in the class of

semimartingales, see Kannan & Lakshmikantham (2001, Corollary 2.3.21, p.92). Our

formula for the CRP derived in Chapter 3 gives the explicit representation with respect to

the orthogonalised compensated power jump processes as de�ned in Nualart & Schoutens

(2000). Our result is therefore complementary to Jamshidian�s formula.

Corcuera et al. (2005) suggested enlarging the market by a series of assets related

to the power jump processes of the underlying Lévy processes. Using the martingale

representation with respect to the compensated power jump processes, the market could

be completed. Corcuera et al. (2006) used this completeness to solve the portfolio

optimisation problem by the martingale method.
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Having discussed existing representations of Lévy processes and relationships between

the results, for a subset of functionals of Lévy processes, we simplify the CRP to an explicit

form.



Chapter 3

The chaotic representation with
respect to power jump processes

In this chapter we �rst derive the explicit formula for the CRP when the random variable,

F; in (3.1) is the power of the increment of a pure jump Lévy process and extend it subse-

quently to a general Lévy process. In the following, we quote the chaotic representation

property (CRP) in terms of orthogonalised compensated power jump processes derived by

Nualart & Schoutens (2000). The CRP is important in that it implies the predictable rep-

resentation property (PRP), which provides the hedging portfolio for a contingent claim.

Based on the PRP of Lévy processes, Corcuera et al. (2005) completed the market by

introducing power jump assets. In Part II of this thesis, we further investigate the perfect

hedging strategies in a Lévy market. In the following, we �rstly quote Proposition 2 in

Nualart & Schoutens (2000), which explains the importance of our result for the powers

of increments of a Lévy process.

Proposition 3.0.1 (Proposition 2 in Nualart & Schoutens (2000)) Let

P = fXk1
t1
(Xt2 �Xt1)

k2 :::(Xtn �Xtn�1)
kn : n � 0; 0 � t1 < t2 < � � � < tn; k1; :::; kn � 1g

be a family of stochastic processes. Then P is a total family in L2 (
;FT ; P ) ; that is,
the linear subspace spanned by P is dense in L2 (
;FT ; P ), where FT = � fXt; 0 � t � Tg
and we write F = FT for simplicity: This means that each element in L2 (
;F ; P ) can
be represented as a linear combination of elements in P.

Although we only derive the explicit formula for the powers of increments of a Lévy

process, this proposition shows that every random variable adapted to the �ltration can

be represented in terms of these powers of increments. We show in Section 5.1 that we

47
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use our explicit formula and Taylor�s Theorem to obtain the chaos expansion for a general

Lévy functional. The famous CRP by Nualart & Schoutens (2000) is in terms of an

in�nite sum of orthogonalised compensated power jump processes:

Theorem 3.0.2 (Chaotic Representation Property (CRP)) Every random variable
F in L2 (
;F ; P ) has a representation of the form

F = E(F ) +
1X
j=1

X
i1;:::;ij�1

Z 1

0

Z t1�

0
� � �
Z tj�1�

0
f(i1;:::;ij)(t1; :::; tj)dH

(ij)
tj

:::dH
(i2)
t2
dH

(i1)
t1

;

(3.1)

where the f(i1;:::;ij)�s are functions in L2(Rj+) and H�s are de�ned in equation (1.10).

This result means that every random variable in L2 (
;F ; P ) can be expressed as its
expectation plus an in�nite sum of zero mean stochastic integrals with respect to the

orthogonalised compensated power jump processes of the underlying Lévy process. Note

that this representation does not explicitly allow for calculation of the integrands. The

PRP is an immediate result of the CRP:

Theorem 3.0.3 (Predictable Representation Property (PRP)) The CRP implies
that every random variable F in L2 (
;F ; P ) has a representation of the form

F = E [F ] +

1X
i=1

Z 1

0
�(i)s dH

(i)
s ; (3.2)

where H�s are de�ned in equation (1.10) and �(i)s �s are predictable, that is, they are Fs�-
measurable.

3.1 Pure jump case

Let us �rst outline the form of the representation to introduce the reader to the �avour of

the results in this section. Suppose t0 � 0 and let G = fGt; t � 0g be a pure jump Lévy
process with no Brownian part (that is, �2 = 0 in the Lévy triplet), G(i) =

n
G
(i)
t ; t � 0

o
be its i-th power jump process and bG(i) = n bG(i)t ; t � 0o be its i-th compensated power
jump process. Calculation of (Gt+t0 �Gt0)

k for k = 2; 3; 4 are given in Appendix A.2.

From the Itô formula,

(Xt+t0 �Xt0)
k

=
�2

2
k (k � 1)

�
(Xt+t0 �Xt0)

k�2 t�
Z t

0
s d (Xs+t0 �Xt0)

k�2
�

(3.3)
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+

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dY (j)s (3.4)

+

k�1X
j=1

�
k

j

�
mj (t+ t0) (Xt+t0 �Xt0)

k�j (3.5)

�
k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

s d (Xs �Xt0)
k�j +mkt: (3.6)

The detailed derivation is given in Appendix A.1. Based on the structure of the expressions

for (Gt+t0 �Gt0)
3 and (Gt+t0 �Gt0)

4, where detailed calculation is given in Appendices

A.2.2 and A.2.3, we desire to derive a general formula for (Gt+t0 �Gt0)
k ; k = 1; 2; 3; :::;

as this forms a starting point for the representation of X. This derivation will be imple-

mented in a series of steps. Firstly, we notice that the numbers of stochastic integrals in

(Gt+t0 �Gt0)
3 and (Gt+t0 �Gt0)

4 are less than the possible full representation speci�ed

in the simpli�ed version of the CRP, where the stochastic integrals are with respect to

compensated power jump processes Y �s, derived by Nualart & Schoutens (2000):

(Xt+t0 �Xt0)
k = f (k) (t; t0) +

kX
j=1

X
(i1;:::;ij)

2f1;:::;kgj

Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

f
(k)
(i1;:::;ij)

(t; t0; t1; :::; tj) dY
(ij)
tj

� � �dY (i2)t2
dY

(i1)
t1

;

where the f (k)(i1;:::;ij)
�s are deterministic functions in L2

�
Rj+

�
. For example, in the repre-

sentation of (Gt+t0 �Gt0)
2, we have only three stochastic integralsZ t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 ; Z t+t0

t0

d bG(1)t1 and
Z t+t0

t0

d bG(2)t1
in the representation, which we shall represent via the list f(1; 1) ; (1) ; (2)g : We can do
an equivalent representation of (Gt+t0 �Gt0)

3 and (Gt+t0 �Gt0)
4 to get the following two

lists:

f(1; 1; 1) ; (1; 1) ; (1; 2) ; (2; 1) ; (1) ; (2) ; (3)g :

f(1; 1; 1; 1) ; (1; 1; 1) ; (1; 1; 2) ; (1; 2; 1) ; (2; 1; 1) ;

(1; 1) ; (1; 2) ; (2; 1) ; (2; 2) ; (1; 3) ; (3; 1) ; (1) ; (2) ; (3) ; (4)g :
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In general, the list of the orders of the compensated power jump processes of the stochastic

integrals in (Gt+t0 �Gt0)
k depends on the collection of numbers

Ik =

8<:(i1; i2; :::; ij) j j 2 f1; 2; :::; kg ; ip 2 f1; 2; :::; kg and
jX

p=1

ip � k

9=; : (3.7)

This construction is explained in the beginning of the proof of Theorem 3.1.4 (Appendix

A.4) using induction. A typical element (i1; i2; :::; ij) in Ik indexes a multiple stochastic
integral j-times repeated with respect to the power jump processes with powers i1; i2; :::; ij
and indexed tj ; tj�1; :::; t1. That is, (i1; i2; :::; ij) indexes the integralZ t+t0

t0

Z t1�

t0

� � �
Z tj�1

t0

d bG(i1)tj
� � �d bG(ij�1)t2

d bG(ij)t1
:

Next we consider the terms in the representation not involving any stochastic integrals.

That is, in (Gt+t0 �Gt0)
2, m2

1t
2+m2t is considered; in (Gt+t0 �Gt0)

3, m3
1t
3+3m1m2t

2+

m3t is considered, and in (Gt+t0 �Gt0)
4,

m4
1t
4 + 6m2

1m2t
3 +

�
4m1m3 + 3m

2
2

�
t2 +m4t

is considered. We use (3.3)-(3.6) to derive the representation. This time the representation

can be simpli�ed a great deal since we are not considering any stochastic integrals. Denote

the terms which do not contain any stochastic integral in (Gt+t0 �Gt0)
k by C(k)t+t0�t0 =

C
(k)
t , and we refer this as the deterministic part of the representation.

Proposition 3.1.1 C
(r)
0 = 0 for all r, C(0)t = 1; C

(1)
t = m1t; and for k = 2; 3; 4; :::;

C
(k)
t =

k�1X
j=1

�
k

j

�
mjtC

(k�j)
t �

k�1X
j=1

�
k

j

�
mj

Z t

0
t1 dC

(k�j)
t1

+mkt: (3.8)

Proof. The results for C(r)0 and C(0)t are trivial: For k = 1, (Gt+t0 �Gt0) =
R t+t0
t0

d bG(1)t1 +
m1t and hence C

(1)
t = m1t: For k � 2; the terms in (3.3) are equal to zero since Gt has

no Brownian part. The term in (3.4) contains a stochastic integral and hence from (3.5)

and (3.6), we have

C
(k)
t =

k�1X
j=1

�
k

j

�
mj (t+ t0)C

(k�j)
t �

k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

t1 dC
(k�j)
t1�t0 +mkt:
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Putting u = t1 � t0 in the second term, we have

C
(k)
t =

k�1X
j=1

�
k

j

�
mj (t+ t0)C

(k�j)
t �

k�1X
j=1

�
k

j

�
mj

Z t

0
(u+ t0) dC

(k�j)
u +mkt

=

k�1X
j=1

�
k

j

�
mjtC

(k�j)
t �

k�1X
j=1

�
k

j

�
mj

Z t

0
t1 dC

(k�j)
t1

+mkt:

Note that C(k)t is independent of t0: �

Thus, given Proposition 3.1.1, C(k)t can be expressed in terms of mi�s for any given k

and easily coded. We will show in the followings that in the calculation of (Gt+t0 �Gt0)
k,

all the C(j)t �s; j = 0; 1; :::; k are required. In fact the coe¢ cients of the stochastic integrals

in the representation depend only on C(j)t �s; j = 0; 1; :::; k, as stated in Theorem 3.1.4

below.

The next proposition gives the representation for C(k)t in a non-recursive form. Let

Lk =

8<:(i1; i2; :::; il) jl 2 f1; 2; :::; kg ; iq 2 f1; 2; :::; kg ; i1 � i2 � � � � � il;

lX
q=1

iq = k

9=; :

(3.9)

The number of distinct values in a tuple �k =
�
i
(k)
1 ; i

(k)
2 ; :::; i

(k)
l

�
in Lk is less than or equal

to l: When it is less than l; it means some of the value(s) in the tuple are repeated. Let

the number of times r 2 f1; 2; 3; ::; kg appears in the tuple �k =
�
i
(k)
1 ; i

(k)
2 ; :::; i

(k)
l

�
be p�kr :

Proposition 3.1.2

C
(k)
t =

X
�k=

�
i
(k)
1 ;i

(k)
2 ;:::;i

(k)
l

�
2Lk

1

l!

�
i
(k)
1 ; i

(k)
2 ; :::; i

(k)
l

�
!
�
p
�k
1 ; p

�k
2 ; :::; p

�k
k

�
!

24Y
q2�k

mq

35 tl (3.10)

where i(k)1 ; :::; i
(k)
l are the elements of �k, p

�k
j �s are de�ned above and

�
i
(k)
1 ; i

(k)
2 ; :::; i

(k)
l

�
! is

the multinomial coe¢ cient:
�
i
(k)
1 ; i

(k)
2 ; :::; i

(k)
l

�
! =

�Pl
j=1 i

(k)
j

�
!

i
(k)
1 !i

(k)
2 !���i(k)l !

:

Proof. The proof is included in Appendix A.3. �

Proposition 3.1.3 Let �(k)(i1;i2;:::;ij);t be the coe¢ cient ofZ t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

d bG(i1)tj
� � �d bG(ij�1)t2

d bG(ij)t1
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in (Gt+t0 �Gt0)
k : Then

�
(k)
(i1;i2;:::;ij);t

= (i1; i2; :::; ij ; n)!C
(n)
t where n = k �

jX
p=1

ip. (3.11)

Proof. The proof of Proposition 3.1.3 is contained in the proof of Theorem 3.1.4. �

For example, say we want to determine the coe¢ cient of
R t+t0
t0

R t1�
t0

d bG(1)t2 d bG(1)t1 in the

representation of (Gt+t0 �Gt0)
4, that is, we want to �nd �(4)(1;1);t: To derive this coe¢ cient,

we �rst note that n = 2 and so �(4)(1;1);t =
4!

1!1!2!C
(2)
t = 12

�
m2t+m

2
1t
2
�
; which is true

according to the calculation of (Gt+t0 �Gt0)
4 given in Appendix A.2.3. Now we put the

above results together to get a general formula for (Gt+t0 �Gt0)
k :

Theorem 3.1.4 Let G = fGt; t � 0g be a Lévy process with no Brownian part satisfying
condition (1.7). Then the power of its increment can be expressed by:

(Gt+t0 �Gt0)
k =

X
�k2Ik

�
(k)
�k;t
S�k;t;t0 + C

(k)
t ; (3.12)

where Ik is de�ned in (3.7), �(k)�k;t is de�ned in Proposition 3.1.3, the C
(k)
t are constants

de�ned in Proposition 3.1.2 and S(i1;i2;:::;ij);t;t0 is de�ned as the integral:

S(i1;i2;:::;ij);t;t0 =
Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

d bG(i1)tj
� � �d bG(ij�1)t2

d bG(ij)t1
:

Proof. The proof is included in Appendix A.4. �

To derive the explicit formula for the power of increment of a Lévy process with respect

to orthogonalised compensated power jump processes, we need the following proposition.

Proposition 3.1.5 The n-th compensated power jump processes, Y (n) =
n
Y
(n)
t ; t � 0

o
,

of a general Lévy processes satisfying condition (1.7), can be expressed in terms of the

orthogonalised compensated power jump processes, H(i) =
n
H
(i)
t ; t � 0

o
for i = 1; 2; :::; n,

by

Y
(n)
t = H

(n)
t +

n�1X
k=1

bn;kH
(k)
t ;

where bn;k denotes the sum of all the elements of the setMn;k; which is de�ned by

Mn;k =
n
(�1)j�1 ai1;i2ai2;i3 � � � aij�1;ij : i1 = n; ij = k; ip > iq if p < q; ip 2 N for all p

o
;
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andMn;n = f1g :

Proof. The proof is included in Appendix A.5. �

Theorem 3.1.6 Let G = fGt; t � 0g be a Lévy process with no Brownian part satisfying
condition (1.7). Then the power of its increment in terms of stochastic integrals with

respect to the orthogonalised compensated power jump processes, H(j)�s, is given by the

following equation:

(Gt+t0 �Gt0)
k =

X
�k2Ik

�
(k)
�k;t
S(H)�k;t;t0

+ C
(k)
t ; (3.13)

where Ik is de�ned in (3.7), �(k)�k;t is de�ned in Proposition 3.1.3, C
(k)
t is de�ned in Propo-

sition 3.1.2 and S(H)(i1;i2;:::;ij);t;t0
is de�ned as the integral:

S(H)(i1;i2;:::;ij);t;t0
=

i1X
k1=1

� � �
ij�1X

kj�1=1

ijX
kj=1

bi1;k1 � � � bij�1;kj�1bij ;kj

�
Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

dH
(k1)
tj

� � �dH(kj�1)
t2

dH
(kj)
t1

;

bn;k is de�ned in Proposition 3.1.5.

Proof. From Proposition 3.1.5, we have

S(i1;i2;:::;ij);t;t0 =

Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

d bG(i1)tj
� � �d bG(ij�1)t2

d bG(ij)t1

=

Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

d

24 i1X
k1=1

bi1;k1H
(k1)
tj

35 � � �
d

24 ij�1X
kj�1=1

bij�1;kj�1H
(kj�1)
t2

35d
24 ijX
kj=1

bij ;kjH
(kj)
t1

35
=

i1X
k1=1

� � �
ij�1X

kj�1=1

ijX
kj=1

bi1;k1 � � � bij�1;kj�1bij ;kj

�
Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

dH
(k1)
tj

� � �dH(kj�1)
t2

dH
(kj)
t1

:

Hence, by using Theorem 3.1.4, we complete the proof. �
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Corollary 3.1.7 By Theorem 3.1.4,

(Gt+t0 �Gt0)
m (Gt+t0 �Gt0)

n

=

0@ X
�m2Im

�
(m)
�m;t

S(H)�m;t;t0
+ C

(m)
t

1A0@ X
�n2In

�
(n)
�n;t
S(H)�n;t;t0

+ C
(n)
t

1A
=

X
�m+n2Im+n

�
(m+n)
�m+n;t

S(H)�m+n;t;t0
+ C

(m+n)
t :

Hence, we can convert the product of two iterative stochastic integrals of orders m and

n as a weighted sum of iterative stochastic integrals of orders m+ n; m+ n� 1; :::; 2; 1.
Note in Theorems 3.1.4 and 3.1.6, the integrands of the stochastic integrals do not in-

volve t0 nor any of the integrating variables t1; t2; :::; tj : They are completely characterised

by C
(p)
t �s; where p = 0; 1; :::; k: To �nd the chaotic representation of (Gt+t0 �Gt0)

k ;

we only need to know the moments of Gt, m1 = E [Gt] =t and mp =
R1
�1 xp� (dx) for

p = 2; :::; k. This result is intuitive as (Gt+t0 �Gt0) is a stationary process.

3.2 General case

Next we want to derive the formula for the power of the increments of Lévy processes when

� 6= 0. Recall X = fXt; t � 0g denotes a general Lévy process, X(i) =
n
X
(i)
t ; t � 0

o
denotes its i-th power jump process and Y (i) =

n
Y
(i)
t ; t � 0

o
denotes its i-th com-

pensated power jump process as de�ned in (1.9). We de�ne A1 (Xt+t0 ; Xt0 ; k) and

A2 (Xt+t0 ; Xt0 ; k) such that (Xt+t0 �Xt0)
k = A1 (Xt+t0 ; Xt0 ; k)+A2 (Xt+t0 ; Xt0 ; k) ; where

A1 (Xt+t0 ; Xt0 ; k) comprises all the terms not containing � in (Xt+t0 �Xt0)
k : By express-

ing A2 (Xt+t0 ; Xt0 ; k) using (3.3)-(3.6), it may directly be noted:

(Xt+t0 �Xt0)
k =

�2

2
k (k � 1)

�
(Xt+t0 �Xt0)

k�2 t�
Z t+t0

t0

(s� t0) d (Xs �Xt0)
k�2
�

+

kX
j=1

�
k

j

�Z t+t0

t0

A2 (Xs�; Xt0 ; k � j) dY (j)s

+

k�1X
j=1

�
k

j

�
mj (t+ t0)A2 (Xt+t0 ; Xt0 ; k � j)

�
k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

s d [A2 (Xs; Xt0 ; k � j)]

+A1 (Xt+t0 ; Xt0 ; k) : (3.14)
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Calculation of (Xt+t0 �Xt0)
k for k = 3; 4; 5 are given in Appendix A.6.

Proposition 3.2.1 For any Lévy process X = fXt; t � 0g satisfying condition (1.7),

(Xt+t0 �Xt0)
k = A1 (Xt+t0 ; Xt0 ; k) +

bk=2cX
n=1

k!

(k � 2n)!
1

n!

1

2n
�2nA1 (Xt+t0 ; Xt0 ; k � 2n) tn:

Proof. The proof uses the same techniques as the proof of Theorem 3.1.4. Note that

A1 (Xt+t0 ; Xt0 ; p) ; where p = 1; 2; :::; k; are given by Theorem 3.1.4. �

Proposition 3.2.1 gives the formula of (Xt+t0 �Xt0)
k in terms of a summation of A1,

where bk=2c + 1 calculations of A1 are needed. The next theorem gives the formula in

an alternative form, which requires A1 to be computed once only.

De�nition 3.2.2 Let C(k)t;� be the terms obtained by replacing m2 with m2 + �2 in C(k)t

(Proposition 3.1.2) and �(k)(i1;i2;:::;ij);t;� be the terms obtained by replacing C
(k)
t with C(k)t;� in

�
(k)
(i1;i2;:::;ij);t

(Proposition 3.1.3):

We then note the following theorem.

Theorem 3.2.3 For any Lévy process X = fXt; t � 0g with �2 6= 0 and satisfying condi-
tion (1.7), the representation of (Xt+t0 �Xt0)

n is given by Theorem 3.1.4 with m2 replaced

by
�
m2 + �

2
�
; that is,

(Xt+t0 �Xt0)
n =

X
�n2In

�
(n)
�n;t;�

S 0�n;t;t0 + C
(n)
t;� ;

where In is de�ned in (3.7), �(n)�n;t;�
and C(n)t;� are de�ned in De�nition 3.2.2, and the

stochastic integral S 0(i1;i2;:::;ij);t;t0 is de�ned by:

S 0(i1;i2;:::;ij);t;t0 =
Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

dY
(i1)
tj

� � �dY (ij�1)t2
dY

(ij)
t1

:

Proof. We de�ne a new class of power jump processes by:

eX(2)
t = X

(2)
t + �2t,eX(j)

t = X
(j)
t for j = 1 and j = 3; 4; 5; :::: (3.15)

We also de�ne a new class of compensators

~m2t =
�
m2 + �

2
�
t,

~mjt = mjt for j = 1 and j = 3; 4; 5; ::::
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Hence, by de�nition, the compensated power jump processes, ~Y (i)t = ~X
(i)
t � ~mit = X

(i)
t �

mit = Y
(i)
t for all i � 1: Thus the representation of (Xt+t0 �Xt0)

k in terms of the

stochastic integrals with respect to Y (i)t is the same no matter we start from using X(i)
t oreX(i)

t : To calculate the expression using eX(i)
t , we use equation (2) in Nualart & Schoutens

(2000), namely:

(Xt+t0 �Xt0)
k

=

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dX(j)

s

+
�2

2
k (k � 1)

�
(Xt+t0 �Xt0)

k�2 t�
Z t

0
s d (Xs+t0 �Xt0)

k�2
�

=

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dX(j)

s +
�2

2
k (k � 1)

Z t

0

�
X(s+t0)� �Xt0

�k�2
ds

=

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dX(j)

s +
�2

2
k (k � 1)

Z t+t0

t0

(Xu� �Xt0)
k�2 du

=
kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dX(j)

s +

�
k

2

�Z t+t0

t0

(Xs� �Xt0)
k�2 d

�
�2s
�
:

By (3.15), we have

(Xt+t0 �Xt0)
k =

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j d ~X(j)

s :

Using exactly the same calculation as the one leading to (3.3)-(3.6), we have

(Xt+t0 �Xt0)
k

=

kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j dY (j)s +

k�1X
j=1

�
k

j

�
~mj (t+ t0) (Xt+t0 �Xt0)

k�j

�
k�1X
j=1

�
k

j

�
~mj

Z t+t0

t0

s d (Xs �Xt0)
k�j + ~mkt:

This is exactly the equation (3.4)-(3.6) we based on in the derivation of Theorem 3.1.4,

except that mj is now replaced by ~mj : Hence we now have a simple formula for the

representation of (Xt+t0 �Xt0)
k in terms of the stochastic integrals with respect to Y (i)t
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by replacing mj with ~mj in the formula given by Theorem 3.1.4. In other words, we have

(Xt+t0 �Xt0)
n =

X
�n2In

�
(n)
�n;t;�

S 0�n;t;t0 + C
(n)
t;� ;

where �(n)�n;t;�
and C(n)t;� are de�ned in De�nition 3.2.2. Note that this representation does

not depend on the power jump processes directly since it is in terms of the compensated

power jump processes, Y (j)t �s. So it does not matter if we change the de�nition of the

power jump processes, as long as we change the compensators accordingly, we will get the

same compensated power jump processes. �

Theorem 3.2.4 For any Lévy process X = fXt; t � 0g with �2 6= 0 and satisfying condi-
tion (1.7), the representation of (Xt+t0 �Xt0)

n is given by Theorem 3.1.6 with m2 replaced

with
�
m2 + �

2
�
; that is,

(Xt+t0 �Xt0)
n =

X
�n2In

�
(n)
�n;t;�

S 0(H)�n;t;t0
+ C

(n)
t;� ;

where In is de�ned in (3.7), �(n)�n;t;�
and C

(n)
t;� are de�ned in De�nition 3.2.2 and the

stochastic integral S 0(i1;i2;:::;ij);t;t0 is de�ned by:

S 0(H)(i1;i2;:::;ij);t;t0
=

i1X
k1=1

� � �
ij�1X

kj�1=1

ijX
kj=1

bi1;k1 � � � bij�1;kj�1bij ;kj

�
Z t+t0

t0

Z t1�

t0

� � �
Z tj�1�

t0

dH
(k1)
tj

� � �dH(kj�1)
t2

dH
(kj)
t1

;

bn;k is de�ned in Proposition 3.1.5.

Proof. It follows directly from Theorems 3.1.6 and 3.2.3. �

Remark 3.2.1 As noted in Section 1.4.2, Jamshidian (2005) derived an explicit for-
mula for the chaotic representation of (Xt)

k in terms of the non-compensated power jump

processes, X(j)�s, when X is a semimartingale. Our explicit formula gives the repre-

sentation in terms of orthogonalised compensated power jump processes, H(j)�s. In the

following, we show that our formula is an non-trivial extension of Jamshidian�s one in

the Lévy case, which is an important subclass of semimartingales. We note the notation

used by Jamshidian in Section 1.4.2. If X = fXt; t � 0g is a Lévy process, we can see
that [Xc]t = [X]

c
t = �2t (where the superscript c stands for continuous part of the process)
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and hence [X](2)t = �2t+
P

s�t (�Xs)
2 : With Jamshidian�s notation, the �2 is implicitly

included in the [X](2)t .

Jamshidian (2005) de�ned C = C� \ C�, where C� is the set of semimartingales of �nite
moments with continuous compensators adapted to a Brownian �ltration, and C� is the set
of processes with exponentially decreasing law. Jamshidian generalised the CRP from Lévy

processes to the set C: In proposition 8.2 of Jamshidian (2005), an explicit formula for
the chaotic representation with respect to the non-compensated power jump processes for

the semimartingales in C when t0 = 0 was derived. Jamshidian (2005) de�ned the power
jump processes using the power brackets, see (1.11) and (1.12). The multi-indices were

denoted by I = (i1; :::; ip) 2 Np; where N is the set of natural numbers, and for integers

1 � p � n;

Npn = fI = (i1; :::; ip) 2 Np : i1 + � � �+ ip = ng ; p; n 2 N: (3.16)

Note that from (3.7), Ik =
kS

n=1

nS
p=1

Npn: Proposition 8.2 of Jamshidian (2005) states that,

for a semimartingale X = fXt; t � 0g with X0 = 0; we have, for all n 2 N

Xn
t =

nX
p=1

X
I2Npn

n!

i1! � � � ip!

Z t

0

Z t1�

0
� � �
Z tp�1�

0
d [X]

(i1)
tp � � �d [X](ip�1)t2

d [X]
(ip)
t1

: (3.17)

Since Jamshidian (2005) only considered non-compensated processes, we substitute all the

mj in (3.8) by zeros (since the compensators in the Lévy case are mjt), which makes

C
(k)
t = 0 for all k 6= 0: So �(k)(i1;i2;:::;ij);t is non-zero only when

Pj
p=1 ip = k, as de�ned

in (3.16). Hence in the Lévy case, Theorem 3.2.3 reduces to (3.17). In other words,

Jamshidian�s formula can be deduced from ours (in the Lévy case), but ours cannot be

deduced from Jamshidian�s by a non-trivial calculation.

Corollary 3.2.5 The expectation of (Xt+t0 �Xt0)
k is given by C(k)t;� ; which can be obtained

by replacing m2 with m2 + �
2 in C(k)t ; given by equation (3.10).

Proof. As the expectations of all the stochastic integrals are zero, this follows directly
from Theorem 3.2.3. �

Corollary 3.2.6 The expectation of
�
H
(1)
t

�k
=
�R t
0 dH

(1)
t1

�k
can be obtained by replacing

m2 with m2 + �
2 and m1 with 0 in C

(k)
t ; given by Proposition 3.1.2.
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Proof. From Corollary 3.2.5, E
�
Xk
t

�
can be obtained by replacing m2 with m2 + �2 in

C
(k)
t : Since H(1)

t = Xt �m1t and

(Xt)
k =

�Z t

0
dH

(1)
t1
+m1t

�k
; (3.18)

by putting m1 = 0 in (3.18), we can conclude that the expectation of
�R t
0 dH

(1)
t1

�k
can be

obtained by replacing m2 with m2 + �
2 and m1 with 0 in C

(k)
t :

�

In the next chapter, we extend our results to chaos expansions in terms of the Poisson

random measure, with the use of the relationship between the two chaos expansions derived

by Benth et al. (2003).



Chapter 4

Chaos expansion with respect to
Poisson random measures

Itô (1956) proved a chaos expansion for general Lévy processes in terms of multiple inte-

grals with respect to the compensated Poisson random measure. One may convert the

representation to one involving iterated integrals by de�ning the symmetrisation of a real

function. Following Løkka (2004), let f be a real function on ([0; T ]� R)n. We de�ne

its symmetrisation ~f; with respect to the variables (t1; x1) ; :::; (tn; xn) ; to be

~f (t1; x1; :::; tn; xn) =
1

n!

X
�

f (t�1 ; x�1 ; :::; t�n ; x�n) ; (4.1)

where the sum is taken over all permutations � of f1; :::; ng : f is said to be symmetric if
f = ~f .

4.1 Pure jump case

We �rst consider the representation of pure jump Lévy processes as in Løkka (2004). Let
~L2 ((�� �)n) be the space of all square integrable symmetric functions on ([0; T ]� R)n :
In an iterative integral such as (3.1), the time variables t1; :::; tn are monotonic. For ease

of notation so that we do not have to explicitly note the time points and the process values,

we let:

Gn = f(t1; x1; :::; tn; xn) : 0 � t1 � � � � � tn � T ;xi 2 R; i = 1; :::; ng ; (4.2)

60



Chapter 4. Chaos expansion with respect to Poisson random measures 61

and let L2 (Gn) be the space of functions g such that

kgk2L2(Gn) =
Z
Gn

g2 (t1; x1; :::; tn; xn) dt1� (dx1) � � �dtn� (dxn) <1;

where � (dx) is the Lévy measure of the underlying Lévy process. For f 2 L2 (Gn) ; let

Jn (f) =

Z T

0

Z
R
� � �
Z t2

0

Z
R
f (t1; x1; :::; tn; xn) ~N (dt1;dx1) � � � ~N (dtn;dxn) ;

an iterative stochastic integral with respect to individual measures, where ~N is the com-

pensated Poisson random measure de�ned in De�nition 1.1.6. For f 2 ~L2 ((�� �)n) ;
let

In (f) =

Z
([0;T ]�R)n

f (t1; x1; :::; tn; xn) ~N

n (dt;dx) = n!Jn (f) ;

an stochastic integral with respect to the product measure.

Theorem 4.1.1 (Chaos expansion for Lévy process by Itô (1956)) Let F be a

square integrable random variable adapted to the underlying pure jump Lévy process, X.

There exists a unique sequence ffng1n=0 where fn 2 ~L2 ([0; T ]� R)
n such that

F = E (F ) +

1X
n=1

In (fn) : (4.3)

Benth et al. (2003) derived relations between the expansion in terms of compensated

power jump processes and the expansion in terms of the Poisson random measure. Benth

et al. (2003) showed that when the underlying Lévy process is a pure jump process, the

compensated power jump process de�ned in (1.9) satis�es the equation

Y
(i)
t =

Z t

0

Z
R
xi ~N (ds;dx) ; 0 � t � T; i = 1; 2; :::: (4.4)

This relationship is very important in the development of the chaotic representation of

Lévy processes. Since the introduction of the chaos expansion by Itô (1956), the devel-

opment of representations in the literature has been focused on expansions with respect

to the Poisson random measure. Unfortunately, we cannot trade in the Poisson random

measure. Note that trading in a �nite set of power jump assets is theoretically possible

because the i-th power jump asset contains information of the i-th moment of the Lévy

process, given that i is �nite. Therefore, it is possible to construct a �nancial product

which contains information of the i-th moment of the underlying process. For example,

if we want to hedge the risk introduced by the variance of the underlying process, we
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can trade in the variance swaps or the second power jump asset1. However, the Poisson

random measure contains all the information of the moments up to in�nity and hence it
is not clear how to construct such a �nancial product unless information of all the higher

moments are obtained. This limits the application of the CRP in terms of Poisson random

measures and also the application of Lévy processes in �nance.

In the Black-Scholes world, due to the existence of PRP of Brownian motions, the

market is complete and every contingent claim can be replicated by a portfolio investing

only in a risk-free bank account and the underlying asset. Nualart & Schoutens (2000)

introduced a new version of the CRP in terms of orthogonalised compensated power jump

processes. Corcuera et al. (2005) suggested trading in some related power jump assets,

making perfect hedging possible. The equation (4.4) therefore links the two important

expansions together and hence the results derived for expansions in terms of Poisson

random measures can be applied to expansions in terms of power jump processes. In

this thesis, we �rst derive the explicit formula for the latter expansion and then apply

equation (4.4) to obtain the explicit formula for the former expansion. The CRP in terms

of compensated power jump processes can be converted into the CRP in terms of the

Poisson random measure as follows:

F = E(F ) +

1X
j=1

X
i1;:::;ij�1

Z T

0

Z t1�

0
� � �
Z tj�1�

0
f(i1;:::;ij)(t1; :::; tj) (4.5)

dY
(ij)
tj

:::dY
(i2)
t2

dY
(i1)
t1

= E(F ) +
1X
j=1

X
i1;:::;ij�1

Z T

0

Z
R

Z t1�

0

Z
R
� � �
Z tj�1�

0

Z
R
x
ij
j � � �x

i2
2 x

i1
1

�f(i1;:::;ij)(t1; :::; tj) ~N (dtj ;dxj) � � � ~N (dt2;dx2) ~N (dt1;dx1) (4.6)

= E(F ) +

1X
j=1

Z T

0

Z
R

Z t1�

0

Z
R
� � �
Z tj�1�

0

Z
R
gj (t1; x1; :::; tj ; xj)

~N (dtj ;dxj) � � � ~N (dt2;dx2) ~N (dt1;dx1)

= E(F ) +
1X
j=1

Jj (gj) = E(F ) +
1X
j=1

j!Jj (~gj) = E(F ) +
1X
j=1

Ij (~gj) ;

1 In Part II, we discuss the use of power jump assets and moment swaps in perfect hedging of options
and pointed out that power jump assets could not actually be traded in reality because they cannot be
observed. Nonetheless, moment swaps, which are the generalisations of variance swaps, have high potential
to be traded in the market.
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where ~gj is the symmetrisation (de�ned in (4.1)) of the function gj given by

gj (t1; x1; :::; tj ; xj)

=

( P
i1;:::;ij�1 x

i1
1 � � �x

ij
j f(i1;:::;ij)(t1; :::; tj); on Gj

0 on ([0; T ]� R)j �Gj :
(4.7)

Therefore, by uniqueness, ffng1n=0 in Theorem 4.1.1 is given by fn = ~gn; where n = 1; 2; ::::
This equation provides a simple relationship between the two expansions. From Theorem

3.2.3, we have

(Xt+t0 �Xt0)
n =

X
�n2In

�
(n)
�n;t;�

S 0�n;t;t0 + C
(n)
t;� : (4.8)

We can now use this relationship to derive a form for ~gn in terms of In; �(n)�n;t;�
and C(n)t;� :

Let Kl;s =
n
(i1; :::; il) jij 2 f1; 2; :::; sg and

Pl
j=1 ij = s

o
: Since the length of a tuple must

not be greater than the sum of all the elements in the tuple (because an element must be

at least 1), l � s: By de�nition, we have In =
n[
s=1

s[
l=1

Kl;s: So we can write

(Xt+t0 �Xt0)
n =

nX
l=1

nX
s=l

X
�n2Kl;s

�
(n)
�n;t;�

S 0�n;t;t0 + C
(n)
t;� ;

where �n is the tuple
�
i�n1 ; :::; i

�n
l

�
with l elements which sum up to s: Therefore, we

deduce that for F = (Xt+t0 �Xt0)
n in (4.5), f(i1;:::;il)(t1; :::; tl) is given by

f(i1;:::;il)(t1; :::; tl) = �
(n)
�n;t;�

: (4.9)

By (4.7), we have then proved the following proposition.

Proposition 4.1.2 For any pure jump Lévy process X = fXt; t � 0g satisfying condition
(1.7),

(Xt+t0 �Xt0)
n =

nX
l=1

Il

�
~g
(n)
l

�
+ C

(n)
t;� ;

where ~g(n)l is the symmetrisation of the function g(n)l de�ned by

g
(n)
l (t1; x1; :::; tl; xl)

=

8<:
Pn

s=l

P
�n2Kl;s x

i�n1
1 � � �xi

�n
l
l �

(n)
�n;t;�

; on Gl
0 on ([0; T ]� R)l �Gl;
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where C(n)t;� and �
(n)
�n;t;�

are de�ned in De�nition 3.2.2.

The following proposition gives a more straightforward representation.

Proposition 4.1.3 For any pure jump Lévy process X = fXt; t � 0g satisfying condition
(1.7),

(Xt+t0 �Xt0)
n =

X
�n2In

Z t+t0

t0

Z
R

Z t1�

t0

Z
R
� � �
Z tl�1�

t0

Z
R
x
i�nl
l � � �xi

�n
2
2 x

i�n1
1

� �
(n)
�n;t;�

~N (dtl;dxl) � � � ~N (dt2;dx2) ~N (dt1;dx1)

+C
(n)
t;� ; (4.10)

where C(n)t;� and �
(n)
�n;t;�

are de�ned in De�nition 3.2.2.

Proof. This follows directly by replacing f(i1;:::;il)(t1; :::; tl) in (4.6) by (4.9). �

Note that both chaos expansions, that is, the expansion in terms of compensated power

jump processes and the expansion in terms of random measure, depend on In; �(n)�n;t;�
and

C
(n)
t;� . From (4.4), we note the relationship between Y (i) (t) and ~N (ds;dx) : Because

of the simple form of this relationship, we can use Theorem 3.1.4 to derive the explicit

representation of (4.10).

4.2 General case

We shall now discuss the general relationship between the two representations. Itô (1956)

proved the chaos expansion for general Lévy functionals. In this general case, the sto-

chastic integrals are in terms of both Brownian motion, W , and the compensated Poisson

measure, ~N (�; �). Hence, to unify notation, Benth et al. (2003) de�ned the following

notation:

U1 = [0; T ] and U2 = [0; T ]� R

dQ1 (�) = dW (�) and Q2 (�) = ~N (�; �)Z
U1

g
�
u(1)

�
Q1

�
du(1)

�
=

Z t

0
g (s)W (ds) andZ

U2

g
�
u(2)

�
Q2

�
du(2)

�
=

Z t

0

Z
R
g (s; x) ~N (ds;dx) :

The CRP in terms of Brownian motion and Poisson random measures is given by:
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Theorem 4.2.1 (Chaos expansion for general Lévy process by Itô (1956)) Let F
be a square integrable random variable adapted to the underlying Lévy process, X =

fXt; t � 0g. We have

F = E [F ] +
1X
n=1

X
j1;:::;jn=1;2

~Jn

�
g(j1;:::;jn)n

�
; (4.11)

for a unique sequence g(j1;:::;jn)n (j1; :::; jn = 1; 2; n = 1; 2; :::) of deterministic functions in

the corresponding L2-space, L2 (Gn) ; where

Gn =
n�
u
(j1)
1 ; :::; u(jn)n

�
2 �ni=1Uji : 0 � t1 � � � � � tn � T

o
with u(ji) = t if ji = 1, and u(ji) = (t; x) if ji = 2; and

~Jn

�
g(j1;:::;jn)n

�
=

Z
�ni=1Uji

g(j1;:::;jn)n

�
u
(j1)
1 ; :::; u(jn)n

�
1Gn

�
u
(j1)
1 ; :::; u(jn)n

�
Qj1

�
du

(j1)
1

�
� � �Qjn

�
du(jn)n

�
:

Similar to the pure jump case, we can derive the explicit formula for the chaos expan-

sion with respect to the Poisson random measure of a general Lévy process, that is, � 6= 0:
In this case, we have

Y
(1)
t = �

Z t

0
dW (ds) +

Z t

0

Z
R
x ~N (ds;dx)

Y
(i)
t =

Z t

0

Z
R
xi ~N (ds;dx) ; 0 � t � T; i = 2; 3; ::::

To derive the relation between the two chaos expansions, we introduce the following no-

tation. Let

R(1) (ds;dx) = �dW (ds) +

Z
R
x ~N (ds;dx)

R(i) (ds;dx) =

Z
R
xi ~N (ds;dx) ; i = 2; 3; ::::

Hence, similar to (4.5), the CRP with respect to the power jump processes can be written

as

F = E(F ) +

1X
j=1

X
i1;:::;ij�1

Z T

0

Z t1�

0
� � �
Z tj�1�

0
f(i1;:::;ij)(t1; :::; tj)dY

(ij)
tj

:::dY
(i2)
t2

dY
(i1)
t1
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= E(F ) +

1X
j=1

X
i1;:::;ij�1

Z T

0

Z t1�

0
� � �
Z tj�1�

0
f(i1;:::;ij)(t1; :::; tj)

R(ij) (dtj ;dxj) :::R
(i2) (dt2;dx)R

(i1) (dt1;dx) :

From Theorem 3.2.3,

(Xt+t0 �Xt0)
n =

X
�n2In

�
(n)
�n;t;�

S 0�n;t;t0 + C
(n)
t;�

=
X
�n2In

Z t+t0

t0

Z t1�

t0

� � �
Z tl�1�

t0

�
(n)
�n;t;�

R(i
�n
l ) (dtl;dxl) :::R

(i�n2 ) (dt2;dx)R
(i�n1 ) (dt1;dx) + C

(n)
t;� :

We have then proved the following proposition.

Proposition 4.2.2 For any Lévy process X = fXt; t � 0g satisfying condition (1.7),

(Xt+t0 �Xt0)
n =

X
�n2In

Z t+t0

t0

Z t1�

t0

� � �
Z tl�1�

t0

�
(n)
�n;t;�

R(i
�n
l ) (dtl;dxl) :::R

(i�n2 ) (dt2;dx)R
(i�n1 ) (dt1;dx) + C

(n)
t;� ;

where C(n)t;� and �
(n)
�n;t;�

are de�ned in De�nition 3.2.2.



Chapter 5

Discussion and further
applications

5.1 The explicit chaos expansions for a common kind of

Lévy functionals

Note that we have only found the explicit representations for powers of increments of Lévy

processes. In this section, we explain how the explicit formulae for a common kind of

Lévy functionals might be obtained using multivariate Taylor expansions.

Assume that a real function g; possessing derivatives of all orders, is such that

F = g
�
Xt1 ; Xt2 �Xt1 ; :::; Xtn �Xtn�1

�
; (5.1)

where the indices 0 � t1 < t2 < � � � < tn are known and n is �nite. By expressing F in

terms of power of increments of X, we can use our explicit formula to obtain the CRP

of F . This might seems like a very strong assumption but actually this requirement is

frequently met. For example, in �nancial applications, g might correspond to all pricing

functions of contingent claims which depend on the underlying asset at a �nite number of

time points. Suppose fXt; 0 � t � Tg is the background driving Lévy process and time
is now t = tn. Suppose the underlying asset, fSt; 0 � t � Tg, is given by the exponential-
Lévy model, see Cont & Tankov (2003, Chapter 8.4), St = S0 exp (Xt) ; where S0 is the

initial value of the underlying asset at time t = 0. Then, for example, we can represent F

as the pricing functions of a number of contingent claims listed in Table 5.1.1 (Appendix

B.1 gives a detailed description of some of the contingent claims).

67
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Name Formula

Forward and future contracts Ft = St exp (r (T � t)) = S0 exp (Xt + r (T � t)) ;
on a security providing no where r is the risk-free interest rate and T is the

income maturity of the contract.

Forward and future contracts Ft = (St � I) exp (r (T � t))
on a security providing a = (S0 exp (Xt)� I) exp (r (T � t)) ;
known cash income where I is the present value of the perfectly predictable

income on S = fSt; t � 0g.
Forward and future contracts Ft = St exp ((r � rf ) (T � t))
on a foreign currency = S0 exp (Xt + (r � rf ) (T � t)) ; where rf is the

risk-free interest rate of the foreign currency.

Forward and future contracts Ft = (St + U) exp (r (T � t))
on commodity = (S0 exp (Xt) + U) exp (r (T � t)) ;

where U is the present value of all storage costs.

European call options F (t; St) = exp (�r (T � t))EQ
�
(ST �K)+ jFt

�
;

where K is the strike, T is the maturity, Q is the risk

neutral measure and Ft is the �ltration of S = fSt; t � 0g.
�up-and-out�barrier call options F (t; St) = exp (�r (T � t))EQ

h
(ST �K)+ 1fMS

T<Hg
i
;

where H is the barrier and

MS
t = sup fSu; 0 � u � tg ; 0 � t � T:

�up-and-in�barrier call options F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fMS

T�Hg
i
:

�down-and-out�barrier call F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fmS

T>Hg
i
;

options where mS
t = inf fSu; 0 � u � tg ; 0 � t � T:

�down-and-in�barrier call options F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fmS

T�Hg
i
:

Lookback options with a F (t; St) = exp (�r (T � t))EQ
�
MS
T � ST

�
:

�oating strike

Lookback options with a �xed F (t; St) = exp (�r (T � t))EQ
h�
MS
T �K

�+i
:

strike

Asian call options F (t; St) =
exp(�r(T�t))

n EQ

h
(
Pn

k=1 Stk � nK)
+
���Fti :

.

Table 5.1.1: The contingent claims and their pricing formulae to which Taylor expan-

sions can be applied at some values of St:

For an European call option, the option price function before maturity with strike K,

maturity T is then given at time t by:

F (t; St) = exp (�r (T � t))EQ
�
(ST �K)+ jFt

�
;
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where Q is the risk-neutral measure and F = fFt; t � 0g is the natural �ltration of S =
fSt; t � 0g.

