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Abstract

Lévy processes are becoming increasingly important in Mathematical Finance. This thesis
aims to contribute to the development of theoretical representations of Lévy processes and
their financial applications. The first part of the thesis presents a computational explicit
formula of the chaotic representation property (CRP) for the powers of increments of a
Lévy process. The formula can be used to obtain the integrands of the CRP in terms of
the orthogonalised compensated power jump processes and the CRP in terms of Poisson
random measures.

The second part of the thesis presents hedging strategies for European and exotic
options in a Lévy market. By applying Taylor’s theorem, dynamic hedging portfolios are
constructed and in the case of European options, static hedging is also implemented. It
is shown that perfect hedging can be achieved by investing in power jump assets, moment
swaps or some traded financial derivatives depending on the same underlying asset. Note
that variance swaps are special cases of moment swaps and are traded in OTC (Over-The-
Counter) markets. We can also hedge by constructing the minimal variance portfolios
that invest in the risk-free bank account, the underlying stock and variance swaps. The
numerical algorithms and performance of the hedging strategies are presented.

The third part of the thesis contributes to the design of an option trading strategy,
where the stock price is driven by a Lévy process. The trading strategy is based on
comparing the deviations between the density implied by historical time series and that
implied by current market prices of the options. The performance of the trading strategy
under different market conditions is reported and optimal parameters are obtained using
efficient frontier analysis. The analysis compares the expected returns with the Conditional
Value at Risks (CVaRs). Simulation results show that the trading strategy has a high

earning potential.
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Introduction

This thesis contributes to the development of theoretical representations and financial
applications of Lévy processes and comprises of three main parts. The first part is
concerned with chaotic representations of a Lévy process. The second part investigates
hedging strategies for European and exotic options in a Lévy market with the use of the
representation property of Lévy processes. The third part proposes a trading (speculating)

strategy investing in European options in a Lévy market.
Part I

To price and hedge derivative securities, it is crucial to have a good model for the
evolution of the underlying asset. Despite the popularity of the Black-Scholes model,
empirical evidence suggests that it is not sufficiently flexible to describe some of the im-
portant statistical properties observed in realised market data. |Cont| (2001), Schoutens
(2003, Chapter 4) and |Cont & Tankov (2003, Chapter 1) discussed various stylised empir-
ical facts emerging from statistical analysis of price variations in various types of financial
markets. There are two main problems that give rise to the need of more general mod-
els. Firstly, abrupt downward jumps have been observed in stock price processes while
the Brownian motion, that is used in the Black-Scholes model, is a continuous process.
Barndorfl-Nielsen & Shephard| (2006)) performed hypothesis tests on exchange data under
the null of no jumps, which was found to be rejected frequently. Secondly, the log return
data series has heavy tails and is negatively skewed, which cannot be described by the
normal distribution implied by the Black-Scholes formulation. To remedy these prob-
lems, market models driven by Lévy processes, that is, processes with independent and
stationary increments, were introduced to replace the Black-Scholes model in describing
the dynamics of asset price process.

The Lévy-Khintchine formula (see equation below) states that a Lévy process
can be decomposed into three components: a deterministic drift component, a Brownian
component and a pure jump component. A Brownian motion is a special case of a Lévy
process in which the pure jump component equals zero. The pure jump component

provides more flexibility in describing the shape of the distribution of the log asset price

14



INTRODUCTION 15

processes since heavy tails and asymmetry are potential characteristics of processes with
jumps.

In this thesis, we focus on the different stochastic representations of Lévy processes.
The chaotic representation of a square integrable functional of a Lévy process is an expan-
sion via its expectation plus a sum of iterated stochastic integrals, see Solé et al. | (2006)
for a recent review of such representations. The chaotic representations are important in
mathematical finance since they provide the decomposition of a random variable adapted
to the filtration generated by the underlying Lévy process into orthogonal components.
Such representations are useful in the construction of hedging strategies of financial deriv-
atives. We discuss this in more details in Part II of this introduction. There are two
different types of chaos expansions: [Ito| (1956)) proved a Chaotic Representation Property
(CRP) for any square integrable functional of a general Lévy process. Note that the spe-
cial cases of the CRP for Brownian motion and Poisson process are in much simpler forms
and are commonly treated in the literature. The CRP is written in terms of multiple inte-
grals with respect to a two-parameter random measure associated with the Lévy process.
Nualart & Schoutens| (2000) proved the existence of a new version of the CRP, which
states that every square integrable Lévy functional can be represented as its expectation
plus an infinite sum of stochastic integrals with respect to the orthogonalised compensated
power jump processes of the underlying Lévy process. Benth et al. | (2003]) and [Solé et al.

(2006) derived the relationships between these two representations. However, these rep-
resentations are computationally intractable. The first part of the thesis addresses this
issue. For the powers of increments of a Lévy process, we derive computationally explicit
formulae for the integrands of these two chaotic expansions.

Power jump processes are important in mathematical finance. The jumps can be
understood both in terms of a Poisson random measure, or equivalently, by using the
Power jump processes. Note that |[Nualart & Schoutens (2000, Proposition 2) proved that
all square integrable random variables, adapted to the filtration generated by the Lévy
process denoted by X = {X;,¢t > 0}, can be represented as a linear combination of powers
of increments of X, see Proposition [3.0.1] below. In fact, for any square integrable random
variable, F', with derivatives of all orders, we can apply Taylor’s theorem to express F' in
terms of a polynomial of powers of increments of X. Thus, the chaotic representations of
certain financial derivatives can be found using this method, which is discussed further in
Section (.11

The derivation of an explicit formula for the chaotic representation has been the focus
of considerable study, see for example Nualart & Schoutens| (2001), Léon et al. | (2002),
Lokka (2004) and |[Eddahbi et al. | (2005). All the explicit formulae for general Lévy

functionals derived in these papers used Malliavin-type derivatives to derive explicit rep-
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resentations of stochastic processes for applications in finance. Malliavin Calculus was
originally developed as a new probabilistic technique to find smooth densities for solutions
of stochastic differential equations. Note that the use of Malliavin Calculus in finance is
mainly in the computation of the Greeks of options. By expressing the Greeks in terms of
some stochastic integrals using Malliavin Calculus, their values can then be approximated
quickly and accurately, see [Davis & Johansson (2006) and [Huehne (2005)). Accordingly,
the explicit formula derived using Malliavin Calculus is generally not designed to be used
to find the explicit representation of a contingent claim in terms of the integrals with
respect to the power jump processes. The derivative operator D is, in all of these cases,
defined by its action on the chaos expansions. In other words, the explicit chaos expansion
must in fact be known before D can be applied to find the explicit form of the chaotic
representation, thus yielding a circular specification. We will discuss this in further details
in Sections and As pointed out by [Solé et al. | (2007), ‘in order for the Malliavin
calculus to be genuinely useful, there is the need for practical rules to compute the deriv-
atives.” In the case of Brownian motion, Nualart| (1995]) proved a chain rule through the
identification of the Malliavin derivative with a weak derivative on the canonical space.
For Poisson process, Nualart & Vives| (1990) proved that the Malliavin derivative coincides
with a difference operator on the canonical space. The derivatives with respect to the
compensated power jump processes introduced in |Léon et al. | (2002) were only alternative
definitions for the derivative and useful formulae were only developed for a jump-diffusion
process with only a finite number of jump sizes. As pointed out by [Davis & Johansson
(2006), a drawback of this approach used in |Léon et al. | (2002) is that there is no general
chain rule. In this thesis, we take a different approach by deriving an explicit formula
for the power of increment of a Lévy process directly using It6 formula. For any smooth
square integral random variable, we apply Taylor’s theorem to express it in terms of those
power of increments and hence our explicit formulae can be applied.

Apart from the Malliavin approach, |Jamshidian| (2005|) extended the CRP in Nualart &
Schoutens| (2000) to a large class of semimartingales and derived the explicit representation
of the power of a semimartingale with respect to the corresponding non-compensated
power jump processes. In this thesis, we derived an explicit representation of the power
of a Lévy process with respect to the corresponding orthogonalised compensated power
jump processes. Note that Lévy processes are included in the class of semimartingales,
see Kannan & Lakshmikantham| (2001, Corollary 2.3.21, p.92). The explicit formula
derived in this thesis is designed for those stochastic processes with compensators equal
to a constant times ¢ only (which is satisfied by all Lévy processes). This formula can
be easily extended to semimartingales when the form of the compensator is known. Our

result is therefore complementary to Jamshidian’s formula, since our explicit formula gives
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the CRP with respect to the orthogonalised processes, as defined by [Nualart & Schoutens
(2000). Note that it is a non-trivial extension from the representation in terms of non-
compensated power jump processes to that in terms of orthogonalised compensated power
jump processes. In other words, Jamshidian’s formula can be deduced from ours (in the
Lévy case), but ours cannot be deduced from Jamshidian’s by a non-trivial calculation.
This is further discussed in Remark [3.2.1]

It is important to be able to express the chaos expansion with respect to orthogo-
nalised compensated power jump processes since it facilitates the applications of the CRP.
An immediate result of the CRP is the predictable representation property (PRP), which
states that every square integrable functional of a Lévy process can be expressed as an
expansion via its expectation plus a stochastic integral with predictable integrand. In
practical applications, it is often convenient to truncate the representation given by the
PRP. The truncated representation of a stochastic process yields a practically imple-
mentable approximation to the stochastic process. This approximation would be used for
simulating the process, or for a finite number of traded higher order options, providing
hedging formulae as will be discussed in Part II. The advantage of expressing the sum in
terms of stochastic integrals with respect to the orthogonalised processes is that the error

terms omitted will be uncorrelated with the terms remaining in the approximation.
Part 11

The second part of the thesis presents hedging strategies for European and exotic
options in a Lévy market. By applying Taylor’s theorem, we construct dynamic hedging
portfolios under different market assumptions, such as the existence of power jump assets
or moment swaps. In the case of European options or baskets of European options, static
hedging is also implemented. It is shown that perfect hedging can be achieved.

It is well known, see Schoutens (2000, p.71), that Brownian motion has an elegant
version of the CRP: every square integrable random variable adapted to the filtration gen-
erated by a Brownian motion can be represented as a sum of its mean and an infinite sum
of iterated stochastic integrals with respect to the Brownian motion, with deterministic in-
tegrands. This is distinct from the CRP for Lévy processes, which are in terms of power
jump processes or Poisson random measures rather than the Lévy process itself. The
PRP for Brownian motion states that every square integrable random variable adapted to
the filtration generated by a Brownian motion can be represented in the same form, but
with a single stochastic integral, where the integrand is a predictable process. The PRP
implies the completeness of the Black-Scholes option pricing model. The aforementioned
predictable process gives the admissible self-financing strategy of replicating a contingent
claim whose price only depends on the time to maturity and the current stock price, which

can be hedged by investing in a risk-free bank account and the underlying asset.
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Unfortunately, this kind of PRP, where the stochastic integral is with respect to the
underlying process only, is an exceptional property, which is only possessed by a few mar-
tingales, including the Brownian motion, the compensated Poisson process, and the Azéma
martingale (see [Schoutens| (2003) and Dritschel & Protter| (1999)). When the underlying
asset is driven by a Lévy process, perfect hedging using only a risk-free bank account and
the underlying asset is not in general possible. The market is therefore incomplete. How-
ever, even in this case, further developments are possible. As mentioned in Part I, Nualart
& Schoutens| (2000) proved the existence of a new version of the CRP for Lévy processes
which satisfy some exponential moment conditions. This new version states that every
square integrable random variable adapted to the filtration generated by a Lévy process
can be represented as an infinite sum of iterated stochastic integrals with respect to the
orthogonalised compensated power jump processes of the underlying Lévy process. The
market can thus be completed by allowing trades in these processes while risks due to
jumps and fat tails are considered. In light of the new version of the PRP, |Corcuera et al.

(2005) suggested that the market should be enlarged with power jump assets so that per-

fect hedging could still be implemented. |Corcuera et al. | (2006]) used this completeness to
solve the portfolio optimisation problem using the martingale method. Another form of
commonly traded financial derivative is the variance swap which depends functionally on
the volatility of the underlying asset. Since variance swaps are already traded commonly
in the over-the-counter (OTC) markets, [Schoutens (2005) suggested trading in moment
swaps, which are a generalisation of variance swaps. Based on the CRP derived by |[td
(1956)), Benth et al. | (2003) derived a minimal variance portfolio for hedging contingent
claims in a Lévy market.

Inspired by these papers, we derive practical and implementable hedging strategies
based on the PRP derived from Taylor approximations to the option pricing formulae. We
apply Taylor’s theorem directly to the option pricing formulae and derive perfect hedging
strategies by investing in power jump assets, moment swaps or some traded derivatives
depending on the same underlying asset. The hedging of the higher moments terms
in the Taylor expansion of a contingent claim using other contingent claims in a Lévy
market is a technique introduced by this thesis. When these financial derivatives are not
available, we demonstrate how to use the minimal variance portfolios derived by [Benth
et al. | (2003)) to hedge the higher order terms in the Taylor expansion. While we apply
Taylor expansions to decompose the pricing formula into an infinite sum of higher moment
terms, (Corcuera et al. | (2005) applied the Itd formula to obtain the PRP of a contingent
claim. Note that the Itd formula is derived as a result of an elementary Taylor expansion,
see [Kijima/ (2002). In practice, when implementing a hedging strategy numerically, we

have to discretise the time variable. Hence, it is more natural to work directly from
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Taylor’s theorem as this discretisation can be acknowledged explicitly. In fact, the delta
and gamma hedges commonly used by traders in the market, given in Section [6.2.4] are
derived using a Taylor expansion. We construct static and dynamic hedging strategies for
European and exotic options in a Lévy market. Although static hedging is only applied
to European options, exotic options can be decomposed into a basket of European options
so that static hedging can be achieved, in this case see for example Derman et al. | (1995).
It is practically important to be able to statically hedge since static hedging has several
advantages over dynamic hedging. Static hedging is less sensitive to the assumption of
zero transaction costs (both commissions and the cost of paying individuals to monitor the
positions). Moreover, dynamic hedging tends to fail when liquidity dries up or when the
market makes large moves, but especially in these situations effective hedging is needed.
We discuss how hedging can be implemented by applying Taylor’s theorem to a pricing
formula. We investigate the approximation of the derivatives of the pricing formula and
present the numerical procedures used to construct the hedging strategies. The Perfor-
mance of the hedging is assessed and the difficulties encountered are discussed. Thus,
this part of the thesis constitutes a practical development for the hedging of contingent

claims, where the underlying asset is driven by a Lévy process.
Part III

In the third part of the thesis, we construct an option trading strategy in a Lévy
market, where the price processes of the underlying assets are driven by Lévy processes.
We compare the risk-neutral density of the log returns of the underlying at maturity
implied by the historical data series of the underlying to that implied by the current
option prices in the market. This comparison gives a strategy for speculating options in a
Lévy market. This represents an important practical advance in utilizing the Lévy process
model. According to the European option pricing formula, the price P (S, K,r, T —t) is
given by: -

P (S, K,rT — 1) = e~ / H (2, K) [* (2, 5)) dz, (1)
0

where H is the payoff function of the option, S; is the current price of the underlying, K is
the strike price of the option, r is the continuously compounded risk-free interest rate, T'—t
is the time to maturity, = is the price of the underlying at maturity and f* (x,S;) is the
risk-neutral density of the underlying at maturity, depending on the current option price,
S;. This pricing formula states that the price of an European option today is given by
the discounted expected payoff with respect to a risk-neutral measure. |Ait-Sahalia et al.