In (5.1), let x1 = Xt1 ; x2 = Xt2 � Xt1 ; :::; xn = Xtn � Xtn�1 . If g is not a linear

combination of powers of xi, we need to use the multivariate Taylor�s series, see Je¤reys

& Je¤reys (1988), about the points xi = 0; i = 1; :::; n to obtain such a representation:

g (x1; :::; xn) =

1X
j=0

8<: 1j!
"

nX
k=1

xk
@

@x0k

#j
g
�
x01; :::; x

0
n

�9=;
x01=0;:::;x

0
n=0

: (5.2)

Note that this representation exists when g is an analytic function. To show typical

elements in this representation, we note the special case of n = 2:

g (x1; x2) =

1X
j=0

(
1

j!

�
x1

@

@x01
+ x2

@

@x02

�j
g
�
x01; x

0
2

�)
x01=0;x

0
2=0

= g (0; 0) +

"
x1

@g

@x01

����
x01=0;x

0
2=0

+ x2
@g

@x02

����
x01=0;x

0
2=0

#

+
1

2!

"
x21

@2g

@x021

����
x01=0;x

0
2=0

+ 2x1x2
@2g

@x01@x
0
2

����
x01=0;x

0
2=0

+ x22
@2g

@x022

����
x01=0;x

0
2=0

#
+ � � � :

Let g(l)j1;j2;:::;jl (0) =
1
l!

@lg
@x0j1

@x0j2
���@x0jl

����
x01=0;:::;x

0
n=0

: As in Corcuera et al. (2005, Lemma 2),

we assume that 1X
l=2

X
j1;:::;jl2f1;:::;ng

���g(l)j1;j2;:::;jl (0)���Rl <1; (5.3)

for all R > 0: The multivariate Taylor�s series in equation (5.4) below expresses F in

terms of sum of products of powers of increments of X = fXt; t � 0g : From Theorem

3.2.4, we can substitute xi; i = 1; 2; :::with the sum of iterated integrals with respect to

the orthogonalised compensated power jump processes:

For all F 2 L2(
;F) having the form (5.1), let F = g (x1; :::; xn) and then we have

F =
1X
j=0

8<: 1j!
"

nX
k=1

�
Xtk �Xtk�1

� @

@x0k

#j
g
�
x01; :::; x

0
n

�9=;
x01=0;:::;x

0
n=0

= g (0; 0; :::; 0) +
nX
j=1

�
Xtj �Xtj�1

�
g
(1)
j (0) +

nX
j=1

�
Xtj �Xtj�1

�2
g
(2)
j;j (0)
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+2

nX
j1=1

nX
j2=1

1fj1 6=j2g

�
Xtj1

�Xtj1�1

��
Xtj2

�Xtj2�1

�
g
(2)
j1;j2

(0)

+
nX
j=1

�
Xtj �Xtj�1

�3
g
(3)
j;j;j (0)

+3
nX

j1=1

nX
j2=1

1fj1 6=j2g

�
Xtj1

�Xtj1�1

�2 �
Xtj2

�Xtj2�1

�
g
(3)
j1;j1;j2

(0)

+
nX

j1=1

nX
j2=1

nX
j3=1

1fj1 6=j2 6=j3g

�
Xtj1

�Xtj1�1

��
Xtj2

�Xtj2�1

�
�
�
Xtj3

�Xtj3�1

�
g
(3)
j1;j2;j3

(0) + � � � ; (5.4)

where
�
Xti �Xti�1

�n�s are given by Theorem 3.2.4 and we assume Xt0 = 0: The sums

converge for every ! 2 
 because of (5.3).
Since 0 � t1 < t2 < � � � < tn, the product of two iterated integrals with non-overlapping

limits results in an iterated integral: if i � j � 1; u; v 2 f1; 2; 3; :::g and �i; �j are the
predictable integrands,Z ti

ti�1

�i dH
(u)
s1 �

Z tj

tj�1

�j dH
(v)
r1 =

Z tj

tj�1

Z ti

ti�1

�i�j dH
(u)
s1 dH

(v)
r1

=

Z tj

0

Z ti

0
1fs1>ti�1g1fr1>tj�1g�i�j dH

(u)
s1 dH

(v)
r1

=

Z tj

0

Z r1

0
1fti>s1>ti�1g1fr1>tj�1g�i�j dH

(u)
s1 dH

(v)
r1 ;

since r1 > tj�1 � ti; giving an iterated integral. Hence, we get a chaos expansion of

F in terms of iterated integrals with respect to orthogonalised compensated power jump

processes.

Note that in some applications, it is only necessary to apply Taylor�s theorem directly

to F to obtain a PRP representation. Part II of this thesis applied Taylor�s theorem

directly to obtain the PRP of European and exotic option prices for hedging and the use

of the explicit formulae is further discussed.

5.2 Simulations using the explicit formula

To verify the theoretical results given in this part, we simulate the underlying Lévy

processes and compare the values of (Xt+t0 �Xt0)
n with the value given by its chaos

expansion. In simulations we apply the stochastic Euler scheme for the stochastic di¤er-

ential equations (SDEs) of general Lévy processes, which is given in Appendix A.7. The
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rate of convergence of this scheme for Lévy processes was discussed by Protter & Talay

(1997). For an introduction to numerical solutions of SDEs, see for example Higham &

Kloeden (2002), Higham (2001), Kloeden (2002) and Kloeden & Platen (1999).
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Figure 5.2.1: G4t generated using

CRP and directly from the Gamma

process in log scale.
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Figure 5.2.2: The di¤erence of the

two series in Figure 5.2.1.

For simplicity, we consider Gamma processes as well as a combination of Wiener and

Gamma processes. For illustration, we ran simulations for k = 4 and k = 9 in the

pure jump case and k = 5 and k = 8 for the combined case. The plots produced are

shown in Figures A.8.1, A.8.3, A.8.5, A.8.7 in Appendix A.8 respectively. The log scale

version of Figure A.8.1 is reproduced as Figure 5.2.1 for illustration. In the second and

fourth simulations, we set t0 = 0:0099 and t0 = 0:0019 respectively. These simulations

substantiate our explicit formula of the CRP for t0 � 0. We see that processes generated
using the CRP and those generated directly from the Gamma process jump at the same

time points. To see more the two lines more clearly, Figure 5.2.1 is in log scale. Again the

two lines are still very close together except in the beginning, where the values are very

close to 0 and hence the log of the numbers are very negative. The di¤erences between

the two lines are rather due to the numerical rounding errors. The di¤erences between

the two lines are plotted in Figures A.8.2, A.8.4, A.8.6, A.8.8 accordingly. Figure A.8.2

is reproduced as Figure 5.2.2 for illustration. Note that the axis of Figures A.8.2, A.8.4,

A.8.6, A.8.8 are in much smaller scales than those in Figures A.8.1, A.8.3, A.8.5, A.8.7.

In fact, the di¤erence between the two series is so small that we can only see one line

in Figure 5.2.1. The di¤erence is due to approximation errors of the stochastic Euler

scheme. The errors decrease with the step size �: In each of the Figures A.8.1, A.8.3,

A.8.5, A.8.7, independent realisations of the Gamma and Wiener processes are used. We

note that the line representing the error between the two jumps at the same time points
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as the Lévy process. Moreover, the jump sizes of the error are proportional to those

of the Lévy process. After each jump, the error tends to decrease gradually and then

increases again by jumping. It shows that the Euler scheme is more sensitive to jumps in

the original process and perform better for Brownian motion which is smooth.

5.3 Discussion on Proposition 8 of Løkka (2004)

Løkka (2004, Proposition 8) derived an explicit expression for the chaos expansion of an

in�nitely di¤erentiable and square integrable functional of a pure jump Lévy process. For

every n 2 N and m � n; de�ne the sets Anm by

Anm = f(a1; :::; am) 2 f1; :::; ng
m : ai < ai+1 8i = 1; :::;m� 1g :

Assume the underlying Lévy process has no Brownian part. Let g 2 C10
�
Rk
�
be such

that g (Xs1 ; :::; Xsk) 2 L2 (FT ; P ) : Then Løkka (2004, Proposition 8) claimed that

g (Xs1 ; :::; Xsk) = G (0; :::0) +

1X
n=1

In (fn) ;

where G (x1; :::; xk) = E [g (x1 +Xs1 ; :::; xk +Xsk)] is in C
1
0

�
Rk
�
, and

fn (t1; :::; tn; z1; :::; zn)

=
1

n!

8<:
nX

m=1

X
�2Anm

(�1)n�mG
�
z�11[0;s1] (t�1) + � � �+ z�m1[0;s1] (t�m) ; :::;

z�11[0;sk] (t�1) + � � �+ z�m1[0;sk] (t�m)
�
+ (�1)nG (0; :::; 0)

	
:

Note that this approach requires the ability to evaluate

G (x1; :::; xk) = E [g (x1 +Xs1 ; :::; xk +Xsk)]

=

Z
Rk
g (x1 + y1; :::; xk + yk) dFXs1 ;:::;Xskdy; (5.5)

where FXs1 ;:::;Xsk is the distribution function of Xs1 ; :::; Xsk : We cannot use Monte Carlo

since we need to express

G
�
z�11[0;s1] (t�1) + � � �+ z�m1[0;s1] (t�m) ; :::; z�11[0;sk] (t�1) + � � �+ z�m1[0;sk] (t�m)

�
(5.6)

in terms of z�1 ; z�2 ; :::; z�m ; which are the integrating variables in In (�). To use Monte

Carlo, the values of z�1 ; :::; z�m have to be known constants. Hence, it is not possible to
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calculate (5.6) using Monte Carlo. Analytic calculation of (5.5) is therefore required.

Apart from these computational issues, we also want to clarify a result in the paper.

In the proof, Løkka stated that �By Theorem 4, the random variable

exp

�Z T

0

Z
R0
iz� (y; t) (�� �) (dz;dt)�

Z T

0

Z
R0

h
eiz�(y;t) � 1� iz� (y; t)

i
� (dz) dt

�
(5.7)

has a chaos expansion given by 1 +
P1

n=1 In

�
(1=n!)

�
eiz�(y;t) � 1

�
n�
:�, where

� (y; t) = y11[0;s1] (t) + � � �+ yk1[0;sk] (t) :

Obviously, � (y; t) is not continuous in t since it comprises of indicator functions in t. We

can �nd the derivation of the above chaos expansion in the proof of Theorem 4 of the

paper. We notice that the result derived is for random variable de�ned in equation 6

(page 872) of the paper:

YT = exp

�Z T

0

Z
R0
h (t)  (z) (�� �) (dz;dt)

�
Z T

0

Z
R0

�
eh(t)(z) � 1� h (t)  (z)

�
� (dz;dt)

�
; (5.8)

where h 2 C ([0; T ]) : That is, the function h (t) must be continuous in t: However,

in (5.7), the corresponding function of t; � (y; t) ; is not continuous in t: Therefore,

the results derived for YT cannot be applied to (5.7). Nonetheless, (5.7) does have the

chaotic representation given by 1 +
P1

n=1 In

�
(1=n!)

�
eiz�(y;t) � 1

�
n�
: It is because in

the derivation of the chaotic representation for (5.8), the condition h 2 C ([0; T ]) is not

needed. Løkka stated on page 874 that (5.8) solves

dYt =

Z
R0
Yt�

�
eh(t)(z) � 1

�
(�� �) (dz;dt)

by the Itô formula. Here we discuss the derivation of this result in details. Let Z be a

process with stochastic integral

dZt =

Z
R0
H (t; x) ~N (dt;dx) ;

where H (t; x) 2 L2 (
;F ; P ) : By the Itô formula for function of integrals with respect to
the compensated Poisson measure, see (Applebaum (2004, Theorem 4.4.7)), we have for
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each f 2 C2 (R) with probability 1 that,

f (Zt)� f (Z0) =

Z t

0

Z
R0

�
f (Zs� +H (s; x))� f

�
Zs�

��
~N (dt;dx)

+

Z t

0

Z
R0

Z
R0

�
f (Zs� +H (s; x))� f

�
Zs�

�
� H (s; x)

d

dZs�
f (Zs�)

�
� (dx) :

Note that the notation used by Løkka are equal to

(�� �) (dz;dt) � ~N (dt;dx) and � (dz;dt) � � (dx) :

Therefore, if we put Z = Y and f (Y ) = log (Y ) ; we have

f (Ys� +H (s; x))� f
�
Ys�
�
= log

�
Ys� + Yt�

�
eh(t)(z) � 1

��
� log (Ys�)

= log (Ys�) + log
�
1 + eh(t)(z) � 1

�
� log (Ys�)

= h (t)  (z)

and

H (s; x)
d

dYs�
f (Ys�) =

�
eh(t)(z) � 1

�
:

Therefore the result follows. In the derivation, we do not need any condition on h (t)

apart from Yt�
�
eh(t)(z) � 1

�
2 L2 (
;F ; P ). Hence the condition h 2 C ([0; T ]) for the

chaotic representation of (5.8) is not necessary.

5.4 Lévy measures of the orthogonalised processes H(i)�s

In this section, we calculate the Lévy measure of the i-th orthogonalised compensated

power jump process of a Lévy process, H(i) =
n
H
(i)
t ; t � 0

o
, de�ned in (1.10). To

obtain the results for general Lévy processes, we �rst establish some results for pure jump

processes. Let G = fGt; t � 0g be a pure jump Lévy process, G(i) =
n
G
(i)
t ; t � 0

o
be

its i-th power jump process and bG(i) = n bG(i)t ; t � 0o be its i-th compensated power jump
process.

Nualart & Schoutens (2000) proved that the orthogonalisation in (1.10) is related

with classical orthogonal polynomials with respect to the underlying Lévy process Xt

by identifying the polynomials P (:) ; Q (:) such that
R1
0 P (x)Q (x)x2� (dx) = 0, where

� (dx) is the Lévy measure of X: In the standard Gamma case, Nualart & Schoutens
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(2000) considered
R1
0 P (x)Q (x)xe�xdx since � (dx) of G (1; 1) is 1(x>0)

e�x

x dx: For gen-

eral Gamma(a; b), the Lévy measure is �G (dx) = ae�bx

x 1(x>0)dx: To generalise the or-

thogonalising procedure, we consider
R1
0 P (x)Q (x)x2 ae

�bx

x dx; which is equal to zero if

P (:) ; Q (:) are orthogonal with respect to Gamma (a; b) : Put u = bx; and consider the

stochastic integral
R1
0 P

�
u
b

�
Q
�
u
b

�
ue�udu = 0: By Koekeok & Swarttouw (1998), an or-

thogonalisation of
n
1; xb ;

x2

b2
; :::
o
gives the Laguerre polynomials L(1)n (x). Hence, we can

see that orthogonality of the compensated power jump processes in the Gamma (a; b) case

is given by L(1)n (bx) ; which is independent of the �rst parameter of the distribution. The

coe¢ cients used in the orthogonalisation of bG(i) = n bG(i)t ; t � 0o are independent of time
t. The Laguerre polynomial L(�)n (x) can be expressed as

L(�)n (x) =
1

n!

nX
k=0

(�n)k
k!

(�+ k + 1)n�k x
k:

The pochhammer symbols (a)k are de�ned by

(a)0 = 1; (a)1 = a and (a)k = a (a+ 1) (a+ 2) ::: (a+ k � 1) for k = 2; 3; :::: (5.9)

and by Gradshteyn & Ryzhik (1965, 8.971(6) ), we have the following recursive relation:

(n+ 1)L�n+1 (x)� (2n+ �+ 1� x)L�n (x) + (n+ �)L�n�1 (x) = 0 for n = 1; 2; ::::

Apart from using the Laguerre polynomials, we can use the following formula to �nd the

coe¢ cients, ai;j , in equation (1.10):

Lemma 5.4.1 For i � j; i; j = 1; 2; 3; :::;

ai;j = (�1)i�j
�
i� 1
j � 1

�
mi+1

mj+1

when the underlying Lévy process is Gamma(a; b) and we have mi =
a(i�1)!
bi

:

Proof. The proof is given in Appendix A.9. The proof does not rely on any properties of
the Laguerre polynomials, but it is instead derived from the properties of orthogonalised

compensated power jump processes and the Gamma Lévy measure. By using the property

of the Laguerre polynomials, see Weisstein (1999b),

L(k)n (x) =

nX
m=0

(�1)m (n+ k)!

(n�m)! (k +m)!m!x
m;
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the result follows immediately. The proof in Appendix A.9 gives an insight to how the

ai;j of other Lévy processes can be calculated if the corresponding orthogonal polynomials

cannot be recognised as known sets of polynomials. �

The Lévy measure of G(j) with Gamma(1; 1) is given in Nualart & Schoutens (2000,

p.119). Using the same method we generalise it and also �nd the Lévy measure of the

compensated power jump process bG(j) = n bG(j)t ; t � 0
o
: The method makes use of the

exponential formula in Bertoin (1996): Let f be a complex-valued Borel function andR1
�1

��1� ef(x)�� � (dx) <1; we have for every t � 0;
E

0@exp
8<: X
0<s�t

f (Xs)

9=;
1A = exp

�
t

Z 1

�1

�
ef(x) � 1

�
� (dx)

�
: (5.10)

Proposition 5.4.2 If the condition in equation (1.7) is satis�ed, the Lévy triplet of G(j)

is given by 0@ a

bj

Z b

0
exp (�z) zj�1dz; 0;

a exp
�
�bz

1
j

�
jz

1(z>0)dz

1A :

Proof. The proof is given in Appendix A.10. �

bG(j) = n bG(j)t ; t � 0
o
is obtained by subtracting a positive drift from the pure jump

process G(j) =
n
G
(j)
t ; t � 0

o
. Since the drift is deterministic, it is clear that the compen-

sated power jump process bG(j) is also a Lévy process using the Lévy-Khintchine formula
given in (2.1). The Lévy measure of bG(j) is the same as that of G(j) and the additional
drift is given by �mjt, where mj =

R +1
�1 xj�G (dx) for i � 2, m1t = E

h
G
(1)
t

i
and �G (dx)

is the Lévy measure of the original Gamma process. Using the Lévy-Khintchine formula,

we can easily show that the Lévy triplet of bG(j) is given by0@�mj +
a

bj

Z b

0
exp (�z) zj�1dz; 0;

a exp
�
�bz

1
j

�
jz

1(z>0)dz

1A :

Recall the i-th orthogonalised compensated power jump process, H(j) =
n
H
(j)
t ; t � 0

o
,

has the form

H
(j)
t = bG(j)t + aj;j�1 bG(j�1)t + aj;j�2 bG(j�2)t + :::+ aj;1 bG(1)t : (5.11)
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It is obvious that H(j) is also a Lévy process since bG(j); bG(j�1); :::; bG(1) are Lévy processes.
The equation (5.11) can be represented alternatively as,

H
(j)
t = � [mj + aj;j�1mj�1 + aj;j�2mj�2 + :::+ aj;1m1] t

+
h
G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t

i
:

Hence H(j) can be considered as the weighted sum of the pure jump processes

G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t (5.12)

plus a drift � [mj + aj;j�1mj�1 + aj;j�2mj�2 + :::+ aj;1m1] t: Note that the jumps in H(j)

can be negative. Therefore,

E
h
exp

�
i�H

(j)
t

�i
= exp (�i� [mj + aj;j�1mj�1 + aj;j�2mj�2 + :::+ aj;1m1] t)

�E
n
exp

�
i�
h
G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t

i�o
:

We cannot substitute the Lévy measure of bG(i); i = 1; ::; j directly into the above formula
since we do not know the joint Lévy measure for the correlated processes. Instead, we

can try to calculate the characteristic function of H(j) using (5.10) directly. Following

Nualart & Schoutens (2000, p. 119), we put

f (j) (x) = i�
�
xj + aj;j�1x

j�1 + aj;j�2x
j�2 + :::+ aj;1x

	
;

and hence

E
n
exp

�
i�
h
G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t

i�o
= exp

�
t

Z 1

0

�
ef

(j)(x) � 1
� ae�bx

x
dx

�
: (5.13)

Let h(j) (x) = f (j) (x) =i� and put z = h(j) (x), assuming that h(j) (x) = z has k � j number

of distinct real roots. There are k possible values of x in terms of z; that is, x = h
(j)
1 (z)

or x = h
(j)
2 (z) etc: Let p1 < p2 < ::: < pk�1 be the turning points of the function

h(j) (x)�z = 0 such that h(j)1 (z) 2 (0; p1) ; h(j)k (z) 2 (pk�1;1) and h(j)l (z) 2 (pl�1; pl) for
l = 2; 3; :::; k� 1. Note that the number of turning points of the function h(j) (x)� z = 0
can be greater than k�1 but we just consider k�1 of them. For convenience, put p0 = 0
and pk =1: Let �; � 2 R and � 6= �:
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Proposition 5.4.3 The Lévy measure of H(j)
t for j � 2 is given by:

�
(j)
H (dz) = a

"
kX
i=1

g
�
h(j) (pi�1) ; h

(j) (pi) ; z
� e�bh(j)i (z)

h
(j)
i (z)

dh
(j)
i (z)

#
dz;

where

g (�; �; z) =

(
1f�<z<�g if � < �

�1f�<z<�g if � > �
:

The Lévy triplet of H(j)
t is given by�

� [mj + aj;j�1mj�1 + aj;j�2mj�2 + :::+ aj;1m1] +

Z 1

�1
z�
(j)
H (dz) ; 0; �

(j)
H (dz)

�
:

Proof. Starting from (5.13) and using the above argument, we can rearrange to arrive

at the form of the Lévy-Khintchine formula and get the results. The proof is given in

Appendix A.11 �

Example We verify this result for H(2) =
n
H
(2)
t ; t � 0

o
. Using Proposition 5.4.3,

we can show that the Lévy measure of H(2) is given by:

�
(2)
H (dz) = a

24 e�[1�
p
1+zb2]h

1�
p
1 + zb2

i b2
2

1p
1 + zb2

1�� 1
b2
<z<0

�

+
e�[1+

p
1+zb2]h

1 +
p
1 + zb2

i b2
2

1p
1 + zb2

1�� 1
b2
<z<1

�
35dz: (5.14)

We show that �(2)H (dz) is a valid Lévy measure, that is,
R +1
�1

�
1 ^ z2

�
�
(2)
H (dz) < 1, in

Appendix A.12.



Summary of Part I

Lévy processes were introduced in mathematical �nance to improve the performance of

some of the �nancial models which are based on using Brownian motion as the underlying

process and to model stylised features observed in �nancial processes. The derivation of an

explicit formula for the CRP has been the focus of considerable study, for previous work,

see Léon et al. (2002), Benth et al. (2003), Løkka (2004) and Eddahbi et al. (2005). The

immediate result of the CRP is the predictable representation property (PRP), which gives

the hedging formulae for contingent claims in the �nancial market. The CRP expresses

the functional of a Lévy process in terms of an in�nite sum of stochastic integrals with

respect to orthogonalised compensated power jump processes. This provides a clear

representation of the structure of the Lévy functional. The chaos expansion explains how

the Lévy functional depends on the underlying Lévy process in terms of the power jump

processes, which are related to the moment structure of the underlying process. In this

part, we derived a computational explicit formula for the construction of the CRP of the

powers of increments of Lévy processes in terms of orthogonalised compensated power

jump processes and its CRP in terms of Poisson random measures. Jamshidian (2005)

extended the CRP in terms of power jump processes to a large class of semimartingales

and we showed that our formula is an non-trivial extension of the one given by Jamshidian

(2005) in the Lévy case, which is an important subclass of semimartingales. Our explicit

formula shows that the integrands of the stochastic integrals in the CRP of the powers of

increments of Lévy processes do not depend on the integrating variables nor the starting

time. This makes the construction and simulation of the CRP much easier to implement.

The coe¢ cients of the CRP depend on themi�s which represent the moments of the process

with respect to its Lévy measure. In this part, we considered only Lévy processes and

their compensators are always of the form mit: Using the same calculation, it is trivial to

extend the representation to semimartingales whose stochastic compensators have known

representations. The CRP of the pricing functions for some common �nancial derivatives

can be found by expressing the pricing functions in terms of powers of increments of the

underlying Lévy process using a Taylor expansion.
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Part II

Hedging strategies and minimal
variance portfolios for European
and exotic options in a Lévy

market
In Part I of this thesis, we gave the two versions of the chaotic representation property

(CRP) in terms of orthogonalised compensated power jump processes and also in terms of

the Poisson random measure. The power jump processes are closely related to the power

jump assets, see Corcuera et al. (2005), which will be used for perfect hedging in this part.

The CRP in terms of the Poisson random measure is used in the derivation of the minimal

variance portfolio. The CRP is important as it implies the predictable representation

property (PRP), which provides the hedging portfolio for a contingent claim. After

Nualart & Schoutens (2000) proved the existence of the CRP and PRP for Lévy processes

in terms of orthogonalised compensated power jump processes, Corcuera et al. (2005)

suggested completing the market by trading in the related power jump assets with the use

of the PRP, which is derived from the Itô formula. The trading strategy was expressed

in terms of a sum of stochastic integrals with respect to some tradable assets. However,

the use of stochastic integrals implies that the hedging period, �t, and the changes of

values of the tradable assets have to be very small in order for the stochastic integrals to

be implemented by discrete approximation. In reality this would not be practical and

especially if the assets are driven by Lévy processes, we expect the changes in values of the

assets to be non-trivial. We get around this problem by deriving hedging strategies for

European and exotic options in a Lévy market in terms of Taylor�s Theorem such that the

change of time and changes of values of the tradable assets can be acknowledged explicitly.

Moreover, by expressing the change of value of the contingent claim to be hedged in terms

of an expansion with respect to the powers of increments of the underlying stock, we

can explicitly consider the terms relating to di¤erent moments of the underlying stock

and consider hedging these terms separately. In this part, dynamic hedging portfolios

are constructed under di¤erent market assumptions, such as the existence of power jump
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assets or moment swaps. Static hedging is implemented in the case of European options

or baskets of European options. It is shown that perfect hedging can be achieved. Delta

and gamma hedging strategies are extended to higher moment hedging by investing in

other traded derivatives depending on the same underlying asset. This development is

of practical importance as such other derivatives might be readily available. Moment

swaps or power jump assets are not liquidly traded. It is shown how minimal variance

portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing

function, investing only in a risk-free bank account, the underlying asset and potentially

variance swaps. The numerical algorithms and performance of the hedging strategies

are presented, showing the practical utility of the derived results. We derive the hedging

portfolio directly from the Taylor expansion and investigate the performance of the hedging

strategies. In our simulation study, we use the Variance Gamma (VG) model, which is

convenient to use as it is analytically tractable and easy to simulate.

This part is arranged as follows: Chapter 6.1 introduces the hedging instruments used

in this part, namely the variance swaps, moment swaps and power jump assets. Chapter

6.2 gives hedging strategies using the approximation formulae obtained from applying

Taylor�s theorem to the pricing formulae and investing in variance swaps, moment swaps or

power jump assets. We extend the delta and gamma hedging strategies to higher moment

hedging by investing in some traded derivatives depending on the same underlying asset.

Chapter 6.3 demonstrates how to use the minimal variance portfolios derived by Benth

et al. (2003) to hedge the higher order terms in the Taylor expansion, investing only in a

risk-free bank account, the underlying asset and potentially variance swaps. Chapter 6.4

gives the approximation procedure of the hedging strategies and the performance of the

hedging strategies implemented on a set of di¤erent types of options as illustration of the

performance of the proposed method. Some concluding remarks are provided at the end

of this part. Proofs and tables are included in Appendix B.



Chapter 6

Perfect hedging strategies

An investment made to speci�cally reduce or cancel out risk in another investment is called

a hedge. The strategy designed to minimise the exposure to an unwanted risk in �nance is

called a hedging strategy. Under the Black-Scholes model, the PRP of Brownian motions

allows perfect hedging of European options. Unfortunately, the derivation of hedging

strategies of options in an incomplete market is not as simple and has been the focus

of considerable study in the literature, see for example Carr et al. (2001), He et al.

(2005) and Cont et al. (2005). In this thesis, by extending the ideas of Corcuera

et al. (2005), Schoutens (2005) and Benth et al. (2003), we derive and implement some

hedging strategies for European and exotic options. Numerical procedures are provided

and performance of the hedging strategies is discussed.

The predictable representation property, given in (3.2), is useful in option hedging.

For option pricing functions which are in�nitely di¤erentiable in the stock price, we can

simply apply the Itô formula to obtain such a predictable representation. After Nualart

& Schoutens (2000) proved the existence of the CRP and PRP for Lévy processes in terms

of orthogonalised compensated power jump processes, Corcuera et al. (2005) suggested

completing the market by trading in the related power jump assets with the use of the

PRP, which is derived from the Itô formula. Assuming power jump assets are traded

in the market, Corcuera et al. (2005) derived a self-�nancing replicating portfolio for

a contingent claim whose payo¤ function only depends on the stock price at maturity.

Their hedging formula is derived from the Itô formula and given in terms of an in�nite

sum of stochastic integrals. In this thesis, we use a di¤erent approach to determine a

self-�nancing replicating portfolio, which, in some cases, can be used in both static and

dynamic hedging with a �exible �t; where �t denotes the time change during the hedging

period. We will apply Taylor�s theorem directly to the option pricing formulae to obtain

hedging portfolios. Note that delta and gamma hedging commonly used by traders in

82
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the market, discussed in Section 6.2.4, are based on Taylor�s theorem, see Hull (2003).

In the literature, the results on option hedging using CRP, given in (3.1), has previously

focused on the theoretical aspects of the problem, see, for example, Corcuera et al. (2005)

and Løkka (2004). We aim to investigate the problem from a practical point of view

by providing methods to obtain the hedging portfolios explicitly using numerical methods

and shall discuss the di¢ culties encountered. When implementing stochastic processes

computationally, it is necessary to discretise the time variable. Hence, it is natural to

work directly from Taylor�s theorem, which can be considered as a discrete version of Itô

formula. As a matter of fact, Taylor�s theorem was used to derived the delta and gamma

hedges commonly used by traders in the market, given in Section 6.2.4. Our approach

can also be applied to barrier options, whose pricing functions are given in Appendix B.1,

in the case of dynamic hedging.

In the followings, we shall derive hedging strategies using Taylor�s theorem. Firstly,

we specify the model of the underlying asset, S = fSt; t � 0g. Following Corcuera et al.
(2005, Theorem 3), we assume

dSt
St�

= bdt+ dXt; (6.1)

where X = fXt; t � 0g is a general Lévy process. For example, in our simulation in

Section 8.7, we assume X is a Variance Gamma (VG) process, which will be discussed in

more details in Section 6.4.1. Let the risk-free bank account be

Bt = exp (rt) ; (6.2)

where r is the continuously compounded risk-free interest rate. Let F (t; x) be the option

pricing function at time t < T and stock price equal to x; where T is the maturity of the

option. Let Di
1F (t; x) be the i-th derivative of F (t; x) with respect to the �rst variable

(time), and Di
2F (t; x) be the i-th derivative of F (t; x) with respect to the second variable

(stock price). Suppose F (t; x) is continuous and in�nitely di¤erentiable in the second

variable and satis�es supx<K;t�t0
P1

n=2 jDn
2F (t; x)jRn <1 for all K;R > 0; t0 > 0:

Let �t be the time change during the hedging period and �St = St+�t�St. Applying
Taylor�s theorem twice to the option pricing formula, F (t; St), we obtain

F (t+�t; St +�St)� F (t; St)

= [F (t+�t; St +�St)� F (t+�t; St)] + [F (t+�t; St)� F (t; St)]

=

1X
i=1

Di
2F (t+�t; St)

i!
(�St)

i +
1X
i=1

Di
1F (t; St)

i!
(�t)i ; (6.3)

which is true as long as the derivatives Di
2F (t+�t; St) and Di

1F (t; St) exist for i =
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1; 2; 3; :::: Hence, the change of value of F during time t to t + �t can be hedged by

investing in Di
2F (t+�t;St)

i! units of (�St)
i and Di

1F (t;St)
i! units of (�t)i for i = 1; 2; :::. Note

that it is not necessary to apply the multivariate Taylor�s theorem since the value of

�t is known at time t. Let M (q) (t; x) be the price of a �nancial derivative such that

M (q) (0; S0) = F (0; S0) and

M (q) (t+�t; St +�St)�M (q) (t; St) =

qX
i=1

Di
2F (t+�t; St)

i!
(�St)

i+

1X
i=1

Di
1F (t; St)

i!
(�t)i ;

(6.4)

where q is a positive integer. Therefore, we have

lim
q!1

M (q) (T; ST ) = F (T; ST ) ;

that is, the value of the �nancial derivative M (q) is asymptotic to F as q goes to in�nity.

Our aim is to construct a self-�nancing hedging portfolio for M (q): Note that the hedging

error at time �t,

[F (t+�t; St +�St)� F (t; St)]�
h
M (q) (t+�t; St +�St)�M (q) (t; St)

i
=

1X
i=q+1

Di
2F (t+�t; St)

i!
(�St)

i ;

can be approximated using standard techniques in calculating the remainder terms in a

Taylor expansion. Let P(i)t be the value of a basket of �nancial derivatives such as the

risk-free bank account, the underlying stock, variance swaps, moment swaps, power jump

assets or other �nancial derivatives depending on the same underlying stock such that

(�St)
i = �P(i)t = P(i)t+�t � P

(i)
t for i = 2; 3; ::::

Note that P(i)t is a basket of assets that would not lead to arbitrage opportunities. We

will show later how to construct such a basket of tradable assets. Therefore, we have

M (q) (t+�t; St +�St)�M (q) (t; St) =

1X
i=1

Di
1F (t; St)

i!
(�t)i +D1

2F (t+�t; St)�St

+

qX
i=2

Di
2F (t+�t; St)

i!
�P(i)t : (6.5)

The self-�nancing portfolio to hedge M (q) (t+�t; St +�St)�M (q) (t; St) is then

(i) Invest
P1

i=1D
i
1F (t; St) (�t)

i =i! (exp (r�t)� 1) in a risk-less bank account such that
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at time t + �t, the deposit is worth
P1

i=1D
i
1F (t; St) (�t)

i exp (r�t) =i! (exp (r�t)� 1)
and the change of value of the investment is

P1
i=1

Di
1F (t;St)
i! (�t)i;

(ii) Invest D1
2F (t+�t; St) in the underlying stock;

(iii) Invest Di
2F (t+�t;St)

i! in P(i)t for i = 2; 3; :::; q.

In real life application, we have to �nd a reasonable value for q and we discuss methods

of choosing q in Section 8.7. Note that the approximation in (6.4) only requires the

existence of Di
1F (t; St) for i = 1; 2; 3; ::: and Di

2F (t+�t; St) for i = 1; 2; 3; :::; q: The

value of q determines how many �nancial derivatives we need to invest in, in order to hedge

the option up to a pre-speci�ed level of accuracy. If q = 1; it is only necessary to hedge the

deterministic term
P1

i=1
Di
1F (t;St)
i! (�t)i by investing in a risk-free bank account and the

termD1
2F (t+�t; St)�St by investing in the underlying stock, which is a simple extension

to the delta hedging discussed in Section 6.2.4. If q = 2; we can hedge by investing in a

risk-free bank account, the underlying stock and the variance swaps currently traded in

the market, which is discussed in Section 6.2.1. If q � 3; we can consider perfect hedging
in three cases: (a) trading in moment swaps, discussed in Section 6.2.2, (b) trading in

power jump assets, discussed in Section 6.2.3 and (c) trading in some �nancial derivatives

depending on the same underlying assets, discussed in Section 6.2.5. Note that (a) and

(b) are not liquidly traded in the market while (c) might be more readily available. If

all of these �nancial derivatives are not available for trading, we can employ the minimal

variance portfolios derived in Section 6.3.

The approximation in (6.4) can be used in both static and dynamic hedging for Euro-

pean options by just changing �t. The reason why static hedging may not be applicable

to exotic options is because if during the hedging period, �t, the value of the St+�s, where

�s < �t is explicitly occurring in the formulae, then this must be used in the calculation

of the option price. In this case, we have to apply Taylor�s theorem with respect to both

�St = (St+�t � St) and (St+�s � St). In the case of dynamic hedging, we can assume

that the minimum time period for a change of value of S to take place is equal to �t ,

the hedging period: Although static hedging can only be applied to European options,

some exotic options can be decomposed into a basket of European options such that static

hedging can still be achieved, see for example Derman et al. (1995). In Section 6.4.4,

we show the approximation results for both static hedging (�t equals to 3 months) and

dynamic hedging (�t equals to 5 minutes) for European options and dynamic hedging for

barrier options. The advantage of static hedging over dynamic hedging is that in real life,

transaction costs and bid-ask spreads of option prices are not negligible. The replicating

portfolio is not truly self-�nancing since extra investment must be made to pay for these

additional costs. Hence, it is preferable to hedge statically rather than dynamically as the

costs involved will be less and constant rebalancing is not required. In the literature and
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in practice, it is common to assume that �St is very small such that the approximation in

(6.4) can be truncated without loss of accuracy; this is the main assumption behind the

delta and gamma hedges commonly used by traders in the market. However, in real life,

the price of every traded asset in the market moves by a tick size, such as 0.5 or 1. After

a very short period of time, the price of the traded asset either stays unchanged or moves

by a multiple of the tick size. Hence, the assumption of �St being very small in hedging

is not su¢ ciently accurate. It would not in general be reasonable to assume that �St is

small when modelling S as a process with jumps. Thus, we consider �St � 1 for both

static and dynamic hedging in our simulation analysis in Section 6.4.4.

6.1 Hedging instruments

In this section, we consider the use of moment swaps (including variance swaps) and power

jump assets in our hedging strategies. Recall in the Black-Scholes world, the PRP is in

terms of a stochastic integral with respect to a Brownian motion. Therefore, a contingent

claim can be hedged by investing merely in a risk-free bank account and the underlying

asset. However, the PRP for Lévy processes involves stochastic integrals with respect

to power jump processes, which are related to the higher moments of the underlying

Lévy process. In equation (6.4), they are represented through Di
2F (t+�t;St)

i! (�St)
i : To

hedge these terms, we need to invest in some �nancial derivatives related to these higher

moments. We show how moment swaps introduced by Schoutens (2005) and power jump

assets by Corcuera et al. (2005) can be used to construct P(i)t used in the hedging portfolio

given in (6.5).

6.1.1 Variance swaps and moment swaps

Variance swaps, introduced by Demeter� et al. (1999), are commonly traded over-the-

counter (OTC) derivatives. Schoutens (2005) generalised variance swaps to moment

swaps, which are not liquidly traded in the market. Windcli¤ et al. (2006) gave a

detailed discussion on volatility swaps.

There are two common contractual de�nitions of returns of stock price. Let the

sampling points of the contract be fs1; s2; :::; sng, where the s�s are equally spaced with
length �s. The actual return is de�ned to be

Ractual;i =
Ssi+1 � Ssi

Ssi
(6.6)
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and the log return is de�ned to be

Rlog;i = log

�
Ssi+1
Ssi

�
: (6.7)

The annualised realised variance, �2realised, is de�ned by

�2realised =
1

�s (n� 2)

n�1X
i=1

R2i ,

where Ri is either the actual return or log return of the stock price. We can now give the

de�nition of a variance swap, introduced by Demeter� et al. (1999).

De�nition 6.1.1 A variance swap is a forward contract on annualised realised variance,
�2realised. Its payo¤ at expiration is equal to�

�2realised � �2strike
�
N;

where �2realised is the realised stock variance (quoted in annual terms) over the life of the

contract, �2strike is the pre-de�ned delivery price for variance, and N is the notional amount

of the swap. The holder of a variance swap at expiration receives N dollars for every point

by which the stock�s realised variance has exceeded the variance delivery price �2strike. The

annualised realised variance is calculated based on the pre-speci�ed set of sampling points

over the period, fs1; s2; :::; sng.

In the case of log return, Ri = Rlog;i, Schoutens (2005) generalised variance swaps to

moment swaps. The annualised realised k-th moment, M (k)
realised; is de�ned by

M
(k)
realised =

1

�s (n� 2)

n�1X
i=1

Rki :

This de�nition can be easily extended to the case where Ri = Ractual;i: We can now give

the de�nition of the k-th moment swap.

De�nition 6.1.2 A k-th moment swap is a forward contract on annualised realised k-th

moment, M (k)
realised. Its payo¤ at expiration is equal to�

M
(k)
realised �M

(k)
strike

�
N;

where M (k)
realised is the realised k-th moment (quoted in annual terms) over the life of the

contract,M (k)
strike is the pre-de�ned delivery price for the k-th moment, and N is the notional
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amount of the swap. The holder of a k-th moment swap at expiration receives N dollars

for every point by which the stock�s realised k-th moment has exceeded the k-th moment

delivery price M (k)
strike. The annualised realised k-th moment is calculated based on the

pre-speci�ed set of sampling points over the period, fs1; s2; :::; sng.

6.1.2 Power jump assets

Corcuera et al. (2005) suggested enlarging the Lévy market with power jump assets,

where the i-th power jump asset is de�ned by

T
(i)
t = exp (rt)Y

(i)
t ; i � 2; (6.8)

and Y (i)t is the compensated power jump process de�ned in (1.9). The authors derived

the dynamic hedging portfolio trading in these assets using the Itô formula. Corcuera

et al. (2005) noted that the 2nd power jump process is related to the realised variance,

see Barndor¤-Nielsen & Shephard (2002). However, the 2nd power jump asset is not the

same as a variance swap and we consider their usages separately in Section 6.2.

6.2 Hedging strategies

In the last section, we introduce two di¤erent kinds of �nancial derivatives involving

higher moments, namely, the moment swaps and the power jump assets. In this section,

we explain how to use them to construct the basket of �nancial derivatives, P(i)t , in order
to hedge the terms in equation (6.4). We also discuss the delta and gamma hedges in

the literature and we extend them in order to obtain perfect hedging by trading in certain

�nancial derivatives depending on the same underlying asset, which may be available in

the market.

In constructing the hedging portfolio in (6.5), we already showed how to hedge the

deterministic term
P1

i=1
Di
1F (t;St)
i! (�t)i. Here we give a more detailed discussion. Let x

be the deterministic change in value of the portfolio over a period of time, where x is some

known real number. To hedge x, we invest an amount P in a risk-free bank account with

continuous compound interest rate r such that the gain from this investment over time �t

is equal to x:

P (exp (r�t)� 1) = x ) P =
x

(exp (r�t)� 1) : (6.9)

In other words, to hedge x, we invest x
(exp(r�t)�1) amount of cash into a risk-free bank
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account paying a compound interest rate of r. For example, to hedge the term

1X
i=1

Di
1F (t; St)

i!
(�t)i

in equation (6.4), we need to invest

P1
i=1

Di
1F (t;St)
i! (�t)i

(exp (r�t)� 1)

in a risk-free bank account. Note that the risk free interest rate, r, is almost always

non-zero in real life. If it were zero, dSt = St�dX under the risk-neutral measure and

there would be no drift term. Since an option is a function of St, there would be no drift

term in the option pricing formula and hence there would not be any deterministic term

to hedge.

6.2.1 Hedging with variance swaps

To hedge the term (�St)
2 in equation (6.4), we construct P(2)t which invest in a risk-free

bank account and variance swaps. If �t is negligible compared to �St, from (6.1), we

have

(�St)
2 = S2t (�Xt)

2 : (6.10)

Note that we cannot use the variance swaps using log return, Rlog;i de�ned in (6.7)

to hedge. It is because
h
log
�
St+�t
St

�i2
= [log (1 + �Xt)]

2 since we assume �t to be

negligible. From (6.10), we need (�Xt)
2 rather than [log (1 + �Xt)]

2 to hedge, therefore

the variance swaps using log returns are not useful in this case. Even if we use the

model St+�t = St exp (�Xt) such that log (St+�t=St) = �Xt; we then have (�St)
2 =

(St+�t � St)2 = S2t [exp (�Xt)� 1]2 ; which still can not be hedged by the variance swaps
using log returns. Therefore, in our case where we apply Taylor�s theorem with respect

to �St, we should invest in the variance swaps using absolute returns, Ractual;i, as de�ned

in (6.6).

Recall in Section 6.1.1 that there is a set of sampling points, fs1; s2; :::; sng, for each
contract. We invest in the variance swap at time t where the last two sampling points are

equal to t and t+�t: sn�1 = t and sn = t+�t and maturity equal to t+�t. Note that

�t does not have to be negligible here. At maturity, we receive the payo¤ �2realised��2strike,
where

�2realised =
1

�s (n� 2)

n�1X
i=1

�
Sti+1 � Sti

Sti

�2
=

1

�s (n� 2)

"�
�St
St

�2
+
n�2X
i=1

�
Sti+1 � Sti

Sti

�2#
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and the value of
n�2P
i=1
(Sti+1 � Sti)

2=S2ti is known as time t. In the following, we give the

hedging strategy to hedge the term

Q2 =
D2
2F (t+�t; St)

2
(�St)

2 = C2 (�St)
2 (6.11)

in equation (6.4) by constructing P(2)t .

Proposition 6.2.1 To hedge the term Q2 in equation (6.11) we invest in C2 units of

P(2)t at time t, consisting of �s (n� 2)S2t units of the variance swap with sampling points
f:::; sn�1 = t; sn = t+�tg , maturity t+�t, strike �2strike and

S2t�s (n� 2)
[exp (r�t)� 1]

"
�2strike �

1

�s (n� 2)

n�2X
i=1

�
Sti+1 � Sti

Sti

�2#
+
PV�s (n� 2)S2t
[exp (r�t)� 1]

units of cash in a risk-free bank account, where PV is the price of one unit of the variance

swap.

Proof. Let

Sn;2 =
1

�s (n� 2)

n�2X
i=1

�
Sti+1 � Sti

Sti

�2
=

1

�s (n� 2)
eSn;2: (6.12)

The initial investment at time t equals the price of the variance swap plus the deposit into

the risk-free bank account, which is equal to

C2�s (n� 2)S2t PV
�
1 +

1

exp (r�t)� 1

�
+
C2S

2
t�s (n� 2)

[exp (r�t)� 1]
�
�2strike � Sn;2

�
:

At maturity, the portfolio is worth

C2S
2
t�s (n� 2)

(�
�2strike � Sn;2

�
er�t

er�t � 1 +

"
1

�s (n� 2)

"�
�St
St

�2
+ eSn;2#� �2strike

#)

+C2PV
�s (n� 2)S2t er�t

er�t � 1

= C2 (�St)
2 +

C2S
2
t�s (n� 2)
[er�t � 1]

�
er�t � er�t + 1

� �
�2strike � Sn;2

�
+C2PV

�s (n� 2)S2t er�t
er�t � 1

= C2 (�St)
2 + C2S

2
t�s (n� 2)

�
�2strike � Sn;2

�
=
��
er�t � 1

��
+ C2PV

�s (n� 2)S2t er�t
er�t � 1 :
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Hence, the change of value of the hedging portfolio is equal to

C2 (�St)
2 + C2�s (n� 2)S2t PV

�
er�t

er�t � 1 � 1�
1

er�t � 1

�
= C2 (�St)

2 ;

as desired. �

6.2.2 Hedging with moment swaps

In the last section, we explained how to hedge the termQ2 in equation (6.11) using variance

swaps. The idea can be extended easily to moment swaps to hedge the term

Qi =
Di
2F (t+�t; St)

i!
(�St)

i = Ci (�St)
i (6.13)

for i = 3; 4; 5; :::, which can be done by investing in the i-th moment swap at time t with

sampling points sn�1 = t and sn = t+�t and maturity equal to t+�t. At maturity, we

receive the payo¤M (i)
realised �M

(i)
strike, where

M
(i)
realised =

1

�s (n� 2)

"�
�St
St

�i
+

n�2X
i=1

�
Sti+1 � Sti

Sti

�i#
=

1

�s (n� 2)

"�
�St
St

�i
+ eSn;i# ;

and the value of eSn;i is known at time t: In the following, we give the hedging strategy to
hedge the term Qi by constructing P(i)t .