(2001)), |Blaskowitz| (2001)), Blaskowitz & Schmidt| (2002) and Blaskowitz et al. | (2004)
considered the profitability of trading on the deviations of the risk-neutral density of the

underlying inferred from the historical time series and that implied by the option prices
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under the Black-Scholes model. There are well-known indications, such as the volatility
smile, suggesting that the Black-Scholes model is not sufficiently flexible to capture the
statistical behaviour of the underlying. More importantly, it is assumed in the Black-
Scholes model that, the market is complete and there is a unique equivalent martingale
measure (EMM). Hence, there should not be any deviations of the two density functions if
the model can accurately reflect the market prices of the options. In an incomplete market,
there are infinitely many EMMs, which give different option prices. This is because an
EMM gives an arbitrage-free price of an option but not necessarily the market price of the
option. In other words, the market chooses an EMM and the market prices of options are
obtained under such a measure. Therefore, if we choose a change of measure method to
obtain a risk-neutral density from the historical data of the underlying, deviations between
the two densities are expected since they are obtained from two different EMMs. Under
an incomplete model, choosing an EMM, rather than using the market implied one, is
essentially specifying the investors’ risk preference. Hence, objective comparison (that
is, independent of investors’ preference) of the two risk-neutral densities inferred from
the historical time series of the underlying and implied from the option prices, as in the
papers cited above, is indeed not possible in an incomplete (realistic) market. To allow for
realistic comparison of the two risk-neutral densities, we must adopt a model which would
lead to the existence of non-unique EMMs. Lévy model is a straight forward extension
to the Black-Scholes model since the extra parameters handle the skewness and kurtosis
explicitly.

We fit the two sets of data, that is, the historical series of the underlying and the
current option prices, to a market model to obtain two sets of parameters. We then
simulate the underlying from today to maturity with these two sets of parameters to see
which options are overpriced. We sell the overpriced options and also buy far out of
money options to prevent infinite loss and hold them until maturity, which is discussed
in further detail in Section We use the Variance Gamma (VG) model, introduced
by Madan et al. | (1998)), to describe the dynamics of the underlying price process. A
VG process is a Brownian motion with a stochastic time change determined by a Gamma
process. Note that other stochastic models can be used, for example, the stochastic
volatility model using a VG process (VGSAM), introduced by |Carr et al. | (2003). The
VG model is used because of its simplicity and ability to handle skewness and kurtosis,
which correspond to asymmetry and fat tails of the distribution function, respectively.
Since in a Lévy market model, the market is incomplete and there are infinitely many
EMMs, we have to choose one to obtain the risk-neutral density implied by the historical
data of the underlying. For simplicity, we use the mean-correcting martingale measure,
see Schoutens| (2003, Section 6.2.2). Miyahara (2005) discussed the different properties
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of a few common kinds of equivalent martingale measures (EMMSs) for geometric Lévy
processes. The choice of the EMM in this thesis is left to the preference of the investor.
The thesis instead will focus on constructing the option trading strategy after an EMM is
chosen and a stochastic model is fitted to market data. Therefore, the most appropriate
choices of the EMM and the stochastic model for the underlying price process are out of
the scope of this discussion.

We choose the mean-correcting martingale measure to obtain the risk-neutral density
of the historical time series and compare it to the risk-neutral density implied by the
option prices, hence identifying overpriced options today under our subjective belief that
the mean-correcting martingale measure gives ‘more accurate’ prices. The performance
of the trading strategy under different market conditions are reported and it suggests that
the trading strategy has a high earning potential.

The trading strategy presented is a speculative strategy since we believe that the prices
of the underlying should behave according to its historical performance and investors in
the market are too risk averse. Although it has a high earning potential, occasionally it
would lead to losses. To make the strategy more attractive to risk averse investors, we
can combine the trading strategy with risk-free investment to guarantee the capital, which
is known as portfolio insurances in finance, see Leland| (1979). We discuss this in further
details in Section

These results presented in this thesis thus comprise both theoretical and practical

developments for the usage of Lévy processes in practice.



Chapter 1
Background and Notation

In the introduction, we have discussed the motivation behind the use of market models
driven by Lévy processes. In this chapter, we give fundamental results about probabil-
ity theory, Lévy processes and martingales. Bertoin| (1996), Sato (1999) and |Applebaum
(2004) provide comprehensive details of Lévy processes and stochastic calculus. [Schoutens
(2003) and |Cont & Tankov| (2003) provide recent overviews of financial applications of Lévy

processes.

1.1 Martingales and random measures

In this section, we give the definitions of martingales and random measures, which are
important components of stochastic calculus.
A stochastic process is a family {X; : t > 0} of random variables on R? with parameter
t € [0,00) defined on a common probability space. Let {X;} and {Y;} be two stochastic
processes. If
PX;=Y]=1 fortel0,00),

then {Y;} is called a modification of {X;}. If, for every t > 0 and € > 0, the stochastic
process {X;} on R? satisfies

lim P[|X, — X,| > ] = 0,
S—

it is said to be stochastically continuous or continuous in probability. Suppose F is a
o-algebra of subsets of a given set 2. A filtration is a family {F;,t > 0} of sub o-algebra
of F such that

Fs CF forall s <t.

A probability space (2, F, P) is said to be filtered if it is equipped with such a family

22
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(Ft,t > 0). Suppose X = {X;,t > 0} is a stochastic process defined on a filtered prob-
ability space (2, F,P). It is said to be adapted to the filtration (or Fi-adapted) if X;
is Fi;-measurable for each ¢ > 0. Note that any process {X;} is adapted to its own
filtration FX = o {X;:0 < s < t}, which is known as the natural filtration. We have
E[X|Fs] = X5 as. if {X;} is adapted, that is, Fs contains all the information required
to predict the behaviour of {X; : ¢ > 0} up to and including time s. A stopping time is a
random variable T":  — [0, co] such that the event (T < t) € F; for each ¢t > 0.

Definition 1.1.1 (Martingales) A martingale is an adapted process X defined on a
filtered probability space satisfying E [|X¢|] < oo for allt > 0 and E [X{|Fs] = Xs a.s. for
all0 < s <t <oo. The mappingt — E [Xy] is constant if X is a martingale. Let X be d-
dimensional and its i-th element at time t be X;;. A submartingale is an adapted process
X satisfying E [| X¢|] < oo for allt > 0 and E[X;¢|Fs] > Xis a.s. for all0 <s <t < oo
and 1 <i<d. X is a supermartingale if —X is a submartingale. Let M = {M;,t > 0}
be an adapted process. If there exists a sequence of stopping times 71 < -+ < T, — 00
a.s. such that each of the processes {Mmin(tﬁn),t > 0} is a martingale, then M is a local

martingale.

Note that a driftless process may not be a martingale, but if E [X;] = E[X] for any
stopping time 7 then X is a martingale. A familiar example of a martingale is the Wiener
process. If {S;,0 <t < T} is a martingale then for any simple predictable processﬂ ¢, the
stochastic integral fg ¢,dSs is also a martingale.

Suppose Z is some index set and X = {Xj,7 € Z} is a family of random variables. X
is said to be uniformly integrable if

Jim sup B [|Xi[ 1qx,5m] = 0.
A process X is said to be in the Dirichlet class or class D if {X,,7 € 7} is uniformly
integrable, where 7 is the family of all finite stopping times on our filtered probability
space. A process X is said to be integrable if E (| X¢|) < oo for all £ > 0. A process X said
to be predictable if the mapping X : RT x Q — R given by X (t,w) = X; (w) is measurable
with respect to the smallest o-algebra generated by all adapted left-continuous mappings
from RT x Q — R.

Definition 1.1.2 (Random measure) Let (S,.A) be a measurable space and (2, F, P)
be a probability space. A collection of random variables {M (B),B € A} is said to be a

LA stochastic process (¢,)tefo,1) is called a simple predictable process if it can be represented as ¢, =
doli—o + Z?:o ¢i1]TiaTi+1](t)7 where To =0<Th <Tp < --- < T, < Tpy1 =T are nonanticpating random
times and each ¢, is bounded random variable whose value is revealed at T; (it is Fr,-measurable).
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random measure, denoted by M, on (S, A) if the following are satisfied:
(1) M (D) = 0.
(2) For any sequence {Ay,,n € N} of mutually disjoint sets in A,

M <U An> = ZM(An) a.s.
neN neN

(o-additivity).

(8) Given any disjoint family (B, ..., By) in A, the random variables M (By) , ..., M (By)

are independent.

Next we give the definition of variation of a mapping. Before doing so, we first recall
the concept of a compact space. A topological space S is compact if, for every collection
{Ui};c; of open sets in S whose union is S, there exists a finite subcollection {Uij };:1

whose union is also S. A compact subset of R% is a bounded closed subset.

Definition 1.1.3 (Variation) Suppose P = {a =1t; <to < --- <tp < tpt1 = b} is a par-
tition of the interval [a,b] in R and let its mesh (the width of the largest sub-interval) be
§ = maxi<i<y [tir1 — ti|. The variation varp (g) of a cadlag mapping g : [a,b] — RY over

the partition P is given by
n
varp (g) = Y g (tix1) — g (t:)].
i=1

A cdadlag mapping g is said to have finite or bounded wvariation on [a,b] if V (g) =
supp varp (g) < oo. g is said to have finite variation if it is defined on the whole of
R (or RT) and has a finite or bounded variation on each compact interval. Every non-
decreasing g is of finite variation. Conversely, g can always be written as the difference

of two non-decreasing functions if it is of finite variation, since

Vig+g V(g —yg
2 2

A stochastic process {Xi,t > 0} is of finite variation if for almost all w € Q, the paths
{Xi (w),t >0} are of finite variation.

In the following, we give a brief introduction of Lévy processes, see Sato (1999)) and

Applebaum| (2004) for a detailed discussion.
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Definition 1.1.4 (Lévy process) A Lévy process, {X;:t > 0}, is a stochastic process
on R? satisfying:

(1) The random variables Xy, Xty — Xtg, Xty — Xtyy-ory Xt,, — Xt,,, are independent for
any choice of n > 1 and 0 <tg <ty < -+ < tp.

(2) Xo =0 a.s.

(8) The distribution of Xsit — Xs is independent of s.

(4) The process is stochastically continuous.

(5) There exists Qo € F with P[Qy] = 1 such that, for every w € Qo, X; (w) is right-
continuous in t > 0 with left limits in t > 0, that is, {X;} is cddldg.

If only (1)-(4) are satisfied, {X;} is called a Lévy process in law. Note that every Lévy

process in law has a cddldg modification that is a Lévy process.

The characteristic function of a random variable uniquely determines its distribution.
The famous Lévy-Khintchine formula, given in Theorem [2.1.1], gives the decomposition of
the characteristic function of a Lévy process. The characteristic function of a probability

measure p on R? is denoted by ¢,, (z) and defined by
¢, (2) = / exp (i(z,z)) p(dz), zeRY,
Ra

where (z,z) = 3¢

j—172j%;. The characteristic function ¢x (z) of the distribution Px of a

random variable X on R? is given by
¢x (2) = /Rd exp (1 (z,z)) Px (dz) = E[exp (i(z,z))] . (1.1)

Let 1 be a probability measure on R%. Let M; (Rd) denote the set of all Borel
probability measures on R?.  We define the convolution of two probability measures as

follows:

(512 () = [ (4= 2) o o)

for each pu; € My (Rd), 1 = 1,2, and each A € B (Rd), where we note that A — z =
{y —z,y € A}. We define p” = p*---xp (n times) and say that p has a convolution nth
root, if there exists a measure p/" € M (Rd) for which (,u,l/ ")n = p. If, for any positive
integer n, there is a probability measure u, on R? such that u = (u,,)", then p is said to
be infinitely divisible. The next theorem shows that infinitely divisibility is closely related

to Lévy processes.

Theorem 1.1.5 Suppose {X;:t >0} is a Lévy process in law on R Then, for any
t > 0, Px, is infinitely divisible and if Px, = p, we have Px, = u'. Conversely, let
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© be an infinitely divisible distribution on R?.  Then there exists a Lévy process in law
{Xt:t >0} such that Px, = p.

Note that a measure p on R? is infinitely divisible if and only if for each n € N,
there exists p'/" such that ¢, (z) = |:¢“1/n (z)}n for each z € R?. Some famous exam-
ples of Lévy process include Brownian motions (see Definition , Poisson processes,
compound Poisson processes, Gamma processes, Inverse Gaussian processes, Generalized
Inverse Gaussian processes and Variance Gamma processes (see Section [6.4.1)).

In the following, we give the definition of a Poisson random measure of a Lévy process.

Definition 1.1.6 (Poisson Random Measure) Let X = {X;,0<t¢t<T} be a Lévy
process. Its Poisson random measure counts the jumps up to time t that are in a given
Borel set A :

N (t,A)=#{0<s<t;AX; € A}.

Note that IV is a function of three variables: time ¢, the Borel set A and the sample
point w. Fixing A, N (A) is a Poisson random variable with intensity v (A), where v is
the Lévy measure of X. Therefore, E [N (A)] = v (A).

In the following, we give the definition of a semimartingale, which is an important
generalisation of Lévy process. In stochastic calculus (see Section , semimartingales
are important in that they are stable under stochastic integration while Lévy processes
are not. In other words, a stochastic integral with respect to a semimartingale is also
a semimartingale while a stochastic integral with respect to a Lévy process may not be
a Lévy process anymore, but will be a semimartingale. A semimartingale is also stable

under other operations such as change of measure, change of filtration and ‘time change’.

Definition 1.1.7 (Semimartingale) A process X = {X;,t > 0} is called a semimartin-
gale if it is an adapted process such that, for each t > 0,

Xt = Xo+ M; + Cy.

where M = {My,t > 0} is a local martingale and C = {Cy,t > 0} is an adapted process of

finite variation.

Note that every finite variation process, for example a Poisson process, is a semimartin-
gale. Moreover, every square integrable martingale, for example a Wiener process, is a
semimartingale. Any linear combination of a finite number of semimartingales is a semi-
martingale, for example, all Lévy processes are semimartingales because a Lévy process

can be split into a sum of a square integrable martingale and a finite variation process
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using the Lévy-1t6 decomposition, given in Theorem Every (local) martingale is a
semimartingale. A deterministic process is a semimartingale if and only if it is of finite
variation so all infinite variation deterministic processes are examples of processes that are

not semimartingales.

1.2 Important concepts in mathematical finance

In this section, we recall some of the important concepts in mathematical finance. We re-
call the definitions of a self-financing portfolio, market completeness, equivalent martingale
measure and the fundamental theorems of asset pricing.

We start with the definition of a self-financing portfolio. Suppose there are K assets
in the market, AN, A@ AWK Let S/ (w) be the price of asset A at time ¢ under
market scenario w. Assume we hold a portfolio consisting of shares (possibly held short)
of each of the traded assets AY) and we may adjust our portfolio as time progresses. Let
Gf(j) (w) be the amount of asset AU) held in a dynamically rebalanced portfolio during
the t-th trading period (that is, during the period following completion of trading at
time ¢t until the beginning of trading at time ¢ + 1) under scenario w, then the sequence

{924(”,0 <t< T} must be adapted to the natural filtration. Denote the total value of

the portfolio @ after rebalancing at time ¢ in scenario w by V}? (w) and we have

(J) (1)
ZHA w) SA (w).

Note that Vte may not equal VﬁH, as the share prices of the underlying assets AU will
generally change between times ¢ and ¢ + 1. Assuming there is no transaction cost, if we
do not invest (or withdraw) additional resources in our portfolio at time ¢ + 1, the total

value of the portfolio just before rebalancing at time ¢ + 1 must be the same as its value

Z 07 (w St+1 Z 9t+1 St+1 (W),

just after, that is,

which is equal to

Vi @) =V (@) =) 67 (S (@) = 57 (@) - (1.2)

A

A dynamically rebalanced portfolio satisfying (1.2)) is called self-financing since it requires
no investments or withdrawals except at the initial time ¢.