Proposition 6.2.2 To hedge the terms Qi de�ned in (6.13), we invest in Ci units of P(i)t
at time t, consisting of �s (n� 2)Sit units of the i-th moment swap with sampling points
f:::; sn�1 = t; sn = t+�tg , maturity t+�t and strike M (i)

strike, and

Sit�s (n� 2)
[exp (r�t)� 1]

�
M
(i)
strike �

1

�s (n� 2)
eSn;i�+ �s (n� 2)SitPM

[exp (r�t)� 1]

units of cash in a risk-free bank account where PM is the price of one unit of the moment

swap.

Proof. The initial investment at time t equals the price of the moment swap and the
deposit into the risk-free bank account:

Ci�s (n� 2)SitPM
�
1 +

1

er�t � 1

�
+
CiS

i
t�s (n� 2)
er�t � 1

�
M
(i)
strike �

1

�s (n� 2)
eSn;i� :
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At maturity, the portfolio is worth

CiS
i
t�s (n� 2)

8<:
h
M
(i)
strike �

1
�s(n�2)

eSn;ii er�t
er�t � 1

+

"
1

�s (n� 2)

"�
�St
St

�i
+ eSn;i#�M (i)

strike

#)
+ CiPM

�
�s (n� 2)Siter�t

er�t � 1

�
= Ci (�St)

i +
CiS

i
t�s (n� 2)
er�t � 1

�
er�t � er�t + 1

� �
M
(i)
strike �

1

�s (n� 2)
eSn;i�

+CiPM

�
�s (n� 2)Siter�t

er�t � 1

�
= Ci (�St)

i + CiS
i
t�s (n� 2) =

�
er�t � 1

�
�
�
M
(i)
strike �

1

�s (n� 2)
eSn;i�+ CiPM ��s (n� 2)Siter�t

er�t � 1

�
:

Hence, the change of value of the hedging portfolio is equal to

Ci (�St)
i + Ci�s (n� 2)SitPM

�
er�t

er�t � 1 � 1�
1

er�t � 1

�
= Ci (�St)

i ;

as desired. �

6.2.3 Hedging with power jump processes of higher orders

In the last two sections, we discuss how to hedge
Pq

i=1Qi for q � 2 using variance swaps
and moment swaps. If we allow trading in the power jump assets, discussed in Section

6.1.2, we can hedge using power jump assets instead. Since we assume the underlying

is driven by the formula (6.1), the famous Doléans-Dade exponential, see Cont & Tankov

(2003, Proposition 8.21), has the solution

St = S0 exp

�
Xt +

�
b� �2

2

�
t

� Y
0<s�t

(1 + �Xs) exp (��Xs) ; (6.14)

where b is de�ned in (6.1) and �2 is the Brownian variance parameter. In the following, we

consider the simpli�ed case where there is at most one jump of X between t and t+�t, and

the general case where there can be in�nite number of jumps. Note that the latter case

might not be realistic because in reality, we only observe a discrete series of the underlying

stock S, while the power jump processes of the Lévy process with in�nite activity are not

observable. Therefore, it appears to be more practical to consider trading in moment

swaps rather than power jump processes. We consider both assets for completeness and
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theoretical interest.

The simpli�ed case

If �t is negligible compared to �St, from (6.1) and assuming there is at most one jump

of X between t and t+�t. From (6.1) and (6.8), we have

(�St)
i = Sit (�Xt)

i = Sit

24 X
0<s�t+�t

(�Xs)
i �

X
0<s�t

(�Xs)
i

35
= Sit

h
X
(i)
t+�t �X

(i)
t

i
= Sit

h
Y
(i)
t+�t � Y

(i)
t +mi�t

i
= Sit

h
exp (�r (t+�t))T (i)t+�t � exp (�rt)T

(i)
t +mi�t

i
: (6.15)

Therefore, we can derive the hedging strategy to hedge the term Qi by constructing P(i)t :

Proposition 6.2.3 If �t is negligible compared to �St, to hedge Qi; we invest in Ci units
of P(i)t ; consisting of Sit exp (�r (t+�t)) units of T

(i)
t and8<:Sit exp (�r (t+�t))T (i)texp (r�t)� 1 +

Sit

h
� exp (�rt)T (i)t +mi�t

i
exp (r�t)� 1

9=;
units of cash in a risk-free bank account.

Proof. The proof is included in Appendix B.2. �

If �t is not negligible compared to �St, assuming � = 0 and there is only one jump

of X between times t and t+�t as before, we have from (6.14)

�St = St+�t � St
= St exp (Xt+�t �Xt + b�t) (1 + �Xt) exp (��Xt)� St
= St [exp (b�t) (1 + �Xt)� 1] : (6.16)

Note that if �t ! 0; exp (b�t) ! 1, we have �St = St (�Xt), as in the case above:

Squaring both sides, we have

(�St)
2 = S2t [exp (b�t) (1 + �Xt)� 1]2

= S2t

n
exp (2b�t) (�Xt)

2 + 2 exp (b�t) [exp (b�t)� 1]�Xt + [exp (b�t)� 1]2
o
:
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Substituting �Xt by
h
�St
St
+ 1
i
exp (�b�t)� 1 using (6.16); we have

(�St)
2 = S2t

n
exp (2b�t) (�Xt)

2 + [exp (b�t)� 1]2
o

+2S2t exp (b�t) [exp (b�t)� 1]
��
�St
St

+ 1

�
exp (�b�t)� 1

�
= 2St [exp (b�t)� 1]�St + S2t exp (2b�t) (�Xt)

2 � S2t [exp (b�t)� 1]
2 :

Similarly to (6.15) above,

(�St)
2 = �S2t [exp (b�t)� 1]

2 + 2St [exp (b�t)� 1]�St
+S2t exp (2b�t)

h
exp (�r (t+�t))T (2)t+�t

� exp (�rt)T (2)t +m2�t
i
: (6.17)

We can then derive the hedging strategy to hedge the term Q2 in equation (6.4) by

constructing P(2)t when �t is not negligible compared to �St:

Proposition 6.2.4 If �t is not negligible compared to �St, to hedge the term Q2; we

invest in C2 units of P(2)t , consisting of S2t exp (2b�t) exp (�r (t+�t)) units of T
(2)
t and

1

[exp (r�t)� 1]

n
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t � S2t [exp (b�t)� 1]

2

+ 2St [exp (b�t)� 1]�St + S2t exp (2b�t)
h
� exp (�rt)T (2)t +m2�t

io
units of cash in a risk-free bank account.

Proof. The proof is included in Appendix B.3. �

To hedge Qi for i > 2 if �t is not negligible compared to �St, we start from (6.16),

(�St)
i = Sit [exp (b�t) (1 + �Xt)� 1]i

= Sit

8<:
iX

j=0

�
i

j

�
(�1)i�j exp (jb�t)

"
1 + j�Xt +

jX
k=2

�
j

k

�
(�Xt)

k

#9=; :

Substituting �Xt by
h
�St
St
+ 1
i
exp (�b�t)� 1 using (6.16), we have

(�St)
i = Sit

8<:
iX

j=0

�
i

j

�
(�1)i�j exp (jb�t)

�
1 + j

��
�St
St

+ 1

�
exp (�b�t)� 1

�
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+

jX
k=2

�
j

k

�
(�Xt)

k

#)

= Sit

iX
j=0

�
i

j

�
(�1)i�j exp (jb�t)

�
1 + j (exp (�b�t)� 1) + j exp (�b�t) �St

St

+

jX
k=2

�
j

k

�
(�Xt)

k

)
:

Let

c
(i;j)
0 = Sit

�
i

j

�
(�1)i�j exp (jb�t) f1 + j (exp (�b�t)� 1)g (6.18)

c
(i;j)
1 = Si�1t

�
i

j

�
(�1)i�j j exp ((j � 1) b�t) (6.19)

c
(i;j)
k = Sit

�
i

j

�
(�1)i�j exp (jb�t)

�
j

k

�
for k = 2; 3; :::; j , (6.20)

we have

(�St)
i =

iX
j=0

"
c
(i;j)
1 �St +

jX
k=2

c
(i;j)
k (�Xt)

k + c
(i;j)
0

#
:

Similar to (6.15) above,

(�St)
i =

iX
j=0

h
c
(i;j)
1 �St + c

(i;j)
0

+

jX
k=2

c
(i;j)
k

h
exp (�r (t+�t))T (k)t+�t � exp (�rt)T

(k)
t +mk�t

i#
:

Therefore, we can derive the hedging strategy to hedge the term Qi by constructing P(i)t
when �t is not negligible compared to �St:

Proposition 6.2.5 To hedge Qi for i > 2 if �t is not negligible compared to �St, we

invest in Ci units of P(i)t , consisting of
Pi

j=k c
(i;j)
k exp (�r (t+�t)) units of T (k)t for k =

2; 3; :::i; and

1

[exp (r�t)� 1]

iX
j=0

(
jX

k=2

c
(i;j)
k exp (�r (t+�t))T (k)t

+ c
(i;j)
1 �St +

jX
k=2

c
(i;j)
k

h
� exp (�rt)T (k)t +mk�t

i
+ c

(i;j)
0

)
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units of cash in a risk-free bank account, where c(i;j)0 , c(i;j)1 and c(i;j)k are de�ned in (6.18)-

(6.20).

Proof. The initial investment at time t is

Ci

8<:
iX

k=2

iX
j=k

c
(i;j)
k exp (�r (t+�t))T (k)t +

iX
j=0

Pj
k=2 c

(i;j)
k exp (�r (t+�t))T (k)t

exp (r�t)� 1

+
iX

j=0

h
c
(i;j)
1 �St +

Pj
k=2 c

(i;j)
k

h
� exp (�rt)T (k)t +mk�t

i
+ c

(i;j)
0

i
exp (r�t)� 1

9=;
= Ci

iX
j=0

(
jX

k=2

c
(i;j)
k exp (�r (t+�t))T (k)t +

Pj
k=2 c

(i;j)
k exp (�r (t+�t))T (k)t

exp (r�t)� 1

+

h
c
(i;j)
1 �St +

Pj
k=2 c

(i;j)
k

h
� exp (�rt)T (k)t +mk�t

i
+ c

(i;j)
0

i
exp (r�t)� 1

9=; :

At maturity, the portfolio is worth

Ci

iX
j=0

(
jX

k=2

c
(i;j)
k exp (�r (t+�t))T (k)t+�t +

Pj
k=2 c

(i;j)
k exp (�r (t+�t))T (k)t

exp (r�t)� 1 exp (r�t)

+
c
(i;j)
1 �St +

Pj
k=2 c

(i;j)
k

h
� exp (�rt)T (k)t +mk�t

i
+ c

(i;j)
0

exp (r�t)� 1 exp (r�t)

9=; :

The change of value of the portfolio is

Ci

iX
j=0

(
jX

k=2

c
(i;j)
k

h
exp (�r (t+�t))T (k)t+�t � exp (�rt)T

(k)
t +mk�t

i
+ c

(i;j)
1 �St + c

(i;j)
0

)
;

as desired. �

The general case

In the case where there are in�nite number of jumps from t to t+�t, we need the following

results on explicit formulae of CRP proved in Part I.

If �t is negligible compared to �St, from (6.1), (6.8) and Theorem 3.2.3, we have

(�St)
n = Snt (�Xt)

n = Snt (Xt+�t �Xt)
n = Snt

24 X
�n2In

�
(n)
�n;�t;�

S 0�n;�t;t + C
(n)
�t;�

35 : (6.21)
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In order to hedge (�St)
n, we can invest in the power jump integral process:

U(i1;i2;:::;ij);�t;t = exp (r�t)S
0
(i1;i2;:::;ij);�t;t

:

Note that since Y (i)�s are martingales,
n
S 0(i1;i2;:::;ij);�t;t; t � 0

o
�s are also martingales.

Therefore, the discounted versions of the U(i1;i2;:::;ij);�t;t are Q-martingales:

EQ

h
exp (�r�t)U(i1;i2;:::;ij);�t;tjFs

i
= EQ

h
S 0(i1;i2;:::;ij);�t;tjFs

i
= S 0(i1;i2;:::;ij);s�t;t; for t � s � t+�t:

Hence the market allowing trade in the bond, the stock and the power jump integral assets

remains arbitrage-free. From (6.21), we have

(�St)
n = Snt

24 X
�n2In

�
(n)
�n;�t;�

exp (�r�t)U�n;�t;t + C
(n)
�t;�

35
Proposition 6.2.6 If �t is negligible compared to �St, to hedge Qi; we invest in Ci units

of P(i)t , consisting of Sit�
(i)
�i;�t;�

exp (�r�t) units of U�i;�t;t for �i 2 Ii and
SitC

(i)
�t;�

(exp(r�t)�1)
units of cash in a risk-free bank account.

Remark 6.2.1 In this general case, we can only derive simple hedging strategy when �t
is negligible. Note that both power jump assets introduced by Corcuera et al. (2005)

and power jump integral assets introduced here are imaginary assets. In reality, we only

observe a discrete series of stock price, S, while there are an in�nite number of jumps

between any �nite time interval if the underlying Lévy process has in�nite activity. In

other words, the values of these assets cannot be observed in the market and hence cannot

be traded. The moment swaps introduced by Schoutens (2005) depend on the increment

of the underlying stock, �S, and can hence be observed and traded in reality. We include

the discussion on power jump assets for theoretical interest.

Alternatively, note that in S 0(i1;i2;:::;ij);�t;t, the integrand
R t1�
t � � �

R tj�1�
t dY

(i1)
tj

� � �dY (ij�1)t2

is a predictable function. Since we assume �t to be very small, we can hedge (�St)
n by

investing in the power jump assets. Let �(q)j;s be the predictable function such that

(�St)
n = Snt

24 X
�n2In

�
(n)
�n;�t;�

S 0�n;�t;t + C
(n)
�t;�

35 = nX
j=1

Z t+�t

t
�
(n)
j;s dY

(j)
s + Snt C

(i)
�t;�, (6.22)

where �(n)j;s �s can be calculated by rearranging the terms in
P

�n2In �
(n)
�n;�t;�

S 0�n;�t;t�s. We
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then have

(�St)
n =

nX
j=1

Z t+�t

t
�
(n)
j;s d

h
e�rsT (j)s

i
+ Snt C

(i)
�t;�

=

nX
j=1

Z t+�t

t
�
(n)
j;s

h
�re�rsT (j)s ds+ e�rsdT (j)s

i
+ Snt C

(i)
�t;�

=

Z t+�t

t

nX
j=1

�e�2rsT (j)s �
(n)
j;s de

rs + Snt C
(i)
�t;� +

nX
j=1

Z t+�t

t
�
(n)
j;s e

�rsdT (j)s :

Hence, to hedge (�St)
n, we invest

Pn
j=1�e�2r�tT

(j)
t� �

(n)
j;t� +

Snt C
(i)
�t;�

exp(r�t)�1 in a risk-less bank

account and invest �(n)j;t�e
�r�t units of T (i)t for j = 1; 2; :::; n.

6.2.4 Delta and gamma hedges in the literature

So far we have discussed the hedging strategies using moment swaps and power jump

assets. In this section, we give a brief introduction to delta and gamma hedging strategies

and extend it to obtain perfect hedging in a Lévy market in the next section. Let � be

the value of the portfolio under consideration. The delta and gamma dynamic hedging

strategies are constructed using a Taylor expansion:

�� =
@�

@S
�S +

@�

@t
�t+

1

2

@2�

@S2
�S2 +

1

2

@2�

@t2
�t2 +

@2�

@S@t
�S�t+ :::; (6.23)

where �� and �S are the changes in � and S in a small time interval �t. Hull (2003,

Chapter 14) gave detailed descriptions of the strategies in �nance. The delta of a portfolio

is de�ned as the rate of change of the portfolio with respect to the price of the underlying

asset, that is, @�@S : Delta hedging eliminates the �rst term on the right-hand side of (6.23).

The second term is deterministic. Suppose we write a option with price function �. In

delta hedging, we assume 1
2
@2�
@S2

�S2 + 1
2
@2�
@t2

�t2 + @2�
@S@t�S�t+ ::: = o (1), that is,

�� =
@�

@S
�S +

@�

@t
�t+ o (1) :

Hence, if we sell one unit of �, we should buy @�
@S unit of the underlying, so that the

change of value of the portfolio is

@�

@S
�S � �� = @�

@t
�t+ o (1) ;

which is deterministic plus a negligible term. A portfolio with zero delta is said to be

delta-neutral.
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The gamma of a portfolio is de�ned as the rate of change of the portfolio�s delta with

respect to the price of the underlying. It is the second partial derivative of the portfolio

with respect to asset price, that is, @
2�
@S2

: Since a position in the underlying asset itself or

a forward contract on the underlying asset both have zero gamma, they cannot be used

to change the gamma of a portfolio. To hedge the gamma risk of an option, we need to

trade in an instrument, such as another option, which is not linearly dependent on the

underlying asset. Let �1 be the gamma of a delta-neutral portfolio and �2 be the gamma

of a traded option. If we add w number of traded options to the portfolio, the gamma of

the portfolio becomes

w�2 + �1:

Therefore, to make the portfolio gamma neutral, we need w = ��1=�2. Note that

including the traded options may change the delta of the portfolio. Hence, the position

in the underlying asset has to be changed to maintain delta neutrality.

6.2.5 Extension of delta and gamma hedges

In this section, we extend the gamma hedge in order to obtain a perfect hedging strategy

in a Lévy market. Note that equation (6.23) is a multivariate Taylor expansion and

it is assumed that all the cross derivative terms are negligible. In equation (6.4), we

applied Taylor expansions twice to avoid the cross derivative terms, since the value of �t

is deterministic and known at time t. Hence, for �xed n, the approximation by:

F (t+�t; St +�St)� F (t; St) =
1X
i=1

Di
1F (t; St)

i!
(�t)i +

nX
i=1

Di
2F (t+�t; St)

i!
(�St)

i

(6.24)

is more accurate than

F (t+�t; St +�St)� F (t; St) =
1X
i=1

Di
1F (t; St)

i!
(�t)i +

nX
i=1

Di
2F (t; St)

i!
(�St)

i :

Moreover, in the literature, �t and �St are assumed to be very small (such that the cross

terms and higher terms are negligible). We provide the �exibility of specifying the values

of �t and �St such that static hedging is possible in some cases.

It is natural to extend the delta and gamma hedging strategies in the last section

to the n-th derivative of the portfolio with respect to the underlying asset using the

approximation of equation (6.24). Let F be the value of our portfolio to be hedged and

there are n � 1 traded options, Fi; i = 2; :::; n, which are linearly independent of each

other. Suppose we add wi number of Fi into our portfolio, i = 2; :::; n and add w1 number
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of the underlying asset, which is denoted by F1. We assume that Dj
2Fi (t+�t; St) are

nonzero for j = i and can be zero, or not, for j = 1; 2; :::; i� 1; i+ 1; :::; n:
To make the portfolio n-th moment neutral, that is, to make the n-th moment of the

portfolio zero, we require

Dn
2F (t+�t; St) +

nX
i=1

wiD
n
2Fi (t+�t; St) = 0:

To make the portfolio (n� 1)-th moment neutral, we require

Dn�1
2 F (t+�t; St) +

nX
i=1

wiD
n�1
2 Fi (t+�t; St) = 0:

In general, to make the portfolio k-th moment neutral for k = 1; :::; n, we need

Dk
2F (t+�t; St) +

nX
i=1

wiD
k
2Fi (t+�t; St) = 0 for k = 1; 2; :::; n.

Therefore, we have n equations for n unknown, wi�s. Note that whether the system of

equations is solvable depends on the values of Dk
2Fi (t+�t; St), i; k = 1; 2; :::; n: There-

fore, the traded options have to be chosen such that the system of equations are solvable.

6.3 Minimal variance portfolios in a Lévy market

So far we gave the perfect hedging portfolios, given that the moment swaps, power jump

assets and certain �nancial derivatives that depend on the same underlying asset, are

available in the market. In this section, we demonstrate how to use the minimal variance

portfolios derived by Benth et al. (2003) to hedge the higher order terms in the Taylor

expansion, investing only in a risk-free bank account, the underlying asset and, if possible,

variance swaps.

6.3.1 Minimal variance portfolio

Benth et al. (2003) derived the minimal variance hedging portfolio of a contingent claim in

a market such that the stock prices are independent Lévy martingales in terms of Malliavin

derivatives. In this section, we gave a modi�ed version of their results and will demonstrate

how to use them to hedge the terms Qi in the next section. Following Benth et al. (2003),

to derive the minimal variance portfolio, we need to con�ne ourselves to the case of Lévy

processes, � = f� (t) ; 0 � t � Tg, which are martingales on the �ltered probability space
under consideration. That is, E [� (t)] = 0 and E

�
�2 (t)

�
=
�
�2 +

R
R x

2� (dx)
�
t. Benth
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et al. (2003) called such processes Lévy martingales of the second order. From Benth

et al. (2003, equation (2.1)), � (t) has the following representation formula:

� (t) = �W (t) +

Z t

0

Z
R
x ~N (ds;dx) ; for 0 � t � T; (6.25)

where � 2 R+, W (t) is the standard Brownian motion and ~N (dt;dx) is the compensated

Poisson random measure of the Lévy process �, de�ned in De�nition 2.1.2.

Based on the methodology developed by Benth et al. (2003), we modify their results

to express the minimal variance portfolio for independent securities without referring to

Malliavin calculus. Benth et al. (2003) assumed the underlying asset is directly repre-

sented by the Lévy martingale, that is, St = � (t). We �nd it more natural to employ an

exponential model and allow a drift term in the model of the underlying asset since the

mean of � (t) is zero. By extending (6.1), we suppose there are k independent securities

prices S1; :::; Sk, modeled as follows:

dSj (t) = bjSj (t�) dt+ Sj (t�) d�j (t) ; j = 1; :::; k; (6.26)

where bj 2 R.
A replicable or hedgable claim � 2 L2 (
;FT ; P ) is a random variable such that there

exists a (predictable) adapted process ' (t) = ('1 (t) ; :::; 'k (t)) ; for 0 � t � T (a portfolio)

which replicates (or hedges) �; that is,

� = E [�] +
kX
j=1

Z T

0
'j (s) dSj (s) ; (6.27)

where ' is admissible, that is:

kX
j=1

E

�Z T

0
'2j (s) ds

�
<1:

' (t) ; 0 � t � T , is called a hedging portfolio and corresponds to the strategies to buy and

sell assets Sj (t) for j = 1; 2; :::; k. If every � 2 L2 (
;FT ; P ) is replicable, the market is
said to be complete (recall De�nition 1.2.1). Let A be the set of all admissible portfolios.
A market driven by Lévy processes is incomplete due to the random jumps of the prices, as

discussed in Section 1.2. Recall that in an incomplete market, perfect hedging by investing

only in a risk-free bank account and the underlying asset is not in general possible. We

would like to �nd an admissible portfolio ' which can replicate a claim which is closest

to the claim �: If closeness is measured in terms of variance, we want to �nd ' 2 A such
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that

E

240@� � E [�]� kX
j=1

Z T

0
'j (s) dSj (s)

1A235
= inf

 2A
E

240@� � E [�]� kX
j=1

Z T

0
 j (s) dSj (s)

1A235 : (6.28)

This is known as the minimal variance hedging for incomplete markets. The portfolio '

satisfying (6.28) is called the minimal variance portfolio.

Let L2 (
) = L2 (
;F ; P ) and de�ne a measure of the length of � by:

k�k =
�Z



j� (!)j2 P (d!)

�1=2
=
�
E
h
j�j2
i�1=2

:

Following Benth et al. (2003, De�nition 3.10 (a)), let D1;2 be the set of all � 2 L2 (
)

such that the chaos expansion de�ned in (4.11) satis�es the condition

k�k2D1;2 = E
�
�2
�
+

1X
n=1

X
j1;:::;jn=1;2

Z
Ujn

g(j1;:::;jn)n

�
�; u(jn)n

�2
L2(Gn�1)

d hQjni
�
u(jn)n

�
<1;

where Gn is de�ned in (4.2).

The chaotic representation given in (4.11) implies that every � satisfying some moment

conditions can be expressed in the form

� = E [�] +

kX
j=1

Z T

0
f1 (�; s; j) dWj (s) +

kX
j=1

Z T

0

Z
R
f2 (�; s; x; j) ~Nj (ds;dx) ; (6.29)

where f1 (�; s; j) and f2 (�; s; x; j) are predictable functions. Recall that in Part I we

derived the computationally explicit representation formula for f1 (�; s; j) and f2 (�; s; x; j)

when � is the power of increments of a Lévy process and in Section 5.1 gave the method

to obtain (6.29) when � is a smooth function with respect to the underlying asset.

The minimal variance portfolio consisting of independent securities driven by (6.26),

can be obtained by modifying Theorem 4.1 in Benth et al. (2003):

Proposition 6.3.1 For any � 2 D1;2, the minimal variance portfolio ' = ('1; :::; 'k) in
(6.28),

b� = E [�] +

kX
j=1

Z T

0
'j (s) dSj (s) ;
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admits the following representation:

'j (s) =
f1 (�; s; j)�j +

R
R xf2 (�; s; x; j) �j (dx)n

�2j +
R
R x

2�j (dx)
o
Sj (s)

;

where f1 (�; s; j) and f2 (�; s; x; j) are predictable functions de�ned in (6.29).

Proof. The proof is included in Appendix B.4. �

6.3.2 Hedging with minimal variance portfolios

In Section 6.2, we discuss how to hedge the terms Qi for i = 2; 3; 4; ::: perfectly: In

the current market, moment swaps (other than variance swaps) and power jump assets

are not liquidly traded. In this section, we discuss how to hedge the terms Qi using a

minimal variance portfolio using only a risk-free bank account and the underlying stock if

the variance swaps needed are not available; and the case where the variance swaps can

be traded.

Although variance swaps are traded in OTC markets, there might be times that the

appropriate variance swaps needed are not available. Hence, we �rstly discuss how to use

a minimal variance portfolio to hedge
Pq

i=2Qi using only a risk-free bank account and

the underlying stock. As in the Section 6.2.3, we consider the simpli�ed case where there

is at most one jump of X between t and t+�t, and the general case where there can be

in�nite number of jumps.

The simpli�ed case

If �t is negligible compared to �St; from (6.15),

qX
i=2

Qi =

qX
i=2

CiS
i
t

h
Y
(i)
t+�t � Y

(i)
t +mi�t

i
=

qX
i=2

CiS
i
t

�Z t+�t

t
dY (i)s +mi�t

�
: (6.30)

Proposition 6.3.2 If �t is negligible compared to �St, the minimal variance portfolio to
hedge

Pq
i=2Qi using only a risk-free bank account and the underlying asset is to

1) invest
qX
i=2

Ci
exp (r�t)� 1S

i
tmi�t
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in a risk-free bank account, and

2) buy
1

[�2 +m2]

qX
i=2

CiS
i�1
t mi+1

units of the underlying asset, St; where m is de�ned in (1.8).

Proof. The proof is included in Appendix B.5. �

In the followings, we discuss how to hedge the terms
Pq

i=3Qi using a risk-free bank

account, the underlying stock and variance swaps. If �t is negligible compared to �St;

similar to (6.30),
qX
i=3

Qi =

qX
i=3

CiS
i
t

�Z t+�t

t
dY (i)s +mi�t

�
: (6.31)

Therefore, we have the following hedging portfolio.

Proposition 6.3.3 If �t is negligible compared to �St; the minimal variance portfolio to
hedge

Pq
i=3Qi by investing in a risk-free bank account, the underlying asset and variance

swaps is given by:

1) buy

��s (n� 2)S2t

units of the variance swap at time t with sampling points f:::; sn�1 = t; sn = t+�tg , ma-
turity t+�t and strike �2strike, where

� =

Pq
i=3CiS

i�2
t

R
R x

i� (dx)R
R x

2� (dx)
=

Pq
i=3CiS

i�2
t mi

m2
;

PV is the price of one unit of the variance swap, mi are de�ned in (1.8) and for VG

process, it is given by Lemma 6.4.1.

2) invest nothing in the underlying asset, St,

3) invest

1

er�t � 1

(
qX
i=3

CiS
i
tmi�t+ �S

2
t

�
�s (n� 2)

�
�2strike � Sn;2

�
+ PV�s (n� 2)�m2�t

	)

in a risk-free bank account, where Sn;2 is de�ned in (6.12).

Proof. The proof is included in Appendix B.6. �
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The general case

If �t is negligible compared to �St; from (6.21),

(�St)
n = Snt

X
�n2In

�
(n)
�n;�t;�

S 0�n;�t;t + S
n
t C

(n)
�t;�;

where the expression can be calculated explicitly using Theorem 3.2.3. Let

qX
i=2

Qi =

qX
i=2

CiS
i
t

24X
�i2Ii

�
(i)
�i;�t;�

S 0�i;�t;t + C
(i)
�t;�

35
=

qX
j=1

Ci

Z t+�t

t
�
(q)
j;sdY

(j)
s +

qX
i=2

CiS
i
tC

(i)
�t;�,

where �(q)j;s is de�ned in (6.22).

Proposition 6.3.4 If �t is negligible compared to �St, the minimal variance portfolio to
hedge

Pq
i=2Qi using only a risk-free bank account and the underlying asset is to

1) invest
Pq

i=2
Ci

exp(r�t)�1S
i
tC

(i)
�t;� in a risk-free bank account, and

2) buy 1
[�2+m2]

Pq
j=1Ci�

(q)
j;sS

�1
t mi+1 units of the underlying stock, St; where mi is de�ned

in (1.8).

Proof. The proof is similar to the proof of Proposition 6.3.2. �

In the following, we discuss how to hedge the terms
Pq

i=3Qi using a risk-free bank

account, the underlying stock and variance swaps.

Proposition 6.3.5 If �t is negligible compared to �St; the minimal variance portfolio to
hedge

Pq
i=3Qi by investing in a risk-free bank account, the underlying asset and variance

swaps is given by:

1) buy

��s (n� 2)S2t

units of the variance swap at time t with sampling points f:::; sn�1 = t; sn = t+�tg , ma-
turity t+�t and strike �2strike, where

� =

Pq
i=1Ci�

(q)
j;sS

�2
t

R
R x

i� (dx)R
R x

2� (dx)
=

Pq
i=1Ci�

(q)
j;sS

�2
t mi

m2
;

PV is the price of one unit of the variance swap; mi are de�ned in (1.8) and for VG

process, it is given by Lemma 6.4.1.
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2) invest nothing in the underlying asset, St,

3) invest

1

er�t � 1

(
qX
i=2

CiS
i
tC

(i)
�t;� + �S

2
t

�
�s (n� 2)

�
�2strike � Sn;2

�
+ PV�s (n� 2)�m2�t

	)

in a risk-free bank account, where Sn;2 is de�ned in (6.12).

Proof. The proof is similar to the proof of Proposition 6.3.3. �

6.4 Simulation

In this chapter, we discuss the Variance Gamma model, the approximation of the deriv-

atives, Di
2F (t+�t; St), computational implementation and performance of the hedging

strategies.

6.4.1 Variance Gamma model

In the literature, many di¤erent kinds of models using Lévy processes have been intro-

duced. Schoutens (2003) for example provided a good review on Lévy market models.

We work with the Variance Gamma (VG) process, introduced by Madan et al. (1998),

in Parts II and III of this thesis because of its simplicity and ability to handle skewness

and kurtosis. It is analytically tractable and easy to simulate realisations from. In this

section, we give a brief introduction to the VG model.

The VG process is a three-parameter stochastic process which generalises Brownian

motion. This process is obtained by evaluating Brownian motion (with constant drift and

volatility) at a random time change given by a Gamma process. The extra parameters

control the skewness and kurtosis of the return distribution. Let

B (t; �; �) = �t+ �Wt;

where W = fWt; t � 0g is a standard Brownian motion. The process

B = fB (t; �; �) ; t � 0g

is a Brownian motion with drift � and volatility �. The VG process is de�ned as

X (t;�; �; �) = B (G (t; 1; �) ; �; �) ;
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where G = fG (t;�; �) ; t � 0g is a Gamma process with mean rate � and variance rate �;
independent of W: The VG process can be expressed as the di¤erence of two independent

increasing Gamma processes as

X (t;�; �; �) = Gp
�
t;�p; �p

�
�Gn (t;�n; �n) ; (6.32)

where

�p =
1

2

r
�2 +

2�2

�
+
�

2
; �n =

1

2

r
�2 +

2�2

�
� �

2
;

�p =

 
1

2

r
�2 +

2�2

�
+
�

2

!2
� = �2p�; �n =

 
1

2

r
�2 +

2�2

�
� �

2

!2
� = �2n�:

Equation (6.32) facilitates the simulation of the VG process since Gamma processes are

easy to simulate realisations from. The Lévy measure of the VG process is given by

� (x) dx =

8><>:
�2n
�n

exp
�
��n
�n
jxj
�

jxj dx for x < 0

�2p
�p

exp
�
��p
�p
x
�

x dx for x > 0:
(6.33)

The characteristic function of the VG process, �X (u; t;�; �; �) = E [exp (iuX (t;�; �; �))],

is given by

�X (u; t;�; �; �) =

�
1� i��u+ �2�

2
u2
�� t

�

: (6.34)

This characteristic function is useful in the derivation of the mean-correcting martingale

measure discussed in Section 7.3. Let S = fSt; t � 0g be the price of the underlying stock
price process at time t. Under the real world measure, we assume that the price is driven

by

St = S0 exp (mt+X (t;�S ; �S ; �S) + !St) ; (6.35)

where m is the mean rate of return on the underlying under the statistical probability

measure, X (t;�S ; �S ; �S) is a VG process and !S = 1
�S
ln
�
1� �S�S � �2S�S=2

�
: Although

the density function of the log returns of the underlying was derived in Madan et al.

(1998), it is quite involving and computationally time demanding. We therefore employ

the methods of moments to calibrate the models for the historical time series. Note that

under the risk-neutral measure,

St = S0 exp (rt+X (t;�RN ; �RN ; �RN ) + !RN t) ;

where r is the risk-free interest rate and !RN = 1
�RN

ln
�
1� �RN�RN � �2RN�RN=2

�
. The
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change of measure is explained in Section 7.3 of Part III of this thesis when we compare

the risk-neutral densities implied by historical time series and current option prices.

We have the following lemma to calculate the value of the compensators of the power

jump process, m =
R1
�1 xi�(dx), de�ned in (1.8).

Lemma 6.4.1 For a VG process,

mn =

Z 1

�1
xn� (dx) = (n� 1)!�n�1

�
(�1)n �nn + �np

�
:

Proof. The proof is given in Appendix B.7. �

6.4.2 Central di¤erence approximation of arbitrary degree

In this section, we quote the result by Khan & Ohba (2003, Section 1) on central di¤erence

approximation of arbitrary p-th degree derivative of a function. This method is employed

in the computational implementation of our hedging strategy later in Section 6.4.3. Khan

& Ohba (2003, Section 1) showed that Taylor�s series based central di¤erence approxima-

tion of arbitrary p-th degree derivative of a function f (t) at t = t0 can be written for an

order 2N as

f
(p)
0 =

1

T p

NX
k=�N

d
(p)
k fk; (6.36)

where T is the sampling period, fk denotes the value of function f (t) at t = t0 + kT , 2N

is an integer bigger than p and the coe¢ cients d(p)k are given by

d
(p)
0 = 0 if p is odd, otherwise d(p)0 = �2

NX
k=1

d
(p)
k ; (6.37)

and

d
(p)
k = (�1)k+c1 p!

k1+c2
CN;k

X
i

1

X (i)2
; for k = �N;�N+1; :::;�1; 1; :::; N�1; N; (6.38)

where

CN;k =
N !2

(N � k)! (N + k)!
;

c = largest integer less than or equal to (p� 1) =2; (6.39)

c1 = 1 if c is even, otherwise c1 = 0; (6.40)

c2 = 1 if p is even, otherwise c2 = 0; (6.41)
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and the vector X is generated in the following way:

1. Take a vector Y containing all integers from 1 to N except jkj (in Khan & Ohba

(2003, p. 121), it was except k, but from the derivation of the formula, it should be jkj).
2. The vector X contains the product of all the possible combinations of length c in

Y .

Remark 6.4.1 Khan & Ohba (2003, Section 2) derived a new �nite di¤erence approxi-

mation method but we �nd that the values of bd(p)(2k�1)=2 (please refer to the paper) are too
large when p � 3 and k = 0; which may a¤ect the accuracy of the approximation.

Assuming that the terms
P1

i=2
Di
1F (t;St)
i! (�t)i do not contribute to the approximation

signi�cantly and can be ignored (which is found to be true in our simulation study), we

have

F (t+�t; St +�St)� F (t; St) = D1
1F (t; St)�t+

qX
i=1

Di
2F (t+�t; St)

i!
(�St)

i ;

which is true as long as the derivatives Di
2F (t+�t; St) exist for i = 1; 2; 3; ::: and

D1
1F (t; St) exists. Note that the assumption

P1
i=2

Di
1F (t;St)
i! (�t)i t 0 is only for simplic-

ity here since we are more interested in �nding ways to hedge the �rst term of equation

(6.3). The deterministic terms
P1

i=2
Di
1F (t;St)
i! (�t)i can be hedged by investing in a risk-

free bank account, as discussed in the beginning of Section 6.2. Since the pricing formulae

for options with underlying driven by Lévy processes are in general not analytic, we need

to approximate the derivatives of the pricing formulae, Di
2F (t+�t; St), for i = 1; 2; 3; ::::

In this section, we discuss the numerical procedures used for this purpose.

We test the approximation in equation (6.36) on the exponential function: f (x) =

exp (x). We obtain f (p)0 and use them in the Taylor expansions

exp (x+�x)� exp (x) =
1X
i=0

f
(p)
x

i!
(�x)i :

At x = 0 and �x = 0:001; exp (0:001) = 1:001: We take the order of approximation,

2N; to be 22 and calculate the approximation for p = 1; 2; 3; :::; 20: The values of f (p)0
and exp (�x) by Taylor expansion are given in Appendix B.8. Note that f (p)0 should be

equal to 1 for all p = 1; 2; 3; :::: The errors are due to computational rounding since the

term T p decreases very quickly as p increases. As the values of each d(p)k fk are very large

while their sum,
PN

k=�N d
(p)
k fk; must be equal to T p. The accrued error from rounding

the digits of d(p)k fk results in
PN

k=�N d
(p)
k fk not equating to T p. Although the errors of

f
(p)
0 become large as p increases, Taylor expansions still give the correct approximation
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because (�x)i decreases very quickly as i increases.

6.4.3 Computational implementation

In this section, we discuss how to calculate the derivatives of the option prices. We note

that the most time consuming step in the approximation procedures is the calculation ofP
i

1
X(i)2

in �nding d(p)k in equation (6.38) in the central di¤erence approximation of deriv-

atives. It is because the vector X contains the product of all the possible combinations

of length c in Y , where Y contains all integers from 1 to N except jkj : For example, if
we want to approximate the 31st derivative and set N = 33 (the accuracy of the approxi-

mation increases with the value of N); c = 15 and k = 1, the number of values in Y is 32

and the number of possible combinations of length c in Y is

C3215 =
32!

15! (32� 15)! = 565; 722; 720;

which takes quite a while to calculate. Nevertheless, this calculation is the same for all

functions f (t). Therefore, we can build up a look-up table to store values of CN;k
P

i
1

X(i)2

for di¤erent N , c and k and use it for all options. Although the calculation for large N

can take a very long time, we only need to do this once.

Step 1 For a �xed N , construct the look-up table of CN;k
P

i
1

X(i)2
, where k =

0,1,2,:::,N and c = 3; 4; :::; cmax, where cmax = N � 1 (since 2N > p and c is the largest

integer less than or equal to p�1
2 ): Therefore, the maximum derivative obtainable is

(2N � 1)-th.

Algorithm

1. Construct the look-up table of CN;k
P

i
1

X(i)2
de�ned in equation (6.38):

2. Create a vector of length M of VG random variables, where

M is a large positive number.

3. Produce a k � i matrix of Z(i;k)� , which is de�ned in (6.43).

4. Calculate the sample paths of S with di¤erent values of the

current stock price, St.

5. Use Monte Carlo simulation to calculate the option prices

with respect to di¤erent values of the current stock price.

6. Calculate the derivatives with respect to the underlying,

Di
2F (t+�t; St), using the look-up table produced in Step 1.

7. Calculate the �rst derivative with respect to time, D1
1F (t; St) :

Table 6.4.3.1: The simulation algorithm to calculate the derivatives in Taylor expan-

sions.
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Note that we should loop through c and then k. For each value of c, we use a vector to

save the intermediate values of
P

i
1

X(i)2
for each k: Therefore, we only need to calculate

the combination of choosing c from Y once for each c.

In our simulation, we assume that the stock price process is driven by equation (6.1),

where X = fXt; t � 0g is a VG process, using di¤erent parameters depending on the type
of options used in order to demonstrate the hedging performance. For example, in our

simulation if we only use � > 0, the VG distribution is positive skewed, that is, there are

higher chances to have positive jumps than negative jumps. Therefore, the stock price

is generally increasing and down-and-in and down-and-out options would perform very

similarly to European options. It would then be di¢ cult to distinguish their performance

in our study. Therefore, to illustrate a range of behaviour, we choose � < 0 for these

options such that the changes in their prices would di¤er from those of European options.

For similar reasons, � = 0 is used for European options and � > 0 is used for up-and-

out and up-and-in options. Moreover, the parameters have been chosen such that the

simulated price process has similar statistical properties to the FTSE data series: Firstly,

we need a function to produce a matrix containing a large number of VG variables. A

VG process can be expressed as the di¤erence of two Gamma processes. Note that the

probability density function (pdf) of the Gamma variables is in the form

ft (g;�; �) =
��
�

��2t
� g

�2t
�
�1 exp

�
��
� g
�

�
�
�2t
�

� ; g > 0;

with mean �t and �t, while the in-built Gamma pdf of the some computing languages is

f (g; a; b) =
xa�1 exp

�
�x
b

�
ba� (a)

;

with mean ab and variance ab2. If it is the case, we need to input a = �2t
� and b = �

� :

Step 2 Create a vector of length M of VG random variables, where M is a large

positive number. M has to be su¢ ciently large such that the vector gives a sample of

random variables re�ecting the VG distribution.

In our simulation, we use M = 1; 000; 000. Recall from (6.14) that we can express

St+�t as:

St+�t = St exp (�Xt + b�t)
Y

t<s�t+�t
(1 + �Xs) exp (��Xs) ;

where �Xt = Xt+�t �Xt: In the simulations, we assume X has only one jump between

t and t + �t. Since all Lévy processes have stationary increments, Xt+�t � Xt has the
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same distribution as X�t. Therefore we may write:

St+�t = St exp (X�t + b�t) (1 +X�t) exp (�X�t) :

Since we use Monte Carlo simulations to calculate the expectation in the option pricing

formulae, we need to create a large number of sample paths of S. Also, to calculate the

derivatives of the option prices with respect to the current stock price using the �nite

di¤erence method given in Section 6.4.2, we need to calculate option prices using di¤erent

values of the current stock price. Note that the value of St+i�t in the future is equal to

the current value of S times some random variable, that is,

S
(k)
t+i�t = StZ

(i;k)
�t ; (6.42)

where

Z
(i;k)
�t =

iY
j=1

exp
�
X
(j;k)
�t + b�t

��
1 +X

(j;k)
�t

�
exp

�
�X(j;k)

�t

�
; (6.43)

X
(j;k)
�t are VG random variables and the superscript k represents it is the k-th sample path.

Hence, given that the number of sample paths is big enough to re�ect the distribution of

the values of Z(i;k)� �s, we can use the same set of Z(i;k)� �s to calculate the option prices for

di¤erent current stock prices. Therefore, we need to produce a k � i matrix of Z(i;k)� �s.

Step 3 Produce a k � i matrix of Z(i;k)� ; which is given by (6.43), using the VG

random variables created in Step 2.

Step 4 Using the matrix of Z(i;k)� obtained in Step 3, calculate the sample paths

of S by (6.42) with di¤erent values of the current stock price, St.

Step 5 Use Monte Carlo simulation to calculate the option prices with respect to

di¤erent values of the current stock price, using the sample paths of S generated in Step

4.

Step 6 Using the �nite di¤erent method given in Section 6.4.2, calculate the deriv-

atives with respect to the underlying, Di
2F (t+�t; St). This makes use of the look-up

table produced in Step 1.

Step 7 Similar to Step 6, calculate the �rst derivative with respect to time,

D1
1F (t; St) :

After calculating the derivatives, we show the performance of the proposed hedging

strategies in the next section.
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6.4.4 Performance of the hedging strategies

In this section, we investigate the performance of the hedging strategies given in Section 6.2

on European options and barrier options. To improve the accuracy of the approximation

given in (6.3), we need to re-scale the values of the underlying stock such that the �St used

in the Taylor expansion is small enough. We discuss this in detail below and compare the

approximation results with and without re-scaling. We truncate the in�nite sum in (6.3)

and calculate
Pp

i=1
Di
2F (t+�t;St)

i! (�St)
i +D1

1F (t; St)�t for some �xed p. By comparing

the values on the L.H.S. and R.H.S. of (6.3), it may be noted that for some q 2 N, the
terms Di

2F (t+�t;St)
i! (�St)

i ' 0 for i > q. This approximation is very useful, since in

practice it is ideal to hedge by investing in as few kinds of products as possible, due to

cost of transaction and administration. By �xing a tolerance level, �tol, we can �nd the

smallest value of p such that�����[F (t+�t; St +�St)� F (t; St)]�
"
D1
1F (t; St)�t+

pX
i=1

Di
2F (t+�t; St)

i!
(�St)

i

#�����
� �tol (6.44)

and we call it q. In real applications, this would be implemented on simulated data from

a model calibrated on historical data or option data. E¤ects from nonstationarity are not

considered. In order words, for a given tolerance level, �tol, the following approximation

is then assumed satisfactory:

F (t+�t; St +�St)� F (t; St) = D1
1F (t; St)�t+

qX
i=1

Di
2F (t+�t; St)

i!
(�St)

i : (6.45)

Thus the magnitude of �tol determines the number of terms required for a Taylor expansion

to obtain a satisfactory approximation. In option hedging, we want the number of terms

to be as small as possible since we have to invest in an additional �nancial derivative

to hedge each term. In practice as we noted before, transaction costs, bid-ask spreads

and the cost of administration make the trades of a large number of di¤erent �nancial

derivatives not preferable. Therefore, there is a trade-o¤ between the accuracy of the

hedging and the additional costs involved.