In the introduction, we mentioned that the market under the Black-Scholes model is
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complete while the Lévy market is incomplete. Here we give a proper definition of market
completeness. Define a contingent claim, with maturity date T, to be a non-negative

Fr-measurable random variable.

Definition 1.2.1 (Market Completeness) A market model is said to be complete if
every contingent claim can be replicated by a dynamic trading strategy: For any contingent
claim H, adapted to the natural filtration generated by the price of the underlying process
{S,t € [0, T}, there exists a self-financing strategy (¢?, ¢;) such that

T T
H= Vo+/ qﬁtdS’t—i—/ ¢0dB;, P-a.s. (1.3)
0 0
where Vy is the initial investment and {By,t € [0,T]} is a risk-free bank account.

In the market driven by Lévy processes, contingent claims do not in general possess
the representation in and hence the market is incomplete. Later we will give the
relationship between market completeness and the uniqueness of equivalent martingale
measure. We first give the definition of an equivalent martingale measure. Suppose
P represents the probability of occurrence of scenarios in the market and let r be the

continuously compounded risk-free interest rate.

Definition 1.2.2 (Equivalent Martingale Measure) Let P,Q be two probability mea-
sures defined on (2, Fr). @ is called an equivalent martingale measure of P, denoted
Q~ P, if

(1) Q is equivalent to P, that is, they have the same null sets (events which are impossible
under P are also impossible under QQ and vice versa).

(2) the discounted stock price process S = {S’t =exp (—rt) S, t > 0} is a martingale under
Q.

We then introduce the risk-neutral pricing formula and risk-neutral measure. Suppose
@ is an equivalent martingale measure to P and II; (H) be the value of a contingent claim

with payoff H and maturity 7" at time t. The risk-neutral pricing formula is given by
I, (H) = e "TYEC[H|F], (1.4)

that is, the value of a random payoff is given by its discounted expectation under ), which

is called a risk-neutral measure.

Lemma 1.2.3 Let Q be a risk-neutral measure and let {X;} be the value of a portfolio.

Under Q, the discounted portfolio value e~ X; is a martingale.
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Next we give the definition of an arbitrage.

Definition 1.2.4 (Arbitrage) An arbitrage is a portfolio value process {X;} satisfying
Xo =0 and also satisfying for some time T > 0,

P{Xp>0}=1, P{Xr>0}>0. (1.5)

An arbitrage is a way of trading such that one starts with zero capital and at some
time later 1" sure not to lose any money and also has a positive probability of making

money. We can summarize in the following theorem in the discrete case:

Theorem 1.2.5 (Fundamental Theorem of Asset Pricing in discrete time) The
market model defined by (Q, F,{F:},P) and asset prices {S,t € [0, T} is arbitrage-free
if and only if there exists a probability measure QQ ~ P such that the discounted assets
{e_’”tSt,t € [O,T]} are martingales with respect to Q.

The next theorem gives the relationship between market completeness and the unique-
ness of equivalent martingale measure in the discrete case. The next theorem gives the
relationship between market completeness and the uniqueness of equivalent martingale

measure.

Theorem 1.2.6 (Second Fundamental Theorem of Asset Pricing) A market
defined by the assets (Bt,Stl, ...,Sf)te[o 7]’

is complete if and only if there is a unique martingale measure Q) equivalent to P.

described as stochastic processes on (2, F, P),

In continuous time the situation is far more complicated and this has been the fo-
cus of considerable study, see Bingham & Kiesell (2001). We need the following de-
finitions.  Let S (t) = (So (t),S1(t),...,Sq(t)) for a vector of prices of d + 1 assets
at time t. Let ¢ be a trading strategy, which is a R%! vector stochastic process
v = (p (if))tT:1 = (po (t,w), ¢ (t,w), ..., 0q (t,w))tT:1 which is predictable, that is, each

@; (t) is F;_1-measurable.

Definition 1.2.7 The wealth process of the trading strategy o s defined to be the scalar
product

v@(t)zw(t)-S(t):Z%(t)si(t) fort >0 and V, (0) = ¢ (1) - 5(0).

Definition 1.2.8 A simple predictable trading strategy is §-admissible if the relative wealth
process Vi, (t) > —0 for every t € [0,T7].
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Definition 1.2.9 A price process S satisfies NFLVR (no free lunch with vanishing risk)
if for any sequence (p,,) of simple trading strategies such that o,, is 0,-admissible and the

sequence 0, tends to zero, we have

Vo, (I') =0 in probability as n — oo.

In continuous time, the fundamental theorem of asset pricing is stated as follow.

Theorem 1.2.10 (Fundamtal Theorem of Asset Pricing in continuous time) In
a financial market model with bounded prices, there exists an equivalent martingale mea-
sure if and only if the condition NFLVR holds.

The theorem is proved in Delbaen & Schachermayer| (1994). We refer the reader to
the academic literature on this topic, see Delbaen & Schachermayer| (1998)), |Cherny &
Shiryaev] (2002), [Harrison & Pliskal (1981)), Harrison & Kreps (1979) and Schachermayer
(2002). A market driven by Lévy processes is incomplete and there are infinitely many

equivalent martingale measures.

1.3 Brownian motion and the Black-Scholes model

In this section, we recall the definition of a Brownian motion and the famous Black-
Scholes model in finance. Please refer to [Schoutens (2003)) and |Cont & Tankov] (2003)) for

a detailed discussion.

Definition 1.3.1 (Brownian motion) A standard Brownian motion X = {X;,t > 0}
is a stochastic process on some probability space (2, F, P) such that

(1) Xo =0 a.s.,

(2) X has independent increments,

(8) X has stationary increments,

(4) Xits — X is normally distributed with mean 0 and variance s > 0 : Xyyg — Xy ~
N (0,s).

We denote a standard Brownian motion by W = {W,;,¢ > 0}. Brownian motion is

also an example of martingale, defined in Definition [I.1.1}
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Proposition 1.3.2 (Martingale property) Let F = FV = {F;,0 <t < T} be the nat-
ural filtration of W. For all 0 < s <'t,

E[Wi|F)] = E[Wi|W,] = W,
Note that from this property, we have E [W;W,] = min {s,t} .

The proof is given in Klebaner| (2005, Theorem 3.7). The path of a Brownian motion is
very special in that it is continuous but nowhere differentiable. The following proposition

gives a proper description of its properties.

Proposition 1.3.3 (Path properties) The paths of Brownian motion are continuous,
which means that Wy is a continuous function of t, but has very erratic paths, which are
nowhere differentiable and are of infinite variation (see Definition m The paths

fluctuate between positive and negative values since we have

P <sup Wi = 400 and inf W; = —oo> =1.
t>0 t>0

Another nice property of a Brownian motion is that it has the scaling property. By
multiplying a Brownian motion with a constant and change the time variable accordingly,

we get another Brownian motion:

Proposition 1.3.4 (Scaling property) For every ¢ # 0, W = {Wt = cWye2,t > 0} is

also a standard Brownian motion.

In the Black-Scholes model, the stock price S = {S;,t > 0} is modelled by the stochas-

tic differential equation:
dsS; = S (,U,dt + O'th) ,  Sp>0,

where W; is a standard Brownian motion, the parameters pand o > 0 represent the mean
rate of return of the stock and the degree of fluctuation of the stock respectively. Applying
the Ito formula (Theorem [2.2.2)), we have

1
Sy = Spexp ((,u — 202) t+ aWt) , (1.6)
known as the geometric Brownian motion. The model assumes that investors can trade
continuously up to some fixed finite planning horizon T and the uncertainly is modelled

by a filtered probability space (2, F, P). The market is assumed to be frictionless, that
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is, there are no transaction costs, no bid/ask spread, no taxes, no margin requirements,
no restrictions on short sales, no transaction delays and the markets are perfectly liquid,
market participants act as price takers and prefer more to less. There are two assets in
the market: a risk-free bank account modelled by B = {B; = exp (rt),0 < ¢ < T}, where
r is the continuously compounded risk-free interest rate, and a risky stock S which pays
a continuous dividend yield ¢ > 0 and modelled by the geometric Brownian motion .
As noted in the introduction, the Black-Scholes model is complete (see Definition
because of the PRP of Brownian motion.