Re-scaling of the stock price

We use the �nite di¤erence method given in Section 6.4.2 to �nd the i-th derivatives with

respect to the stock price, that is, Di
2F (t+�t; St) ; in the approximation provided by

equation (6.45). The accuracy of the �nite di¤erence method increases as the step size of
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S decreases and the closer the step size is to �St; the smaller the q, which is de�ned in

equation (6.44) as the number of terms required in the Taylor approximation to achieve

pre-speci�ed accuracy, will be. Let � be a small positive number such that if the step

size of St is smaller than �, the accuracy of the �nite di¤erent method is su¢ cient. From

our simulation analysis, we found � = 0:001 to be su¢ cient. This assessment was based

on investigating the performance of the hedging strategies with � smaller than 0.001, and

determining that no noticeable improvement to the calculations was observed. We need

to re-scale the stock price process such that

�S0t =
�St
M

= �;

where M is some positive number. We show in Tables 6.4.4.1 and 6.4.4.2 the ap-

proximation results for the European options (using the algorithms given in Section

6.4.3, �St = 2, �t = 0:25 and the step size used in the �nite di¤erence approximation

equals 0.001) with and without re-scaling. The second column gives the p-th derivative,

Dp
2F (t+�t; St), and the third column gives the approximation by Taylor expansion up

to i = p : D1
1F (t; St +�St) (�t) +

Pp
i=1

Di
2F (t+�t;St)

i! (�St)
i : By direct calculation,

F (t+�t; St +�St) � F (t; St) = �158:696807:

By Taylor expansion,

F (t+�t; St +�St) � F (t; St) = D1
1F (t; St +�St) (�t) +

pX
i=1

Di
2F (t+�t; St)

i!
(�St)

i :

D1
1F (t; St +�St) = �642:787229 and D1

1F (t; St +�St) (�t) = �160:696807:

Table 6.4.4.1: The approximation results of European options without re-scaling the

stock price.

Table 6.4.4.2: The approximation results of European options with re-scaling the stock
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price and keeping M varied.

Clearly, the approximation of some higher order derivatives are incorrect without re-

scaling. With �tol = 0:01 (de�ned in (6.44)), q = 6 with re-scaling. Without re-scaling,

the approximation error is always bigger than �tol when q � 20:
In real applications, we do not know the value of �St in advance. Let �Stmin be the

smallest possible change of stock price from times t to t+�t, that is, the tick size of the

stock. We should �x M such that

�Stmin
M

= �:

Assume �Stmin = 1 and � = 0:001, then we should �x M = 1000: Hence, for �St = 2,

we have �S0t =
2

1000 = 0:002: We show the approximation results in Table 6.4.4.3.

Table 6.4.4.3: The approximation results of European options with re-scaling the stock

price and keeping M �xed.

With M �xed, q = 14: The value of q is much bigger than before, when �S0t took the

value 0:001. This is due to the fact that when the step size of the �nite di¤erence method

is closer to �S0t, the approximation is more e¢ cient.

Results on performance test

In this section, we give the performance of the static and dynamic hedging strategies

on European, up-and-out, up-and-in, down-and-out and down-and-in options. We in-

vestigate how many terms in the Taylor expansions are needed to obtain a satisfactory

approximation, that is, we determine the value of q for a given �tol, which are de�ned in

the beginning Section 8.7. In our simulations, we set �tol = 0:01: It is because in practice,

we are hedging the prices of the options, the lowest price change is 0.01. We assume the

current stock price, S0, is 5000 and the strike price of the options, K, are 5000. Note

that our strategies work for all values of K. We consider the cases where the change in

the price of the stock price �St is equal to 1, 2, ..., 10. For static hedging, we assume

�t = 0:25, approximately 3 months, and the options are expiring in 3 months, that is,

T = 0:25. For dynamic hedging, we set �t = 9:5129 � 10�6, approximately 5 minutes,
and T = 1:1416� 10�4, approximately 1 hour. The reason why we do not consider very
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small �St is that, in practice, most of the assets traded in the market have a tick size

of 0.5 or 1. After a very short period of time, �St can either be zero or a multiple of

the tick size. It is not possible for j�Stj to be smaller than the tick size if it is nonzero.
The assumption of �St being very small when �t is small would lead to fast convergence

of the Taylor expansion, but it is not a realistic assumption, especially in a Lévy market

with jumps.

Figure 6.4.4.1: The approximation error in static hedging of European options. The

x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured in

blue when the approximation error � 0:01 and in purple when the approximation error is
between 0:01 and 0:02.

Figure 6.4.4.2: The approximation error in dynamic hedging of European options. The

x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured in

blue when the approximation error � 0:01 and in purple when the approximation error is
between 0:01 and 0:02.

The performance of static and dynamic hedging of European options is given in Figure

6.4.4.1 and Figure 6.4.4.2. We can see that the values of q required are the same in the

cases of static and dynamic hedging. The value of q, that is, the number of terms required
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in the Taylor approximation, such that the error � �tol increases gradually as the value of

�St increases. This veri�es the discussion given in the beginning of this section, that is,

for a given tolerance level, the number of terms required in the Taylor expansions is �nite.

In reality, for static hedging where the hedging period lasts for 3 months, we expect �St
to be much bigger than 10. We note that such scenarios are much more computationally

expensive. The utility of static hedging is validated by the simulations with smaller jump

sizes. The values of q for di¤erent values of �St is also given in Table 6.4.4.4.

The performance of dynamically hedging of up-and-out options is given in Figure

6.4.4.3. We assume the barrier is given by H = 5010:5: Contrary to the approximation

results of the European options, the increase in the approximation errors as �S increases

is non-monotonic for this realisation. This is due to that fact that the option becomes

worthless once the price of the underlying stock becomes greater than the barrier, H,

that is, the option is �knocked-out�. Therefore, if the option in some of the simulated

scenarios becomes worthless, the calculated option price would decrease accordingly. The

non-monotonic increase in the approximation error is due to these random knock-outs in

our simulations. This result suggests that in determining the value of q, extra care need

to be taken. For example, from Figure 6.4.4.1 we determine that q = 24 is su¢ cient to

hedge the option if �S � 4: However, when q = 25 at �S = 4; the approximation error
becomes bigger than the tolerance level, �tol. Hence, we should look at subsequent values

of q to ensure the the approximation errors are below the tolerance level. In this case, we

should choose q = 26: The values of q for di¤erent values of �St is also given in Table

6.4.4.4.

Figure 6.4.4.3: The approximation error in dynamic hedging of up-and-out options.

The x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured

in blue when the approximation error � 0:01 and in purple when the approximation error
is between 0:01 and 0:02.

The performance of dynamically hedging of up-and-in options is given in Figure 6.4.4.2.
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We assume the barrier is given by H = 5010: We observe that the error is less then �tol
when �S = 1 at q = 0. It is because the change in values of the option is less than

�tol. Therefore, no hedging is needed. However, in a real life situation, we would not

know for sure that the option price would not change and hence we would have to use

Taylor expansions to hedge. If �S = 0, we need �ve terms in the Taylor expansion in

order to hedge, that is, q = 5. For �S = 2, we would need q = 13. Note that although

the error is less than �tol at q = 11, the error is bigger than �tol at q = 12 and hence we

choose q = 13 for the reason outlined in the case of up-and-out options. The values of q

for di¤erent values of �St is given in Table 6.4.4.4.

Figure 6.4.4.4: The approximation error in dynamic hedging of up-and-in options. The

x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured in

blue when the approximation error � 0:01 and in purple when the approximation error is
between 0:01 and 0:02.

Figure 6.4.4.5: The approximation error in dynamic hedging of down-and-out options.

The x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured

in blue when the approximation error � 0:01 and in purple when the approximation error
is between 0:01 and 0:02.
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The performance of dynamically hedging of down-and-out and down-and-in options

is given in Figure 6.4.4.5 and Figure 6.4.4.5. We assume their barriers are given by

H = 4900 and H = 5000:5, respectively: The performance of dynamically hedging down-

and-out options is very similar to that of European options because we set the barrier to be

100 below the current stock price. During the �ve minutes hedging period, the stock price

would hardly goes down by 100 and therefore the down-and-out options behave like an

European options. Comparatively, the performance of dynamically hedging down-and-in

options is di¤erent from that of European options. The values of q for di¤erent values of

�St is also given in Table 6.4.4.4.

Figure 6.4.4.6: The approximation error in dynamic hedging of down-and-in options.

The x -axis gives the value of q and the y-axis gives �S. The area of the graph is coloured

in blue when the approximation error � 0:01 and in purple when the approximation error
is between 0:01 and 0:02.

The performance of hedging some other exotic options, such as lookback options and

Asian options, can be obtained similarly since we employ Monte Carlo simulation in cal-

culating the option prices. Recall in Section 6.4.3, as the positive integer N increases,

the number of derivatives that can be calculated increases. The results show that the

number of derivatives needed to achieve a satisfactory approximation, q, increases rapidly

with increasing �St. Note that the bigger the value of �St, the slower the convergence

rate of Taylor expansion and this is the reason why dynamic hedging is more popular in

the literature. From our simulation results, we note that the derivatives, D
i
2F (t+�t;St)

i ,

become very small as i increases, but the value of (�St)
i increases very rapidly. Therefore,

we cannot ignore the terms D
i
2F (t+�t;St)

i! (�St)
i. To enable perfect hedging using moment

swaps, power jump assets or some other traded derivatives depending on the same under-

lying asset, the market has to allow trading in these �nancial derivatives in a unit as small

as Di
2F (t+�t;St)

i .
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In summary, as long as we can �nd the q such that the Taylor approximations are

accurate for all possible values of �St under consideration, the perfect hedging using

moment swaps, power jump assets or other traded derivatives depending on the same

underlying asset works very well.

In static hedging of European options in Figure 6.4.4.1,

�St 1 2 3 4 5 6 7 8 � 9
q 6 14 20 26 32 38 44 48 > 59

In dynamic hedging of European options in Figure 6.4.4.2,

�St 1 2 3 4 5 6 7 8 � 9
q 6 14 20 26 32 38 44 48 > 59

In dynamic hedging of up-and-out options in Figure 6.4.4.3,

�St 1 2 3 4 5 6 7 8 � 9
q 6 14 20 26 32 38 42 48 > 59

In dynamic hedging of up-and-in options in Figure 6.4.4.4,

�St 1 2 3 4 5 6 7 8 9 � 10
q 5 13 19 26 33 38 43 48 52 >59

In dynamic hedging of down-and-out options in Figure 6.4.4.5,

�St 1 2 3 4 5 6 7 8 � 9
q 6 14 20 26 32 38 44 48 > 59

In dynamic hedging of down-and-in options in Figure 6.4.4.6,

�St 1 2 3 4 5 6 7 8 � 9
q 8 14 21 28 34 40 44 48 > 59

Table 6.4.4.4: The values of q for given �St in static hedging of European options,

dynamic hedging of European, up-and-out, up-and-in, down-and-out and down-and-in

options.



Summary of Part II

In this part, we provided some perfect hedging strategies and minimal variance portfolios

in a Lévy market. Many �nancial institutions hold derivative securities in their portfolios,

and frequently these securities need to be hedged for extended periods of time. Failure

to hedge properly can expose an institution to sudden swings in the values of derivatives,

such as options, resulting from large, unanticipated changes in the levels or volatilities

of the underlying asset. Research in the techniques employed for hedging derivative

securities is therefore of crucial importance. Under the assumption of the famous Black-

Scholes model, the market is complete and an European option can be hedged perfectly by

investing in a risk-free bank account and the underlying stock. However, there is statistical

evidence, such as the volatility smile, that the Black-Scholes model is not su¢ ciently

�exible to model the price process. As a result, the study of Lévy process, which is

a generalisation of Brownian motion with jumps, has become increasingly important in

mathematical �nance. It is well known that if the underlying asset is driven by a Lévy

process, the market is not complete, that is, a contingent claim cannot be hedged using

only a risk-free bank account and the underlying asset. By applying a Taylor expansion

to the pricing formulae, we derived dynamic perfect hedging strategies of European and

some exotic options by trading in moment swaps, power jump assets or certain traded

derivatives depending on the same underlying asset. In the case of European options,

static hedging can also be achieved. We extended the delta and gamma hedging strategies

to higher moment hedging by investing in other traded derivatives depending on the same

underlying asset. We demonstrated how to use the minimal variance portfolios derived

by Benth et al. (2003) to hedge the higher order terms in the Taylor expansion, investing

only in a risk-free bank account, the underlying asset and, potentially, variance swaps. We

explicitly addressed numerical issues in the procedures, such as the approximation of the

derivatives in the Taylor expansion, as well as investigated the performance of the hedging

strategies. If as many derivatives as the Taylor expansion needed for accuracy can be

determined and the �nancial derivatives required to hedge are available in the speci�ed

amounts, perfect hedging is possible.
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Part III

Trading on the deviations of
history implied and option implied

distributions
In this part, we present an option trading strategy which involves comparing the prob-

ability distributions of the underlying at maturity implied by the historical data series

of the underlying, and the current market prices of the options. The former distribu-

tion contains information about the underlying from observing historical data series, thus

forming the basis for prediction. The current option prices contain information about

future values of the underlying predicted by the investors of currently sold options. Since

investors of options are risk averse, the distributions implied by option prices generally

have fatter tails than the distribution implied by historical data. Due to these di¤erences

in the shape of the two distributions, we may construct an option trading strategy, using

the extra information available. The two densities are assumed to follow the Variance

Gamma (VG) model for ease of implementation. We simulate the underlying from today

to maturity to see which options are overpriced and construct a trading portfolio at the

day which both densities are estimated. The performance of the trading strategy under

di¤erent market conditions are investigated and reported. Simulation results show that

the trading strategy has a high earning potential.

This part is arranged as follow: Section 7.1 gives a brief review on skewness and kurtosis

trades in the literature, Section 7.2 gives the overview of our trading strategy, Section 7.3

introduces the mean-correcting martingale measure used to obtain the risk neutral density

of the history implied distribution and Section 7.4 gives an introduction of an e¢ cient

frontier which is used in determining the optimal variables for our strategy. Sections

8.1-8.5 give the algorithm for estimating the densities implied by history and current

option prices, investigate the prediction of the direction of movement of the underlying

and discuss the use of dynamic trading volume to control maximum possible loss. Section

8.6 introduces the risk-return analysis used to determine the optimal set of parameters of

our strategy. Section 8.7 gives the performance of the strategy and Chapter 8.8 introduces

portfolio insurances which can be used in combination with our trading strategy. Some
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concluding remarks are provided at the end of this part. Proofs, �gures and tables are

included in Appendix C.



Chapter 7

Background on skewness and
kurtosis trades

7.1 Skewness and kurtosis trades in the literature

The study of the pro�tability of trading the deviations of the risk-neutral density of the

underlying inferred from the historical time series and the risk-neutral density implied by

the option prices has been the interest of the literature, see, for example, Aït-Sahalia et al.

(2001), Blaskowitz (2001), Blaskowitz & Schmidt (2002) and Blaskowitz et al. (2004).

Such studies were based on the assumption that the underlying process is driven by the

Black-Scholes model. These authors considered so-called �skewness�and �kurtosis�trades,

as the trades are initiated only if the skewness/kurtosis of the option implied density is

higher than that of the history implied density. Corcuera et al. (2005) actually considered

trading in power jump assets, among which the third and forth power jump processes are

related to the skewness and kurtosis of the underlying driving process respectively. We

derived some hedging strategies using power jump processes in Part II of this thesis.

Although plots of density functions (reproduced as Figures C.1.1 and C.1.2 in Appendix

C.1) were included in their papers, no quantitative analysis was carried out to obtain the

optimal trading portfolio. The plots of density functions were merely used to explain the

concept of making pro�ts from the deviations of the two distributions. In applications,

only the values of the skewness and kurtosis of the two distributions were compared. Aït-

Sahalia et al. (2001) introduced S1, S2, K1 and K2 trades (detailed in Table C.1.1), which

were initiated only when the corresponding skewness or kurtosis condition was satis�ed and

the strikes and volumes of the options bought/sold were pre-speci�ed. Figures C.1.3 and

C.1.4 showed the payo¤s of S1 and K1 trades respectively. It is clear that the strategies

are not practical since the possible loss is unbounded. More importantly, if the option
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implied risk-neutral density is negative skewed or has a higher kurtosis than the normal

distribution, this does not imply that it must have the shapes as given in Figures C.1.1
or C.1.2. Hence, the trades described in Table C.1.1 do not take full advantage of the

comparison: a full distributional comparison is needed. Each trade should be tailor-made

using a dynamic algorithm which produces the best portfolio according to the investors�

preference. Blaskowitz (2001) further investigated the pro�tability of buying and selling

a prede�ned range of options to change the shapes of the payo¤ functions. Again, the

portfolios suggested are static because the strikes and volumes of the options traded are

pre-speci�ed. In this part of the thesis, we extract more information from the density

implied from the historical time series of the underlying and that implied from current

option prices. The densities approximated from the data are compared and the ranges of

the underlying where the options are overpriced are calculated and trading volumes are

selected to maximise pro�ts.

7.2 Strategy overview

Inspired by the research papers cited in Section 7.1, we develop a model which gener-

ates trading strategies for options in a Lévy market. The development of the model is

motivated by the observation that the densities of the values of the underlying asset at

maturity implied by the historical data of the underlying and the current option prices are

di¤erent. These deviations suggest that the current market prices of options with certain

strikes are mispriced. From the option pricing formulae given in equations (8.3) and (8.4)

in Section 8.1, we will see that the option prices are a function of the density of the value

of the underlying asset at maturity. Therefore, a mismatch of the densities would indicate

the range of strikes at which the options might be mispriced. Since there would be a range

of such strikes, we need to de�ne two parameters, one for the left tail, RL, and one for the

right tail, RR, which indicate exactly which strike we use for the strategy. Totally seven

parameters will be introduced to describe the strategy proposed in this paper. The values

of these parameters will be optimised later using e¢ cient frontier analysis, as described

in Section 7.4. We de�ne the parameter, p, which helps us to predict whether a rise or

a fall in the underlying is likely based on observing the density implied from the current

option prices. Since these three parameters, RL, RR and p, are de�ned from the density

functions, we call them the �density parameters�. From a practical point of view, we

would like to develop a strategy that could not lead to in�nite loss and at the same time

maximise pro�t. Therefore, we de�ne two parameters which indicate the maximum and

minimum amounts, Lmax and Lmin, of money we would invest in the strategy, given the

current level of capital at hand. We also de�ne a parameter indicating the initial capital,
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c, assigned for the trading strategy. Finally, we need a parameter to determine the default

volume of trading, v, that is, the amounts of options we originally specify to trade in a

day. Note that our strategy may change the trading volume according to the maximum

and minimum amounts of money we are allowed to invest. The parameters c, v, Lmax
and Lmin are then optimised using e¢ cient frontier analysis. Since these four parameters

are related to how much should be invested in the strategy, they are called the �monetary

parameters�. In the following, we describe the de�nitions of these seven parameters in

detail and then perform e¢ cient frontier analysis to obtain the set of optimised parameters

in terms of expected annual growth rate and Conditional Value at Risk (CVaR).

7.3 The mean-correcting martingale measure

In this part we calibrate the VG model (see Section 6.4.1) with historical data of the

underlying asset of an option and apply a change of measure method to obtain a risk-

neutral distribution of the price of the underlying at maturity. A way to obtain an

equivalent martingale measure is by mean-correcting the exponential of a Lévy process,

see Schoutens (2003, p. 79). For the VG model given in (6.35), this can be done by the

parameter m. We estimate all the parameters involved in the process, given the historical

data series, with the formula St = S0 exp (X (t;�S ; �S ; �S)). Then, together with (6.34)

and (6.35), the m parameter for the mean-correcting equivalent martingale measure in the

VG model is, according to Schoutens (2003, p. 79), given by

m+ ! = r � ln�X (�i; 1;�; �; �) = r � ln
�
1� �� � �2�

2

�� 1
�

= r +
1

�
ln

�
1� �� � �2�

2

�
= r + !;

where ! = 1
� ln

�
1� �� � �2�

2

�
de�ned in (6.35). Hence, we should set m = r. We can

check easily that our new discounted stock price is a martingale: for s < t;

E [exp (�rt)StjFs]

= E [S0 exp (X (t;�; �; �) + !t) jFs]

= S0E [exp fX (t;�; �; �)�X (s;�; �; �) +X (s;�; �; �) + !tg jFs]

= S0 fE [exp fX (t;�; �; �)�X (s;�; �; �)g] exp (X (s;�; �; �) + !t)g

= S0 fexp f�! (t� s)g exp (X (s;�; �; �) + !t)g

= S0 fexp (X (s;�; �; �) + !s)g

= exp (�rs)Ss:
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7.4 E¢ cient frontier

The e¢ cient frontier was �rst de�ned by Markowitz (1952) in his groundbreaking paper

that launched portfolio theory. The theory considers a universe of risky investments and

explores what might be an optimal portfolio based upon trading in a combination of those

possible investments. Using the same idea, we explore the optimal set of parameters

based on comparing the expected risk and return level obtained from simulation.

According to Markowitz (1952), every possible asset combination can be plotted in

a risk-return space, and the collection of all such possible portfolios de�nes a region in

this space. The line along the upper edge of this region is known as the e¢ cient frontier

(or �the Markowitz frontier�). Combinations along this line represent portfolios for which

there is lowest risk for a given level of return. Conversely, for a given amount of risk, the

portfolio lying on the e¢ cient frontier represents the combination o¤ering the best possible

return. Mathematically the e¢ cient frontier is the intersection of the set of portfolios with

minimum risk and the set of portfolios with maximum return.

The e¢ cient frontier will be convex since the risk-return characteristics of a portfolio

change in a non-linear fashion as its component weightings are changed. The e¢ cient

frontier is a parabola (hyperbola) when expected return is plotted against risk. Points

below the frontier are suboptimal. A rational investor will hold a portfolio only on the

frontier.

In this part of the thesis, we employ e¢ cient frontier analysis to obtain the optimal

set of parameters. We de�ne the range of each parameter to be used. For each set

of parameters� values, a large number of realisations are simulated to approximate the

expected return measured by the Compounded Annual Growth Rates (CAGR)

CAGR =
�
ending value of total capital
starting value of total capital

� 1
number of years

� 1: (7.1)

Instead of using the variance to represent the risk, we measure risks by the Conditional

Value at Risk (CVaR) at level �, where we set � = 95%. CVaR is used because it can

measure the downside risk, that is, the likelihood that a security or other investment will

decline in price, more e¤ectively. It is because CVaR is subadditive and risk-sensitive,

opposed to the more well-known risk measure Value at Risk (VaR). For more details

of the comparison between di¤erent risk measures, we refer the reader to Martin (2004,

Chapter 9). To �nd the CVaR, we need to �nd the VaR �rst, which is the value Q such

that P (X < Q) = �; for some given tail probability P , where X is the CAGR. The VaR

is then �Q. The CVaR is the expectation conditional on the loss exceeding Q, again with
a minus sign: CVaR = �E [XjX < Q]. It is clear that jCVaRj > jVaRj because all the
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events that give worse outcomes than a loss of Q are being averaged when the CVaR is

computed.



Chapter 8

The option trading strategy

In this chapter, we describe the option trading strategy step-by-step and give detailed

explanation of the methodology. We �rst give the algorithm of our strategy in Table

8.1.1. We will discuss it in more detail in the following sections.

8.1 Estimation of the densities implied by history and cur-

rent option prices (Steps 1-7)

We compare the risk-neutral densities implied by the options traded in the markets and by

the historical data series of the underlying. The former distribution contains information

about the underlying from observing historical data series, thus forming the basis for

prediction. The current option prices contain information about future values of the

underlying predicted by the investors of currently sold options. Since investors of options

are risk averse, the distributions implied by option prices generally have fatter tails and

are more negatively skewed than the distribution implied by historical data. Due to

these di¤erences in the shape of the two distributions, an option trading strategy may

be constructed, using the extra information available. The two densities are assumed to

follow the Variance Gamma (VG) model for ease of implementation. The underlying is

simulated forward to see which options are overpriced and construct a trading portfolio

at the day at which both densities are estimated. FTSE daily return data from 29th

March 2000 to 23rd November 2007 are used as the historical price series and the options

traded on each day, with 80 di¤erent strike prices and maturity of 3 months are used in

estimating the option implied densities. On each trading day, we perform the density

comparison and construct an option trading strategy. The length of the historical data

series used on each trading day to calibrate the model has to be chosen with care. If the

time series is too long, it cannot provide information about current market conditions. If

129
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The Algorithm

1. Determine the time window to be used for prediction using historical

data series.

2. Estimate the parameters of the VG model using the historical data series.

3. Simulate N replicates of the underlying at maturity using the �tted VG

model from Step 2.

4. Estimate the density function by applying a smoothing kernel method.

5. Calibrate the VG model with the option prices in the market.

6. Simulate N replicates of the underlying at maturity using the �tted VG

model from Step 5.

7. Estimate the density function by applying a smoothing kernel method as

done in Step 4.

8. Estimate the optimal value of the prediction parameter, p.

9. Fix the values of the grid for the density parameters: RR and RL:

10. Fix the values of the grid for monetary parameters: c, Lmax, Lmin and v.

11. The maximum and minimum of loss allowed are given by cLmax and cLmin.

12. For each set of the parameters from the grids de�ned in Steps 9 and 10,

choose the trading volume (by changing the default volume v), the strikes

of the put and call options to buy such that the maximum possible loss is

smaller than cLmax but is bigger than cLmin:

13. For each trading day in the history where the value of the underlying at

maturity is already known, calculate the pro�t from the trading portfolio

constructed in Step 12.

14. Repeat Steps 2-7,12,13 for each trading day in the history to calculate

the expected risk and return for each set of parameters from the grids

de�ned in Steps 9 and 10.

15. Plot the expected risk and return on a graph for each set of parameters,

yielding the e¢ cient frontier.
Table 8.1.1: The algorithm for our trading strategy.

it is too short, the calibration procedure will not be accurate enough. One of the main

challenges to our trading strategy is to predict the direction of movement of the underlying,

which is discussed in detail in Section 8.4. Hence, we want to choose the length, � ; such

that the prediction error is minimised:

� = min
� 0

1

T � � 0 + 1

TX
t=� 0

(St � St�� 0)2 ; (8.1)
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where T is the total number of data points available and T � � 0 + 1 must be reasonably

large for the result to be accurate.

Step 1: Given the historical data series of the underlying, �nd � which is given

by equation (8.1).

Figure 8.1.1: The time series of FTSE.

For FTSE 100, we �nd that � is approximately equal to 9 months. Figure 8.1.1 gives

the evolution of the FTSE index over 16 years and the data series with 9-month time

lag. Since we need to predict the trend of the underlying for the next 3 months, the

length of the historical data used should be equal to 3 months as well so as to correctly

capture the statistical behaviour in a 3-month period. For example, if we perform the

density comparison today, we use historical data of 9 months to 6 months old to calibrate

the model. The whole 9 months period is not used because it is well known that the

stock price process is not stationary. To minimize the e¤ect of nonstationarity of the

parameters, we calibrate the model on data of the same length as the time period we

simulate.

Step 2: For each trading dayD, calibrate the parameters of the model using historical

data of � to � �M older than D, where M is the time length from D to maturity of the

options under consideration. In our case, we use the VG model, discussed in Section
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6.4.1.

Note that other stochastic models can be used to describe the dynamics of the under-

lying stock process. The VG model is used for its simplicity and the ability to handle

skewness and kurtosis explicitly. For example, the stochastic volatility model using a VG

process (VGSAM), introduced by Carr et al. (2003), can be used such that the e¤ects due

to stochastic volatility can be handled. In the VG model, the volatility of the underlying

process is assumed to be deterministic and the process is assumed to be stationary. The

VGSAM allows the modelling of the variability of the volatility as observed in market

data. Therefore, the deviations of the distributions of the underlying at maturity implied

by historical data and that implied by current option prices due to di¤erent views on

the stochastic volatility can be captured. For example, the history might imply lower

variability of the volatility than the investors in the market. By using VGSAM, this

deviation can be captured and traded upon. Similarly, if our portfolio contains options

on more than one underlying asset, we may want to employ a �nancial model that can

capture the correlations between the di¤erent assets. However, this thesis focuses on the

idea of trading on the deviations of the distributions in a Lévy market and the use of more

complicated model is out of the scope of this thesis.

Step 3: For each trading day, simulate forward N times to get the points at which the

underlying will be at maturity using equation (6.35), where N is a large positive number.

Apply a change of measure method to get a risk-neutral distribution.

Note that for more accurate results, one should employ (Markov Chain Monte Carlo

(MCMC) to estimate the parameters of the model and then simulate forward from the

distributions of the parameters. We do not employ MCMC because it is more complicated

to implement and we want to focus on the construction of the trading strategy. Note

that our approach underestimates the variability of the parameters. We apply the change

of measure method described in Section 7.3 because of its simplicity. Other ways of

changing the measure can be used, see Miyahara (2005) for the di¤erent properties of a

few common kinds of equivalent martingale measures for geometric Lévy processes. In

our simulation, we choose N = 10; 000. Since a VG process can be decomposed into a

di¤erence of two Gamma processes, see equation (6.32), and the parameters are constant

over time, simulation is easily implemented, as we do not have to simulate the price series

over daily interval. We can simply simulate with the time interval equal to the maturity.

Step 4: Using the N values of the underlying at maturity for each trading day D

obtained from Step 3, estimate the density function using a kernel smoothing method.

We use the kernel smoothing method introduced by Bowman & Azzalini (1997). In

MatLab 7.3.0, this can be done using the function ksdensity() in the statistics toolbox.

The estimate is based on a normal kernel function under the assumption that the data
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sample is independent and identically distributed, which is satis�ed in our case since

in each of our simulations the VG model produces i.i.d. random variables. We use

the default bandwidth of the ksdensity() function, which produces a smooth density

estimate. Hence, we obtain an approximation of the density function implied by historical

data series of the underlying. The next step is to obtain the historical data of the

option prices. Recall that we perform this density comparison on each trading day in

the history to obtain the expected return and risk for each set of parameters such that

we can approximate the �optimal parameters�using risk-return analysis. In general, it is

di¢ cult to obtain the history of option prices since the bid and ask prices of the options are

generally not stored for over two years. Normally, only the implied volatilities, calculated

using the Black-Scholes model, of the option prices are stored for a long period of time.

To obtain the option prices, the Black-Scholes option pricing formula is used to calculate

the prices again. The Black-Scholes model is used because only the implied volatilities

calculated using the Black-Scholes model are stored in the database rather than the prices

themselves. Therefore, we do not have the information about exactly what strikes of

options were traded and the trading volume on a particular day. Since the whole volatility

surface, that is, the volatilities for di¤erent strikes and maturities, is stored in the volatility

database, the price of an option can be calculated given a strike and a maturity date. For

calibrating the model using option prices, we use prices of options with maturity of 3

months and 80 di¤erent strikes around the �at the money�strike, that is, the strike price

equal to the current price of the underlying asset. When testing the performance of the

strategy, we assume only certain strikes can be traded liquidly, as will be discussed in

Section 8.6.

Step 5: Given the prices of options with the same maturity and di¤erent strikes,

estimate the parameters of the VG model.

We use the calibration method introduced by Chourdakis (2005) using fractional Frac-

tional Fast Fourier Transform (FRFT) to estimate the parameters of the VG model from

the option price data. Chourdakis (2005) showed how FRFT can be used to retrieve

option prices from the corresponding characteristic function of the log return of the price

process. In the case of VG model, the characteristic function is given by

�S (u; t; r; �RN ; �RN ; �RN ) =
exp (iu (r + !RN ) t)�

1� i�RN�RNu+
�2RN�RN

2 u2
� t
�RN

: (8.2)

It was shown in Chourdakis (2005) that in the case of VG model, the FRFT method

can deliver option prices up to forty-�ve times faster than the well-known Fast Fourier

Transform (FFT) by Carr & Madan (1999), without substantial loss of accuracy.
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Step 6: For each trading day, simulate forward N times to get the points at which

the underlying will be at maturity, where N is a large positive number.

Step 7: Using the N values of the underlying at maturity for each trading day D

obtained from Step 6, estimate the density function using a kernel smoothing method as

in Step 4.

8.2 Quantifying payo¤ using the comparison functions

We repeat Steps 1 to 8 for 1874 trading days between 29th June 2000 and 23rd November

2007 and show eight of the plots in Figure 8.2.1. We notice that the relative shapes of the

two densities are similar. The densities implied by the options have much fatter tails and

are more negatively skewed. Their peaks are generally on the right of that of the history

implied densities. There is less risk aversion in the history implied deviations, and the

distributions are substantially more peaked. Figure 8.2.2 gives the general shape of the

distributions. In this section, we determine the range of strikes of the options which are

overpriced by comparing the two density functions, based on the subjective belief that the

distribution implied by historical data series of the underlying is more accurate than the

one implied by current market prices due to that fact that investors are risk-averse. The

put and call option pricing formulae are in terms of the density functions and are given

by

P (St;P; r; T � t) = e�r(T�t)
Z P

0
(P� s) fST (s; St) ds; (8.3)

C (St;C; r; T � t) = e�r(T�t)
Z 1

C
(s� C) fST (s; St) ds; (8.4)

where P and C are the strikes of the put and call options, respectively, and fST (s; St) is the

probability density function (pdf) of the underlying at maturity, depending on the value

of the stock price today, St. In other words, the option price is the discounted expectation

of payo¤ with respect to the probability distribution of the underlying at maturity with

respect to a risk-neutral measure. Hence, we can �nd out the range of values of P and C

such that the option prices implied from history are lower than those traded in the market.

We can discuss this graphically with the help of Figure 8.2.2.

Let XR and XL be the intersections of the two density functions on the right and on

the left respectively. Let ER and EL be the intersections of the option implied density

with the x-axis. Let fo (�) and fh (�) be the density functions of the option implied and
history implied densities respectively. To quantify the di¤erence between the two, we

de�ne the area di¤erence function to be:
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Figure 8.2.1: The densities implied by options (solid line) and historical data (dot-

ted line) for FTSE. The VG models are calibrated using data available at 29/6/2000,

29/6/2001, 28/6/2002, 30/6/2003, 29/6/2004, 7/7/2005, 29/6/2006, 29/06/2007 with 3

months maturity. The plots give the density functions of the index at maturity.
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Figure 8.2.2: Density comparison with de�nitions of Areas A, B, C and D.

�G (x1; x2) =

Z x2

x1

h
fo (s)� fh (s)

i
ds: (8.5)

This function has the fundamental quality as we will show later in Proposition 8.2.1 that

the price di¤erences of the options implied from the history and from the current option

prices can be expressed as a function of this area di¤erence function. The comparison

functions are de�ned to be:

p (f1 (�) ; f2 (�) ; x1; x2;P) =
Z x2

x1

(P� s) [f1 (s)� f2 (s)] ds (8.6)

and

c (f1 (�) ; f2 (�) ; x1; x2;C) =
Z x2

x1

(s� C) [f1 (s)� f2 (s)] ds: (8.7)

These functions facilitate the price comparison to obtain the range of strikes at which the

options are overpriced.

For example, by comparing equation (8.3) with equation (8.6) for a given pair of

densities fo (�) and fh (�), we can see that if p
�
fo (�) ; fh (�) ; EL;P;P

�
> 0, then the put

options with strike P are overpriced. Similarly, if c
�
fo (�) ; fh (�) ;C; ER;C

�
> 0; then

the call options with strike C are overpriced. In our analysis, we need to parametrise
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the choice of the strike to trade, which is in the range of strikes at which the options are

overpriced, such that we can optimise the parameters through risk-return analysis. We

note that p
�
fo (�) ; fh (�) ; EL;P;P

�
and c

�
fo (�) ; fh (�) ;C; ER;C

�
can be decomposed into

a sum of two comparison functions in terms of the intersection points XR and XL :

p
�
fo (�) ; fh (�) ; EL;P;P

�
=

(
p
�
fo (�) ; fh (�) ; EL; XL;P

�
� p

�
fh (�) ; fo (�) ; XL;P;P

�
if XL < P

p
�
fo (�) ; fh (�) ; EL;P;P

�
if XL � P

= p
�
fo (�) ; fh (�) ; EL;min (XL;P) ;P

�
� p

�
fh (�) ; fo (�) ; XL;max (P;XL) ;P

�
and

c
�
fo (�) ; fh (�) ;C; ER;C

�
=

(
c
�
fo (�) ; fh (�) ; XR; ER;C

�
� c

�
fh (�) ; fo (�) ;C; XR;C

�
if XR > C

c
�
fo (�) ; fh (�) ;C; ER;C

�
if XR � C

= c
�
fo (�) ; fh (�) ;max(XR;C); ER;C

�
� c

�
fh (�) ; fo (�) ;min (XR;C) ; XR;C

�
:

Therefore, the put option with strike P is overpriced if

p
�
fo (�) ; fh (�) ; EL;min (XL;P) ;P

�
> p

�
fh (�) ; fo (�) ; XL;max (P;XL) ;P

�
(8.8)

and the call option with strike C is overpriced if

c
�
fo (�) ; fh (�) ;max(XR;C); ER;C

�
> c

�
fh (�) ; fo (�) ;min (XR;C) ; XR;C

�
: (8.9)

Graphically, we can relate p
�
fo (�) ; fh (�) ; EL; XL;P

�
to Area A in Figure 8.2.2 by the

fact that they are both related to the di¤erence of the density functions fo (�) and fh (�)
from range EL to XL: Note that in the case of XL < P and XR > C; from (8.5),

Area A =

Z XL

EL

h
fo (s)� fh (s)

i
ds = �G (EL; XL)

Area B =

Z P

XL

h
fh (s)� fo (s)

i
ds = ��G (XL;P)

Area C =

Z XR

C

h
fh (s)� fo (s)

i
ds = ��G (C; XR)

Area D =

Z ER

XR

h
fo (s)� fh (s)

i
ds = �G (XR; ER) :
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The following proposition gives the relationships of the comparison functions in (8.8)

and (8.9) with the above areas, that is, the relationships of p
�
fo (�) ; fh (�) ; EL; XL;P

�
,

p
�
fh (�) ; fo (�) ; XL;P;P

�
, c
�
fh (�) ; fo (�) ;C; XR;C

�
and c

�
fo (�) ; fh (�) ; XR; ER;C

�
, with

areas A, B, C and D through the area function, respectively.

Proposition 8.2.1 i) The comparison function p
�
fo (�) ; fh (�) ; EL; XL;P

�
is an increas-

ing function of �G (EL; XL) and hence of Area A:

ii) The comparison function p
�
fh (�) ; fo (�) ; XL;P;P

�
is an increasing function of

��G (XL;P) and hence of Area B:

iii) The comparison function c
�
fh (�) ; fo (�) ;C; XR;C

�
is an increasing function of

��G (C; XR) and hence of Area C:

iv) The comparison function c
�
fo (�) ; fh (�) ; XR; ER;C

�
is an increasing function of

�G (XR; ER) and hence of Area D:

Proof. The proof is included in Appendix C.2. �

Equations (8.8) and (8.9) will be useful in constructing the parameters RL and RR
introduced in Section 7.2. This is further discussed in next section.

8.3 Determining which options to sell

In last section, we see that there is a range of strikes within which we can sell the overpriced

options. To maximise pro�t, we should predict the direction of the movement of the

underlying, which is discussed in Section 8.4. Intuitively, if we predict an upward move,

we would sell a put and call options with relatively higher strikes in their respective ranges.

In fact, we should specify the left and right price ratios, RL and RR, with which we decide

which options to sell. For example, if we expect a rise in the underlying, we sell the put

options with strike at which

RL =
p
�
fh (�) ; fo (�) ; XL;max (P;XL) ;P

�
p (fo (�) ; fh (�) ; EL;min (XL;P) ;P)

; (8.10)

and sell call options with strike at which

RR =
c
�
fo (�) ; fh (�) ; XR; ER;C

�
� c

�
fo (�) ; fh (�) ;C; ER;C

�
c (fo (�) ; fh (�) ; XR; ER;C)

and C � XR: (8.11)

If RR = 0, XR = C, so we sell call options with strike at the right hand side interaction.

If RR = 1, c
�
fo (�) ; fh (�) ;C; ER;C

�
= 0, so we sell call options with strikes at the right
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hand side intersection of the option implied density and the x-axis. Similarly, if we expect

a fall in the underlying, we sell call options with strike at which

RR =
c
�
fh (�) ; fo (�) ;min (XR;C) ; XR;C

�
c (fo (�) ; fh (�) ;max(XR;C); ER;C)

, (8.12)

and sell the put options at which

RL =
p
�
fo (�) ; fh (�) ; EL; XL;P

�
� p

�
fo (�) ; fh (�) ; EL;P;P

�
p (fo (�) ; fh (�) ; EL; XL;P)

and P � XL: (8.13)

Remark 8.3.1 It may be tempting to buy options near the peaks of the distributions
since Figure 8.2.2 implies that they are underpriced. However, we should not buy these

underpriced options since both densities have heavy mass around the peaks, indicating that

the options will expire worthless with a very high probability. Moreover, options with

strikes near the spot price are much more expensive than those with strikes far away from

the spot price. If we bought these options, the initial cash�ow would be negative and it

is very likely that all the options would expire worthless, thus leaving us a zero payo¤ at

maturity and we would su¤er a loss. Therefore, we conclude that we should not buy the
options around the peaks of the densities even though the densities indicate that they are

underpriced.

To prevent in�nite loss, whenever we sell a call (put) option, we buy back a call (put)

option at a higher (lower) strike. This strike is chosen such that the initial cash �ow

is maximised while the maximum possible loss is smaller than a pre-chosen threshold,

which is discussed in detail in Section 8.5. This strike follows from setting the monetary

parameters.

8.4 Predicting the direction of movement of the underlying

(Steps 8-9)

As mentioned in the last section, we need to predict the direction of movement of the

underlying. Since the underlying is a random process, knowing the historical data is not

su¢ cient to determine the direction of future movement. The direction of movement of

the underlying may also depend on external data that cannot be deduced from historical

data. Investors base their strategy on a combination of external data and historical data.

Instead of using external data directly we could re�ne our strategy using the behaviour of

the investors in the market.

Step 8 Estimate the optimal value of the prediction parameter, p.
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If the investors are expecting an upwards movement, since they are risk averse, they

generally will not anticipate an extreme rise and instead tend to expect moderate upwards

movement. Hence the distribution implied by the investors�behaviour will be more pointed

and has larger kurtosis. To see this, compare the plots in Figure 8.2.1, the heights of

the peaks change noticeably in di¤erent market conditions shown in Figure 8.1.1. To

determine whether the peak, the skewness or the kurtosis of the option implied distribution

has the strongest relationship with the prediction of future direction of movement, we

perform the following analysis.

Let �Sti;ti+�t be the change in price of the underlying from time ti to ti +�t, where

i = f1; 2; :::; Ng : Let x(1)i ; x
(2)
i and x(3)i be the value of the peak, skewness and kurtosis

of the distribution estimated on ti, respectively. Let !b and !s be the functions such that

!b
�
fx1; x2; :::xNg ; x0

�
=

NX
i=1

1fsign(�Sti;ti+�t)=sign(xi�x0)g

and

!s
�
fx1; x2; :::xNg ; x0

�
=

NX
i=1

1fsign(�Sti;ti+�t)=sign(x0�xi)g;

where

sign (x) =

(
1 if x � 0
�1 if x < 0

:

The function !b counts the number of time such that �Sti;ti+�t � 0 and xi � x0 at the

same time or �Sti;ti+�t < 0 and xi < x0 at the same time. The function !s counts the

number of time such that �Sti;ti+�t � 0 and xi � x0 at the same time or �Sti;ti+�t < 0

and xi > x0 at the same time. Let o(j)b and o(j)s be the value such that

o
(j)
b = max

x0
!b

�n
x
(j)
1 ; x

(j)
2 ; :::x

(j)
N

o
; x0
�
;

and

o(j)s = max
x0

!s

�n
x
(j)
1 ; x

(j)
2 ; :::x

(j)
N

o
; x0
�
;

for j = 1; 2 or 3: That is, o(j)b is a value that maximises the number of time �Sti;ti+�t
and x(j)i � o

(j)
b having the same sign. o

(j)
s is a value that maximises the number of time

�Sti;ti+�t and o
(j)
s � x(j)i having the same sign.

In our analysis, there are 1301 trading days, that is, N = 1301: The analysis result is

given in Table 8.4.1. The result shows that the peak and the kurtosis are relatively better

in predicting future direction movements. If we predict the movement will be positive if

the kurtosis is greater than 4.904, we get 954 correct predictions out of 1301 days, that is,
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73.33% accuracy. Therefore, we should use kurtosis as the prediction parameter, p, and

we should choose p = 4.904.
peak skewness kurtosis

j 1 2 3

o
(j)
b 1:238� 10�3 �1:430 4:904

!b

�n
x
(j)
1 ; x

(j)
2 ; :::x

(j)
N

o
; o
(j)
b

�
946 749 954

o
(j)
s 2:626� 10�3 �0:7009 7:811

!s

�
fx1; x2; :::xNg ; o(j)s

�
753 905 752

Table 8.4.1: The prediction results of the future direction of movement using the peak,

the skewness and the kurtosis of the option implied distribution.

Recall in Section 8.3, the de�nitions of the parameters RL and RR depend on the

prediction on the direction of movement of the underlying. The parameters RL and RR
determine the strikes at which as should sell the put and call options. In the analysis

of the performance of the trading strategy, we assume only options with certain strikes

are available to be traded liquidly in the market. On day D, let Pp be the price of

the underlying on the previous trading day. We assume the di¤erences between the

strikes and Pp must be in multiples of 50, as is the case for options on FTSE 100, see

www.euronext.com (2007), where the interval between exercise prices is determined by

the time to maturity of a particular expiry month and is either 50 or 100 index points.

The minimum and maximum strikes of put options we can trade are assumed to be Pp�900
and Pp + 250 respectively. Again this is chosen based on the FTSE 100. The minimum

and maximum strikes of call options we can trade are assumed to be Pp�150 and Pp+500
respectively. Since we do not have the information about the bid-ask spreads, we assume

that, if an option worth s, it costs us s + 6 to buy and we can sell it for s � 6. The

conservative value of six is determined by comparing with real life option data. In order

to �nd the optimal values of the parameters, RR and RL, using optimisation through grid

search, we �rstly specify a grid of values for them.