To derive the dynamic of S under the risk-neutral measure, we need the following

results. Consider now a measurable space (F, ) with measures u; and pq defined on it.

Definition 1.3.5 (Absolute continuity) A measure py is said to be absolutely contin-

uwous with respect to py if for any measurable set A
p1(A) = 0= py(A) = 0.

Theorem 1.3.6 (Radon-Nikodym theorem) If p, is absolutely continuous with re-
spect to py then there exists a measurable function Z : E — [0,00[ such that for any

measurable set A

po (A) = /AZd/h = pi1 (Z14).

The function Z is called the density or Radon-Nikodym derivative of po with respect to iy

and denoted as %?. For any pq-integrable function f

Mo (f)=/Efdu2=M1 (fZ)Z/EdulZf-

Theorem 1.3.7 (Cameron-Martin Theorem) Let (X, P) and (X,Q) be two Brown-
ian motions on (R, Fr) with volatilities ¥ > 0 and 69 > 0 and drifts p* and p?@. P
and Q are equivalent if of = 0% and singular otherwise. When they are equivalent the

Radon-Nikodym derivative is

dpP Q_ P 1 (u@ = pP)?
L Ty R S Ll O
dQ o 2 o2

A more general version of this result, valid for diffusion processes with random drift
and volatility is known as the Girsanov Theorem, see |Jacod & Shiryaev| (2002)) and Revuz
& Yor| (1999). Hence, using the Girsanov Theorem, we can transform W in (1.6 to get a
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new Brownian motion W, say. Then the discounted stock price S, = e TS, is driven by
dgt = O'gthNVt

and the martingale property is explicit.

Let K and T be the strike and maturity of a contingent claim respectively. Let V; be
the price of a contingent claim at time ¢ with payoff function G (St), depending solely on
the value of the stock at maturity. If G (St) is a sufficiently integrable function, the price
of the contingent claim is given by V; = F'(t,S;), which solves the following Black-Scholes

partial differential equation,

2
O ps)+(r—qs2LFs)+ 022 F(ts)—rF(Ls) = 0,

ot Os 2 0s?
F(T,s) = G(s).
The explicit formulae for European call and put options are given by

C (K, T) = exp(—qt)SoN (d1) — Kexp(—rT) N (da),
P(K,T) = —exp(—gt)SoN (—di)+ Kexp(—rT) N (—ds),

where

. log(So/K)+(r—q+%02)T
1 O_\/T 9

d2 = dl—U\/T

and N (-) is the cumulative probability distribution function for a Normally distributed
random variable.

As mentioned in the introduction, Black-Scholes model has been proved to be insuffi-
cient in describing the behaviour of the price processes in financial markets. |Barndorfi-
Nielsen & Shephard| (2006]) performed hypothesis tests on exchange data under the null of
no jumps, which were found to be rejected frequently. In fact, at intraday scales, prices
move essentially by jumps and even at the scale of months, the discontinuous behaviour
cannot be ignored in general. Only after coarse-graining their behaviour over longer time
scales do we obtain something similar to Brownian motion. Another problem is that the
log return data series have heavy tails and are negatively skewed. Although an appro-
priate choice of a nonlinear diffusion coefficient in the Black-Scholes model can generate
processes with arbitrary heavy tails, we often end up choosing extreme value for the pa-

rameters, see |Cont & Tankov| (2003, Chapter 1). Even so, the diffusion processes are still



Chapter 1. Background and Notation 34

continuous, that is, no jumps can be truly created by diffusion models. Heavy left tails of
the distributions of asset price processes corresponds to large sudden jumps in the price
processes. Without the ability to create jumps, diffusion models underestimate the risks
incurred from jumps in the market. To remedy these problems, market models driven
by Lévy processes (see Definition were introduced to replace Black-Scholes model
in describing the dynamics of asset price processes. A Lévy process has independent
and stationary increments generated by a so-called infinitely divisible distribution, which
has a one-to-one relationship with the Lévy process, see Theorem General Lévy
processes allow jumps and provide more flexibility in describing log asset price processes
since heavy tails and asymmetry can be handled by extra parameters of the infinitely
divisible distributions. Since large sudden moves are generic properties of models with
jumps, fine-tuning of parameters to extreme values is not required as in diffusion models.
Models with jumps capture the unexpected, sudden price movement, which is perceived as
risk in the market. As|Cont & Tankov| (2003)) pointed out, ‘the question of using continu-
ous or discontinuous models has important consequences for the representation of risk and
is not a purely statistical issue.” Apart from the inability to replicate price movements,
the Black-Scholes model also fails to reproduce the main features of option prices in the
market. The well-known volatility surface is obtained by plotting the implied volatilities
of the Black-Scholes model across maturities and across strikes. If the option pricing
model is describing the market perfectly, the value of the implied volatilities should be
constant throughout. However, this is not the case in practice. In fact, the main driving
force behind the generalisation of the Black-Scholes model is to improve the calibration of

option prices in the market.

1.4 Orthogonalised processes

In this section, we introduce the orthogonalised compensated power jump processes intro-
duced by Nualart & Schoutens| (2000) and give the alternative notation used by |Jamshidian
(2005). We derive the explicit formula for the CRP in terms of orthogonalised compen-
sated power jump processes in Part I following Nualart and Schoutens notation but since
Jamshidian derived an explicit formula for the CRP in terms of non-compensated power
jump processes, we include Jamshidian’s notation for comparison. Let X = {X;,¢t > 0}
be a Lévy process (see Definition . In the rest of the thesis, we assume that all Lévy

measures concerned satisfy, for some € > 0 and A > 0,

/(_ . exp (A |z|) v (dz) < 0. (1.7)
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This condition implies that for i > 2, fj;o lz|'v (dz) < oo, and that the characteristic

function F [exp (iuXy)] is analytic in a neighborhood of 0.

1.4.1 Nualart and Schoutens notation

Denote the i-th power jump process by Xt(i) = Zo<s<t(AX8)i, ¢ > 2, and for completeness
let Xt(l) = X;. In general, it is not true that X, — Y 0<s<t AX; this holds only in the
bounded variation case (see Definition , with o2 = 0._ By definition, the quadratic
variation of Xy, [X,X], = Yo 1 (AX,)? = Xt(2) when 62 = 0. These power jump
processes are also Lévy processes ;nd jump at the same time as X;, but with jump sizes
equal to the i-th powers of those of X;, see Nualart & Schoutens (2000).

Clearly E[Xy] = E[Xt(l)] = myt, where m; < oo is a constant and by |[Protter| (2004,
p.32), we have

ExM=EY (AX,)] = t/oo z'v(dz) = mit < oo, fori>2, (1.8)

0<s<t -
thus defining m;. Nualart & Schoutens (2000) introduced the compensated power jump
process (or Teugels martingale) of order i, {Yt(z)} , defined by

v =xP - Bx" = XY —mit fori=1,2,3,.. (1.9)

Yt(i) is constructed to have a zero mean. It was shown by Nualart & Schoutens| (2000,

Section 2) that there exist constants a; 1, a; 2, ..., a;i—1 such that the processes defined by
HY =v? 40, v 1o 40y, (1.10)

for ¢ > 1 are a set of pairwise strongly orthogonal martingales, and this implies that for
i # j, the process Ht(i)Ht(j ) is a martingale, see Léon et al. | (2002). For convenience,
we define a;; = 1. |Nualart & Schoutens (2000) proved that this strong orthogonality
is equivalent to the existence of an orthogonal family of polynomials with respect to the
measure

dn (z) = 0?ddg () + 22v(dz),

where dp () = 1 when x = 0 and zero otherwise, that is, the polynomials p,, defined by

n .
DPn (SL’) = Zan,jxj_l
j=1
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are orthogonal with respect to the measure 7:
/pn () pm (z)dn (z) =0, n #m.
R