Step 9: De�ne the values of the grids for parameters RR and RL.

For each combination of the parameters, we calculate which strikes of put and call

options to sell on each trading day D. If the prediction parameter of the option implied

density is lower than p, we presume the market is more likely to fall. Hence, we sell call

options with strike C such that (8.12) is satis�ed, and we sell the put options with strike

P � XL such that (8.13) is satis�ed. Similarly, from equations (8.10) and (8.11), if the

prediction parameter of the option implied density is higher than p, we presume that the

market is more likely to rise. Hence, we sell the put options with strike P such that

(8.10) is satis�ed and sell call options with strike C � XR such that (8.11) is satis�ed.
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Therefore, for each combination of values of RR, RL and p, we obtain the strikes of the

call and put options to sell.

8.5 Determining the dynamic trading volume to control max-

imum possible loss (Steps 10-13)

Figure 8.5.1: A bull put spread.

Figure 8.5.2: A bear call spread.

To limit our maximum possible loss at maturity, we buy put (call) options with strike

lower (higher) than the ones we sell. In other words, we perform a bear call spread and

a bull put spread, which are illustrated in Figures 8.5.1 and 8.5.2. For more information
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about derivatives strategies, we refer the reader to Hull (2003). For example, if we sell a

call option, the payo¤ at maturity is equal to min (CS � ST ; 0). Therefore, our maximum
possible loss is unlimited since ST is unbounded from above. However, if we buy a call

option with strike CB as well, where CB > CS , our maximum possible loss at maturity

is equal to CB � CS , which is bounded. Similarly, if we sell a put option, the payo¤ at

maturity is equal to min (ST � PS ; 0), where ST is the price of the underlying at maturity
and PS is the strike of our option. Therefore, our maximum possible loss is �PS since
ST � 0. However, if we buy a put option with strike PB as well, where PB < PS , our

maximum possible loss at maturity is equal to PB � PS .
To determine the strikes of the far out of money strikes and the volumes to be bought,

we need four parameters: Initial Capital, c, which is the initial capital input to the trade;

Maximum Loss Percentage, Lmax, which is the percentage of current capital we can a¤ord

to lose; Minimum Loss Percentage, Lmin, which is the percentage of current capital that

represents an acceptable loss; Default Trading Volume, v, which is the default number of

contracts of each type of option we sell. Note that Lmax; Lmin and v are re�ecting our

level of risk aversion.

Step 10: De�ne the values of the grids for parameters c, Lmax, Lmin and v.

Step 11: Let cD be the current level of capital on trading day D. The maximum

and minimum amounts we can lose are given by cDLmax and cDLmin.

Step 12: The strikes of the put and call options to sell are given by Step 9, and we

let them be PS and CS , respectively. For call options, for each buyable strike, CB, we

calculate the initial cash �ow, denoted by C(C)i :

C
(C)
i = vD (price of call options with strike CS � price of call options with strike CB) ;

where vD is the trading volume on day D: We set vD = v, the default trading volume and

we may change the value of vD later. The maximum possible loss is denoted by ML and

is the most negative possible payo¤ at maturity minus the initial cash�ow on the trading

day:

ML = vD (CB � CS)� C(C)i er� + transaction cost involved� er� ;

where r is the risk-free interest rate and � is the time to maturity of the options. The

transaction cost involved is discussed later. If ML is bigger than cLmax, we reduce the

value of vD until ML � cLmax. Similarly, if ML is smaller than cLmin, we increase the

value of vD until ML � cLmin: In reality, the trading volume, vD, should not be �too

big�as we require a counterparty to trade with us. Therefore, it is not realistic if vD is

unbounded. From the historical trading volumes of the options of FTSE 100, we assume

vD � 1000: We choose to buy options with strike CB with its corresponding trading
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volume such that the initial cash�ow, C(C)i is maximised among all the buyable strikes.

Similarly, for put options, for each buyable strike, PB, the initial cash �ow, denoted by

C
(P )
i ; is

C
(P )
i = vD (price of put options with strike PS � price of put options with strike PB)

and the maximum possible loss is

ML = vD (PS � PB)� C(P )i er� + transaction cost involved� er� ;

where r is the risk-free interest rate and � is the time to maturity of the options. We

adjust the value of vD such that cLmin � ML � cLmax: We choose to buy options with

strike PB with its corresponding trading volume such that the initial cash�ow, C(P )i , is

maximised among all the buyable strikes.

There are two di¤erent kinds of transaction costs for the options of FTSE 100 at the

time of this thesis. The �rst kind is the trading fee, which is �xed at 25p and payable per

side per lot. The second is a clearing fee, which is set at 22p per side per upper boundary

for client business of £ 1200 (A �lot�is de�ned as the shares in a single transaction).

Step 13: With the value of the underlying at maturity, calculate the pro�t from the

trading portfolio constructed in Step 12. The gain/loss is added to the total capital

available at maturity of the options. The amount of capital not used in the trading

strategy is assumed to be invested in a risk-free bank account and the interest earned is

subject to a tax rate of 40%. Note that the earning from the trading strategy is not

subject to tax because of the possible loss at maturity. Interest after tax is added to the

total capital. Repeat Steps 11-13 for all trading days under consideration.

8.6 Risk-return analysis to �nd the optimal set of parame-

ters (Step 14)

In this section, we explain how to obtain the optimal values of the six parameters, RL;

RR (Section 8.2), p (Section 8.4), c; Lmax, Lmin and v (Section 8.5).

We run our strategy over the grids of values of the parameters and plot their expected

returns against their CVaR. We can then obtain an e¢ cient frontier de�ned in Section

7.4 and decide which parameters we should use. We can separate the parameters into

two groups: fp;RL; RRg relate to the density comparison, and fc; v; Lmax; Lming relate
to monetary values. Hence, we optimise these parameters separately using grids with

prede�ned step sizes. We �rst �x some values for fc; v; Lmax; Lming and �nd the e¢ cient
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frontier for fp;RL; RRg. Then we use the optimal values for fp;RL; RRg to �nd the
e¢ cient frontier for fc; v; Lmax; Lming. The reason for separating the two groups is that

it reduces the number of iterations needed by a substantial factor.

Recall we conduct the trading strategy on the European call and put options of FTSE

100 to investigate its performance. All transaction costs are taken into account and tax,

assumed to be 40%, is deducted from guaranteed pro�ts. We use European option data of

1874 trading days between 29th June 2000 and 23rd November 2007. Since making use of

the trends of the historical data series and the option prices is a crucial part of our trading

strategy, we cannot resample from the data randomly. Hence, we take all the continuous

data series of length 250 (approximate number of business days in a year) from the 1368

data points available. Hence, we get (1368-250+1) = 1119 data samples and over which

we calculate the expected CAGRs and CVaRs. The idea behind this is for each trading

day, we calculate the value of the portfolio one year later following our trading strategy.

Note that the data used are not independent because the time periods are overlapping.

However, this is necessary since the length of the data is limited. Nonetheless, we can

make use of this dependence as an extra piece of information. For example, if the market

is currently falling, we want to take into account the behavior of a falling market and

we want to conduct the trade up to a relatively short period of time, say one year, and

we predict the market will not have recovered yet, we should use data since the market

started to fall until now to perform the risk-return analysis. In the next section, we show

performance of the trading strategy over seven years and in di¤erent individual market

conditions.

8.7 Performance of our trading strategy (Step 15)

In this section, we present and discuss the performance of the trading strategy. We �rst

consider the performance of the strategy throughout di¤erent market conditions and then

consider the performance during a falling market, a recovering market and a rising market

individually. We do not consider a worsening market because the data set considered did

not contain such a period. Although the trading strategy has a high earning potential, it is

important to note that we assume we are able to trade in a 3-month option everyday: In
practice, options which are liquidly traded on exchange has �xed maturities. For example,

the FTSE options have maturities on the third Fridays of quarterly months. Therefore,

we could not actually trade in FTSE options with 3-month maturities everyday in the

year. Note that our trading strategy relies on the initial positive cash�ow from selling

the more expensive options and pro�t if the options expire worthlessly. However, if we

do have to pay out for the options we sold at maturity, the amount would be much bigger
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than the earning we make from selling the options. In other words, the pro�t of the

trading strategy replying on the fact that most of the time the options expire worthlessly

and only occasionally do we result in a loss. Hence, we have to trade in a 3-month option

everyday in order to have a bigger chance of making pro�ts. In the current market where

an exact 3-month option can only be traded on a few days a year, our trading strategy

is not applicable. Nonetheless, over-the-counter (OTC) trading may be available and it

is still an important �nding. In the following, we �rst consider the performance of the

strategy throughout di¤erent market conditions and then consider the performance during

a falling market, a recovering market and a rising market individually. We do not consider

a worsening market because the data set considered did not contain such a period. We

investigate the e¤ect of individual parameters to the risk and return of the strategy in

order to have a better understanding of their roles and to facilitate the decision making

process of choosing the parameter values. Since the trading strategy introduced in this

paper is a new approach in the literature that the readers would not be familiar with, we

investigate the e¤ects of each parameter in hope of giving a better idea why we would

want to introduce these seven parameters in the �rst place. The analysis below would

show that the values of the parameters have a clear e¤ect on the risk and return of the

strategy and vary throughout di¤erent market conditions.

8.7.1 E¢ cient frontier analysis by varying the density parameters

Figure 8.7.1.1 gives the performance of the trading strategy from 2000 to 2007. The point

on the far left of the e¢ cient frontier has risk = �0:2636 and expected return = 9.010,

meaning that the expected earning in the 5% worst case scenarios is a gain of 26.36% of

the initial investment and the expected return is about 9.010 times the initial investment

over a year. Despite the fact that some of the points of the e¢ cient frontier have negative

risks, this does not indicate an arbitrage opportunity since we only test the strategy on 7

years historical data and the performance of our strategy strongly depends on the market

condition. We have bounded the maximum trading volume in a day to be 1000 units. If

the trading volume is not bounded, the pro�t attainable could be much greater. Note

that some points on the e¢ cient frontier has a risk bigger than 1, which means that the

worst 5% scenarios can result from losses more than the initial investment we input in our

trading strategy. Note that this can be prevented by setting the maximum amount of

money we could a¤ord to lose on each day to be the value equal to the current amount of

capital available divided by the number of business days until the maturity of the option.
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Figure 8.7.1.1: E¢ cient frontier obtained by �xing c = 600; 000, v = 100, Lmin = 0:033,

Lmax = 0:13 and varying RL from 0 to 1 by 0:1 and RR from 0 to 1 by 0:1:

To gain a better understanding of the contributions of the density parameters to the

performance of the strategy, we include the colour-coded versions of Figure 8.7.1.1 in

Appendix C.3 as Figures C.3.1-C.3.2. We summarise our observations as follows:

� Distribution of values of RL in Figure C.3.1

�As RL increases from 0 to 0.5, the points move gradually along the e¢ cient

frontier from right to left.

�When RL = 0:6, the points suddenly move downwards and to the right, away
from the e¢ cient frontier.

�As RL increases from 0.6 to 1, the points move gradually downwards. The

sudden jump can be due to the fact that option payo¤function is a step function.

The higher the value of RL, the more risky the trading strategy is since it

corresponds to selling put options with strikes relatively closer to the current

stock price. While we could make a signi�cant pro�t when RL = 0:5, when

RL = 0:6, the strikes of the put options sold may become higher than the stock

prices at maturity and we su¤er losses.

� It shows that when RL = f0; 0:1; :::; 0:5g, p contributes more to the level of risk.
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�When RL = f0:6; 0:7; :::; 1g, RL contributes more to the level of expected return.

� Distribution of values of RR in Figure C.3.2

�As RR increases from 0 to 1, there is a clear drift upwards until the points hit

the e¢ cient frontier at RR = 1.

� It shows that RR contributes more to the level of expected return of the strategy.

8.7.2 E¢ cient frontier analysis by varying the monetary parameters

Figure 8.7.2.1 shows the e¢ cient frontier obtained from varying the monetary parameters

on data starting from year 2000 to 2007. The far left point has risk = �4:797 and expected
return = 16.38. Note that a proportion of points in the plot have negative expected return

and positive risk. This shows the calibration of the momentary parameters of the trading

strategy is crucially important.

The colour-coded versions of Figure 8.7.2.1 are included as Figures C.3.3-C.3.6 in

Appendix C.3. We summarise our observations as follows:

Figure 8.7.2.1: E¢ cient frontier obtained by �xing RL = 0:5; RR = 0:8 and varying v

from 0 to 900 by 100; c from 100; 000 to 4; 600; 000 by 500; 000; Lmin from 0:001 to 0:091

by 0:01 and Lmax from 0:1 to 0:28 by 0:02:

� Distribution of values of v in Figure C.3.3
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�When v = 0, both risk and expected return are very close to zero.

�As v increases from 100 to 200, the risk increases even though the expected

return only increases very slightly.

�As v = 300, the points suddenly move up a great deal and to the left. In fact,
all the points on the e¢ cient frontier and all the points with negative risks have

value v = 300:

�As v = 400, the points move back down to near the x-axis and on the right of
the y-axis, that is, the risk is positive and the expected return is nearly zero.

�As v increases from 400 to 900, the points move generally to the right but still

stay very close to the x-axis.

�This shows that the optimal value of the default trading volume is v = 300:

Further optimisation can be done to �nd the optimal value in the range between

250 and 350.

� Distribution of values of c in Figure C.3.4

�When c = 100; 000, the points distribute as two groups in the plot. The �rst

group stays near to the right part of the e¢ cient frontier, that is, they have

high returns and high risks. The second group stays very close to the x-axis

and on the right of the y-axis, meaning they have high risks but very small

expected returns. All in all, the value c = 100; 000 is not ideal since it leads to

very high risk and the expected return is volatile.

�When c = 600; 000; the points move signi�cantly downwards and slightly to the
left with some points lying on the e¢ cient frontier.

�When c = 1; 100; 000; the points spread out a little bit more and some of them
lie on the far left part of the e¢ cient frontier.

�As c increases from 1,100,000 to 4,600,000, the points move gradually down-

wards and towards the (0; 0) coordinates.

�This results show that if the initial capital is greater than 1,100,000, it has an
adverse e¤ect on the performance.

� Distribution of values of Lmin in Figure C.3.5

�The points can be considered to be distributed into 4 di¤erent groups. The

�rst group stay around the left part of the e¢ cient frontier, the second stay

very closed together around the middle of the e¢ cient frontier, the third spread
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out more and stay around the right of the e¢ cient frontier and the fourth group

stay around the x-axis on the right of the y-axis.

� In general, the points move gradually upwards and to the right as Lmin increases.

�This shows that Lmin contributes less to the performance of the strategy com-
pared to other monetary parameters but in general, the risk and expected return

increase as Lmin increases.

� Distribution of values of Lmax in Figure C.3.6

�The points distribute as four groups in the plot as in the plot of Lmin and the
points move gradually upwards and to the right as Lmax increases.

�This shows that Lmax does not contribute signi�cantly to the risk and return
level if we trade throughout di¤erent market conditions. Its e¤ect will become

more obvious as we discuss the performance in di¤erent market conditions.

It is important to note that during the simulation period, the equity market went

through three stages: From 29th June 2000 to 1st November 2002, the market was

falling; from 2nd November 2002 to 2nd December 2003, the market was recovering; from

3rd December 2003 to 29th January 2007, the market was rising (see Figure 8.1.1). In the

following, we optimise the parameters�values separately under these three di¤erent market

conditions in order to understand the dependency of the parameters on the condition of

the market.

8.7.3 E¢ cient frontiers in a falling market

We test the trading strategy in a falling market on data samples of length 250 (number of

business days in a year) with starting dates ranging from 29th June 2000 to 1st November

2002, totally 470 data samples. We repeat the e¢ cient frontier analysis in the previous

section and Figure 8.7.3.1 shows the e¢ cient frontier obtained from varying the density

parameters. In contrary to the performance of the strategy assessed throughout di¤erent

market conditions, the strategy can no longer result in a negative risk. In fact, the far

left point of the e¢ cient frontier has risk = 0.3978 and expected return = 4.731. The

colour-coded versions of Figure 8.7.3.1 are included as Figures C.4.1-C.4.2 in Appendix

C.4.

� Distribution of values of RL in Figure C.4.1

�As RL increases from 0 to 0.5, the points move from right to left along the

e¢ cient frontier.
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�When RL = 0:6, the points jump downwards to the middle of the plot.

�As RL increases from 0.6 to 1, the points move slightly upwards.

� It shows that RL contributes more to the level of risk.

� Distribution of values of RR in Figure C.4.2

�The points move gradually upwards as RR increases, showing that RR con-

tributes more to the level of expected return.

Figure 8.7.3.1: E¢ cient frontier in a falling market, obtained by �xing c = 600; 000,

v = 100, Lmin = 0:033, Lmax = 0:13 and varying RL from 0 to 1 by 0:1 and RR from 0 to

1 by 0:1:

Figure 8.7.3.2 shows the e¢ cient frontier in a falling market. The shape of the e¢ cient

frontier is very similar to the case when we study the performance throughout di¤erent

market conditions. However, the expected returns achievable are much lower in this case.

In the previous case, the point on the far right of the e¢ cient frontier has risk = 10.40 and

expected return = 94.89. In a falling market, the point has risk = 14.35 and expected

return = 48.54. The points on the far left of the e¢ cient frontiers in the two cases have

comparatively more similar values. This shows that if we are looking for high risk and

high return investment, we should not only trade when the market is falling.
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Figure 8.7.3.2: E¢ cient frontier in a falling market, obtained by �xing RL = 0:5; RR =

0:8 and varying v from 0 to 900 by 100; c from 100; 000 to 4; 600; 000 by 500; 000; Lmin
from 0:001 to 0:091 by 0:01 and Lmax from 0:1 to 0:28 by 0:02:

The colour-code versions of Figure 8.7.3.2 are included as Figures C.4.3-C.4.6 in Ap-

pendix C.4. The distributions of the points of all the parameters�values are very similar

to the case when we trade throughout di¤erent market conditions. This shows that

when we study the performance throughout di¤erent market conditions, the performance

is dominated by the losses resulted from trading in a falling market. We will study the

performance in a recovering and risking market in the next two sections and see a great

improvement to the performance of the trading strategy.

8.7.4 E¢ cient frontiers in a recovering market

We test the trading strategy in a recovering market on data samples with starting dates

ranging from 2nd November 2002 to 2nd December 2003, 200 data samples in total. Figure

8.7.4.1 shows the e¢ cient frontier in a recovering market: The distributions of the points

are very di¤erent from the results so far. There are only two points on the e¢ cient frontier

and they are very close to each other. The risk of the point on the left = �11:89 and
expected return = 19.67. It shows that our trading strategy can lead to great pro�t if the

appropriate parameters are chosen in a recovering market. However, it may be di¢ cult

to determine where the market in three month time will be a recovering market or already
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a rising market. Contrary to the last two analyses, all the points on the e¢ cient frontier

have negative risks and high expected returns.

Figure 8.7.4.1: E¢ cient frontier in a recovering market, obtained by �xing c = 600; 000,

v = 100, Lmin = 0:033, Lmax = 0:13 and varying RL from 0 to 1 by 0:1 and RR from 0 to

1 by 0:1:

Figures C.5.1-C.5.2 show the distributions of the values of the density parameters RL
and RR, respectively.

� Distribution of values of RL in Figure C.5.1

�The movement of the points is di¤erent from the analyses throughout di¤erent

market conditions and in a falling market.

�The points stay very closed together and near to the e¢ cient frontier when
RL = f0; 0:1; 0:2; 0:3g.

�As RL increases from 0:4 to 1, the points move gradually downwards and to

the right.

� In the last two analyses, the value RL = 0:5 lies on the far left point on the

e¢ cient frontier. In this analysis, RL = 0:3 on the left point and RL = 0 on

the right point.

�The three analyses so far show that we should not choose RL > 0:5.
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� Distribution of values of RR in Figure C.5.2

�As RR increases from 0 to 1, the points move gradually upwards and to the left
until touching the e¢ cient frontier.

�As in the last two analyses, the point on the e¢ cient frontier has large value
of RR. In the analysis throughout di¤erent market conditions, RR = 0:8 or 1.

In the analysis for a falling market, RR = 0:8. In this analysis, RR = 1.

Figure 8.7.4.2: E¢ cient frontier in a recovering market, obtained by �xing RL = 0:5; RR =

0:8 and varying v from 0 to 900 by 100; c from 100; 000 to 4; 600; 000 by 500; 000; Lmin
from 0:001 to 0:091 by 0:01 and Lmax from 0:1 to 0:28 by 0:02:

Figure 8.7.4.2 shows the e¢ cient frontier by varying the monetary parameters in a

recovering market. The shape of the e¢ cient frontier and the pattern of the points on

the plot are signi�cantly di¤erent from the previous two cases. The points on the e¢ cient

frontier have much less risks and higher expected returns than before. It shows that

trading in a recovering market is much more pro�table than trading in a falling market.

However, the di¢ culty is that we have to predict whether we will be in a recovering market

3 months later if the current market is falling.

To gain a better understand of the contributions of the di¤erent monetary parameters

to the performance of the trading strategy in a recovering market, we include the colour-

code versions of Figure 8.7.4.2 in Appendix C.5 as Figures C.5.3-C.5.6.
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� Distribution of values of v in Figure C.5.3

�All the points on the e¢ cient frontier have value v = 300, which is the optimal
value of the parameter, as in the previous cases.

� Distribution of values of c in Figure C.5.4

�The points lying on the e¢ cient frontier have three di¤erent values for c. The
left part of the e¢ cient frontier has value c = 1; 600; 000. The middle has value

c = 600; 000 and the right part has value c = 100; 000: Since the points with

negative risks on the e¢ cient frontier all have c = 1; 600; 000, while the expected

return is still very high, we should choose c = 1; 600; 000 in a recovering market.

� Distribution of values of Lmin in Figure C.5.5

�As Lmin increases from 0.001 to 0.091, the points generally move upwards. This
shows that the parameter Lmin contributes more to the level of expected return

of the strategy in a recovering market.

� Distribution of values of Lmax in Figure C.5.6

�As Lmax increases from 0.1 to 0.28, the points generally move upwards and to

the right. This shows that the parameter Lmax has a signi�cant contribution

to both the levels of expected return and risk in a recovering market.

8.7.5 E¢ cient frontiers in a rising market

We test the trading strategy on data samples with starting dates ranging from 2nd De-

cember 2003 to 23rd November 2007, totally 1007 data samples. We repeat the e¢ cient

frontier analysis by varying the density parameters and the monetary parameters sepa-

rately. Figure 8.7.5.1 shows the e¢ cient frontier in a rising market. The plot look very

similar to the one in the analysis for a recovering market, but with a less negative risk and

a lower expected return: risk = �8:616 and expected return = 12.09 for the far left point
on the e¢ cient frontier. Similar to the analysis for a recovering market, all the points on

the e¢ cient frontier have negative risks and high expected returns.

Figures C.6.1-C.6.2 show the distributions of the values of the density parameters RL
and RR, respectively.

� Distribution of values of RL in Figure C.6.1
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�The points stay very close together and near the e¢ cient frontier as RL =

f0; 0:1; 0:2; 0:3g.

�As RL increases from 0.4 to 1, the points move gradually downwards and to

the right.

� It is interesting to note that the point RL = 0:3 lies on the e¢ cient frontier in
all of the analyses.

Figure 8.7.5.1: E¢ cient frontier in a rising market, obtained by �xing c = 600; 000, v =

100, Lmin = 0:033, Lmax = 0:13 and varying RL from 0 to 1 by 0:1 and RR from 0 to 1 by

0:1:

� Distribution of values of RR in Figure C.6.2

�The pattern is very di¤erent from the last three analyses so far.

� It is hard to determine a pattern of movement of points from the plot.

�The points on the e¢ cient frontier have values RR = 0:3; 0.4 and 0.8, from

left to right, contrary to the last three analyses, where the values of RR on the

e¢ cient frontier are always large.

� It seems that the points overlap each other quite often.
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Figure 8.7.5.2: E¢ cient frontier in a rising market, obtained by �xing RL = 0:5; RR =

0:8 and varying v from 0 to 900 by 100; c from 100; 000 to 4; 600; 000 by 500; 000; Lmin
from 0:001 to 0:091 by 0:01 and Lmax from 0:1 to 0:28 by 0:02:

Figure 8.7.5.2 shows the e¢ cient frontier in a rising market by varying the monetary

parameters. The shape of the e¢ cient frontier and the pattern of the points in the plot

are quite di¤erent from the previous cases. There are only two points on the e¢ cient

frontier and they have high returns and very negative risks. This shows that it is very

pro�table to use the trading strategy in a risking market if we choose the right parameters.

To gain a better understanding of the contribution of di¤erent monetary parameters

to the levels of risk and expected return, we include the colour-coded versions of Figure

8.7.5.2 in Appendix C.6 as Figure C.6.3-C.6.6.

� Distribution of values of v in Figure C.6.3

�As in the previous cases, it is obvious that v = 300 is the optimal value of the
trading strategy.

� Distribution of values of c in Figure C.6.4

�When c = 100; 000, the points either have positive expected return and negative
risk, or stay very close to the x-axis and on the right of the y-axis.

�As c increases from 100,000 to 4,600,000, the points quickly move towards the

coordinates (0; 0) on the plot.
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�The plot shows that the lower the initial capital, the more volatile is the per-
formance of the trading strategy.

� Distribution of values of Lmin in Figure C.6.5

�The points can be considered to be distributed into two groups. The �rst

group stay on the left of the y-axis and spread across the plot. The second

group stay on the right of the y-axis and stay very close to the x-axis.

�The �rst group of points move upwards and to the right as Lmin increases.

�The second group of points move a little bit downwards and to the right as
Lmin increases.

�This shows that Lmin is not the dominant parameter in a rising market.

� Distribution of values of Lmax in Figure C.6.6

�As Lmax increases from 0.1 to 0.28, the points move gradually upwards and to

the left, until hitting the e¢ cient frontier.

�This shows that the parameter Lmax contributes to both the levels of risk and
expected return in a rising market.

�However, there are a large proportions of points with Lmax = 0:28 staying

around the x-axis, showing that Lmax is not the dominant parameter in a rising

market.

8.7.6 Suggestion for choices of parameters

If we are looking for negative risks and high returns, from the analysis performed in this

chapter so far, we should choose:

Market condition RL RR Risk Expected return

General 0.5 0.8 �0:26 9.01

Falling 0.5 0.8 0:40 4.73

Recovering 0 1 �11:86 19.91

Rising 0.3 0.8 �8:57 12.21

Market condition v c Lmin Lmax Risk Expected return

General 300 1,100,000 0.091 0.28 �4:797 16.38

Falling 300 600,000 0.071 0.16 �0:02097 14.34

Recovering 300 1,100,000 0.081 0.28 �14:09 25.79

Rising 300 100,000 0.091 0.28 �33:22 125.3
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We see that some parameters�values are more sensitive than others. If we are very risk

averse and want to invest with the most negative risk, we should choose:

Market condition RL RR Risk Expected return

General 0.5 0.8 �0:26 9.01

Falling 0.5 0.8 0:40 4.73

Recovering 0.3 1 �11:89 19.67

Rising 0.3 0.3 �8:62 12.09

Market condition v c Lmin Lmax Risk Expected return

General 300 1,100,000 0.091 0.28 �4:797 16.38

Falling 300 1,100,000 0.091 0.28 �4:100 11.98

Recovering 300 1,100,000 0.071 0.28 �14:41 24.78

Rising 300 100,000 0.041 0.28 �42:85 84.03

8.8 Combining with portfolio insurance

The analysis so far shows that while the trading strategy has a high earning potential, it can

also lead to losses. This kind of strategy may not appeal to investors who are looking for

safe capital returns. In this section we aim to combine our trading strategy with portfolio

insurance strategies to ensure guaranteed returns. Portfolio insurance is designed to give

investors the ability to limit downside risk while allowing some participation in upside

markets.

The traditional portfolio insurance strategies invest in risk-free bonds and a risky asset.

In this chapter, we give a brief introduction of the strategies and comment on the proper

choices of parameters�values from the e¢ cient frontiers generated in Section 8.7.

8.8.1 Guaranteed capital return

Let fPt; 0 � t � Tg be the value of our capital. We want to invest in risk-free bonds

and a risky asset such that at time T , we have PT � Pt. In other words, the capital

return is guaranteed. The most basic strategy is to invest in a zero coupon bond (costing

Zt, say) which will payout Pt at time T and invest the amount (Pt � Zt) in a risky asset.
Therefore, even if the entire investment in the risky asset is lost, we will still get Pt at time

T from the zero coupon bond. In our case, the risky asset will be the portfolio determined

by our trading strategy. Note that in our case, the loss from the risky asset can be more

than 100% of the initial investment into the strategy. However, this is unlikely if we

choose the correct parameters�values. If we want to eliminate the risk of losing more
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than 100% of the initial investment, we can set the maximum amount of money we could

a¤ord to lose on each day to be the value equal to the current amount of capital available

divided by the number of business days until the maturity of the option.

Given this guaranteed capital return, we can be risk-seeking when choosing the para-

meters�values from the e¢ cient frontiers. So far, we have chosen parameters�values with

negative risks and moderate returns. Combined with guaranteed capital return, we can

choose parameters�values with moderate risks and very large returns. It is sensible since

the amount to be invested in the trading portfolio, (Pt � Zt), will be comparatively small.
We should make use of the high earning potential of the trading strategy and huge pro�ts

may be returned using such small investment.

8.8.2 Constant proportion portfolio insurance (CPPI)

The constant proportion portfolio insurance (CPPI) was introduced by Perold (1986) (see

also Perold & Sharpe (1988)) for �xed-income instruments and by Black & Jones (1987)

for equity instruments. CPPI is a capital guaranteed derivative security that embeds a

dynamic trading strategy in order to provide participation to the performance of a certain

underlying. In order to be able to guarantee the capital invested, the option writer

(option seller) needs to buy a zero coupon bond and use the proceeds to get the exposure

he wants. While in the case of Section 8.8.1, the client would only get the remaining

proceeds (or initial cushion) invested in a risky asset, bought once and for all, the CPPI

provides leverage through a multiplier. For example, say an investor has a Pt portfolio, a

�oor of Zt (price of the bond to guarantee his Pt at maturity) and a multiple of � 2 R+.
Then on day one, the writer will allocate � (Pt � Zt) to the risky asset and the remaining
Pt � � (Pt � Zt) to the risk-free asset (the bond). The exposure will be revised as the

portfolio value changes, that is, when the risky asset performs and with leverage multiplies

by � the performance (or vice versa). These rules are prede�ned and agreed once and for

all during the life of the product. In our case, the risky asset will be the portfolio of our

trading strategy.

The higher the multiple, �, the more we will earn when the trading strategy results

in a gain. However, the higher the multiple, the faster the portfolio will approach the

�oor when there are sustained losses resulting from the trading strategy. The exposure

approaches zero as the cushion approaches zero. This keeps the portfolio value from

falling below the �oor in continuous time. However, it will fall below the �oor when there

is a very sharp loss before the investor has a chance to trade.

Given this extra protection, we can be less risk averse when choosing the parameters�

values from the e¢ cient frontiers. In Section 8.7, we have chosen parameters� values
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with negative risks and moderate returns. Combined with CPPI, we should choose the

parameters�values of the points with moderate risks (risk � 1) and high returns on the

e¢ cient frontiers:

Market condition RL RR Risk Expected return

General 0.5 0.8 �0:26 9.01

Falling 0.5 0.8 0:40 4.73

Recovering 0 1 �11:86 19.91

Rising 0.3 0.8 �8:57 12.21

Market condition v c Lmin Lmax Risk Expected return

General 300 600,000 0.091 0.1 0:1861 21.88

Falling 300 600,000 0.071 0.16 �0:02097 14.34

Recovering 300 1,100,000 0.081 0.28 �14:09 25.79

Rising 300 100,000 0.091 0.28 �33:22 125.3



Summary of Part III

The skewness and kurtosis trades based on the Black-Scholes model in the literature were

motivated by the fact that the density function of the underlying at maturity implied by

historical data is di¤erent from that implied by current option prices. However, according

to the Black-Scholes model, the two density functions should be identical, as in the Black-

Scholes world, there is an unique martingale measure. This problem can be solved by

applying a Lévy market model. When the underlying asset is driven by a Lévy process,

there are in�nitely many martingale measures and hence we would expect deviations of

the density functions. In fact, from our analysis, we observed that the densities implied

from current option prices always have fatter tails than those implied from historical data.

This can be caused by the risk aversion of the investors in the market. While the skewness

and kurtosis trades in the literature only involve calculating the values of the skewness and

kurtosis of the two distributions, we extend these ideas forward to develop a quantitative

and dynamic trading strategy which makes use of the deviations of the distributions to

obtain the optimal strikes of the options to be traded and at the same time takes into

account the practical issues such as the maximum and minimum capital allowed to use in

a single trade and the trading volume.

We used the Variance Gamma (VG) market model and calibrated two sets of parame-

ters: the �rst set was obtained from analysing the historical data series of the underlying

and the second set was obtained from applying fractional Fast Fourier Transform methods

on option prices. With these two sets of parameters, we then simulated forward to get the

density functions of the underlying at maturity. Based on the deviation of the two den-

sity functions, we constructed a dynamic trading strategy and reported its performance on

European options of FTSE 100. The performance of the trading strategy under di¤erent

market conditions were reported. It is important to note that in our performance analy-

sis, the historical option prices used are implied from a volatility database. The actual

prices and availability of the options traded in our performance checking routines may not

be accurate due to lack of actual data on historical bid-ask spreads and trading volumes.

However, we have introduced bid-ask spreads and maximum trading volume assumptions
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which are set to be more strict than real life circumstances. In practical situations, the

trading strategy can be adjusted to real life data and due to the risk aversion of investors,

overall pro�ts are still expected. Simulation results showed that the trading strategy has

a high earning potential.



Chapter 9

Conclusion of the thesis

This thesis contributes to the development of the theoretical representation and �nancial

applications of Lévy processes. The thesis is composed of three parts. The �rst part

presents an explicit formula for the chaotic representation of powers of increments of Lévy

processes. The second part provides a prefect hedging strategy for European and exotic

options in a Lévy market. The third part gives a speculating option trading strategy in

a Lévy market.

In the �rst part, we presented the explicit formulae for the chaotic representation in

terms of orthogonalised compensated power jump processes and the chaotic representation

in terms of the Poisson random measure. The result is important since it enables the

calculation of the chaotic representations of some common kinds of contingent claims

traded in the market. Unfortunately, the results are constricted to the kind of Lévy

functionals which are powers of increments of the underlying Lévy process. The derivation

of an explicit formula for general Lévy functions directly is di¢ cult. In the derivation of

our result, we applied the Itô formula to the powers of increments of the underlying Lévy

process, (Xt+�t �Xt)
n. Since the derivatives of the (Xt+�t �Xt)

n can be calculated

readily, we could write out the expression of the CRP of (Xt+�t �Xt)
n for n = 2; 3; 4

and �nd the general pattern of the CRP. We then proved the result using induction.

However, for general Lévy functionals, F , the form of the derivatives of F is unknown and

hence we could not write out the CRP of F using Itô�s formula. To solve this problem

in the case where F is a general Lévy functional which is an analytic function of the

Lévy process, we suggested using a Taylor expansion to express F in terms of an in�nite

sum of the powers of increments of the underlying Lévy process such that our formula

can be applied. This approach �rstly decomposes F into a sum of terms contributed by

(Xt+�t �Xt)
n for n = 1; 2; 3; :::: The unknown values of the derivatives of F only come

through the derivative terms of the Taylor expansion. We could then apply our explicit
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formula to (Xt+�t �Xt)
n for n = 1; 2; 3; ::: and obtain the CRP of F .

The second part of the thesis gives the perfect hedging strategies of European and

exotic options in a Lévy market using Taylor expansions. Firstly, we derived the hedging

strategies which invest in some higher moments derivatives, namely, the power jump assets

introduced by Corcuera et al. (2005) and the moment swaps introduced by Schoutens

(2005). Note that a variance swap is a special case of a moment swap and is frequently

traded in the (over-the-counter) OTC market. The power jump assets and moment swaps

are not always traded liquidly in the market, this fact limiting the application of our results.

To remedy this problem, we extended the delta and gamma hedges commonly used by

traders in the market to higher moment hedges. By doing this, we could hedge by investing

in other traded derivatives depending on the same underlying asset. We also derived the

minimal variance portfolios, corresponding to making an investment in a risk-free bank

account, the underlying asset and (potentially) variance swaps. Numerical procedures

were provided and di¢ culties with the numerical implementation were discussed. The

performance of the trading strategies was investigated. We found that perfect hedging is

possible as long as we could invest an exact speci�ed amount in as many higher moment

�nancial derivatives as required to hedge. However, it is time-consuming to calculate the

derivatives of the option pricing function. We suggested building a look-up table which

can be used to calculate the derivatives of all functions and such table would speed up the

calculation a great deal. Future work is required to design more e¢ cient implementations

of the strategies and to compute the results in a reasonable amount of time for real time

application.

In the current market condition, we suspect there might not be much interest in trading

in moment swaps and power jump assets. It is because they are extremely risky and

investors are not willing to take on such risk. This thesis provides a motivation for

trading in such moment swaps and power jump assets. Traditionally, options are only

hedged by investing in a risk-free bank account and the underlying stock or by investing in

a portfolio of simpler options. However, when we move away from the Black-Scholes world

into a market driven by Lévy processes, there are an in�nite number of higher moments

terms in the expansions of the option pricing formulae. In the Black-Scholes model, the

option pricing formula of an European option does not involve any moments higher than

the �rst one. However, in reality, traders use not only the delta of the portfolio but also

the gamma, which corresponds to the second moment term in the Taylor expansion of the

price of the portfolio. The Lévy market model allows the price formula of the portfolio to

have an in�nite number of higher moment terms in the Taylor expansion. This motivates

the usage of higher moment assets, such as moment swaps and power jump assets to be

used in option hedging. These �nancial derivatives are of practical importance since the
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i-th moment swap and the i-th power jump asset depend only on the i-th moment of the

underlying asset. They allow the decomposition of the risk of a portfolio of options into

di¤erent order of moments, which can then be hedged separately.

The third part of the thesis proposes an option trading strategy based on the devi-

ations of the density implied by the historical data of the underlying and that implied

by the current option prices in the market. Numerical implementation was discussed in

details and the performance of the trading strategy under di¤erent market conditions was

investigated. Simulation results showed that the trading strategy has a high earning po-

tential. Nonetheless, in the current market, we cannot bene�t from our trading strategy.

It is because the strategy requires us to be able to trade in some particular three-month

options everyday in a year. Options liquidly traded on the exchange have �xed maturities.

For FTSE 100 European options, the maturity dates are the third Fridays of the delivery

months. Therefore, we cannot trade in a three-month options liquidly on exchange every-

day as the strategy requires. The reason why trading in three-month options everyday is

necessary to make pro�t is that the strategy makes a pro�t by selling over-priced options

and buying far out of money options to avoid in�nite loss. If the options expire worth-

lessly, we pro�t from the sale of the over-priced options. However, if the options we sold

were in the money, we would su¤er losses much larger than the amount we earned from

selling the options. From the analysis on the performance of the strategy, we could see

that if we choose the correct parameters�values, the strategy can lead to huge pro�ts. It

is because we rely on the fact that the options expire worthless most of the time. Even

though we would lose money occasionally, the losses would be covered by the sum of the

small pro�ts earned most of the time throughout the year. This is the reason why we have

to invest in the same kind of options everyday. Although we cannot trade in three-month

options everyday on exchange, such options maybe available in the OTC market and our

trading strategy can then be applied.

From our back-testing of the performance of the trading strategy, we could see that

high pro�ts are attainable if the correct parameter�s values are chosen. The analyses

for individual market conditions showed that the performance of the strategy throughout

di¤erent market conditions is dominated by the performance in a falling market, where the

performance is the worst compared to a recovering or a rising market. Therefore, if the

current market is recovering or rising, the parameter�s values obtained from the analysis

throughout di¤erent market conditions do not actually lead to the best performance of

the strategy. Unless we would like to invest in the strategy for a long time such that the

market goes through all the market conditions (seven years in our case), we should choose

the parameters�values according to the predicted market condition in three months time.

However, this is di¢ cult and we often su¤er from losses during unexpected changes of
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market conditions three months later. Note that the strategy can lead to losses bigger

than 100% of the initial investment, that is, we may have to pay more than we invest.

Therefore, we should be extremely careful when choosing the parameters�values. We

suggested choosing the values which result in pro�ts with minimal risk in all the analyses

provided in this part. Those points may not lie on any of the e¢ cient frontiers of the

plots but they increase the chance that the strategy would lead to moderate returns and

avoid losses. Alternatively, we could set the maximum amount of money we could a¤ord

to lose on each day to be the value equal to the current amount of capital available divided

by the number of business days until the maturity of the option.

At the time of the production of this thesis, the Black-Scholes model is still the most

popular model among practitioners in spite of its well-known drawbacks, for example, the

volatility smile. Lévy models are gaining popularity since they can handle the skewness

and kurtosis of the market data. However, there are still practitioners who would avoid

the use of Lévy models and prefer considering extensions of the Black-Scholes model in

other directions, such as using stochastic volatility driven by Brownian motion. The

reluctance to move from the Black-Scholes world is partly due to the fact that some of

the nice properties of the model are lost when we try to generalise it to include jumps.

For example, if the stock price process is driven by a Brownian motion, the log returns of

the stock price are normally distributed. Suppose we have simulated a set of realisations

of the stock price processes, with parameters �1 and �1. If later we want to change the

parameters to �2, �2, instead of having to simulate a new set of realisations, we could use

the scaling property of normal random variables: If X � N
�
�X ; �

2
X

�
;

Y =

�
X � �X
�X

�
�Y + �Y

is also normally distributed with parameters, N
�
�Y ; �

2
Y

�
. These nice scaling properties

are generally lost in the Lévy market model.

Another nice property of normally distributed random variables is that if X and Y

are normally distributed and independent of each other, Z = X + Y is also a normal

random variable. This property is very useful in the calibration of the model on options

data across time. Suppose we have options data maturing in 1 year and 2 years. We

assume the log returns of the stock price process from t0 to t1 is normally distributed with

parameters �0;1, �0;1 and those from t1 to t2 has distribution N
�
�1;2; �1;2

�
. Assume the

log returns of the stock price process from t0 to t2 has distribution N
�
�0;2; �0;2

�
. We can

calibrate the values of
�
�0;1; �0;1

�
and

�
�0;2; �0;2

�
using option data with maturities of 1

year and 2 year, respectively. The values of
�
�1;2; �1;2

�
are obtained by �1;2 = �0;2��0;1
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and �1;2 =

r�
�20;2 � �20;1

�
=2. Without the additive property of the random variable,

we would have to input the parameter values for time t0 to time t1 into the calibration of

parameters for time t1 to time t2. It is because the option data with maturities of 2 years

can only be used to obtain parameters for time t0 to time t2. The log return of the stock

price process from time t0 to time t2 is the sum of the log return from time t0 to time t1
and the log return from time t1 to time t2. Therefore the parameter values calibrated

for time t0 to time t1 must be input to the calibration of parameters for time t1 to time

t2. As a result, any approximation errors in the calibration of time t0 to time t1 will be

propagated into the calibration of time t1 to time t2.

Among all the nice properties of the Black-Scholes model, the closed forms of the

option pricing formulae probably contribute greatly to its popularity. Calculation of the

option price is quick and easily implemented. In the Lévy market models, option pricing

formulae can no longer be expressed in such an elegant closed form. Carr & Madan (1999)

developed an option pricing method using the Fast Fourier Transform (FFT) given the

characteristic function of the distribution of the log return random variables. Chourdakis

(2005) further extended it using the Fractional Fast Fourier Transform (FRFT) and the

computation time has been much reduced. These developments in option pricing under

Lévy market models are extremely important and contribute to the increasing popularity

of the Lévy model. With these option pricing methods, Lévy market models are no

longer abstract mathematical objects but practical �nancial models that provide accurate

calibration tools. Although, the option pricing methods for Lévy market models are much

more di¢ cult to implement than the Black-Scholes model, the computation time required

is still reasonably short.

Though some of the nice properties of the Black-Scholes model are lost if we employ

more advanced �nancial models, it is inevitable since problems like the volatility smile

and skewness and kurtosis of the log returns of the price processes have to be resolved

in order to get more accurate pricing and �nancial modelling. Lévy driven models are

a natural choice since they are simple extensions to the Black-Scholes model obtained by

replacing the Brownian motions with its generalisation with jumps, that is, Lévy processes.

Lévy models can �t the market option prices across di¤erent strikes and the skewness and

kurtosis of the log return distributions are controlled by extra parameters of the models. In

this thesis, we investigated the chaotic representations of the Lévy processes and presented

some hedging and trading strategies of options under the Lévy market model. This thesis

contributed both to the theoretical aspect and practical �nancial applications of the Lévy

market models.
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Appendix A

Part I

A.1 A note on the Nualart and Schoutens representation

Nualart & Schoutens (2000) derived the basic result for representing (Xt+t0 �Xt0)
k when t0 = 0

and k = 2: In the proof of the CRP, Nualart & Schoutens (2000) made use of Proposition 2 in

their paper, given in Proposition 3.0.1 in this thesis, and the following equation derived from the

Itô formula (equation (5) in Nualart & Schoutens (2000)):

(Xt+t0 �Xt0)
k

=
�2

2
k (k � 1)
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t�
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There is a small inaccuracy in this equation and we provide the corrected one necessary for the

derivation of the explicit formula. The second term in (A.2) should be

k�1X
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�
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j

�
mj (t+ t0) (Xt+t0 �Xt0)

k�j

rather than
Pk�1

j=1

�
k
j

�
mjt (Xt+t0 �Xt0)

k�j . The error propagates from equation (4) in Nualart

& Schoutens (2000). By integration by parts,
Pk

j=1

�
k
j

�
mj

R t+t0
t0

(Xs� �Xt0)
k�j

ds should give

k�1X
j=1

�
k

j

�
mj (t+ t0) (Xt+t0 �Xt0)

k�j �
k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

s d (Xs �Xt0)
k�j

+mkt
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rather than the term

k�1X
j=1

�
k

j

�
mjt (Xt+t0 �Xt0)

k�j �
k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

s d (Xs �Xt0)
k�j

+mkt

stated in Nualart & Schoutens (2000, p.114). Omitting t0 makes the constant term of the repre-

sentation not equal to the expectation of (Xt+t0 �Xt0)
k since it depends on t0. Equation (5) in

Nualart & Schoutens (2000) should in fact be:

(Xt+t0 �Xt0)
k

=
�2

2
k (k � 1)

�
(Xt+t0 �Xt0)

k�2
t�
Z t

0

s d (Xs+t0 �Xt0)
k�2
�

(A.4)

+
kX
j=1

�
k

j

�Z t+t0

t0

(Xs� �Xt0)
k�j

dY (j)s +
k�1X
j=1

�
k

j

�
mj (t+ t0) (Xt+t0 �Xt0)

k�j (A.5)

�
k�1X
j=1

�
k

j

�
mj

Z t+t0

t0

s d (Xs �Xt0)
k�j

+mkt: (A.6)

Let G = fGt; t � 0g be a pure jump Lévy process with no Brownian part (that is, �2 = 0), G(i) =n
G
(i)
t ; t � 0

o
be its i-th power jump process and bG(i) = n bG(i)t ; t � 0

o
be its i-th compensated

power jump process. As an illustration of this representation, we derive (Gt+t0 �Gt0)
2 using

(A.1)-(A.3) to inspect the constant terms. Since �2 = 0; the terms in (A.1) are equal to zero. We

have

(Gt+t0 �Gt0)
2
= 2

Z t+t0

t0

(Gt1� �Gt0) d bG(1)t1 + Z t+t0

t0

d bG(2)t1 + 2m1t (Gt+t0 �Gt0)

�2m1

Z t+t0

t0

t1 d (Gt1 �Gt0) +m2t

= 2

Z t+t0

t0

h� bG(1)t1� � bG(1)t0 �+m1 (t1 � t0)
i
d bG(1)t1 + Z t+t0

t0

d bG(2)t1
+2m1t

h� bG(1)t+t0 � bG(1)t0 �+m1t
i
� 2m1

Z t+t0

t0

t1 d
h bG(1)t1 +m1t1

i
+m2t

= 2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + Z t+t0

t0

d bG(2)t1 + 2m1 (t� t0)
Z t+t0

t0

d bG(1)t1
+m2

1t
2 +m2t� 2m2

1tt0:

The expectation of 2
R t+t0
t0

R t1�
t0

d bG(1)t2 d bG(1)t1 + R t+t0t0
d bG(2)t1 +2m1 (t� t0)

R t+t0
t0

d bG(1)t1 is zero since the

compensated processes bG(1)t and bG(2)t have zero means. We see that m2
1t
2+m2t�2m2

1tt0 depends

on t0 which in fact cannot be the expectation of (Gt+t0 �Gt0)
2 since the increments of Gt are

stationary. Starting from (A.4)-(A.6), we can �nd that

(Gt+t0 �Gt0)
2
= 2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 +2m1t

Z t+t0

t0

d bG(1)t1 +Z t+t0

t0

d bG(2)t1 +m2
1t
2+m2t; (A.7)
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where the detailed derivation is given in Appendix A.2.1.

A.2 Calculation of (Gt+t0 �Gt0)
k for k = 2; 3; 4 when � = 0

A.2.1 (Gt+t0 �Gt0)
2

Starting from (A.4)-(A.6), we have

(Gt+t0 �Gt0)
2

= 2

Z t+t0

t0

(Gt1� �Gt0) d bG(1)t1 + Z t+t0

t0

d bG(2)t1 + 2m1 (t+ t0) (Gt+t0 �Gt0)

�2m1

Z t+t0

t0

t1d (Gt1 �Gt0) +m2t

= 2

Z t+t0

t0

h bG(1)t1� � bG(1)t0 +m1 (t1 � t0)
i
d bG(1)t1 + Z t+t0

t0

d bG(2)t1 +m2t

+2m1 (t+ t0)
h bG(1)t+t0 � bG(1)t0 +m1t

i
� 2m1

Z t+t0

t0

t1d
h bG(1)t1 +m1t1

i
= 2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 2m1

Z t+t0

t0

(t1 � t0) d bG(1)t1
+

Z t+t0

t0

d bG(2)t1 + 2m1 (t+ t0)
h bG(1)t+t0 � bG(1)t0 i+ 2m2

1 (t+ t0) t

�2m1

Z t+t0

t0

t1d bG(1)t1 �m2
1

�
t21
�t+t0
t0

+m2t

= 2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 2m1

Z t+t0

t0

t1d bG(1)t1 � 2m1t0

h bG(1)t+t0 � bG(1)t0 i
+

Z t+t0

t0

d bG(2)t1 + 2m1 (t+ t0) bG(1)t+t0 � 2m1 (t+ t0) bG(1)t0
+2m2

1 (t+ t0) t� 2m1

Z t+t0

t0

t1d bG(1)t1 �m2
1t
2 � 2m2

1tt0 +m2t

= 2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 2m1t

Z t+t0

t0

d bG(1)t1 + Z t+t0

t0

d bG(2)t1 +m2
1t
2 +m2t:

A.2.2 (Gt+t0 �Gt0)
3

For k = 3; we can start from (A.4)-(A.6)

(Gt+t0 �Gt0)
3
= 3

Z t+t0

t0

(Gt1� �Gt0)
2
d bG(1)t1 + 3Z t+t0

t0

(Gt1� �Gt0) d bG(2)t1
+

Z t+t0

t0

d bG(3)t1 + 3m1 (t+ t0) (Gt+t0 �Gt0)
2

+3m2 (t+ t0) (Gt+t0 �Gt0)� 3m1

Z t+t0

t0

t1d (Gt1 �Gt0)
2
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�3m2

Z t+t0

t0

t1d (Gt1 �Gt0) +m3t:

Accordingly, let

(Gt+t0 �Gt0)
3
= I1 + I2 + I3 + I4 + I5 + I6 + I7 +m3t:

Firstly,

I1 = 3

Z t+t0

t0

(Gt1� �Gt0)
2
d bG(1)t1

= 3

Z t+t0

t0

�
2

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 + 2m1 (t1 � t0)
Z t1�

t0

d bG(1)t2
+

Z t1�

t0

d bG(2)t2 +m2
1 (t1 � t0)

2
+m2 (t1 � t0)

�
d bG(1)t1

= 6

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1 + 6m1

Z t+t0

t0

Z t1�

t0

(t1 � t0) d bG(1)t2 d bG(1)t1
+3

Z t+t0

t0

Z t1�

t0

d bG(2)t2 d bG(1)t1 + 3m2
1

Z t+t0

t0

(t1 � t0)2 d bG(1)t1 + 3m2

Z t+t0

t0

(t1 � t0) d bG(1)t1 :
I2 = 3

Z t+t0

t0

(Gt1� �Gt0) d bG(2)t1 = 3

Z t+t0

t0

� bG(1)t1� � bG(1)t0 +m1 (t1 � t0)
�
d bG(2)t1

= 3

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(2)t1 + 3m1

Z t+t0

t0

(t1 � t0) d bG(2)t1 :
I4 = 3m1 (t+ t0) (Gt+t0 �Gt0)

2

= 3m1 (t+ t0)

�
2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 2m1t

Z t+t0

t0

d bG(1)t1 + Z t+t0

t0

d bG(2)t1 +m2
1t
2 +m2t

�
= 6m1 (t+ t0)

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 6m2
1t (t+ t0)

Z t+t0

t0

d bG(1)t1
+3m1 (t+ t0)

Z t+t0

t0

d bG(2)t1 + 3m3
1t
2 (t+ t0) + 3m1m2t (t+ t0) :

I5 = 3m2 (t+ t0) (Gt+t0 �Gt0) = 3m2 (t+ t0)
� bG(1)t+t0 � bG(1)t0 +m1t

�
= 3m2 (t+ t0)

Z t+t0

t0

d bG(1)t1 + 3m1m2t (t+ t0) :

I6 = �3m1

Z t+t0

t0

t1d (Gt1 �Gt0)
2

= �3m1

Z t+t0

t0

t1d

�
2

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 + 2m1 (t1 � t0)
Z t1�

t0

d bG(1)t2
+

Z t1�

t0

d bG(2)t2 +m2
1 (t1 � t0)

2
+m2 (t1 � t0)

�
= �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m1

Z t+t0

t0

t1d

�
2m1 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
�3m1

Z t+t0

t0

t1d bG(2)t1 � 3m3
1

Z t+t0

t0

t1d
�
t21 � 2t1t0

�
� 3m1m2

Z t+t0

t0

t1dt1;
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I6 = �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m1

Z t+t0

t0

t1d

�
2m1 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
�3m1

Z t+t0

t0

t1d bG(2)t1 � 6m3
1

Z t+t0

t0

t21dt1 + 6m
3
1t0

Z t+t0

t0

t1dt1 �
3

2
m1m2

�
t21
�t+t0
t0

= �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m1

Z t+t0

t0

t1d

�
2m1 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
�3m1

Z t+t0

t0

t1d bG(2)t1 � 2m3
1

�
t31
�t+t0
t0

+ 3m3
1t0
�
t21
�t+t0
t0

� 3
2
m1m2

�
t2 + 2tt0

�
= �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m1

Z t+t0

t0

t1d

�
2m1 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
�3m1

Z t+t0

t0

t1d bG(2)t1 � 2m3
1

�
t3 + 3t2t0 + 3tt

2
0

�
+3m3

1t0
�
t2 + 2tt0

�
� 3
2
m1m2

�
t2 + 2tt0

�
= �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m1

Z t+t0

t0

t1d

�
2m1 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
�3m1

Z t+t0

t0

t1d bG(2)t1 � 2m3
1t
3 � 3m3

1t
2t0 �

3

2
m1m2

�
t2 + 2tt0

�
:

We need to evaluate the term
R t+t0
t0

t1d
h
2m1 (t1 � t0)

R t1�
t0

d bG(1)t2 i very carefully. Using chain rule
or simply taking away the integral sign is not correct. Rather we need to proceed as follows:

2m1

Z t+t0

t0

t1d

�
(t1 � t0)

Z t1�

t0

d bG(1)t2 �
= 2m1

Z t+t0

t0

t1d
h
t1

� bG(1)t1 � bG(1)t0 �i� 2m1t0

Z t+t0

t0

t1d
h bG(1)t1 � bG(1)t0 i

= 2m1

Z t+t0

t0

t1d
h
t1 bG(1)t1 i� 2m1

bG(1)t0 Z t+t0

t0

t1dt1 � 2m1t0

Z t+t0

t0

t1d bG(1)t1
= 2m1

h
t21 bG(1)t1 it+t0

t0
� 2m1

Z t+t0

t0

t1 bG(1)t1 dt1 �m1
bG(1)t0 �t21�t+t0t0

� 2m1t0

Z t+t0

t0

t1d bG(1)t1
= 2m1

h
(t+ t0)

2 bG(1)t+t0 � t20 bG(1)t0 i�m1

Z t+t0

t0

bG(1)t1 dt21
�m1

bG(1)t0 �t2 + 2tt0�� 2m1t0

Z t+t0

t0

t1d bG(1)t1
= 2m1 (t+ t0)

2 bG(1)t+t0 � 2m1t
2
0
bG(1)t0 �m1

h bG(1)t1 t21it+t0
t0

+m1

Z t+t0

t0

t21d
bG(1)t1 �m1

bG(1)t0 �t2 + 2tt0�� 2m1t0

Z t+t0

t0

t1d bG(1)t1
= 2m1 (t+ t0)

2 bG(1)t+t0 � 2m1t
2
0
bG(1)t0 �m1

h bG(1)t+t0 (t+ t0)2 � bG(1)t0 t20i
+m1

Z t+t0

t0

t21d
bG(1)t1 �m1

bG(1)t0 �t2 + 2tt0�� 2m1t0

Z t+t0

t0

t1d bG(1)t1 ;
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2m1

Z t+t0

t0

t1d

�
(t1 � t0)

Z t1�

t0

d bG(1)t2 �
= m1 (t+ t0)

2 bG(1)t+t0 �m1t
2
0
bG(1)t0 +m1

Z t+t0

t0

t21d bG(1)t1
�m1

bG(1)t0 �t2 + 2tt0�� 2m1t0

Z t+t0

t0

t1d bG(1)t1
= m1 (t+ t0)

2 bG(1)t+t0 �m1 (t+ t0)
2 bG(1)t0 +m1

Z t+t0

t0

t21d bG(1)t1 � 2m1t0

Z t+t0

t0

t1d bG(1)t1
= m1 (t+ t0)

2
Z t+t0

t0

d bG(1)t1 +m1

Z t+t0

t0

t21d bG(1)t1 � 2m1t0

Z t+t0

t0

t1d bG(1)t1 :
Hence,

I6 = �6m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 3m2
1 (t+ t0)

2
Z t+t0

t0

d bG(1)t1
�3m2

1

Z t+t0

t0

t21d bG(1)t1 + 6m2
1t0

Z t+t0

t0

t1d bG(1)t1
�3m1

Z t+t0

t0

t1d bG(2)t1 � 2m3
1t
3 � 3m3

1t
2t0 �

3

2
m1m2

�
t2 + 2tt0

�
:

I7 = �3m2

Z t+t0

t0

t1d (Gt1 �Gt0) = �3m2

Z t+t0

t0

t1d
h bG(1)t1 +m1t1

i
= �3m2

Z t+t0

t0

t1d bG(1)t1 � 3m1m2

Z t+t0

t0

t1dt1 = �3m2

Z t+t0

t0

t1d bG(1)t1 � 32m1m2

�
t2 + 2tt0

�
:

Altogether, we have

(Gt+t0 �Gt0)
3
= 6

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1 + 3Z t+t0

t0

Z t1�

t0

d bG(2)t2 d bG(1)t1
+3

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(2)t1 + 6m1t

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1
+

Z t+t0

t0

d bG(3)t1 + 3m1t

Z t+t0

t0

d bG(2)t1 + �3m2
1t
2 + 3m2t

� Z t+t0

t0

d bG(1)t1
+m3

1t
3 + 3m1m2t

2 +m3t:

A.2.3 (Gt+t0 �Gt0)
4

Starting from (A.4)-(A.6),

(Gt+t0 �Gt0)
4
=

4X
j=1

�
4

j

�Z t+t0

t0

(Gt1� �Gt0)
4�j

d bG(j)t1 + 3X
j=1

�
4

j

�
mj (t+ t0) (Gt+t0 �Gt0)

4�j

�
3X
j=1

�
4

j

�
mj

Z t+t0

t0

t1d (Gt1 �Gt0)
4�j

+m4t;
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(Gt+t0 �Gt0)
4
= 4

Z t+t0

t0

(Gt1� �Gt0)
3
d bG(1)t1 + 6Z t+t0

t0

(Gt1� �Gt0)
2
d bG(2)t1

+4

Z t+t0

t0

(Gt1� �Gt0) d bG(3)t1 + Z t+t0

t0

d bG(4)t1 + 4m1 (t+ t0) (Gt+t0 �Gt0)
3

+6m2 (t+ t0) (Gt+t0 �Gt0)
2
+ 4m3 (t+ t0) (Gt+t0 �Gt0)

�4m1

Z t+t0

t0

t1d (Gt1 �Gt0)
3 � 6m2

Z t+t0

t0

t1d (Gt1 �Gt0)
2

�4m3

Z t+t0

t0

t1d (Gt1 �Gt0) +m4t

= J1 + J2 + J3 +

Z t+t0

t0

d bG(4)t1 + J4 + J5 + J6 + J7 + J8 + J9 +m4t:

J1 = 4

Z t+t0

t0

(Gt1� �Gt0)
3
d bG(1)t1

= 4

Z t+t0

t0

�
6

Z t1�

t0

Z t2�

t0

Z t3�

t0

d bG(1)t4 d bG(1)t3 d bG(1)t2 + 3Z t1�

t0

Z t2�

t0

d bG(2)t3 d bG(1)t2
+3

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(2)t2 + 6m1 (t1 � t0)
Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2
+

Z t1�

t0

d bG(3)t2 + 3m1 (t1 � t0)
Z t1�

t0

d bG(2)t2
+
�
3m2

1 (t1 � t0)
2
+ 3m2 (t1 � t0)

�Z t1�

t0

d bG(1)t2 +m3
1 (t1 � t0)

3

+3m1m2 (t1 � t0)2 +m3 (t1 � t0)
i
d bG(1)t1

= 24

Z t+t0

t0

Z t1�

t0

Z t2�

t0

Z t3�

t0

d bG(1)t4 d bG(1)t3 d bG(1)t2 d bG(1)t1
+12

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(2)t3 d bG(1)t2 d bG(1)t1
+12

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(2)t2 d bG(1)t1
+24m1

Z t+t0

t0

(t1 � t0)
Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1
+4

Z t+t0

t0

Z t1�

t0

d bG(3)t2 d bG(1)t1 + 12m1

Z t+t0

t0

(t1 � t0)
Z t1�

t0

d bG(2)t2 d bG(1)t1
+12m2

1

Z t+t0

t0

(t1 � t0)2
Z t1�

t0

d bG(1)t2 d bG(1)t1
+12m2

Z t+t0

t0

(t1 � t0)
Z t1�

t0

d bG(1)t2 d bG(1)t1 + 4m3
1

Z t+t0

t0

(t1 � t0)3 d bG(1)t1
+12m1m2

Z t+t0

t0

(t1 � t0)2 d bG(1)t1 + 4m3

Z t+t0

t0

(t1 � t0) d bG(1)t1 :
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J2 = 6

Z t+t0

t0

(Gt1� �Gt0)
2
d bG(2)t1

= 6

Z t+t0

t0

�
2

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 + 2m1 (t1 � t0)
Z t1�

t0

d bG(1)t2
+

Z t1�

t0

d bG(2)t2 +m2
1 (t1 � t0)

2
+m2 (t1 � t0)

�
d bG(2)t1

= 12

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(2)t1 + 12m1

Z t+t0

t0

(t1 � t0)
Z t1�

t0

d bG(1)t2 d bG(2)t1
+6

Z t+t0

t0

Z t1�

t0

d bG(2)t2 d bG(2)t1 + 6m2
1

Z t+t0

t0

(t1 � t0)2 d bG(2)t1 + 6m2

Z t+t0

t0

(t1 � t0) d bG(2)t1 :
J3 = 4

Z t+t0

t0

(Gt1� �Gt0) d bG(3)t1 = 4

Z t+t0

t0

Z t1�

t0

dG
(1)
t2 d

bG(3)t1
= 4

Z t+t0

t0

Z t1�

t0

d
h bG(1)t2 +m1t2

i
d bG(3)t1

= 4

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(3)t1 + 4m1

Z t+t0

t0

(t1 � t0) d bG(3)t1
= 4

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(3)t1 + 4m1

Z t+t0

t0

t1d bG(3)t1 � 4m1t0

Z t+t0

t0

d bG(3)t1 :
J4 = 4m1 (t+ t0) (Gt+t0 �Gt0)

3

= 4m1 (t+ t0)

�
6

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1 + 3Z t+t0

t0

Z t1�

t0

d bG(2)t2 d bG(1)t1
+3

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(2)t1 + 6m1t

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + Z t+t0

t0

d bG(3)t1
+3m1t

Z t+t0

t0

d bG(2)t1 + �3m2
1t
2 + 3m2t

� Z t+t0

t0

d bG(1)t1 +m3
1t
3 + 3m1m2t

2 +m3t

�
= 24m1 (t+ t0)

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1
+12m1 (t+ t0)

Z t+t0

t0

Z t1�

t0

d bG(2)t2 d bG(1)t1 + 12m1 (t+ t0)

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(2)t1
+24m2

1t (t+ t0)

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 4m1 (t+ t0)

Z t+t0

t0

d bG(3)t1
+12m2

1t (t+ t0)

Z t+t0

t0

d bG(2)t1 + 12m3
1t
2 (t+ t0)

Z t+t0

t0

d bG(1)t1 + 12m1m2t (t+ t0)

Z t+t0

t0

d bG(1)t1
+4m4

1t
3 (t+ t0) + 12m

2
1m2t

2 (t+ t0) + 4m1m3t (t+ t0) :

J5 = 6m2 (t+ t0) (Gt+t0 �Gt0)
2

= 6m2 (t+ t0)

�
2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 2m1t

Z t+t0

t0

d bG(1)t1 + Z t+t0

t0

d bG(2)t1 +m2
1t
2 +m2t

�
= 12m2 (t+ t0)

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 12m1m2t (t+ t0)

Z t+t0

t0

d bG(1)t1
+6m2 (t+ t0)

Z t+t0

t0

d bG(2)t1 + 6m2
1m2t

2 (t+ t0) + 6m
2
2t (t+ t0) :
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J6 = 4m3 (t+ t0) (Gt+t0 �Gt0) = 4m3 (t+ t0)

Z t+t0

t0

dG
(1)
t1

= 4m3 (t+ t0)

Z t+t0

t0

d
h bG(1)t1 +m1t1

i
= 4m3 (t+ t0)

Z t+t0

t0

d bG(1)t1 + 4m1m3t (t+ t0) :

J7 = �4m1

Z t+t0

t0

t1d (Gt1 �Gt0)
3

= �4m1

Z t+t0

t0

t1d

�
6

Z t1�

t0

Z t2�

t0

Z t3�

t0

d bG(1)t4 d bG(1)t3 d bG(1)t2 + 3Z t1�

t0

Z t2�

t0

d bG(2)t3 d bG(1)t2
+3

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(2)t2 + 6m1 (t1 � t0)
Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 + Z t1�

t0

d bG(3)t2
+3m1 (t1 � t0)

Z t1�

t0

d bG(2)t2 + �3m2
1 (t1 � t0)

2
+ 3m2 (t1 � t0)

�Z t1�

t0

d bG(1)t2
+m3

1 (t1 � t0)
3
+ 3m1m2 (t1 � t0)2 +m3 (t1 � t0)

i
= �24m1

Z t+t0

t0

t1

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1 � 12m1

Z t+t0

t0

t1

Z t1�

t0

d bG(2)t2 d bG(1)t1
�12m1

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(2)t1 +K1 � 4m1

Z t+t0

t0

t1d bG(3)t1 +K2 +K3 +K4

+K5 +K6 +K7:

K1 = �4m1

Z t+t0

t0

t1d

�
6m1 (t1 � t0)

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 �
= �24m2

1

Z t+t0

t0

t1d

�
(t1 � t0)

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 �
= �24m2

1

Z t+t0

t0

t1d

�
t1

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 �+ 24m2
1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1
= �24m2

1

�
t21

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 �t+t0
t0

+ 24m2
1

Z t+t0

t0

t1

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 dt1
+24m2

1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1
= �24m2

1 (t+ t0)
2
Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 12m2
1

Z t+t0

t0

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 dt21
+24m2

1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1
= �24m2

1 (t+ t0)
2
Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 12m2
1

�
t21

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 �t+t0
t0

�12m2
1

Z t+t0

t0

t21

Z t1�

t0

d bG(1)t2 d bG(1)t1 + 24m2
1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1
= �12m2

1 (t+ t0)
2
Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 12m2
1

Z t+t0

t0

t21

Z t1�

t0

d bG(1)t2 d bG(1)t1
+24m2

1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 :
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K2 = �4m1

Z t+t0

t0

t1d

�
3m1 (t1 � t0)

Z t1�

t0

d bG(2)t2 �
= �12m2

1

Z t+t0

t0

t1d

�
t1

Z t1�

t0

d bG(2)t2 �+ 12m2
1t0

Z t+t0

t0

t1d bG(2)t1
= �12m2

1

�
t21

Z t1�

t0

d bG(2)t2 �t+t0
t0

+ 12m2
1

Z t+t0

t0

t1

Z t1�

t0

d bG(2)t2 dt1 + 12m2
1t0

Z t+t0

t0

t1d bG(2)t1
= �12m2

1 (t+ t0)
2
Z t+t0

t0

d bG(2)t1 + 6m2
1

Z t+t0

t0

Z t1�

t0

d bG(2)t2 dt21 + 12m2
1t0

Z t+t0

t0

t1d bG(2)t1
= �12m2

1 (t+ t0)
2
Z t+t0

t0

d bG(2)t1 + 6m2
1

�
t21

Z t1�

t0

d bG(2)t2 �t+t0
t0

� 6m2
1

Z t+t0

t0

t21d bG(2)t1
+12m2

1t0

Z t+t0

t0

t1d bG(2)t1
= �6m2

1 (t+ t0)
2
Z t+t0

t0

d bG(2)t1 � 6m2
1

Z t+t0

t0

t21d
bG(2)t1 + 12m2

1t0

Z t+t0

t0

t1d bG(2)t1 :
K3 = �4m1

Z t+t0

t0

t1d

�
3m2

1 (t1 � t0)
2
Z t1�

t0

d bG(1)t2 �
= �4m1

Z t+t0

t0

t1d

�
3m2

1

�
t21 � 2t1t0 + t20

� Z t1�

t0

d bG(1)t2 �
= �12m3

1

Z t+t0

t0

t1d

�
t21

Z t1�

t0

d bG(1)t2 �+ 24m3
1t0

Z t+t0

t0

t1d

�
t1

Z t1�

t0

d bG(1)t2 �
�12m3

1t
2
0

Z t+t0

t0

t1d bG(1)t1
= �12m3

1

�
t31

Z t1�

t0

d bG(1)t2 �t+t0
t0

+ 12m3
1

Z t+t0

t0

t21

Z t1�

t0

d bG(1)t2 dt1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
+24m3

1t0

�
t21

Z t1�

t0

d bG(1)t2 �t+t0
t0

� 24m3
1t0

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 dt1
= �12m3

1 (t+ t0)
3
Z t+t0

t0

d bG(1)t1 + 4m3
1

Z t+t0

t0

Z t1�

t0

d bG(1)t2 dt31 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
+24m3

1t0 (t+ t0)
2
Z t+t0

t0

d bG(1)t1 � 12m3
1t0

Z t+t0

t0

Z t1�

t0

d bG(1)t2 dt21
= �12m3

1 (t+ t0)
3
Z t+t0

t0

d bG(1)t1 + 4m3
1

�
t31

Z t1�

t0

d bG(1)t2 �t+t0
t0

� 4m3
1

Z t+t0

t0

t31d bG(1)t1
+24m3

1t0 (t+ t0)
2
Z t+t0

t0

d bG(1)t1 � 12m3
1t0

�
t21

Z t1�

t0

d bG(1)t2 �t+t0
t0

+12m3
1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1 ;
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K3 = �12m3
1 (t+ t0)

3
Z t+t0

t0

d bG(1)t1 + 4m3
1 (t+ t0)

3
Z t+t0

t0

d bG(1)t1 � 4m3
1

Z t+t0

t0

t31d bG(1)t1
+24m3

1t0 (t+ t0)
2
Z t+t0

t0

d bG(1)t1 � 12m3
1t0 (t+ t0)

2
Z t+t0

t0

d bG(1)t1
+12m3

1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
= �8m3

1 (t+ t0)
3
Z t+t0

t0

d bG(1)t1 � 4m3
1

Z t+t0

t0

t31d bG(1)t1 + 12m3
1t0 (t+ t0)

2
Z t+t0

t0

d bG(1)t1
+12m3

1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
= 4m3

1

�
�2
�
t3 + 3t2t0 + 3tt

2
0 + t

3
0

�
+ 3t0

�
t2 + 2tt0 + t

2
0

�� Z t+t0

t0

d bG(1)t1
�4m3

1

Z t+t0

t0

t31d bG(1)t1 + 12m3
1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
= 4m3

1

�
�2t3 � 3t2t0 + t30

� Z t+t0

t0

d bG(1)t1 � 4m3
1

Z t+t0

t0

t31d bG(1)t1
+12m3

1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1 :
K4 = �4m1

Z t+t0

t0

t1d

�
3m2 (t1 � t0)

Z t1�

t0

d bG(1)t2 �
= �12m1m2

Z t+t0

t0

t1d

�
t1

Z t1�

t0

d bG(1)t2 �+ 12m1m2t0

Z t+t0

t0

t1d bG(1)t1
= �12m1m2

�
t21

Z t1�

t0

d bG(1)t2 �t+t0
t0

+ 12m1m2

Z t+t0

t0

t1

Z t1�

t0

d bG(1)t2 dt1
+12m1m2t0

Z t+t0

t0

t1d bG(1)t1
= �12m1m2 (t+ t0)

2
Z t+t0

t0

d bG(1)t1 + 6m1m2

Z t+t0

t0

Z t1�

t0

d bG(1)t2 dt21
+12m1m2t0

Z t+t0

t0

t1d bG(1)t1
= �12m1m2 (t+ t0)

2
Z t+t0

t0

d bG(1)t1 + 6m1m2

�
t21

Z t1�

t0

d bG(1)t2 �t+t0
t0

�6m1m2

Z t+t0

t0

t21d
bG(1)t1 + 12m1m2t0

Z t+t0

t0

t1d bG(1)t1
= �6m1m2 (t+ t0)

2
Z t+t0

t0

d bG(1)t1 + 12m1m2t0

Z t+t0

t0

t1d bG(1)t1 � 6m1m2

Z t+t0

t0

t21d bG(1)t1 :
K5 = �4m1

Z t+t0

t0

t1d
h
m3
1 (t1 � t0)

3
i
= �4m4

1

Z t+t0

t0

t1d
�
t31 � 3t21t0 + 3t1t20 � t30

�
= �12m4

1

Z t+t0

t0

t31dt1 + 24m
4
1t0

Z t+t0

t0

t21dt1 � 12m4
1t
2
0

Z t+t0

t0

t1dt1

= �3m4
1

�
t41
�t+t0
t0

+ 8m4
1t0
�
t31
�t+t0
t0

� 6m4
1t
2
0

�
t21
�t+t0
t0

= �3m4
1

�
t4 + 4t3t0 + 6t

2t20 + 4tt
3
0

�
+ 8m4

1t0
�
t3 + 3t2t0 + 3tt

2
0

�
� 6m4

1t
2
0

�
t2 + 2tt0

�
= �3m4

1t
4 � 4m4

1t
3t0:
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K6 = �4m1

Z t+t0

t0

t1d
h
3m1m2 (t1 � t0)2

i
= �12m2

1m2

Z t+t0

t0

t1d
�
t21 � 2t1t0 + t20

�
= �24m2

1m2

Z t+t0

t0

t21dt1 + 24m
2
1m2t0

Z t+t0

t0

t1dt1 = �8m2
1m2

�
t31
�t+t0
t0

+ 12m2
1m2t0

�
t21
�t+t0
t0

= �8m2
1m2

�
t3 + 3t2t0 + 3tt

2
0

�
+ 12m2

1m2t0
�
t2 + 2tt0

�
= �8m2

1m2t
3 � 12m2

1m2t
2t0:

K7 = �4m1

Z t+t0

t0

t1d [m3 (t1 � t0)] = �4m1m3

Z t+t0

t0

t1dt1

= �2m1m3

�
t21
�t+t0
t0

= �2m1m3

�
t2 + 2tt0

�
= �2m1m3t

2 � 4m1m3tt0:

Hence,

J7 = �3m4
1t
4 � 24m1

Z t+t0

t0

t1

Z t1�

t0

Z t2�

t0

d bG(1)t3 d bG(1)t2 d bG(1)t1
�12m1

Z t+t0

t0

t1

Z t1�

t0

d bG(2)t2 d bG(1)t1 � 12m1
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t1

Z t1�
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d bG(1)t2 d bG(2)t1
�12m2

1 (t+ t0)
2
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t0

Z t1�
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d bG(1)t2 d bG(1)t1 � 12m2
1

Z t+t0
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t21

Z t1�

t0

d bG(1)t2 d bG(1)t1
+24m2

1t0

Z t+t0
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t1

Z t1�

t0

d bG(1)t2 d bG(1)t1 � 4m1

Z t+t0

t0

t1d bG(3)t1
�6m2

1 (t+ t0)
2
Z t+t0

t0

d bG(2)t1 � 6m2
1

Z t+t0

t0

t21d bG(2)t1 + 12m2
1t0

Z t+t0

t0

t1d bG(2)t1
+4m3

1

�
�2t3 � 3t2t0 + t30

� Z t+t0

t0

d bG(1)t1 � 4m3
1

Z t+t0

t0

t31d bG(1)t1
+12m3

1t0

Z t+t0

t0

t21d bG(1)t1 � 12m3
1t
2
0

Z t+t0

t0

t1d bG(1)t1
�6m1m2 (t+ t0)

2
Z t+t0

t0

d bG(1)t1 + 12m1m2t0
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�6m1m2
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1t
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1m2t
3

�12m2
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2t0 � 2m1m3t
2 � 4m1m3tt0:

J8 = �6m2

Z t+t0

t0

t1d (Gt1 �Gt0)
2
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�
�6m2

�3m1

�
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2m2
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I6

= �12m2
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2

�
t2 + 2tt0

�
:

J9 = �4m3

Z t+t0

t0

t1d (Gt1 �Gt0) =
�
�4m3

�3m2

�
I7

= �4m3
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t0

t1d bG(1)t1 � 2m1m3

�
t2 + 2tt0

�
:



Chapter A. Part I 182

(Gt+t0 �Gt0)
4

= m4t+ 24

Z t+t0
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Z t1�

t0

Z t2�

t0

Z t3�

t0

d bG(1)t4 d bG(1)t3 d bG(1)t2 d bG(1)t1
+12

Z t+t0
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Z t1�

t0

Z t2�

t0

d bG(2)t3 d bG(1)t2 d bG(1)t1 + 12Z t+t0
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Z t2�

t0

d bG(1)t3 d bG(2)t2 d bG(1)t1
+12

Z t+t0
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Z t1�
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t0

d bG(1)t3 d bG(1)t2 d bG(2)t1 + 24m1t
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Z t1�

t0

d bG(2)t2 d bG(2)t1 + 12m1t
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Z t1�
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d bG(2)t2 d bG(1)t1
+12m1t

Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(2)t1 + �12m2
1t
2 + 12m2t

� Z t+t0

t0

Z t1�

t0

d bG(1)t2 d bG(1)t1
+

Z t+t0

t0

d bG(4)t1 + 4m1t

Z t+t0

t0

d bG(3)t1 + �6m2
1t
2 + 6m2t

� Z t+t0

t0

d bG(2)t1
+
�
4m3

1t
3 + 12m1m2t

2 + 4m3t
� Z t+t0

t0

d bG(1)t1 +m4
1t
4 + 6m2

1m2t
3 +

�
4m1m3 + 3m

2
2

�
t2:

A.3 Proof of Proposition 3.1.2

We prove this result using strong induction. Clearly, the proposition is true for k = 1 and 2:

Assume the proposition is true for k = n, where n is an integer � 1: Then for k = n + 1; �rstly

we prove that the sum of the indices of all the mq�s appearing in each of the terms of C
(n+1)
t are

equal to n+ 1: By Proposition 3.1.1, we have

C
(n+1)
t =

nX
j=1

�
n+ 1

j

�
mjtC

(n+1�j)
t �

nX
j=1

�
n+ 1

j

�
mj

Z t

0

t1 dC
(n+1�j)
t1 +mn+1t: (A.8)

By the induction step, the tuples of the indices of all the mq�s appearing in each of the terms of

C
(n+1�j)
t are elements of Ln+1�j de�ned in (3.9). Since we have mjC

(n+1�j)
t appearing in the

�rst term of (A.8), mjC
(n+1�j)
t1 in the second term and mn+1 in the last term, it is clear that the

tuples of the indices of all the mq�s appearing in each of the terms of C
(n+1)
t are elements of Ln+1:

By the induction step, the �rst term of (A.8) is given by

nX
j=1

�
n+ 1

j

�
mjtC

(n+1�j)
t

=

nX
j=1

X
�n+1�j=

�
i
(n+1�j)
1 ;i

(n+1�j)
2 ;:::;i

(n+1�j)
l

�
2Ln+1�j

1

l!

�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l ; j

�
!

�
�
p
�n+1�j
1 ; p

�n+1�j
2 ; :::; p

�n+1�j
n+1�j

�
!

24 Y
q2�n+1�j[fjg

mq

35 tl+1
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and the second term is given by

�
nX
j=1

�
n+ 1

j

�
mj

Z t

0

t1 dC
(n+1�j)
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= �
nX
j=1

X
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(n+1�j)
1 ;i

(n+1�j)
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�
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1 ; p
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�
!

24 Y
q2�n+1�j[fjg
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l + 1
tl+1:

Hence,

C
(n+1)
t =
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j=1

X
�n+1�j=

�
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(n+1�j)
1 ;i

(n+1�j)
2 ;:::;i

(n+1�j)
l

�
2Ln+1�j
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(n+1�j)
l ; j
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!
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p
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1 ; p
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�n+1�j
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�
!

24 Y
q2�n+1�j[fjg
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35 tl+1 1

l + 1
+mn+1t:

Next we are going to prove that

X
�n+1=

�
i
(n+1)
1 ;i

(n+1)
2 ;:::;i

(n+1)
l+1

�
2Ln+1

1

(l + 1)!

�
i
(n+1)
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(n+1)
2 ; :::; i

(n+1)
l+1

�
!

�
�
p
�n+1
1 ; p

�n+1
2 ; :::; p

�n+1
n+1

�
!

24 Y
q2�n+1

mq

35 tl+1
=

nX
j=1

X
�n+1�j=

�
i
(n+1�j)
1 ;i

(n+1�j)
2 ;:::;i

(n+1�j)
l

�
2Ln+1�j

1

(l + 1)!

�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l ; j

�
!

�
�
p�

n+1�j

1 ; p�
n+1�j

2 ; :::; p�
n+1�j

n+1�j

�
!

24 Y
q2�n+1�j[fjg

mq

35 tl+1 +mn+1t: (A.9)

On the R.H.S., we are adding a j to each tuple
�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l

�
such that we havePl

q=1 i
(n+1�j)
q + j = n + 1. Suppose �n+1 =

�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
has one extra element

compared to the tuple
�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l

�
and otherwise they are the same. SincePl+1

q=1 i
(n+1)
q = n+1; to obtain

�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
from

�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l

�
, we

are adding an element j to the latter such that the sum of the tuple is equal to n + 1. Sup-

pose there are r distinct value(s) in
�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
: Let x1; x2; :::; xr be the distinct

values in
�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
and let fi; i = 1; :::; r be the number of times xi appears in�

i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
: Note that

Pr
q=1 fq is equal to the length of

�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
;
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that is,
Pr

q=1 fq = l+ 1: Since
�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
can be obtained by adding an element j

to a tuple
�
i
(n+1�j)
1 ; i

(n+1�j)
2 ; :::; i

(n+1�j)
l

�
whose elements add up to n+ 1� j; j can take one of

the r distinct value(s): x1; x2; :::; xr: For example, suppose j = xi; then the corresponding term

on the R.H.S. of (A.9) is

(n+ 1)!

(x1!)
f1 (x2!)

f2 � � � (xi!)fi�1 � � � (xr!)fr xi!f1! � � � (fi � 1)! � � � fr!

24 Y
q2�n+1

mq

35 tl+1 1Pr
q=1 fq

:

Summing up all the possible j 2 fx1; x2; :::; xrg ;

rX
i=1

(n+ 1)!

(x1!)
f1 (x2!)

f2 � � � (xi!)fi�1 � � � (xr!)fr xi!f1! � � � (fi � 1)! � � � fr!

24 Y
q2�n+1

mq

35 tl+1 1Pr
q=1 fq

=
(n+ 1)!
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1Pr
q=1 fq

24 Y
q2�n+1

mq

35 tl+1 rX
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=
(n+ 1)!

(x1!)
f1 � � � (xr!)fr f1! � � � fr!

24 Y
q2�n+1

mq

35 tl+1:
For the case �n+1 =

�
i
(n+1)
1

�
; it is clear that the L.H.S. of (A.9) is equal to mn+1t: Hence,

by applying the same argument to each possible tuple
�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l+1

�
2 Ln+1, we have

proven (A.9) and therefore

C
(n+1)
t =

X
�n+1=

�
i
(n+1)
1 ;i

(n+1)
2 ;:::;i

(n+1)
l

�
2Ln+1

1

l!

�
i
(n+1)
1 ; i

(n+1)
2 ; :::; i

(n+1)
l

�
!

�
�
p
�n+1
1 ; p

�n+1
2 ; :::; p

�n+1
n+1

�
!

24 Y
q2�n+1

mq

35 tl:
A.4 Proof of Theorem 3.1.4

We prove the result using strong induction. Firstly we need to consider Ik de�ned by equation
(3.7). We need to know what tuples are in Ik+1 but not in Ik, and these correspond to those
elements adding up exactly to k + 1. Let Jk+1 be the collection of these tuples, that is, Ik+1 �
Ik [ Jk+1: We have

Jk+1 =
(
(i1; i2; :::; ij) j j 2 f1; 2; :::; k + 1g ; ip 2 f1; 2; :::; k + 1g and

jX
p=1

ip = k + 1

)
:

To construct Jk+1 from Ik, we can simply add an element to the end of each tuple in Ik so that
the elements of each new tuple add up exactly to k + 1, and �nally including the tuple (k + 1) in

Jk+1.



Chapter A. Part I 185

We are going to prove by strong induction that (Gt+t0 �Gt0)
k
=
P

�k2Ik �
(k)
�k;t
S�k;t;t0 + C

(k)
t

for any non-negative integer k. For k = 0, clearly both sides equal 1. For k = 1 and 2, it can be

checked easily that the proposition is true using derivation given in Appendix A.2.1. Assume the

proposition is true for k = 0; 1; 2; :::; n, where n is a positive integer. Note that it is su¢ cient to

prove the representation for Gn+1t only since fGt+t0 �Gt0 ; t � 0g and fGt; t � 0g have the same
distribution. For i = 1; 2; 3; :::,

G
(i)
t+t0 �G

(i)
t0 =

X
0<s�t+t0

(�Gs)
i �

X
0<s�t0

(�Gs)
i
=

X
t0<s�t+t0

(�Gs)
i
;

which has the same distribution as
P

0<s�t (�Gs)
i. Since both fGt+t0 �Gt0 ; t � 0g and fGt; t � 0g

are created by the same in�nitely divisible distribution, the compensators for their i-th power jump

processes are both equal to mit: Hence, we have the i-th compensated power jump process of

fGt; t � 0g ;
n bG(i)t o has the same distribution as n bG(i)t+t0 � bG(i)t0 o : For k = n+ 1, by (3.3)-(3.6),

Gn+1t =

n+1X
j=1

�
n+ 1

j

�Z t

0

Gn+1�jt1� d bG(j)t1 + nX
j=1

�
n+ 1

j

�
mjtG

n+1�j
t

�
nX
j=1

�
n+ 1

j

�
mj

Z t

0

t1 dG
n+1�j
t1 +mn+1t: (A.10)

Firstly, we want to prove that all the stochastic integrals in Gn+1t are of the form S�n+1;t;0; where
�n+1 2 In+1: From (A.10), it is clear that the �rst term is the only term introducing new stochastic
integrals which are not in In: The general term of the stochastic integrals in the �rst term isZ t

0

Gn+1�jt1� d bG(j)t1 ; j = 1; 2; :::; n+ 1: (A.11)

By assumption,

Gn+1�jt1� =
X

�n+1�j2In+1�j

�
(n+1�j)
�n+1�j ;t1

S�n+1�j ;t1;0 + C
(n+1�j)
t1 ; j = 1; 2; :::; n+ 1:

When j = 1 in (A.11), we have
R t
0
Gnt1�d

bG(1)t1 ; meaning that we are adding a 1 to the end of all
tuples in In. Since by de�nition

In =
(
(i1; i2; :::; ij) j j 2 f1; 2; :::; ng ; ip 2 f1; 2; :::; ng and

jX
p=1

ip � n

)
;

we know that the sums of the elements of the new tuples we get from adding a 1 to the end of

each tuple of In are less than or equal to n + 1. Similarly, when j = 2, we have
R t
0
Gn�1t1� d

bG(2)t1 ;
meaning that we are adding a 2 to the end of all tuples in In�1 and since by de�nition

In�1 =
(
(i1; i2; :::; ij) j j 2 f1; 2; :::; n� 1g ; ip 2 f1; 2; :::; n� 1g and

jX
p=1

ip � n� 1
)
;
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we know that the sums of the elements of the new tuples we get from adding a 2 to the end of

each tuple of In�1 are less than or equal to n + 1. We can continue the same argument until

j = n. When j = n + 1, we have
R t
0
d bG(n+1)t1 : Since In � In�1 � ::: � I2 � I1; the above way

of introducing new stochastic integrals is the same as adding an element to the end of each tuple

in In so that the elements of each new tuple add up exactly to n + 1. Hence all the elements

in Jn+1 have been created and since In+1 � In [ Jn+1; we have proved that all the stochastic
integrals in Gn+1t have the form S�n+1;t;0; where �n+1 2 In+1: By de�nition, C

(n+1)
t is the term

in Gn+1t not containing any stochastic integral. Hence it is correct to write C(n+1)t as the �nal

term. Finally, we want to consider the coe¢ cients of the stochastic integrals, that is, we are going

to prove Proposition 3.1.3. By assumption of the induction step and from (A.10), we have

Gn+1t =
nX
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�
n+ 1

j

� X
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�
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�
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(n+1�j)
t1 d bG(j)t1 + nX

j=1

�
n+ 1

j

�
mjtC

(n+1�j)
t

�
nX
j=1

�
n+ 1

j

�
mj

Z t

0

t1 d
h
C
(n+1�j)
t1

i
+
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d bG(n+1)t1 +mn+1t

= L1 + L2 + L3 + L4 + L5 + L6 +

Z t

0

d bG(n+1)t1 +mn+1t: (A.12)

Let Kl;s =
n
(i1; :::; il) jij 2 f1; 2; :::; sg and

Pl
j=1 ij = s

o
: Since the length of a tuple must not

be greater than the sum of all the elements in the tuple (because an element must be at least 1),

l � s: By de�nition, we have In =
n[
s=1

s[
l=1

Kl;s: For any �l;s 2 Kl;s, let �l;s =
�
i
�l;s
1 ; i

�l;s
2 ; :::; i

�l;s
l

�
:

It is obvious from Proposition 3.1.1 that C(k)t has the form C
(k)
t = q

(k)
0 + q

(k)
1 t+ q

(k)
2 t2+ :::+ q

(k)
k tk:

Note that q(k)0 is non-zero only when k = 0. When k = 0, by de�nition C(k)t = 1, so we have

q
(0)
0 = 1. We need to �nd out the recursive relationships between the q(k)r �s. From (3.8), for

k > 1;

q
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i



Chapter A. Part I 187

= mkt+
k�1X
j=1
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k

j

�
mj

h
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mj
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�
:
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From (A.12), we have
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By integration by parts,
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By integration by parts again,
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Finally, we have
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Next, consider
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Since q(k)0 is non-zero only when k = 0 and C(0)t = 1,
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cancel each other. So we now have
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n+1�uX
w=2

q(n+1�u)w tw1

)
d bG(u)t1 :

Hence the terms mn+1�u
(n+1)!

u!(n+1�u)!
R t
0
t1 d bG(u)t1 in L3 and

�
n+1
u

� R t
0
mn+1�ut1 d bG(u)t1 cancel each

other. In L3, since the terms where (j = n) and (j � n� 1; s = n+ 1� j) get cancelled, we can
sum j from 1 to n� 1 and sum s from 1 to n� j.