1.4.2 Jamshidian’s notation

In Jamshidian! (2005)), which extends the CRP to semimartingales, the power jump processes
and compensators were denoted and defined differently from Nualart & Schoutens| (2000).
The power jump processes were defined in [Jamshidian| (2005)) by

(X1 =[x, + Y (AX,)? and (X)) = (AX)" forn=3,4,5,...,  (L11)

s<t s<t

where [X¢], = [X]; is the continuous finite-variation (not martingale) part of [X ]152). Note
that Jamshidian suppressed the time index ¢, but we add it here for clarification. The
compensator, (X )g") , is the predictable right-continuous finite variation process such that
[X}gn) —(X ),En) is a uniformly integrable martingale. =~ The compensated power jump

process, denoted by Xt(n), is thus defined by

Xt(n) _ [X]En) _ <X>§n) forn=2,3,4,.... (1.12)



Part 1

Martingale Representations for

Lévy processes

An explicit formula for the chaotic representation of the powers of increments of a
Lévy process, (Xiyi, — Xiy)", is presented. There are two different chaos expansions
of a square integrable functional of a Lévy process: one with respect to the compensated
Poisson random measure and the other with respect to the orthogonal compensated powers
of the jumps of the Lévy process. Computationally explicit formulae for both of these
chaos expansions of (X4, — X¢,)" are given in this part. Simulation results verify that
the representation is satisfactory. The CRP of a number of financial derivatives can be
found by expressing them in terms of (X4, — Xy,)" using Taylor expansion.

This part is arranged as follow: Chapter [2| gives a quick review of martingale repre-
sentations in the literature. We give the explicit formulae for the CRP for the powers of
increments of a Lévy process X in terms of power jump processes in Chapter [3] and in
terms of Poisson random measure in Chapter dl We show that our formula is an non-
trivial extension of Jamshidian’s formula in the Lévy case, which is an important subclass
of semimartingales. Chapter [5| gives discussion and further applications of the topic.
Section gives the representation of a common kind of Lévy functionals with the use
of Taylor’s theorem. Simulation results for the explicit formulae are given in Section
Section discusses the explicit formula derived by Lgkkal (2004) and Section gives
)

the Lévy measures of the orthogonalised compensated power jump processes, Hlt(Z . Some

concluding remarks are provided at the end of this part. Proofs and plots are included in
Appendix [A]



Chapter 2

Martingale representations in the

literature

2.1 Lévy representations

The following theorem, called the Lévy-Khintchine formula, is fundamental to Lévy models
and representations, see |Sato (1999). Let X be a random variable and let ¢y be its
characteristic function as defined in (1.1)).

Theorem 2.1.1 (The Lévy-Khintchine formula) For every infinitely divisible ran-
dom variable X € R?

x (2) = exp |3 (2,42) +1(3.)
+ /Rd (exp (i{z,2)) =1 —i(z,2) Lz<1y (3:)) v (dx)] , zeR? (2.1)
where A is a symmetric nonnegative-definite d x d matriz, v is a measure on R? satisfying
v({0}) =0 and /Rd min <|x|2 : 1) v (dz) < o, (2.2)

and v € R This representation by A, v and ~ is unique. —Conversely, let A be a
symmetric nonnegative-definite d X d matrix, v be a measure satisfying , and v € R%.
Then there exists an infinitely divisible distribution p whose characteristic function is given
by . (v, A, v) is known as the generating triplet of p and v is the Lévy measure of X.

Proof. See |Cont & Tankov| (2003, Section 3.4) for an outline of the proof. O

38
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If d = 1, we can write

1 too
bx (2) = exp [i’yz - 50222 + /_OO (exp (iuz) — 1 — iuzlyy<1y) v (dz)|

where v € R and v satisfies . In this case, the Lévy triplet is given by (% o2, y) .
Next we give another important decomposition formula for Lévy processes. Before

doing so, we have to give the definition of compensated Poisson random measure, following

the notation of|Cont & Tankov|(2003). Note that the definition of Poisson random measure

is given in Definition [1.1.6

Definition 2.1.2 (Compensated Poisson random measure) Suppose N is a Pois-
son random measure on [0,T] x RY with intensity y (dt,dx). The compensated Poisson

random measure is defined by N (A) = N (A) — u(A) = N (A) — E[N (A)].

Theorem 2.1.3 For every measurable set A C R% with u([0,T] x A) < oo, Ny (A) =
([0,¢] x A) defines a counting process, Ny (A) = N ([0,t] x A) — 1 ([0,¢] x A) is a martin-
gale and if AN B = then N;(A) and Ny (B) are independent.

The famous Lévy-Itd decomposition states that a Lévy process can be decomposed
into a sum of deterministic component, Brownian motion and integrals with respect to

non-compensated and compensated Poisson random measures:

Theorem 2.1.4 (The Lévy-Ité decomposition) For any d-dimensional Lévy process

X, there exists b € R, a Brownian motion Wt(A) with covariance matrix
T
A = cov {Wt(A) (Wt(A)) }

and an independent Poisson random measure N on R™ x (Rd — {0}) with the corresponding

compensated Poisson random measure N, such that, for each t > 0,

X, = bt + WY +/

|z|<1

N (t,dz) —I—/ N (t,dz).
|z[>1
Hence, for any stochastic process built from a Lévy process, the positions and the
amplitudes of its jumps are described by a Poisson random measure and various quantities
involving the jump times and jump sizes can be expressed as integrals with respect to this

measure.
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2.2 Stochastic calculus

The martingale representations we study consist of infinite sums of stochastic integrals.
This section gives an introduction to stochastic calculus and related concepts.
A stochastic process ¢ = {¢;,0 < t < T} is called a simple predictable process if it can

be represented as

¢y = ¢olyt=o0y + Z oilyr, 174007 (1)
=0

where Tp = 0 < 1Ty < Tp < -+ < T, < Ty41 = T are nonanticipating random times
and each ¢; is a bounded Fr;-measurable random variable, that is, its value is revealed
at T;. The stochastic integral of the predictable process ¢ with respect to a process
S = {50 <t <T} is defined by

t n
A¢ﬂ&=%&+§ﬁﬂ&mm—&wy
1=0

In financial applications, if S represents the price process of a financial asset, then ¢
represents the trading strategy of a dynamic portfolio. The stochastic integral fg ?,dSy
represents the capital accumulated between 0 and ¢ by the strategy ¢. The value of the
portfolio at time ¢ is given by V; (¢) = ¢,S;. The cost process associated to the strategy
¢ is given by

t t
@@%ﬂu@—4¢m&:@&—4¢m&-

Recall Section if the cost is (almost surely) equal to zero, the strategy ¢ is said to be

self-financing. In this case, we have

t t
ww=4¢ﬂ&=%&+4yﬂ&

Stochastic integrals have the martingale-preserving property. If S = {S;,t € [0,T]} is
a martingale, then for any simple predictable process ¢, the stochastic integral fot ?,dSy
is also a martingale. Moreover, if X = {X;,t € [0,T]} is a real-valued nonanticipating
cddlag process, 0 = {oy,t >0} and ¢ = {¢;,t > 0} are real-valued simple predictable

processes, then S; = fg 0,d X, is a nonanticipating cddlag process and

t t
/ ¢,dSy = / Dy, 0udXy,.
0 0

Definition 2.2.1 (Nonanticipating random time) Given an information flow F;, a
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positive random variable T > 0 is a nonanticipating random time (Fy-stopping time) if
vVt >0, {T<t}ekF.