L3 = �
n�1X
j=1

mj

n�jX
s=1

sX
l=1

X
�l;s2Kl;s

F2

n+1�j�sX
w=1

~qw

�
w

w + 1
tw+1I3 +

1

w + 1

Z t

0

tw+11 I2 dG
l
1

�
:

L4 =
n�1X
j=1

(�
n+ 1

j

�Z t

0

n+1�jX
w=2

1

w

"
n+2�j�wX

z=1

�
n+ 1� j

z

�
mzq

(n+1�j�z)
w�1

#
tw1 d bG(j)t1

)

by (A.13). Next, consider L4 and L3 again. Let u 2 f1; 2; :::; n� 1g, v 2 f1; 2; :::; n� 1g ; u+v �
n; x 2 f1; 2; :::; vg and hence x + u � n: In L4, when j = u; w = n + 2 � u � v (hence

w 2 f2; :::; n+ 1� jg); z = x (hence z 2 f1; :::; n+ 2� j � wg);

L4 =

�
n+ 1

u

�Z t

0

1

n+ 2� u� v

�
n+ 1� u

x

�
mxq

(n+1�u�x)
n+1�u�v tn+2�u�v1 d bG(u)t1 : (A.14)
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In L3, when j = x (hence j 2 f1; :::; n� 1g), s = u (hence s � n � j); i�l;sl = u (hence i�l;sl =

s); w = n+ 1� u� v (hence w � n+ 1� s� j because j = x � v);

L3 = mx
(n+ 1)!

u!x!

1

(n+ 1� x� u)!q
(n+1�u�x)
n+1�u�v

�
�
n+ 1� u� v
n+ 2� u� v t

n+2�u�v
Z t

0

d bG(u)t1 +
1

n+ 2� u� v

Z t

0

tn+2�u�v1 d bG(u)t1 � ;
where the second term cancels (A.14). So now we have

L4 = 0:

L3 = �
n�1X
j=1

mj

n�jX
s=1

(
1fs=1g

(n+ 1)!

j!

1

(n� j)!

n�jX
w=1

q(n�j)w

w

w + 1
tw+1

Z t

0

d bG(1)t1
+1f2�s�n�jg

sX
l=1

X
�l;s2Kl;s

�
1n
i
�l;s
l <s

oF2

�
n+1�j�sX
w=1

~qw

�
w

w + 1
tw+1I3 +

1

w + 1

Z t

0

tw+11 I2 dG
l
1

�

+1n
i
�l;s
l =s

o (n+ 1)!
s!j!

1

(n+ 1� j � s)!

n+1�j�sX
w=1

~qw
w

w + 1
tw+1

Z t

0

d bG(s)t1
))

:

Next, consider L1 and L3. By the equation for q
(n+1�j�s)
w given in (A.13), we have

L1 =
nX
j=1

8<:1fj�n�1g
n+1�jX
s=1

8<:1fs�n�1�jg
sX
l=1

X
�l;s2Kl;s

Z t

0

F2

n+1�j�sX
w=2

1

w

�
n+2�j�s�wX

z=1

�
n+ 1� j � s

z

�
mzq

(n+1�j�s�z)
w�1 tw1 I1 d bG(j)t1

+1fs=n+1�jg

sX
l=1

X
�l;s2Kl;s

Z t

0

F1I1 d bG(j)t1
9=;+ 1fj=ng (n+ 1)

Z t

0

Z t1�

0

d bG(1)t2 d bG(n)t1

9=; :

Let u 2 f1; 2; :::; n� 2g ; v 2 f1; 2; :::; n� 2g ; u+v � n�1; x 2 f1; 2; :::; vg ; � 2 f1; 2; :::; v + 1� xg :
In L1, when j = u; s = n � u � v (hence s 2 f1; :::; n� 1� jg); w = x + 1 (hence w 2
f2; :::; n+ 1� j � sg); z = � (hence z 2 f1; :::; n+ 2� j � s� wg),

L1 =
n�u�vX
l=1

X
�l;n�u�v2Kl;n�u�v

Z t

0

(n+ 1)!

i
�l;n�u�v
1 !i

�l;n�u�v
2 ! � � � i�l;n�u�vl !u!

1

(v + 1)!

1

x+ 1

�
v + 1

�

�

�m�q
(v+1��)
x tx+11

Z t1�

0

� � �
Z tl�

0

d bG�i�l;n�u�v1

�
tl+1

� � �d bG�i�l;n�u�vl

�
t2 d bG(u)t1 : (A.15)

By de�nition, since s = n� u� v and l 2 f1; 2; :::; n� u� vg ;
�
i
�l;n�u�v
1 ; i

�l;n�u�v
2 ; :::; i

�l;n�u�v
l

�
2
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Jn�u�v: In L3, when j = � (hence j 2 f1; :::; n� 2g); s = n�v (hence s 2 f2; :::; n� jg); i�l;sl = u

(hence i�l;sl < s); w = x (hence w 2 f1; :::; n+ 1� j � sg);

L3 = �m�

n�vX
l=1

X
�l;n�v2Kl;n�v

(n+ 1)!

i
�l;n�v
1 !i

�l;n�v
2 ! � � � i�l;n�vl�1 !u!�!

1

(v + 1� �)!

�q(v+1��)x

(
x

x+ 1
tx+1

Z t

0

Z t1�

0

� � �
Z tl�1�

0

d bG�i�l;n�v1

�
tl

� � �d bG�i�l;n�vl�1

�
t2 d bG(u)t1

+
1

x+ 1

Z t

0

tx+11

Z t1�

0

� � �
Z tl�1�

0

d bG�i�l;n�v1

�
tl

� � �d bG�i�l;n�vl�1

�
t2 d bG(u)t1

)
:

The �nal term in L3

�m�

n�vX
l=1

X
�l;n�v2Kl;n�v

(n+ 1)!

i
�l;n�v
1 !i

�l;n�v
2 ! � � � i�l;n�vl�1 !u!�!

1

(v + 1� �)!

�q(v+1��)x

1

x+ 1

Z t

0

tx+11

Z t1�

0

� � �
Z tl�1�

0

d bG�i�l;n�v1

�
tl

� � �d bG�i�l;n�vl�1

�
t2 d bG(u)t1

clearly cancels (A.15) in L1: So now we can write

L1 =
nX
j=1

1fj�ng

n+1�jX
s=1

1fs=n+1�jg

sX
l=1

X
�l;s2Kl;s

Z t

0

F1I1 d bG(j)t1 :
L3 = �

n�1X
j=1

mj

n�jX
s=1

(
1fs=1g

(n+ 1)!

j!

1

(n� j)!

n�jX
w=1

q(n�j)w

w

w + 1
tw+1

Z t

0

d bG(1)t1
+1f2�s�n�jg

sX
l=1

X
�l;s2Kl;s

(
1n
i
�l;s
l <s

oF2
n+1�j�sX
w=1

~qw
w

w + 1
tw+1I3

+1n
i
�l;s
l =s

o (n+ 1)!
s!j!

1

(n+ 1� j � s)!

n+1�j�sX
w=1

~qw
w

w + 1
tw+1

Z t

0

d bG(s)t1
))

:

We can now simplify it as

L3 = �
n�1X
j=1

mj

n�jX
s=1

sX
l=1

X
�l;s2Kl;s

F2

n+1�j�sX
w=1

~qw
w

w + 1
tw+1 I3:
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Altogether, we have

L1 =
nX
j=1

1fj�ng

8<:
n+1�jX
s=1

1fs=n+1�jg

sX
l=1

X
�l;s2Kl;s

Z t

0

F1I1 d bG(j)t1
9=; :

L2 =
nX
j=1

mj

n+1�jX
s=1

8<:1fs=n+1�jg
sX
l=1

X
�l;s2Kl;s

tF1I3

+ 1fs�n�jg

sX
l=1

X
�l;s2Kl;s

F2

n+1�j�sX
w=1

~qwt
w+1I3

9=; :

L3 = �
n�1X
j=1

mj

n�jX
s=1

sX
l=1

X
�l;s2Kl;s

F2

n+1�j�sX
w=1

~qw
w

w + 1
tw+1I3:

L4 = 0 and L5 =
nX
j=1

�
n+ 1

j

�
mj

n+1�jX
w=1

q(n+1�j)w tw+1:

L6 = �
nX
j=1

�
n+ 1

j

�
mj

n+1�jX
w=1

q(n+1�j)w

w

w + 1
tw+1:

Since at the beginning of the proof, we have already showed that the stochastic integrals of Gn+1t

are of the form S�n+1;t;0 where �n+1;t 2 In+1: We are now going to show that the coe¢ cient

of each S�n+1;t;0 is �
(n+1)
�n+1;t

: Consider
R t
0

R t1�
0

� � �
R tl�1�
0

d bG�i�l;s1

�
tl+1

� � �d bG�i�l;sl

�
t2 d bG(j)t1 ; where �l;s 2

Kl;s; j 2 f1; 2; :::; ng ; s = n+1� j: This stochastic integral only appears in L1 and its coe¢ cient
is (n+1)!

i
�l;s
1 !i

�l;s
2 !���i

�l;s
l !j!

. And from (3.11), since n+ 1� s� j = n+ 1� (n+ 1� j)� j = 0;

�
(n+1)�
i
�l;s
1 ;i

�l;s
2 ;:::;i

�l;s
l ;j

� = (n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !j!0!

C
(0)
t =

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !j!

since C(0)t = 1 by de�nition (3.8). Hence we have proved that the coe¢ cient is given by

�
(n+1)�
i
�l;s
1 ;i

�l;s
2 ;:::;i

�l;s
l ;j

�: Next, we change the summation sign of j and s in L2 to obtain:

L2 =
nX
s=1

8<:
sX
l=1

X
�l;s2Kl;s

mn+1�st
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl ! (n+ 1� s)!

I3

+

n�sX
j=1

sX
l=1

X
�l;s2Kl;s

mjF2

n+1�j�sX
w=1

~qwt
w+1I3

9=; :
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Similarly, by changing the summation sign of j and w, we have

L2 =
nX
s=1

8<:
sX
l=1

X
�l;s2Kl;s

mn+1�st
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl ! (n+ 1� s)!

I3

+
n�sX
w=1

n+1�w�sX
j=1

sX
l=1

X
�l;s2Kl;s

mjF2~qwt
w+1I3

9=; :

By (A.13), 1
w+1

Pn+1�w�s
j=1

(n+1�s)!
j!(n+1�j�s)!mjq

(n+1�s�j)
w = q

(n+1�s)
w+1 ; so we have

L2 =
nX
s=1

8<:
sX
l=1

X
�l;s2Kl;s

mn+1�st
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl ! (n+ 1� s)!

I3

+
n�sX
w=1

sX
l=1

X
�l;s2Kl;s

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

(w + 1)
1

(n+ 1� s)!q
(n+1�s)
w+1 tw+1I3

9=; :

Changing
Pn�s

w=1 to
Pn+1�s

w=2 , we have

L2 =
nX
s=1

8<:
sX
l=1

X
�l;s2Kl;s

mn+1�st
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl ! (n+ 1� s)!

I3

+
n+1�sX
w=2

sX
l=1

X
�l;s2Kl;s

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

w

(n+ 1� s)!q
(n+1�s)
w twI3

9=; :

Similarly,

L3 = �
n�1X
s=1

n�sX
w=1

n+1�w�sX
j=1

mj

sX
l=1

X
�l;s2Kl;s

F2~qw
w

w + 1
tw+1I3:

By (A.13), 1
w+1

Pn+1�w�s
j=1

(n+1�s)!
j!(n+1�j�s)!mjq

(n+1�s�j)
w = q

(n+1�s)
w+1 ; so we have

L3 = �
n�1X
s=1

n+1�sX
w=2

sX
l=1

X
�l;s2Kl;s

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

w � 1
(n+ 1� s)!q

(n+1�s)
w twI3:

For s = 1, the stochastic integral
R t
0
d bG(1)t1 appears in both L2 and L3. Its coe¢ cient is given by

nX
w=2

(n+ 1)wq(n)w tw +mn (n+ 1) t� (n+ 1)
nX

w=2

(w � 1) q(n)w tw

= (n+ 1)

"
mnt+

nX
w=2

q(n)w tw

#
= (n+ 1)C

(n)
t :

By (3.11),

�
(n+1)
(1) =

(n+ 1)!

(n+ 1� 1)!C
(n+1�1)
t = (n+ 1)C

(n)
t :
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For s 2 f2; 3; :::; n� 1g, the coe¢ cient of the stochastic integralZ t

0

Z t1�

0

� � �
Z tl�1�

0

d bG�i�l;s1

�
tl

� � �d bG�i�l;sl�1

�
t2 d bG�i�l;sl

�
t1

is given by

mn+1�st
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl ! (n+ 1� s)!

+

n+1�sX
w=2

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

w

(n+ 1� s)!q
(n+1�s)
w tw

�
n+1�sX
w=2

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

(w � 1)
(n+ 1� s)!q

(n+1�s)
w tw

=
n+1�sX
w=1

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

1

(n+ 1� s)!q
(n+1�s)
w tw

=
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

1

(n+ 1� s)!C
(n+1�s)
t = �

(n+1)�
i
�l;s
1 ;i

�l;s
2 ;:::;i

�l;s
l

�

by (3.11). For s = n, the stochastic integral appears in L2 only and its coe¢ cient is given by

m1t
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

=
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !

C
(1)
t = �

(n+1)�
i
�l;s
1 ;i

�l;s
2 ;:::;i

�l;s
l

�:

The stochastic integral
R t
0
d bG(n+1)t1 appears only once in Gn+1t and its coe¢ cient is equal to one.

By (3.11),

�
(n+1)
(n+1) =

(n+ 1)!

(n+ 1)!
C
(0)
t = 1:

For stochastic integrals where the indices add up exactly to n + 1, other than
R t
0
d bG(n+1)t1 ; they

only appear in L1 and their coe¢ cients are given by:

(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !j!

=
(n+ 1)!

i
�l;s
1 !i

�l;s
2 ! � � � i�l;sl !j!

C
(0)
t = �

(n+1)�
i
�l;s
1 ;i

�l;s
2 ;:::;i

�l;s
l ;j

�;

where the sum of i�l;s1 ; i
�l;s
2 ; :::; i

�l;s
l ; j is equal to n + 1. Finally, we have to show that L5 + L6 +

mn+1t = C
(n+1)
t : By (A.13),

1

w + 1

n+1�wX
j=1

�
n+ 1

j

�
mjq

(n+1�j)
w = q

(n+1)
w+1 ;
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we have

L5 =
nX
j=1

�
n+ 1

j

�
mj

n+1�jX
w=1

q(n+1�j)w tw+1

=
nX

w=1

n+1�wX
j=1

�
n+ 1

j

�
mjq

(n+1�j)
w tw+1 =

nX
w=1

(w + 1) q
(n+1)
w+1 tw+1:

L6 = �
nX

w=1

n+1�wX
j=1

�
n+ 1

j

�
mjq

(n+1�j)
w

w

w + 1
tw+1 = �

nX
w=1

wq
(n+1)
w+1 tw+1:

Hence

L5 + L6 +mn+1t =
nX

w=1

q
(n+1)
w+1 tw+1 +mn+1t =

n+1X
w=2

q(n+1)w tw +mn+1t =
n+1X
w=1

q(n+1)w tw = C
(k)
n+1:

Thus, we have proved that

Gn+1t =
X

�n+12In+1

�
(n+1)
�n+1;t

S�n+1;t;0 + C
(n+1)
t :

As explained in the beginning of the proof, since fGt; t � 0g and fGt+t0 �Gt0 ; t � 0g have the
same distribution and since d

� bG(i)t+t0 � bG(i)t0 � = d bG(i)t+t0 , we have
(Gt+t0 �Gt0)

n+1

=
n+1X
s=1

sX
l=1

X
�l;s2Kl;s

�
(n+1)
�l;s;t

Z t+t0

t0

Z t1�

t0

� � �
Z tl�1�

t0

d bG�i�l;s1

�
tl

� � �d bG�i�l;sl�1

�
t2 d bG�i�l;sl

�
t1

=
X

�n+12In+1

�
(n+1)
�n+1;t

S�n+1;t;t0 + C
(n+1)
t :

Therefore, by the principle of strong induction,

(Gt+t0 �Gt0)
k
=
X
�k2Ik

�
(k)
�k;t
S�k;t;t0 + C

(k)
t

for all non-negative integers k.
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A.5 Proof of Proposition 3.1.5

We prove by induction. For n = 1, Y (1)t = H
(1)
t by de�nition and since Mn;n = f1g, the

proposition is true. Assume the proposition is true for all k � n: Now, consider n+ 1;

Y
(n+1)
t = H

(n+1)
t �

nX
l=1

an+1;lY
(l)
t = H

(n+1)
t �

nX
l=1

an+1;l

(
H
(l)
t +

l�1X
k=1

bl;kH
(k)
t

)

= H
(n+1)
t �

nX
l=1

an+1;l

lX
k=1

bl;kH
(k)
t = H

(n+1)
t +

nX
k=1

bn+1;kH
(k)
t ;

which completes the proof.

A.6 Calculation of (Xt+t0 �Xt0)
k for k = 3; 4; 5 when � 6= 0

A.6.1 (Xt+t0 �Xt0)
3

When k = 3; from (3.14),

(Xt+t0 �Xt0)
3

=
�2

2
3 � 2 (Xt+t0 �Xt0) t�

�2

2
3 � 2

Z t+t0

t0

(s� t0) d (Xs �Xt0)

+3

Z t+t0

t0

�2 (s� t0) dY (1)s + 3m1 (t+ t0)�
2t

�3m1

Z t+t0

t0

sd
�
�2 (s� t0)

�
+A1 (Xt+t0 ; Xt0 ; 3)

= 3�2 (Xt+t0 �Xt0) t� 3�2
Z t+t0

t0

(s� t0) d
�Z s

t0

d
h
Y
(1)
t1 +m1t1

i�
+3�2

Z t+t0

t0

(s� t0) dY (1)s + 3m1 (t+ t0)�
2t� 3

2
m1�

2
�
s2
�t+t0
t0

+A1 (Xt+t0 ; Xt0 ; 3)

= 3�2 (Xt+t0 �Xt0) t� 3�2
Z t+t0

t0

(s� t0) dY (1)s � 3�2m1

Z t+t0

t0

(s� t0) d (s� t0)

+3�2
Z t+t0

t0

(s� t0) dY (1)s + 3m1 (t+ t0)�
2t� 3

2
m1�

2
�
t2 + 2tt0

�
+A1 (Xt+t0 ; Xt0 ; 3)

= 3�2 (Xt+t0 �Xt0) t�
3

2
�2m1

h
(s� t0)2

it+t0
t0

+
3

2
m1�

2t2 +A1 (Xt+t0 ; Xt0 ; 3)

= 3�2 (Xt+t0 �Xt0) t�
3

2
�2m1t

2 +
3

2
m1�

2t2 +A1 (Xt+t0 ; Xt0 ; 3)

= 3�2A1 (Xt+t0 ; Xt0 ; 1) t+A1 (Xt+t0 ; Xt0 ; 3) :
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A.6.2 (Xt+t0 �Xt0)
4

When k = 4, we are going to have a closer look at the cancellation pattern.

(Xt+t0 �Xt0)
4
=

�2

2
4 � 3 (Xt+t0 �Xt0)

2
t� �2

2
4 � 3

Z t+t0

t0

(s� t0) d (Xs �Xt0)
2

+

�
4

1

�Z t+t0

t0

A2 (Xt+t0 ; Xt0 ; 3) dY
(1)
s +

�
4

2

�Z t+t0

t0

A2 (Xt+t0 ; Xt0 ; 2) dY
(2)
s

+

�
4

1

�
m1 (t+ t0)A2 (Xt+t0 ; Xt0 ; 3) +

�
4

2

�
m2 (t+ t0)A2 (Xt+t0 ; Xt0 ; 2)

�
�
4

1

�
m1

Z t+t0

t0

sdA2 (Xs; Xt0 ; 3)�
�
4

2

�
m2

Z t+t0

t0

sdA2 (Xs; Xt0 ; 2)

+A1 (Xt+t0 ; Xt0 ; 4) :

Let

(Xt+t0 �Xt0)
4
=

�2

2
4 � 3 (Xt+t0 �Xt0)

2
t+M1 +M2 +M3

+M4 +M5 +M6 +M7 +A1 (Xt+t0 ; Xt0 ; 4) :

M1 = �6�2
Z t+t0

t0

(s� t0) d (Xs �Xt0)
2

= �6�2
Z t+t0

t0

(s� t0) d
�
�2 (s� t)

�
�6�2

Z t+t0

t0

(s� t0) d
�
2

Z s

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1

�
�6�2

Z t+t0

t0

(s� t0) d
�
2m1 (s� t0)

Z s

t0

dY
(1)
t1

�
�6�2

Z t+t0

t0

(s� t0) d
�Z s

t0

dY
(2)
t1

�
�6�2

Z t+t0

t0

(s� t0) d
h
m2
1 (s� t0)

2
+m2 (s� t0)

i
= �3�4

h
(s� t0)2

it+t0
t0

� 12�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(1)
t2

�12�2m1

Z t+t0

t0

(s� t0) d
�
(s� t0)

Z s

t0

dY
(1)
t1

�
� 6�2

Z t+t0

t0

(s� t0) dY (2)s

�12�2m2
1

Z t+t0

t0

(s� t0)2 d (s� t0)� 3�2m2

h
(s� t0)2

it+t0
t0

:
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M2 = 4

Z t+t0

t0

3�2 (Xs� �Xt0) (s� t0) dY (1)s

= 12�2
Z t+t0

t0

Z s

t0

d
h
Y
(1)
t1 +m1t1

i
(s� t0) dY (1)s :

M3 = 6

Z t+t0

t0

�2 (s� t0) dY (2)s :

InM1, the second term is cancelled with the �rst term inM2 and the fourth term is cancelled with

M3. Hence we now have

M1 = �3�4t2 � 12�2m1

�
(s� t0)2

Z s

t0

dY
(1)
t1

�t+t0
t0

� 3�2m2t
2

+12�2m1

Z t+t0

t0

(s� t0)
Z s

t0

dY
(1)
t1 d (s� t0)� 4�

2m2
1

h
(s� t0)3

it+t0
t0

= �3�4t2 � 12�2m1t
2

Z t+t0

t0

dY (1)s + 6�2m1

Z t+t0

t0

Z s

t0

dY
(1)
t1 d (s� t0)

2

�4�2m2
1t
3 � 3�2m2t

2:

M2 = 12�2m1

Z t+t0

t0

(s� t0)2 dY (1)s and M3 = 0:

M4 = 4m1 (t+ t0) 3�
2 (Xt+t0 �Xt0) t = 12m1�

2 (t+ t0)

Z t+t0

t0

d
h
Y (1)s +m1s

i
t

= 12m1�
2t (t+ t0)

Z t+t0

t0

dY (1)s + 12m2
1�

2 (t+ t0) t
2:

M5 = 6m2 (t+ t0)�
2t:

M6 = �4m1

Z t+t0

t0

sd
�
3�2 (Xs� �Xt0) (s� t0)

�
= �12m1�

2

Z t+t0

t0

sd

�Z s

t0

d
h
Y
(1)
t1 +m1t1

i
(s� t0)

�
= �12m1�

2

Z t+t0

t0

sd

�
(s� t0)

Z s

t0

dY
(1)
t1

�
� 12m2

1�
2

Z t+t0

t0

sd
h
(s� t0)2

i
= �12m1�

2

Z t+t0

t0

sd

�
s

Z s

t0

dY
(1)
t1

�
+ 12m1�

2t0

Z t+t0

t0

sdY (1)s

�12m2
1�

2

Z t+t0

t0

sds2 + 24m2
1�

2

Z t+t0

t0

sd [t0s]

= �12m1�
2

�
s2
Z s

t0

dY
(1)
t1

�t+t0
t0

+ 12m1�
2

Z t+t0

t0

s

Z s

t0

dY
(1)
t1 ds

+12m1�
2t0

Z t+t0

t0

sdY (1)s � 24m2
1�

2

Z t+t0

t0

s2ds+ 12m2
1�

2t0
�
s2
�t+t0
t0
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M6 = �12m1�
2
�
t2 + 2tt0 + t

2
0

� Z t+t0

t0

dY (1)s + 6m1�
2

Z t+t0

t0

Z s

t0

dY
(1)
t1 ds

2

+12m1�
2t0

Z t+t0

t0

sdY (1)s � 8m2
1�

2
�
s3
�t+t0
t0

+ 12m2
1�

2t0
�
t2 + 2tt0

�
= �12m1�

2
�
t2 + 2tt0 + t

2
0

� Z t+t0

t0

dY (1)s + 6m1�
2

�
s2
Z s

t0

dY
(1)
t1

�t+t0
t0

� 6m1�
2

Z t+t0

t0

s2dY (1)s

+12m1�
2t0

Z t+t0

t0

sdY (1)s � 8m2
1�

2
�
t3 + 3t2t0 + 3tt

2
0

�
+ 12m2

1�
2t0
�
t2 + 2tt0

�
;

= �6m1�
2
�
t2 + 2tt0 + t

2
0

� Z t+t0

t0

dY (1)s � 6m1�
2

Z t+t0

t0

s2dY (1)s

+12m1�
2t0

Z t+t0

t0

sdY (1)s � 8m2
1�

2
�
t3 + 3t2t0 + 3tt

2
0

�
+ 12m2

1�
2t0
�
t2 + 2tt0

�
:

M7 = �6m2

Z t+t0

t0

sd
�
�2 (s� t0)

�
= 3m2�

2
�
s2
�t+t0
t0

= �3m2�
2
�
t2 + 2tt0

�
:

The second terms in M5 and M7 cancel each other. In M1, the second term is cancelled with the

�rst term in M4, the last term is cancelled with the �rst term in M5 and the �rst term in M7:

Now we have

M1 = �3�4t2 + 6�2m1

�
(s� t0)2

Z s

t0

dY
(1)
t1

�t+t0
t0

� 6�2m1

Z t+t0

t0

(s� t0)2 dY (1)s

�4�2m2
1t
3

= �3�4t2 + 6�2m1t
2

Z t+t0

t0

dY (1)s � 6�2m1

Z t+t0

t0

(s� t0)2 dY (1)s � 4�2m2
1t
3:

M4 = 12m1�
2tt0

Z t+t0

t0

dY (1)s + 12m2
1�

2t3 + 12m2
1�

2t2t0:

M5 = M7 = 0:

M1 +M2 +M4 = �3�4t2 + 6�2m1t
2

Z t+t0

t0

dY (1)s + 6�2m1

Z t+t0

t0

(s� t0)2 dY (1)s

+8�2m2
1t
3 + 12m1�

2tt0

Z t+t0

t0

dY (1)s + 12m2
1�

2t2t0:

Hence, M1 +M2 +M4 +M6 = �3�4t2 and we have

(Xt+t0 �Xt0)
4
= 6�2tA1 (Xt+t0 ; Xt0 ; 2) + 3�

4t2 +A1 (Xt+t0 ; Xt0 ; 4) :
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A.6.3 (Xt+t0 �Xt0)
5

When k = 5; from (A.4)-(A.6),

(Xt+t0 �Xt0)
5
=

�2

2
5 � 4 (Xt+t0 �Xt0)

3
t� �2

2
5 � 4

Z t+t0

t0

(s� t0) d (Xs �Xt0)
3

+5

Z t+t0

t0

A2 (Xs�; Xt0 ; 4) dY
(1)
s + 10

Z t+t0

t0

A2 (Xs�; Xt0 ; 3) dY
(2)
s

+10

Z t+t0

t0

A2 (Xs�; Xt0 ; 2) dY
(3)
s + 5m1 (t+ t0)A2 (Xt+t0 ; Xt0 ; 4)

+10m2 (t+ t0)A2 (Xt+t0 ; Xt0 ; 3) + 10m3 (t+ t0)A2 (Xt+t0 ; Xt0 ; 2)

�5m1

Z t+t0

t0

sdA2 (Xs; Xt0 ; 4)� 10m2

Z t+t0

t0

sdA2 (Xs; Xt0 ; 3)

�10m3

Z t+t0

t0

sdA2 (Xs; Xt0 ; 2) +A1 (Xt+t0 ; Xt0 ; 5)

= 10�2 (Xt+t0 �Xt0)
3
t+N1 +N2 +N3 +N4 +N5

+N6 +N7 +N8 +N9 +N10 +A1 (Xt+t0 ; Xt0 ; 5) :

N1 = ��
2

2
5 � 4

Z t+t0

t0

(s� t0) d (Xs �Xt0)
3

= �10�2
Z t+t0

t0

(s� t0) d
�
3�2A1 (Xs; Xt0 ; 1) (s� t0) +A1 (Xs; Xt0 ; 3)

�
= �30�4

Z t+t0

t0

(s� t0) d [(Xs �Xt0) (s� t0)]

�60�2
Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 dY

(1)
s

�30�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 dY

(1)
s � 30�2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(2)
s

�10�2
Z t+t0

t0

(s� t0) d
�
6m1 (s� t0)

Z s

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1

�
�10�2

Z t+t0

t0

(s� t0) d
h
m3
1 (s� t0)

3
i

�10�2
Z t+t0

t0

(s� t0) dY (3)s � 30�2m1

Z t+t0

t0

(s� t0) d
�
(s� t0)

Z s

t0

dY
(2)
t1

�
�30�2m2

1

Z t+t0

t0

(s� t0) d
�
(s� t0)2

Z s

t0

dY
(1)
t1

�
�10�2

Z t+t0

t0

(s� t0) d
�
3m2 (s� t0)

Z s

t0

dY
(1)
t1

�
�10�2

Z t+t0

t0

(s� t0) d
h
3m1m2 (s� t0)2

i
� 10�2

Z t+t0

t0

(s� t0) d [m3 (s� t0)]
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N1 = �30�4
h
(s� t0)2 (Xs �Xt0)

it+t0
t0

+ 30�4
Z t+t0

t0

(s� t0) (Xs� �Xt0) d (s� t0)

�60�2
Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 dY

(1)
s

�30�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 dY

(1)
s � 30�2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(2)
s

�60�2m1

�
(s� t0)2

Z s

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1

�t+t0
t0

+60�2m1

Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 d (s� t0)

�10�2
Z t+t0

t0

(s� t0) dY (3)s � 30�2m1

�
(s� t0)2

Z s

t0

dY
(2)
t1

�t+t0
t0

+30�2m1

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 d (s� t0)� 30�

2m2
1

�
(s� t0)3

Z s

t0

dY
(1)
t1

�t+t0
t0

+30�2m2
1

Z t+t0

t0

(s� t0)2
Z s�

t0

dY
(1)
t1 d (s� t0)� 30�

2m2

�
(s� t0)2

Z s

t0

dY
(1)
t1

�t+t0
t0

+30�2m2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 d (s� t0)� 30�

2m3
1

Z t+t0

t0

(s� t0)3 d (s� t0)

�60�2m1m2

Z t+t0

t0

(s� t0)2 d (s� t0)� 5�2m3

h
(s� t0)2

it+t0
t0

= �30�4t2 (Xt+t0 �Xt0) + 15�
4

Z t+t0

t0

(Xs� �Xt0) d (s� t0)
2

�60�2
Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 dY

(1)
s � 30�2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 dY

(1)
s

�30�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(2)
s � 60�2m1t

2

Z t+t0

t0

Z s�

t0

dY
(1)
t1 dY

(1)
s

+30�2m1

Z t+t0

t0

Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 d (s� t0)

2 � 10�2
Z t+t0

t0

(s� t0) dY (3)s

�30�2m1t
2

Z t+t0

t0

dY (2)s + 15�2m1

Z t+t0

t0

Z s�

t0

dY
(2)
t1 d (s� t0)

2 � 30�2m2
1t
3

Z t+t0

t0

dY (1)s

+10�2m2
1

Z t+t0

t0

Z s�

t0

dY
(1)
t1 d (s� t0)

3 � 30�2m2t
2

Z t+t0

t0

dY (1)s

+15�2m2

Z t+t0

t0

Z s�

t0

dY
(1)
t1 d (s� t0)

2 � 15
2
�2m3

1t
4 � 20�2m1m2t

3 � 5�2m3t
2:
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By integration by parts again,

N1 = �30�4t2
Z t+t0

t0

d
h
Y (1)s +m1s

i
+ 15�4

Z t+t0

t0

Z s�

t0

d
h
Y
(1)
t1 +m1t1

i
d (s� t0)2

�60�2
Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 dY

(1)
s

�30�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 dY

(1)
s � 30�2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(2)
s

�60�2m1t
2

Z t+t0

t0

Z s�

t0

dY
(1)
t1 dY

(1)
s + 30�2m1

�
(s� t0)2

Z s

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1

�t+t0
t0

�30�2m1

Z t+t0

t0

(s� t0)2
Z s�

t0

dY
(1)
t1 dY

(1)
s � 10�2

Z t+t0

t0

(s� t0) dY (3)s

�30�2m1t
2

Z t+t0

t0

dY (2)s + 15�2m1

�
(s� t0)2

Z s

t0

dY
(2)
t1

�t+t0
t0

�15�2m1

Z t+t0

t0

(s� t0)2 dY (2)s � 30�2m2
1t
3

Z t+t0

t0

dY (1)s

+10�2m2
1

�
(s� t0)3

Z s

t0

dY
(1)
t1

�t+t0
t0

� 10�2m2
1

Z t+t0

t0

(s� t0)3 dY (1)s

�30�2m2t
2

Z t+t0

t0

dY (1)s + 15�2m2

�
(s� t0)2

Z s

t0

dY
(1)
t1

�t+t0
t0

�15�2m2

Z t+t0

t0

(s� t0)2 dY (1)s � 15
2
�2m3

1t
4 � 20�2m1m2t

3 � 5�2m3t
2

= �30�4t2
Z t+t0

t0

dY (1)s � 30�4m1t
3 + 15�4

Z t+t0

t0

Z s�

t0

dY
(1)
t1 d (s� t0)

2

+15�4m1

Z t+t0

t0

(s� t0) d (s� t0)2 � 60�2
Z t+t0

t0

(s� t0)
Z s�

t0

Z t1�

t0

dY
(1)
t2 dY

(1)
t1 dY

(1)
s

�30�2
Z t+t0

t0

(s� t0)
Z s�

t0

dY
(2)
t1 dY

(1)
s � 30�2

Z t+t0

t0

(s� t0)
Z s�

t0

dY
(1)
t1 dY

(2)
s

�60�2m1t
2

Z t+t0

t0

Z s�

t0

dY
(1)
t1 dY

(1)
s + 30�2m1t

2

Z t+t0

t0

Z s�

t0

dY
(1)
t1 dY

(1)
s

�30�2m1
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dY
(1)
t1

�
� 30�2m1m2

Z t+t0

t0

sd
h
(s� t0)2

i
= �30�2m2

�
s (s� t0)

Z s

t0

dY
(1)
t1

�t+t0
t0

+ 30�2m2

Z t+t0

t0

(s� t0)
Z s

t0

dY
(1)
t1 ds

�30�2m1m2

Z t+t0

t0

sd
�
s2 � 2t0s

�
= �30�2m2t (t+ t0)

Z t+t0

t0

dY (1)s + 30�2m2

Z t+t0

t0

s

Z s

t0

dY
(1)
t1 ds

�30�2m2t0

Z t+t0

t0

Z s

t0

dY
(1)
t1 ds� 60�

2m1m2

Z t+t0

t0

s2ds+ 30�2m1m2t0
�
t2 + 2t0t

�
= �30�2m2t (t+ t0)

Z t+t0

t0

dY (1)s + 15�2m2

Z t+t0

t0

Z s

t0

dY
(1)
t1 ds

2

�30�2m2t0

�
s

Z s

t0

dY
(1)
t1

�t+t0
t0

+ 30�2m2t0

Z t+t0

t0

sdY (1)s

�20�2m1m2

�
t3 + 3t0t

2 + 3t20t
�
+ 30�2m1m2t0

�
t2 + 2t0t

�
= �30�2m2t (t+ t0)

Z t+t0

t0

dY (1)s + 15�2m2

�
s2
Z s

t0

dY
(1)
t1

�t+t0
t0

�15�2m2

Z t+t0

t0

s2dY (1)s � 30�2m2t0 (t+ t0)

Z t+t0

t0

dY (1)s + 30�2m2t0

Z t+t0

t0

sdY (1)s

�20�2m1m2t
3 � 30�2m1m2t0t

2

= �30�2m2t (t+ t0)

Z t+t0

t0

dY (1)s + 15�2m2 (t+ t0)
2
Z t+t0

t0

dY (1)s � 15�2m2

Z t+t0

t0

s2dY (1)s

�30�2m2t0 (t+ t0)

Z t+t0

t0

dY (1)s + 30�2m2t0

Z t+t0

t0

sdY (1)s

�20�2m1m2t
3 � 30�2m1m2t0t

2:

N10 = �10m3

Z t+t0

t0

sdA2 (Xs; Xt0 ; 2) = �10m3

Z t+t0

t0

sd
�
�2 (s� t0)

�
= �5�2m3

�
t2 + 2t0t

�
:

Hence,

(Xt+t0 �Xt0)
5
= A1 (Xt+t0 ; Xt0 ; 5) + 10�

2 (Xt+t0 �Xt0)
3
t� 15�4t2

Z t+t0

t0

dY (1)s � 15�4m1t
3

= A1 (Xt+t0 ; Xt0 ; 5) + 10�
2A1 (Xt+t0 ; Xt0 ; 3) t

+30�4A1 (Xt+t0 ; Xt0 ; 1) t
2 � 15�4A1 (Xt+t0 ; Xt0 ; 1) t

2

= A1 (Xt+t0 ; Xt0 ; 5) + 10�
2A1 (Xt+t0 ; Xt0 ; 3) t+ 15�

4A1 (Xt+t0 ; Xt0 ; 1) t
2:
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A.7 Simulation algorithms for stochastic integrals with re-

spect to Lévy processes

In this appendix we summarize the numerical methods used in our simulation to evaluate multiple

integrals. We �rst describe the stochastic Euler scheme for the stochastic di¤erential equations

(SDE) of general Lévy processes. By the results of Protter & Talay (1997) the approximation is

satisfactory. For an up-to-date introduction to numerical solutions of SDE we refer the reader to

Higham & Kloeden (2002), Higham (2001) and Kloeden (2002). For more theoretical details, we

recommend Kloeden & Platen (1999).

A.7.1 Euler scheme for Wiener processes Wt

The simplest numerical method for SDEs is the stochastic Euler, or Euler-Maruyama, scheme, see

Higham & Kloeden (2002), which forms a natural generalisation of the deterministic Euler scheme.

For a scalar Itô�s SDE

dXt = a(t;Xt)dt+ b(t;Xt)dZt;

where Zt is a general Lévy process, the scheme has the form

Xn+1 = Xn + a (tn; Xn)�n + b (tn; Xn)�Zn; (A.16)

where

�n = tn+1 � tn =
Z tn+1

tn

ds; �Zn = Ztn+1 � Ztn =
Z tn+1

tn

dZs:

The scheme computes discrete approximations Xn � X (tn), at times tn =
Pn�1

r=0 �r. In practice,

it is common to use a single pre-chosen value for the step size �r.

Convergence for numerical schemes may be de�ned in many ways. It is usual to distinguish

between strong and weak convergences depending on whether the realisations or in general only

their probability distributions are required to be close, respectively. Under suitable conditions on

the SDE, for a �xed T , letting tNT
= T and � = max0�n�NT�1�n, a numerical scheme is said to

converge with strong order  if, for su¢ ciently small �,

E (jXT �XNT
j) � KT�

 ;

for some constant KT . Similarly, we have weak order � if, for each polynomial g,

jE (g (XT ))� E (g (XNT
))j � Kg;T�

�

for some constant Kg;T .
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A.7.2 Double stochastic integrals

In general, a multiple stochastic integral can be approximated by applying a suitable numerical

method. For example, to evaluate the double integral

In = I [tn; tn+1] =

Z tn+1

tn

Z t

tn

dZ(2)s dZ
(1)
t

we consider the 2-dimensional Itô�s SDE

dX
(1)
t = X

(2)
t dZ

(1)
t ; dX

(2)
t = dZ

(2)
t ; (A.17)

with initial conditions X(1)
tn = 0, X(2)

tn = Z
(2)
tn , for which the solution at time t = tn+1 satis�es

X
(2)
tn+1 = �Z

(2)
n and X(1)

tn+1 = I [tn; tn+1]. We may apply the stochastic Euler scheme (A.16) to

(A.17) over the discretization subinterval [tn; tn+1] with a suitable step size � = (tn+1 � tn) =K.
If we let t0k = tn + k� and �Z

(j)
k = Z

(j)
t0k+1

�Z(j)t0k then the Euler scheme gives Y (1)0 = 0; Y
(2)
0 = Z

(2)
tn ,

and

Y
(1)
k+1 = Y

(1)
k + Y

(2)
k �Z

(1)
k ; Y

(2)
k+1 = Y

(2)
k + �Z

(2)
k ; for 0 � k � K � 1:

The strong order of convergence  = 1
2 of the stochastic Euler scheme ensures that, see Higham &

Kloeden (2002),

E
����Y (1)K � I [tn; tn+1]

���� � C
p
�:

that is, its strong order of convergence is 1
2 .

A.7.3 Multiple stochastic integrals

Similarly, to evaluate In = I [tn; tn+1] =
R tn+1
tn

R t1
tn
� � �
R tm
tn
dZ

(m+1)
tm+1

� � �dZ(2)t2 dZ
(1)
t1 ; the Euler scheme

gives Y (1)0 = 0, Y (2)0 = 0, ..., Y (m)0 = 0, Y (m+1)0 = Z
(m+1)
tn and

Y
(1)
k+1 = Y

(1)
k + Y

(2)
k �Z

(1)
k ; Y

(2)
k+1 = Y

(2)
k + Y

(3)
k �Z

(2)
k ;

...

Y
(m)
k+1 = Y

(m)
k + Y

(m+1)
k �Z

(m)
k ; Y

(m+1)
k+1 = Y

(m+1)
k + �Z

(m+1)
k ;

for 0 � k � K � 1 using the same notations in the last subsection.

A.7.4 Rate of convergence of the Euler scheme for Lévy processes

Protter & Talay (1997) derived the rate of convergence of the Euler scheme for general Lévy

processes. Here we quote one of their results which shows that the error of our simulation due to

the use of Euler scheme is bounded. Let X be the solution of

Xt = X0 +

Z t

0

f (Xs�) dZs (A.18)
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for a given and �xed Lévy process Z. This corresponds to the Itô�s and not the Stratonovich

integral. Note that in �nance the usage of the Itô�s integral makes physical sense in terms of

non-anticipatory behaviour of the option. We denote by �Zs the jump of fZt; 0 � t � Tg at time
s: �Zs = Zs � Zs�: The Lévy decomposition of Z is given by

Zt = �Wt + �t+

Z
kxk<1

x (Nt (!;dx)� t� (dx)) +
X
0<s�t

�Zs1[k�Zsk�1]:

In general, the law of the random variable XT is unknown. The Euler scheme discretises (A.18)

in time. Let Tn be the discretisation step of the time interval [0; T ] and let
�
�Xn
t

�
be the piecewise

constant process de�ned by �Xn
0 = X0 and �Xn

(p+1)T=n =
�Xn
pT=n + f

�
�Xn
pT=n

� �
Z(p+1)T=n � ZpT=n

�
:

Actually this is just a direct application of (A.16) with the Wiener process Wt replaced by the

Lévy process Zt. Next we quoted the result for the rate of convergence by Protter & Talay (1997).

For K > 0;m > 0 and p 2 N�f0g, set

�p (m) = 1 + k�k2 + k�k2 +
Z m

�m
kzk2 �(dz) + k�kp + k�kp

+

�Z m

�m
kzk2 � (dz)

�p=2
+

Z m

�m
kzkp � (dz)

where � is the Lévy measure and �K;p (m) := exp
�
K�p (m)

�
: De�ne h (m) := � (fx; kxk � mg)

for m > 0: With conditions on f (�) ; g (�) and X0, Protter & Talay (1997) proved

��Eg (XT )� Eg
�
�Xn
T

��� � 4 kgkL1(Rd) (1� exp (�h (m)T )) + �K(T );8 (m)

n
:

Thus the convergence rate is governed by the rate of increase to in�nity of the functions h (�)
and �K(T );8 (�). In our case, we set g (Xt) = Xt. Hence we can see that the order of (weak)

convergence of our simulation is bounded.
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A.8 Plots of CRP
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Figure A.8.1: G4t generated using

CRP and directly from the Gamma

process in log scale.
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Figure A.8.2: The di¤erence of the

two series in Figure A.8.1.
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Figure A.8.3: (Gt+t0 �Gt0)
9 generated

using CRP and also calculated directly

from the Gamma process.
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Figure A.8.4: The di¤erence of the two

series in Figure A.8.3.
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Figure A.8.5: X5
t generated using CRP

and also calculated directly from the

Wiener and Gamma processes.
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Figure A.8.6: The di¤erence of the two

series in Figure A.8.5.
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Figure A.8.7: (Xt+t0 �Xt0)
8 generated

using CRP and also calculated directly

from the Wiener and Gamma

processes.
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Figure A.8.8: The di¤erence of the two

series in Figure A.8.7.

Figures A.8.1-A.8.8: Solid line is generated using the CRP and the dotted line is generated

by the Wiener and Gamma processes. Time step = 1
10000 ; a = 10; b = 20: In Figure A.8.3,

t0 = 0:0099; in Figure A.8.5, � = 0:01; in Figure A.8.7, t0 = 0:0019 and � = 0:02:

A.9 Proof of Lemma 5.4.1

We need the following propositions and lemma before we can prove Lemma 5.4.1. Recall H(i)
t =Pi

j=1 ai;jY
(j)
t ; i � 1 and de�ne qi =

P
j;j0=1;:::;i ai;jai;j0mj+j0 + a

2
i;1�

2 as well as

J (i1;:::;in)n (f; t) =

Z t

t0

�Z tn�

t0

� � �
�Z t2�

t0

f (t1; :::; tn) dH
(i1)
t1

�
� � �dH(in�1)

tn�1

�
dH

(in)
tn :

Léon et al. (2002, Proposition 1.1) proved that

E
h
J (i1;:::;in)n (f; t) J (j1;:::;jm)m (g; t)

i
=

8><>:
qi1 � � � qin

R t
t0
� � �
R t2�
t0

f (t1; :::; tn) g (t1; :::; tn) dt1 � � �dtn;
if n = m and (i1; :::; in) = (j1; :::; jn) ;

0; otherwise.

(A.19)

De�ne ~m2 = m2 + �
2 and ~mn = mn for n = 1 and n = 3; 4; ::::

Proposition A.9.1 For i; j = 1; 2; :::; E
h
Y
(i)
t Y

(j)
t

i
=
�
mi+j + 1fi=j=1g�

2
�
t = ~mi+jt:

Proof. Léon et al. (2002, P. 3) noted that the predictable quadratic variation process ofn
H
(i)
t ; t � 0

o
is given by D

H(i);H(i)
E
t
= qit
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and the predictable quadratic covariation process of Y (i) and Y (j) (i; j � 2) is given byD
Y (i); Y (j)

E
t
= mi+jt:

Since Y (1)t = H
(1)
t ; we have



Y (1); Y (1)

�
t
= m2 + �

2t and thusD
Y (i); Y (j)

E
t
=
�
mi+j + 1fi=j=1g�

2
�
t:

Hence,

E
h
Y
(i)
t Y

(j)
t

i
= E

hD
Y (i); Y (j)

E
t

i
=
�
mi+j + 1fi=j=1g�

2
�
t = ~mi+jt:

�

Proposition A.9.2 In the Gamma(a; b) case, ~mn = mn for all n and mn =
(n�1)!a
bn :

Proof. In the Gamma case, �2 = 0: We prove mn =
(n�1)!a
bn by induction. Assume true for n:

mn+1 =

Z 1

0

xnae�bxdx = �a
b

Z 1

0

xnde�bx = �a
b

�
xne�bx

�1
0
+
a

b

Z 1

0

e�bxnxn�1dx

=
n

b

Z 1

0

xn�1ae�bxdx =
n

b

(n� 1)!a
bn

=
n!a

bn+1
:

�

Lemma A.9.3 For any integer k � 1, n = 1; 2; :::; k and r = 1; 2; :::; n;

dr

dxr
xn (x� 1)k =

rX
i=0

�
r

i

�
n!

(n� r + i)!x
n�r+i k!

(k � i)! (x� 1)
k�i

:

Proof. We prove by induction on r: When r = 1;

L:H:S: = nxn�1 (x� 1)k + kxn (x� 1)k�1 = R:H:S:

Assume it is true for r = p; where p is an integer � 1. Then, for r = p+ 1;

dp+1

dxp+1
xn (x� 1)k =

d

dx

"
pX
i=0

�
p

i

�
n!

(n� p+ i)!x
n�p+i k!

(k � i)! (x� 1)
k�i
#

=

pX
i=0

�
p

i

�
n!

(n� p+ i)!
k!

(k � i)!

h
(n� p+ i)xn�p+i�1 (x� 1)k�i

+ (k � i)xn�p+i (x� 1)k�i�1
i

=

pX
i=0

�
p

i

��
n!

(n� p+ i� 1)!x
n�p+i�1 k!

(k � i)! (x� 1)
k�i

+
n!

(n� p+ i)!x
n�p+i k!

(k � i� 1)! (x� 1)
k�i�1

�



Chapter A. Part I 217

=

pX
i=0

�
p

i

�
n!

(n� p+ i� 1)!x
n�p+i�1 k!

(k � i)! (x� 1)
k�i

+

p+1X
i=1

�
p

i� 1

�
n!

(n� p+ i� 1)!x
n�p+i�1 k!

(k � i)! (x� 1)
k�i

=

pX
i=1

��
p

i

�
+

�
p

i� 1

��
n!

(n� p+ i� 1)!x
n�p+i�1 k!

(k � i)! (x� 1)
k�i

+
n!

(n� p� 1)!x
n�p�1 (x� 1)k + xn k!

(k � p� 1)! (x� 1)
k�p�1

:

Therefore, we have

dp+1

dxp+1
xn (x� 1)k =

pX
i=1

�
1

i
+

1

p� i+ 1

�
p!

(i� 1)! (p� i)!
n!xn�p+i�1

(n� p+ i� 1)!
k! (x� 1)k�i

(k � i)!

+
n!

(n� p� 1)!x
n�p�1 (x� 1)k + xn k!

(k � p� 1)! (x� 1)
k�p�1

=

p+1X
i=0

�
p+ 1

i

�
n!

(n� p+ i� 1)!x
n�p+i�1 k!

(k � i)! (x� 1)
k�i

:

�

Proof of Lemma 5.4.1. We prove the result by strong induction on i. Using the Laguerre

polynomials, we obtain

H
(2)
t = bG(2)t � 2

b
bG(1)t

and since

m2 =
a

b2
and m3 =

2a

b3
;

it is clear that the proposition is true for i = 2. Assume it is true for all integers k � 2: Then for
i = k + 1, by the orthogonality of H�s, we have

E
h
H
(n)
t H

(k+1)
t

i
= 0 for all n = 1; 2; :::k

or we can write

E
hn
an;1Y

(1)
t + � � �+ an;n�1Y (n�1)t + Y

(n)
t

o
�
n
ak+1;1 Y

(1)
t + ak+1;2Y

(2)
t + � � �+ ak+1;kY (k)t + Y

(k+1)
t

oi
= 0

for all n = 1; 2; :::; k: By Proposition A.9.1 and since ~mn = mn in the Gamma case, we have

ak+1;1 (an;1m2 + � � �+mn+1) + ak+1;2 (an;1m3 + � � �+mn+2)

+ � � �+ (an;1mk+2 + � � �+mn+k+1)

= 0
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for all n = 1; 2; :::; k; that is266666666664

m2 � � � mk+1 mk+2

a2;1m2 +m3 � � � a2;1mk+1 +mk+2 a2;1mk+2 +mk+3

...

an;1m2 + � � �+mn+1 � � � an;1mk+1 + � � �+mn+k an;1mk+2 + � � �+mn+k+1

...

ak;1m2 + � � �+mk+1 � � � ak;1mk+1 + � � �+m2k ak;1mk+2 +m2k+1

377777777775

�

26666666666664

ak+1;1

ak+1;2
...

ak+1;n
...

ak+1;k

ak+1;k+1

37777777777775
= 0;

and by matrix operations, we have

266666666664

m2 m3 m4 � � � mk+1 mk+2

m3 m4 m5 � � � mk+2 mk+3

...

mn+1 mn+2 mn+3 � � � mn+k mn+k+1

...

mk+1 mk+2 mk+3 � � � m2k m2k+1

377777777775

26666666666664

ak+1;1

ak+1;2
...

ak+1;n
...

ak+1;k

ak+1;k+1

37777777777775
= 0: (A.20)

It remains to prove that ak+1;j = (�1)k+1�j
�
k
j�1
�mk+2

mj+1
for j = 1; 2; :::; k solve (A.20). In other

words, we need to prove for n = 1; 2; :::; k;

k+1X
j=1

mn+jak+1;j =
k+1X
j=1

mn+j (�1)k+1�j
�

k

j � 1

�
mk+2

mj+1
=

kX
j=0

mn+j+1 (�1)k�j
�
k

j

�
mk+2

mj+2
= 0:

Note that this proof so far can be applied to all Lévy processes by replacing m with ~m; given that

the general form of ~m is known. Since we have only proven a simple formula of m for Gamma in

Proposition A.9.2, we restrict our results to the Gamma case here. As

kX
j=0

mn+j+1 (�1)k�j
�
k

j

�
mk+2

mj+2
=

kX
j=0

(�1)k�j
�
k

j

�
a

bn+k+1
(n+ j)! (k + 1)!

(j + 1)!
;
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we have to prove
kX
j=0

(�1)k�j
�
k

j

�
a

bn+k+1
(n+ j)! (k + 1)!

(j + 1)!
= 0: (A.21)

Consider xn (x� 1)k =
Pk

j=0

�
k
j

�
xn+j (�1)k�j : Di¤erentiating both sides with respect to x by

n� 1 times,

L.H.S. =
n�1X
j=0

�
n� 1
j

�
n!

(j + 1)!
xj+1

k!

(k � j)! (x� 1)
k�j

;

R.H.S. =

kX
j=0

�
k

j

�
(n+ j)!

(j + 1)!
xj+1 (�1)k�j ;

where L.H.S. is obtained using Lemma A.9.3. Put x = 1;
Pk

j=0

�
k
j

� (n+j)!
(j+1)! (�1)

k�j
= 0 and hence

(A.21) is proven and this concludes the proof. �

A.10 Proof of Proposition 5.4.2

The Lévy measure of Gamma (a; b) ; �G (dx) is given by, see Schoutens (2003),

�G (dx) =
ae�bx

x
1(x>0)dx: (A.22)

Following Nualart & Schoutens (2000, p. 119), we use (5.10) by taking f (x) = i�xj and put z = xj

to obtain for j � 2,

E
h
exp

�
i�G

(j)
1

�i
= exp

0@i� Z 1

�1

a exp
�
�bz

1
j

�
j

1(z>0)dz

+

Z 1

�1

�
ei�z � 1� i�z1fjzj<1g

� a exp��bz 1j �
jz

1(z>0)dz

1A :

The Brownian part � for G(j) is 0 because the original Gamma process has no Brownian part and

we have

Z 1

�1

a exp
�
�bz

1
j

�
j

1(z>0)dz =
a

j

Z 1

0

exp
�
�bz

1
j

�
dz =

a

bj

Z b

0

exp (�z) zj�1dz;

where the integral is the lower incomplete Gamma function  (j; b), see Weisstein (1999a), and can

be calculated by integration by parts since j is an integer � 1. So its value can be found in closed
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form when j is known. Hence the Lévy triplet of G(j) is given by0@ a

bj

Z b

0

exp (�z) zj�1dz; 0;
a exp

�
�bz

1
j

�
jz

1(z>0)dz

1A (A.23)

using the Lévy-Khintchine formula given in equation (2.1). Note that (A.22) is a special case of

(A.23) when j = 1.

A.11 Proof of Proposition 5.4.3

We have 2 cases:

Case I: k is even and so p1 is a local minimum.

E
n
exp

�
i�
h
G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t

i�o
= exp

(
t

Z 1

�1

�
ei�z � 1

�
a

"
�e

�bh(j)1 (z)

h
(j)
1 (z)

dh
(j)
1 (z) 1(h(j)(p1)<z<h(j)(0))

+
e�bh

(j)
2 (z)

h
(j)
2 (z)

dh
(j)
2 (z) 1(h(j)(p1)<z<h(j)(p2)) �

e�bh
(j)
3 (z)

h
(j)
3 (z)

dh
(j)
3 (z) 1(h(j)(p3)<z<h(j)(p2)) + :::

�e
�bh(j)k�1(z)

h
(j)
k�1 (z)

dh
(j)
k�1 (z) 1(h(j)(pk�1)<z<h(j)(pk�2)) +

e�bh
(j)
k (z)

h
(j)
k (z)

dh
(j)
k (z) 1(h(j)(pk�1)<z<1)

#)
dz:

Case II: k is odd and so p1 is a local maximum.

E
n
exp

�
i�
h
G
(j)
t + aj;j�1G

(j�1)
t + aj;j�2G

(j�2)
t + :::+ aj;1G

(1)
t

i�o
= exp

(
t

Z 1

�1

�
ei�z � 1

�
a

"
e�bh

(j)
1 (z)

h
(j)
1 (z)

dh
(j)
1 (z) 1(h(j)(0)<z<h(j)(p1))

�e
�bh(j)2 (z)

h
(j)
2 (z)

dh
(j)
2 (z) 1(h(j)(p2)<z<h(j)(p1)) +

e�bh
(j)
3 (z)

h
(j)
3 (z)

dh
(j)
3 (z) 1(h(j)(p2)<z<h(j)(p3)) + :::

�e
�bh(j)k�1(z)

h
(j)
k�1 (z)

dh
(j)
k�1 (z) 1(h(j)(pk�1)<z<h(j)(pk�2)) +

e�bh
(j)
k (z)

h
(j)
k (z)

dh
(j)
k (z) 1(h(j)(pk�1)<z<1)

#)
dz:

This means that the Lévy measure of H(j)
t is given by:

Case I: k is even.
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�H (dz)

= a

"
�e

�bh(j)1 (z)

h
(j)
1 (z)

dh
(j)
1 (z) 1(h(j)(p1)<z<h(j)(0)) +

e�bh
(j)
2 (z)

h
(j)
2 (z)

dh
(j)
2 (z) 1(h(j)(p1)<z<h(j)(p2))

�e
�bh(j)3 (z)

h
(j)
3 (z)

dh
(j)
3 (z) 1(h(j)(p3)<z<h(j)(p2)) + :::�

e�bh
(j)
k�1(z)

h
(j)
k�1 (z)

dh
(j)
k�1 (z) 1(h(j)(pk�1)<z<h(j)(pk�2))

+
e�bh

(j)
k (z)

h
(j)
k (z)

dh
(j)
k (z) 1(h(j)(pk�1)<z<1)

#
dz:

Case II: k is odd.

�H (dz)

= a

"
e�bh

(j)
1 (z)

h
(j)
1 (z)

dh
(j)
1 (z) 1(h(j)(0)<z<h(j)(p1)) �

e�bh
(j)
2 (z)

h
(j)
2 (z)

dh
(j)
2 (z) 1(h(j)(p2)<z<h(j)(p1))

+
e�bh

(j)
3 (z)

h
(j)
3 (z)

dh
(j)
3 (z) 1(h(j)(p2)<z<h(j)(p3)) + :::�

e�bh
(j)
k�1(z)

h
(j)
k�1 (z)

dh
(j)
k�1 (z) 1(h(j)(pk�1)<z<h(j)(pk�2))

+
e�bh

(j)
k (z)

h
(j)
k (z)

dh
(j)
k (z) 1(h(j)(pk�1)<z<1)

#
dz:

Altogether, we have

�
(j)
H (dz) = a

"
kX
i=1

g
�
h(j) (pi�1) ; h

(j) (pi) ; z
� e�bh(j)i (z)

h
(j)
i (z)

dh
(j)
i (z)

#
dz:

Hence, the Lévy triplet of H(j)
t is given by�

� [mj + aj;j�1mj�1 + aj;j�2mj�2 + :::+ aj;1m1] +

Z 1

�1
z�H (dz) ; 0; �H (dz)

�
:

A.12 Validity of �(2)H (dz) as a Lévy measure

We want to prove that the Lévy measure �(2)H (dz) given in (5.14) is valid, that is,Z +1

�1

�
1 ^ z2

�
�
(2)
H (dz) <1;

which means
R �1
�1 �

(2)
H (dz) +

R 1
�1 z

2�
(2)
H (dz) +

R1
1
�
(2)
H (dz) < 1: Since � 1

b2 can be bigger or

smaller than �1; we have 2 cases:
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Case I: b < 1, we have to proveZ �1

� 1
b2

�
(2)
H (dz) +

Z 1

�1
z2�

(2)
H (dz) +

Z 1

1

�
(2)
H (dz) = I1 + I2 + I3 <1:

We need the following lemma:

Lemma A.12.1 Let �1 � c < 0 be a constant. Then
R 1
c
z2�

(2)
H (dz) <1:

Proof. By putting u =
p
1 + zb2, the integral can be calculated easily. �

We have

I1 =

Z �1

� 1
b2

�
(2)
H (dz)

=

Z �1

� 1
b2

e�[1�
p
1+zb2]�

1�
p
1 + zb2

� ab2

2
p
1 + zb2

dz +

Z �1

� 1
b2

e�[1+
p
1+zb2]�

1 +
p
1 + zb2

� ab2

2
p
1 + zb2

dz:

Put y =
p
1 + zb2, so z = y2�1

b2 and dz = 2y
b2 dy:

I1 =

Z p
1�b2

0

a
e�1+y

1� y
b2

2

1

y

2y

b2
dy +

Z p
1�b2

0

a
e�1�y

1 + y

b2

2

1

y

2y

b2
dy = I11 + I12:

Put x = 1 � y, so y = 1 � x and dy = �dx, I11 =
R 1
1�
p
1�b2 a

e�x

x dx: Hence, we get I11 =

a
�
�E1 (1) + E1

�
1�

p
1� b2

��
; where E1 (q) is the exponential integral de�ned by, see Abramowitz

& Stegun (1964),

En (q) =

Z 1

1

e�xqx�ndx: (A.24)

Since E1 (q) < 1 for q 6= 0 and 0 < b < 1; we have I11 < 1: Similarly, by letting x = 1 + y;

we have I12 =
R 1+p1�b2
1

a e
�x

x dx so that I12 = a
�
�E1

�
1 +

p
1� b2

�
+ E1 (1)

�
: Hence, I12 < 1

and I1 <1. Secondly, for I2 we make use of Lemma A.12.1 by putting c = �1. Hence we have
proven that I2 <1: Finally, we have to consider

I3 =

Z 1

1

�
(2)
H (dz) =

Z 1

1

ae�[1+
p
1+zb2]�

1 +
p
1 + zb2

� b2
2

1p
1 + zb2

dz:

Put y = 1 +
p
1 + zb2, so z = (y�1)2�1

b2 and dz = 2(y�1)
b2 dy:

I3 =

Z 1

1+
p
1+b2

ae�y

y

b2

2

1

(y � 1)
2 (y � 1)

b2
dy =

Z 1

1+
p
1+b2

ae�y

y
dy:

Hence, we get I3 = aE1
�
1 +

p
1 + b2

�
and I3 < 1: Combining with the above results, we have

proven that in case I where b < 1, the Lévy measure of H is valid.

Case II: b � 1; we have to prove
R 1
� 1
b2
z2�

(2)
H (dz) +

R1
1
�
(2)
H (dz) < 1: We have proven in

case I that
R1
1
�
(2)
H (dz) <1. For

R 1
� 1
b2
z2�

(2)
H (dz), we can make use of Lemma A.12.1 by putting
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c = � 1
b2 and conclude that

R 1
� 1
b2
z2�

(2)
H (dz) <1. Hence in the case where b � 1 we have proven

that the Lévy measure of H is valid. Combining the above two cases, we have shown that for all

b > 0 the Lévy measure �(2)H (dz) is valid.



Appendix B

Part II

B.1 Exotic options

In this appendix, we list the types of options to which our hedging strategies given in Part II of

this thesis can be applied. We use Monte-Carlo simulation and �nite-di¤erence methods to obtain

the option prices and their derivatives.

European call options
The option price function before maturity of the European call option with strike K, maturity

T is given at time t by:

F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ jFt

i
;

where Q is the risk-neutral measure and Ft is the �ltration of S.
�Up-and-out�barrier call options
Let the maximum process of the stock price, S = fSt; 0 � t � Tg be

MS
t = sup fSu; 0 � u � tg ; 0 � t � T:

The �up-and-out�barrier call is worthless unless its maximum remains below some high barrier H,

in which case it retains the structure of an European call with strike K: The price is given by

F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fMS

T<Hg
i
:

The option price is di¤erentiable in the stock price in the range St < H and MS
t < H.

�Up-and-in�barrier call options
The �up-and-in�barrier call is worthless unless its maximum crossed some high barrier H, in

which case it retains the structure of an European call with strike K. The price is given by

F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fMS

T�Hg
i
:

224
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�Down-and-out�barrier call options
Let the minimum process of the stock price, S = fSt; 0 � t � Tg be

mS
t = inf fSu; 0 � u � tg ; 0 � t � T:

The �down-and-out�barrier call is worthless unless its minimum retains above some low barrier H,

in which case it retains the structure of an European call with strike K. The price is given by

F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fmS

T>Hg
i
:

The option price is di¤erentiable in the stock price in the range St > H and mS
t > H:

�Down-and-in�barrier call options
The �down-and-in�barrier call is worthless unless its minimum crossed some low barrier H, in

which case it retains the structure of an European call with strike K. The price is given by

F (t; St) = exp (�r (T � t))EQ
h
(ST �K)+ 1fmS

T�Hg
i
:

The option price is di¤erentiable in the stock price in the range St > H and mS
t > H; or mS

t < H.

In the latter case, the option becomes a standard European call option. In our simulation for the

�down-and-in�barrier call options, we consider only the �rst case.

Lookback options with a �oating strike
The price of a �oating strike lookback option is given by

F (t; St) = exp (�r (T � t))EQ
�
MS
T � ST

�
:

Lookback options with a �xed strike
The price of a �xed strike lookback option is given by

F (t; St) = exp (�r (T � t))EQ
h�
MS
T �K

�+i
:

Asian call options
The option price function before maturity of an European-style arithmetic average call option

with strike K, maturity T is given at time t by:

F (t; St) =
exp (�r (T � t))

n
EQ

24 nX
k=1

Stk � nK
!+������Ft

35 :
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B.2 Proof of Proposition 6.2.3

The initial investment at time t is

Ci

(
Sit exp (�r (t+�t))T

(i)
t +

Sit exp (�r (t+�t))T
(i)
t

exp (r�t)� 1

+
Sit

h
� exp (�rt)T (i)t +mi�t

i
exp (r�t)� 1

9=; :

At maturity, the value of the portfolio is equal to

CiS
i
t

n
exp (�r (t+�t))T (i)t+�t

+
exp (r�t)

exp (r�t)� 1

n
exp (�r (t+�t))T (i)t � exp (�rt)T (i)t +mi�t

o�
:

Hence, the change of value of the portfolio is equal to

Ci

n
Sit exp (�r (t+�t))T

(i)
t+�t + S

i
t

h
� exp (�rt)T (i)t +mi�t

io
= Ci (�St)

i
;

by equation (6.15).

B.3 Proof of Proposition 6.2.4

The initial investment at time t is

C2

n
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t

+
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t

exp (r�t)� 1 +
1

exp (r�t)� 1

n
�S2t [exp (b�t)� 1]

2

+2St [exp (b�t)� 1]�St + S2t exp (2b�t)
h
� exp (�rt)T (2)t +m2�t

ioo
:

At maturity, the portfolio is worth

C2

n
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t+�t

+
exp (r�t)

exp (r�t)� 1

n
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t � S2t [exp (b�t)� 1]

2

+2St [exp (b�t)� 1]�St + S2t exp (2b�t)
h
� exp (�rt)T (2)t +m2�t

ioo
:
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Hence, the change of value of the portfolio is

C2

n
S2t exp (2b�t) exp (�r (t+�t))T

(2)
t+�t � S

2
t [exp (b�t)� 1]

2

+2St [exp (b�t)� 1]�St + S2t exp (2b�t)
h
� exp (�rt)T (2)t +m2�t

io
= C2 (�S)

2

by equation (6.17).

B.4 Proof of Proposition 6.3.1

Let

� = �0 +
kX
j=1

Z T

0

'j (s) dSj (s) ; (B.1)

where �0 denotes the di¤erence of value between � and
Pk

j=1

R T
0
'j (s) dSj (s) for the portfolio

' = ('1; :::; 'k). By the results of Monat & Stricker (1995, Section 4.2), the Hilbert space

argument in Benth et al. (2003, Theorem 2.3) and equation (6.25), the following orthogonality

condition is satis�ed:

E
h�
� � b���i = E

��
�0 � E [�]

	
�
�
= E

�
�0�

�
� E [�]E [�] = 0;

where

� =
kX
j=1

Z T

0

�j (s)�jSj (s�) dWj (s) +
kX
j=1

Z T

0

Z
R
x�j (s)Sj (s�) ~Nj (ds;dx) (B.2)

for all � = (�1; :::; �k) 2 A; the set of all admissible portfolios. Since E [�] = 0; we have

E
�
�0�

�
= 0:

From (6.25) and (6.26),

kX
j=1

Z T

0

'j (s) dSj (s) =

kX
j=1

Z T

0

'j (s)Sj (s�) bjds+

kX
j=1

Z T

0

'j (s)�jSj (s�) dWj (s)

+
kX
j=1

Z T

0

Z
R
x'j (s)Sj (s�) ~Nj (ds;dx) :

Hence, from (6.29) and (B.1),

�0 = � �
kX
j=1

Z T

0

'j (s) dSj (s) ;
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�0 =
kX
j=1

Z T

0

f1 (�; s; j) dWj (s) +
kX
j=1

Z T

0

Z
R
f2 (�; s; x; j) ~Nj (ds;dx)

�
kX
j=1

Z T

0

'j (s)Sj (s�) bjds�
kX
j=1

Z T

0

'j (s)�jSj (s�) dWj (s)

�
kX
j=1

Z T

0

Z
R
x'j (s)Sj (s�) ~Nj (ds;dx) + E [�]

= �
kX
j=1

Z T

0

'j (s)Sj (s�) bjds+
kX
j=1

Z T

0

�
1

�j
f1 (�; s; j)� 'j (s)Sj (s�)

�
�jdWj (s)

+
kX
j=1

Z T

0

Z
R

�
f2 (�; s; x; j)� x'j (s)Sj (s�)

�
~Nj (ds;dx) + E [�] :

Hence, from (B.2),

E
�
�0�

�
= E [�]�

kX
j=1

E

"Z T

0

�j (s)�jSj (s�) dWj (s) +

Z T

0

Z
R
x�j (s)Sj (s�) ~Nj (ds;dx)

#

�
kX
j=1

Z T

0

'j (s)Sj (s�) bjds

�
kX
j=1

E

"Z T

0

�j (s)�jSj (s�) dWj (s) +

Z T

0

Z
R
x�j (s)Sj (s�) ~Nj (ds;dx)

#

+
kX

i;j=1

E

"Z T

0

�i (s)�iSi (s�) dWi (s) �
Z T

0

�
1

�j
f1 (�; s; j)� 'j (s)Sj (s�)

�
�jdWj (s)

#

+
kX

i;j=1

E

"Z T

0

�i (s)�iSi (s�) dWi (s) �
Z T

0

Z
R

�
f2 (�; s; x; j)� x'j (s)Sj (s�)

�
~Nj (ds;dx)

#

+
kX

i;j=1

E

"Z T

0

Z
R
x�i (s)Si (s�) ~Ni (ds;dx)

�
Z T

0

�
1

�j
f1 (�; s; j)� 'j (s)Sj (s�)

�
�jdWj (s)

#

+
kX

i;j=1

E

"Z T

0

Z
R
x�i (s)Si (s�) ~Ni (ds;dx)

�
Z T

0

Z
R

�
f2 (�; s; x; j)� x'j (s)Sj (s�)

�
~Nj (ds;dx)

#
:
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By the well-known isometry, see Ikeda & Watanabe (1989), we have

E
�
�0�

�
=

kX
j=1

E

"Z T

0

�j (s)Sj (s�)

�
1

�j
f1 (�; s; j)� 'j (s)Sj (s�)

�
�2jds

#

+

kX
j=1

E

"Z T

0

Z
R
x�j (s)Sj (s�)

�
f2 (�; s; x; j)� x'j (s)Sj (s�)

�
�j (dx) ds

#
;

E
�
�0�

�
=

kX
j=1

E

"Z T

0

�j (s)Sj (s�)
��
f1 (�; s; j)� �j'j (s)Sj (s�)

�
�j

+

Z
R
x
�
f2 (�; s; x; j)� x'j (s)Sj (s�)

�
�j (dx)

�
ds

�
= 0:

Thus,

f1 (�; s; j)�j +

Z
R
xf2 (�; s; x; j) �j (dx) = 'j (s)Sj (s)

�
�2j +

Z
R
x2�j (dx)

�

'j (s) =
f1 (�; s; j)�j +

R
R xf2 (�; s; x; j) �j (dx)�

�2j +
R
R x

2�j (dx)
	
Sj (s)

:

B.5 Proof of Proposition 6.3.2

From equations (6.9) and (6.30), the term
Pq

i=2 CiS
i
tmi�t can be hedged by investing

qX
i=2

Ci
(exp (r�t)� 1)S

i
tmi�t

in a risk-free bank account. To hedge the term

qX
i=2

CiS
i
t

Z t+�t

t

dY (i)s ;

we let

� =

qX
i=2

Z t+�t

t

CiS
i
tdY

(i)
s =

qX
i=2

Z t+�t

t

Z
R
CiS

i
tx
i ~N (ds;dx)

by (4.4) and let the minimal variance portfolio to hedge � be

b� = E [�] +

Z t+�t

t

'sdSs =

Z t+�t

t

'sdSs

since E [�] = 0. Hence, using Proposition 6.3.1 and equation (6.29) by putting f1 (�; s; j) = 0 and

f2 (�; s; x; j) =

qX
i=2

CiS
i
tx
i;
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we have

's =

R
R
Pq

i=2 CiS
i
tx
i+1� (dx)�

�2 +
R
R x

2� (dx)
�
Ss

:

Hence, to hedge
Pq

i=2 Ci (�St)
i by minimal variance portfolio, we need to invest

qX
i=2

Ci
(exp (r�t)� 1)S

i
tmi�t

in a risk-free bank account and buyR
R
Pq

i=2 CiS
i
tx
i+1� (dx)�

�2 +
R
R x

2� (dx)
�
St

=

Pq
i=2 CiS

i�1
t mi+1

[�2 +m2]

amount of the underlying stock, St, where mi are de�ned in (1.8) and for VG process, it is given

by Lemma 6.4.1.

B.6 Proof of Proposition 6.3.3

If �t is negligible compared to �St, from (6.9) and (6.31), the term
Pq

i=3 CiS
i
tmi�t can be hedged

by investing
qX
i=3

Ci
(exp (r�t)� 1)S

i
tmi�t

in a risk-free bank account. Let

� =

qX
i=3

Z t+�t

t

CiS
i
tdY

(i)
s

=

qX
i=3

Z t+�t

t

Z
R
CiS

i
tx
i ~N (ds;dx)

by (4.4) and let the minimal variance portfolio to hedge � be

b� =

Z t+�t

t

'(1)s dSs +

Z t+�t

t

'(2)s Ss�dY
(2)
s

=

Z t+�t

t

'(1)s dSs +

Z t+�t

t

Z
R
'(2)s x2Ss� ~N (ds;dx) : (B.3)

Similar to Proposition 6.3.1, we have the orthogonal condition

E
h
�
�
� � b��i = E

"
�

  Z t+�t

t

Z
R

"
qX
i=3

CiS
i
tx
i � '(2)s x2Ss�

#
~N (ds;dx)

!

�
Z t+�t

t

'(1)s dSs

!#
= 0;
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where

� =

Z t+�t

t

�(1)s �Ss�dWs +

Z t+�t

t

Z
R

h
x�(1)s Ss� + �

(2)
s x2Ss�

i
~N (ds;dx) (B.4)

for all � 2 A; the set of all admissible portfolios. From (6.25) and (6.26),Z t+�t

t

'(1)s dSs =

Z t+�t

t

'(1)s Ss�bds+

Z t+�t

t

'(1)s �Ss�dWs +

Z t+�t

t

Z
R
x'(1)s Ss� ~N (ds;dx) :

Hence

E
h
�
�
� � b��i

= E

"
�

 
�
Z t+�t

t

'(1)s Ss�bds�
Z t+�t

t

'(1)s �Ss�dWs

+

Z t+�t

t

Z
R

"
�x'(1)s Ss� � '(2)s x2Ss� +

qX
i=3

CiS
i
tx
i

#
~N (ds;dx)

!#

= E

"
�
Z t+�t

t

�(1)s �Ss�dWs �
Z t+�t

t

'(1)s Ss�bds

#

+E

"
�
Z t+�t

t

�(1)s �Ss�dWs �
Z t+�t

t

'(1)s �Ss�dWs

#

+E

"Z t+�t

t

�(1)s �Ss�dWs �
Z t+�t

t

Z
R

h
�x'(1)s Ss� � '(2)s x2Ss�

+

qX
i=3

CiS
i
tx
i

#
~N (ds;dx)

#

+E

"
�
Z t+�t

t

Z
R

h
x�(1)s Ss� + �

(2)
s x2Ss�

i
~N (ds;dx) �

Z t+�t

t

'(1)s Ss�bds

#

+E

"
�
Z t+�t

t

Z
R

h
x�(1)s Ss� + �

(2)
s x2Ss�

i
~N (ds;dx) �

Z t+�t

t

'(1)s �Ss�dWs

#

+E

"Z t+�t

t

Z
R

h
x�(1)s Ss� + �

(2)
s x2Ss�

i
~N (ds;dx)

�
Z t+�t

t

Z
R

"
�x'(1)s Ss� � '(2)s x2Ss� +

qX
i=3

CiS
i
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i

#
~N (ds;dx)

#
:

By the well-known isometry, see Ikeda & Watanabe (1989), we have

E
h
�
�
� � b��i = �

Z t+�t

t

�(1)s '(1)s �2S2s�ds+

Z t+�t

t

Z
R

h
x�(1)s Ss� + �

(2)
s x2Ss�

i
�
"
�x'(1)s Ss� � '(2)s x2Ss� +

qX
i=3

CiS
i
tx
i

#
� (dx) ds;
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where � is the Lévy measure of the underlying Lévy process. Since E
h
�
�
� � b��i = 0 for all �(1)s

and �(2)s , we have(
'
(1)
s �2Ss + x

R
R

h
�x'(1)s Ss � '(2)s x2Ss +

Pq
i=3 CiS

i
tx
i
i
� (dx) = 0

�
R
R x'

(1)
s Ss� (dx)� '(2)s

R
R x

2Ss� (dx) +
Pq

i=3 CiS
i
t

R
R x

i� (dx) = 0

)
(

'
(1)
s = 0

'
(2)
s =

Pq
i=3 CiS

i
t

R
R x

i� (dx) =
�R
R x

2Ss� (dx)
� : (B.5)

From (4.4) and (B.3), our hedging portfolio requests us to invest in
R t+�t
t

'
(2)
s Ss�dY

(2)
s : By (6.30)

and (B.5),

Z t+�t

t

'(2)s Ss�dY
(2)
s =

qX
i=3

CiS
i
t

R
R x

i� (dx)R
R x

2� (dx)

h
Y
(2)
t+�t � Y

(2)
t

i
=

qX
i=3

CiS
i�2
t

R
R x

i� (dx)R
R x

2� (dx)

n
(�St)

2 � S2tm2�t
o
: (B.6)

We can hedge the terms
Pq

i=3 CiS
i�2
t

R
R x

i� (dx) (�St)
2
=
�R
R x

2� (dx)
�
using variance swaps. Let

� =

qX
i=3

CiS
i�2
t

R
R x

i� (dx)R
R x

2� (dx)
=

qX
i=3

CiS
i�2
t mi

m2
; (B.7)

where mi are de�ned in (1.8) and for VG process, it is given by Lemma 6.4.1. By Proposition

6.2.1, to hedge the term � (�St)
2, we invest

�

�
S2t�s (n� 2)
[exp (r�t)� 1]

�
�2strike � Sn;2

�
+
PV�s (n� 2)S2t
[exp (r�t)� 1]

�
in a risk-free bank account and buy ��s (n� 2)S2t units of the variance swap with sampling points
f:::; sn�1 = t; sn = t+�tg , maturity t+�t and strike �2strike , where PV is the price of one unit of
the variance swap. To hedge the term ��S2tm2�t, by (6.9), we borrow �S2tm2�t= [exp (r�t)� 1]
from a risk-free bank account. Hence, altogether we should invest

1

er�t � 1

(
qX
i=3

CiS
i
tmi�t+ �S

2
t

�
�s (n� 2)

�
�2strike � Sn;2

�
+ PV�s (n� 2)�m2�t

	)

in a risk-free bank account and buy

��s (n� 2)S2t

units of variance swaps with sampling points f:::; sn�1 = t; sn = t+�tg and maturity t+�t.
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B.7 Proof of Lemma 6.4.1

Recall the Lévy measure of a VG process given in equation (6.33):

� (x) dx =

8<:
�2n
�n

exp(��n
�n
jxj)

jxj dx for x < 0

�2p
�p

exp
�
��p

�p
x
�

x dx for x > 0:

Firstly, we should �nd out the general expression forZ 0

�1
xn
exp (cx)

�x dx and
Z 1

0

xn
exp (�cx)

x
dx for n = 1; 2; 3; :::;

where c is a constant. We are going to calculate the values of of these expressions when n = 2 and

n = 3 in order to observe a general pattern: We �rstly evaluate the two integrals
R 0
�1 x2 exp(cx)�x dx

and
R1
0
x2 exp(�cx)x dx:

Z 0

�1
x2
exp (cx)

�x dx =
1

c

Z 0

�1
�xd exp (cx) = 1

c
[�x exp (cx)]0�1 +

1

c

Z 0

�1
exp (cx) dx

=
1

c2
[exp (cx)]

0
�1 =

1

c2

Z 1

0

x2
exp (�cx)

x
dx = �1

c

Z 1

0

xd exp (�cx) = �1
c
[x exp (�cx)]10 +

1

c

Z 1

0

exp (�cx) dx

= � 1
c2
[exp (�cx)]10 =

1

c2
:

Therefore, we have

Z 1

�1
x2� (dx) =

�2n
�n

Z 0

�1
x2
exp

�
�n
�n
x
�

�x dx+
�2p
�p

Z 1

0

x2
exp

�
��p
�p
x
�

x
dx

=
�2n
�n

�2n
�2n
+
�2p
�p

�2p
�2p
= �n + �p = �

�
�2n + �

2
p

�
;

since

�p = �2p� and �n = �2n�:

Similarly,

Z 0

�1
x3
exp (cx)

�x dx =
1

c

Z 0

�1
�x2d exp (cx) = 1

c

�
�x2 exp (cx)

�0
�1 +

1

c

Z 0

�1
exp (cx) dx2

=
2

c

Z 0

�1
x exp (cx) dx = � 2

c3
:
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Z 1

0

x3
exp (�cx)

x
dx = �1

c

Z 1

0

x2d exp (�cx) = �1
c

�
x2 exp (�cx)

�1
0
+
1

c

Z 1

0

exp (�cx) dx2

=
2

c

Z 1

0

x exp (�cx) dx = 2

c3
:

Therefore, we have

Z 1

�1
x3� (dx) =

�2n
�n

Z 0

�1
x3
exp

�
�n
�n
x
�

�x dx+
�2p
�p

Z 1

0

x3
exp

�
��p
�p
x
�

x
dx

= �2�
2
n

�n

�3n
�3n
+
2�2p
�p

�3p
�3p
= 2

 
��

2
n

�n
+
�2p
�p

!
= 2�2

�
��3n + �3p

�
:

Hence, we guess the general form of
R 0
�1 xn exp(cx)�x dx is given by (�1)n (n�1)!

cn and we proof it in

the following lemma.

Lemma B.7.1 Z 0

�1
xn
exp (cx)

�x dx = (�1)n (n� 1)!
cn

:

Proof. For k = n+ 1;Z 0

�1
xn+1

exp (cx)

�x dx = �1
c

Z 0

�1
xnd exp (cx) = �1

c
[xn exp (cx)]

0
�1 +

1

c

Z 0

�1
exp (cx) dxn

=
n

c

Z 0

�1
xn�1 exp (cx) dx = (�1)n+1 n!

cn+1
:

�

Similarly, from the calculation above, we guess the general form of
R1
0
xn exp(�cx)x dx is given

by (n�1)!
cn and we proof it in the following lemma.

Lemma B.7.2 Z 1

0

xn
exp (�cx)

x
dx =

(n� 1)!
cn

:

Proof. For k = n+ 1;Z 1

0

xn+1
exp (�cx)

x
dx = �1

c

Z 1

0

xnd exp (�cx) = �1
c
[xn exp (�cx)]10 +

1

c

Z 1

0

exp (�cx) dxn

=
n

c

Z 1

0

xn�1 exp (�cx) dx = n!

cn+1
:

Finally, we have the general form of
R1
�1 xn� (dx), given in the following lemma. �

Lemma B.7.3 Z 1

�1
xn� (dx) = (n� 1)!�n�1

�
(�1)n �nn + �np

�
:
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Proof.

Z 1

�1
xn� (dx) =

�2n
�n

Z 0

�1
xn
exp

�
�n
�n
x
�

�x dx+
�2p
�p

Z 1

0

xn
exp

�
��p
�p
x
�

x
dx

=
�2n
�n
(�1)n (n� 1)!�

n
n

�nn
+
�2p
�p
(n� 1)!

�np
�np

= (n� 1)!
"
(�1)n �

n�1
n

�n�2n

+
�n�1p

�n�2p

#
= (n� 1)!�n�1

�
(�1)n �nn + �np

�
:

�

B.8 Taylor expansion of exp (x)

By direct calculation, exp (�x) = 1:001: Approximation results is given in Table B.8.1. The

second column gives the p-th derivative of exp (�x), Di exp (x) ; and the third column gives the

approximation given by Taylor expansion using terms up to i = p :
Pp

i=0
Di exp(x)

i! (�x)
i
:

Table B.8.1: Approximation of exp (�x) using Taylor expansions.



Appendix C

Part III

C.1 Skewness and kurtosis trades

Figure C.1.1: Skewness trades, where f� is the option implied density and g� is the history

implied density.
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Figure C.1.2: Kurtosis trades, where f� is the option implied density and g� is the history

implied density.

Skewness Trade (S1) skew(f�) > skew(g�) Sell OTM put and buy OTM call

(S2) skew(f�) < skew(g�) Buy OTM put and sell OTM call

Kurtosis Trade (K1) kurt(f�) > kurt(g�) Sell FOTM, ATM and buy NOTM options

(K2) kurt(f�) < kurt(g�) Buy FOTM, ATM and sell NOTM options

Table C.1.1: Strategies for skewness and kurtosis trades, where OTM, FOTM, NOTM and

ATM stand for out-of-money, far-out-of-money, near-out-of-money and at-the-money options, f�is

the option implied density and g� is the history implied density.

Figure C.1.3: Payo¤ of S1 trade.
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Figure C.1.4: Payo¤ of K1 trade.

C.2 Proof of Proposition 8.2.1

By integration by parts, we have,

i)

p
�
fo (�) ; fh (�) ; EL; XL;P

�
=

Z XL

EL

(P� s)
�
fo (s)� fh (s)

�
ds

= P�G (EL; XL)�
Z XL

EL

s
�
fo (s)� fh (s)

�
ds

= P�G (EL; XL)�
Z XL

EL

sd

�Z s

EL

�
fo (u)� fh (u)

�
du

�
= P�G (EL; XL)�

�
s

�Z s

EL

�
fo (u)� fh (u)

�
du

��XL

EL

+

Z XL

EL

Z s

EL

�
fo (u)� fh (u)

�
duds

= (P�XL)�G (EL; XL) +

Z XL

EL

�G (EL; s) ds:
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ii)

p
�
fh (�) ; fo (�) ; XL;P;P

�
=

Z P

XL

(P� s)
�
fh (s)� fo (s)

�
ds

= �P�G (XL;P)�
Z P

XL

s
�
fh (s)� fo (s)

�
ds

= �P�G (XL;P)�
Z P

XL

sd

�Z s

XL

�
fh (s)� fo (s)

�
du

�
= �P�G (XL;P)�

�
s

�Z s

XL

�
fh (s)� fo (s)

�
du

��P
XL

+

Z P

XL

Z s

XL

�
fh (s)� fo (s)

�
duds

= �P�G (XL;P)� [�P�G (XL;P)]�
Z P

XL

�G (XL; s) ds

= �
Z P

XL

�G (XL; s) ds:

iii)

c
�
fh (�) ; fo (�) ;C; XR;C

�
=

Z XR

C

(s� C)
�
fh (s)� fo (s)

�
ds

=

Z XR

C

s
�
fh (s)� fo (s)

�
ds+C�G (C; XR)

= �
Z XR

C

sd

�Z s

C

�
fo (u)� fh (u)

�
du

�
ds

+C�G (C; XR)

= �
�
s

Z s

C

�
fo (u)� fh (u)

�
du

�XR

C

+

Z XR

C

Z s

C

�
fo (u)� fh (u)

�
duds+C�G (C; XR)

= �XR�G (C; XR) +

Z XR

C

�G (C; s) ds+C�G (C; XR)

= � (XR � C)�G (C; XR) +

Z XR

C

�G (C; s) ds:
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iv)

c
�
fh (�) ; fo (�) ; XR;1;C

�
=

Z ER

XR

(s� C)
�
fo (s)� fh (s)

�
ds

=

Z ER

XR

s
�
fo (s)� fh (s)

�
ds� C�G (XR; ER)

=

Z ER
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sd

�Z s
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�
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�
du

�
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=
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s

Z s
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�
fo (u)� fh (u)

�
du

�ER
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�
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Z s
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�
fo (u)� fh (u)

�
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= ER�G (XR; ER)�
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�G (XR; s) ds

�C�G (XR; ER)

= (ER � C)�G (XR; ER)�
Z ER

XR

�G (XR; s) ds:

C.3 Risk-return analysis across di¤erent market conditions

Figure C.3.1: The colour-coded version of Figure 8.7.1.1, illustrating the e¤ects of varying RL.
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Figure C.3.2: The colour-coded version of Figure 8.7.1.1, illustrating the e¤ects of varying RR.

Figure C.3.3: The colour-coded version of Figure 8.7.2.2, illustrating the e¤ects of varying v.
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Figure C.3.4: The colour-coded version of Figure 8.7.2.2, illustrating the e¤ects of varying c.

Figure C.3.5: The colour-coded version of Figure 8.7.2.2, illustrating the e¤ects of varying Lmin.
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Figure C.3.6: The colour-coded version of Figure 8.7.2.2, illustrating the e¤ects of varying

Lmax.

C.4 Risk-return analysis in a falling market

Figure C.4.1: The colour-coded version of Figure 8.7.3.1, illustrating the e¤ects of varying RL.
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Figure C.4.2: The colour-coded version of Figure 8.7.3.1, illustrating the e¤ects of varying RR.

Figure C.4.3: The colour-coded version of Figure 8.7.3.2, illustrating the e¤ects of varying v:
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Figure C.4.4: The colour-coded version of Figure 8.7.3.2, illustrating the e¤ects of varying c:

Figure C.4.5: The colour-coded version of Figure 8.7.3.2, illustrating the e¤ects of varying Lmin:



Chapter C. Part III 246

Figure C.4.6: The colour-coded version of Figure 8.7.3.2, illustrating the e¤ects of varying

Lmax:

C.5 Risk-return analysis in a recovering market

Figure C.5.1: The colour-coded version of Figure 8.7.4.1, illustrating the e¤ects of varying RL:
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Figure C.5.2: The colour-coded version of Figure 8.7.4.1, illustrating the e¤ects of varying RR:

Figure C.5.3: The colour-coded version of Figure 8.7.4.2, illustrating the e¤ects of varying v:
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Figure C.5.4: The colour-coded version of Figure 8.7.4.2, illustrating the e¤ects of varying c:

Figure C.5.5: The colour-coded version of Figure 8.7.4.2, illustrating the e¤ects of varying Lmin:
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Figure C.5.6: The colour-coded version of Figure 8.7.4.2, illustrating the e¤ects of varying

Lmax:

C.6 Risk-return analysis in a rising market

Figure C.6.1: The colour-coded version of Figure 8.7.5.1, illustrating the e¤ects of varying RL:
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Figure C.6.2: The colour-coded version of Figure 8.7.5.1, illustrating the e¤ects of varying RR:

Figure C.6.3: The colour-coded version of Figure 8.7.5.2, illustrating the e¤ects of varying v:
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Figure C.6.4: The colour-coded version of Figure 8.7.5.2, illustrating the e¤ects of varying c:

Figure C.6.5: The colour-coded version of Figure 8.7.5.2, illustrating the e¤ects of varying Lmin:
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Figure C.6.6: The colour-coded version of Figure 8.7.5.2, illustrating the e¤ects of varying

Lmax:
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