We now discuss stochastic integrals with respect to Poisson random measure, N, de-
fined in Definition A function ¢ : Q x [0,T] x R? — R is called a simple predictable
function if

y) = Z Z ¢iilim 1) (0) 14, (v),

i=1 j=1
where 77 < Tp < --- < T, are nonanticipating random times, {gbij,j = 1,...,m} are

bounded Fr,-measurable random variables and {A;,j =1,...,m} are disjoint subsets of
R4 with 11 ([0,7] x A;) < oo. The stochastic integral with respect to N is defined by

[ [ 0.0V s = 3 by [N () — N (4]

1,j=1

and the stochastic integral with respect to the compensated Poisson random measure, N,
defined in Definition 2.1.2] is given by

t
/O' Rd¢(37y dS dy Z ¢zg |: _H/\t ) NT/\t (AJ)

1,j=1

Our explicit formula for the CRP is derived from the famous It6 formula, see |Cont &
Tankov] (2003, Section 8.3). We firstly give the simplest It6 formula which is with respect
to Brownian motion, which implies the market completeness of the Black-Scholes model,
see Definition [[.2.11

Theorem 2.2.2 (Itd formula for Brownian integrals) If f is a differentiable func-
tion and X; = fo o,dWy, then

(X /f 5) o5 dW +/0 ; 25" (X,) ds.

Note that o is the integrand and is not to be confounded with the o of the Lévy triplet.

Recall that the Lévy process is a generalisation of Brownian motion with jumps.
Therefore, the It6 formula for scalar Lévy process includes a term to deal with the discon-

tinuity:

Theorem 2.2.3 (Itd formula for one dimensional Lévy process) If X = {X;,t > 0}
1§ a Lévy process with Lévy triplet (02,1/,7) and f : R — R is a differentiable function,
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then

28]02

o = s+ [ G0

(s, Xo_ d+/(3 (s, X,_) dX,

of
Xeo + AXG) — f(Xs AXy X
+0§28§t[f< FAX) - F X - a9 s x,).
AXF0

The It6 formula for multidimensional Lévy process extends directly from the last the-
orem and is given by

Theorem 2.2.4 (Itd formula for multidimensional Lévy process) If the stochastic
process Xy = (th, ...,Xﬁ) is a multidimensional Lévy process with characteristic triplet

(2,v,7), then for any function f : [0,T] x R4— R, continuous in time and differentiable
in R,

FtXy) — /Zé)xz (s, X,_)dX! + / e
/ Z ”8&71833] (s, Xs) ds

Z‘]*
AX 740 d of
+ qu [f (8, Xs— + AXg) — f (s, Xs—) — ; AXS% (s, Xs_)

Recall that the Lévy process is a special case of semimartingale, defined in Definition

We therefore give the Itd formula for semimartingale as well:

Theorem 2.2.5 (Itd formula for semimartingale) If X = {X;, ¢t > 0} is a semimartin-

gale, then for any function f : [0,T] x R = R, continuous in time and differentiable in

R
d+/8 (s, Xs—

f
8— s, Xs)
1 f
2/(9 ) d[X, X)°
+ >

)

f(t,Xe) = f(0,X0) =

[ — f(s, Xso) — AX; af(sX I
0<s<t a
AX,#0

where [ X, X|° denotes the continuous part of [X, X].
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2.3 Chaotic Representation Property in the literature

1t0 (1956) proved a CRP for any square integrable functional for a general Lévy process.
Nonetheless, only in the Brownian and Poisson cases can the representation of the func-
tional be expressed in terms of multiple integrals with respect to the Brownian motion
and Poisson process respectively, see [t0| (1951) and |[Nualart & Vives| (1990)). The repre-
sentation of a process in terms of its mean plus a stochastic integral with respect to the
underlying process is known as the PRP, which is an immediate result of the CRP. For
general Lévy processes, it is necessary to introduce a two-parameter random measure to
construct a PRP. The representation is then written using multiple integrals with respect
to this two-parameter random measure. In other words, the PRP in terms of a stochastic
integral with respect to the underlying process only is lost for the general Lévy case when
using It0’s representation. This kind of PRP is important since it provides the market
completeness of the Black-Scholes option pricing model. Recall that a market is said to be
complete if every contingent claim can be replicated by investing in the underlying stock
and a risk-free bond, see Definition The predictable process gives the self-financing
admissible strategy of replicating a contingent claim, see Section To obtain a similar
property in the general Lévy case, [Nualart & Schoutens| (2000) proved the existence of
a new version of the CRP, which satisfies some exponential moment conditions. This
new CRP states that every square integrable random variable adapted to the filtration
generated by a Lévy process can be represented as its expectation plus an infinite sum
of zero mean stochastic integrals with respect to the orthogonalised compensated power
jump processes of the underlying Lévy process. Hence, the market can be completed even
in the case of a general Lévy process if trades in these processes are allowed.

Trying to derive an explicit formula for the CRP has been the focus of considerable
study. However, it is important to note that previous results for general Lévy functionals
available in the literature, namely, the Clark-Ocone-Haussman formulae derived to obtain
the integrands of the predictable, or chaotic, representation are not truly explicit. The
explicit chaos expansion must be known, for these formulae to be applied, making the
specification circular. We will discuss this in further detail later.

Nualart & Schoutens| (2001]) presented a version of the Clark-Ocone formula for func-
tions of a Lévy process using the solution of a Partial Differential Integral Equation
(PDIE). The Clark-Ocone formula gives the values of the predictable integrands of the
CRP. This version of the formula works for processes derived from certain Backward
Stochastic Differential Equations (BSDEs).

Léon et al. | (2002) developed the basic theory for Malliavin calculus for Lévy processes

and derived the Clark-Ocone formula, to give a predictable representation. Simple Lévy
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processes, which are a sum of a Brownian motion and a finite number of independent
Poisson processes with different jump sizes, were studied in their paper. The stochastic
integrals in the PRP studied in these cases were with respect to the Brownian motion
and compensated Poisson processes rather than the orthogonalised compensated power
jump processes, Ht(i)’s, introduced originally by Nualart & Schoutens| (2000) for the repre-
sentation. Useful formulae presented in the paper for the calculation of the Clark-Ocone
formula were derived in this case. The predictable representation derived using the Clark-
Ocone formula is not truly explicit, as again the explicit chaos expansions must be given
before the formula can be applied.

Lgkka (2004) derived a Clark-Ocone-Haussman formula which provides a representa-
tion for Itd’s expansion in the case of pure jump Lévy processes. This formula has a
different form to the formula of [Léon et al. | (2002)) since it is based on a different chaotic
representation. Again the Clark-Ocone-Haussman formula derived is not truly explicit.
The author derived an explicit formula for a common kind of functionals of Lévy processes
in Proposition 8 of the paper, which is discussed in Section in this thesis.

Benth et al. | (2003)) and |Solé et al. | (2006) derived the relationship between the chaos
expansion in terms of iterated stochastic integrals with respect to power jump processes,
and the expansion in terms of iterated integrals with respect to Poisson random measure.
Note that [to (1956) expressed the chaos expansions in terms of multiple integrals but
one may convert it to iterated integrals as done by |Lgkka, (2004). [Solé et al. | (2006])
gave the relationship between the Nualart & Schoutens (2000) representation and the [[td
(1956)) representation but this is actually equivalent to the Benth et al. | (2003) relation-
ship. Thanks to these relations, our explicit formula can be applied to find the explicit
representation for It6’s expansion. Benth et al. | (2003) also gave the explicit representa-
tion of the minimal variance portfolio, in markets where the stock prices are modeled by
Lévy martingales, using Malliavin calculus.

Eddahbi et al. | (2005) derived a formula, denoted the Stroock formula, for the kernels
of the chaotic decomposition of a smooth random variable as functionals of the underlying
Lévy process using a Malliavin type derivative. The formula was used to obtain the chaos
expansion of the price of an European call option and its underlying asset. Note that
the formulae presented in Nualart & Schoutens| (2001)), |Léon et al. | (2002)) and Lgkka
(2004) give forms for the integrands in the predictable representation while this Stroock
formula gives forms for the integrands in the chaotic representation. As the terms of the
chaotic expansion are orthogonal and uncorrelated, the chaotic approach enables the study
of the asymptotic behaviour of the variance of the integrals, which is useful in deriving
practical hedging strategies. Asin|Léon et al. |(2002]), the CRP was only applied to simple

Lévy processes and the stochastic integrals in the chaos expansion were with respect to
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the Brownian motion and compensated Poisson processes, rather than the orthogonalised
compensated power jump processes. The explicit chaos expansion has to be known before
the Stroock formula can be applied.

All the explicit formulae for general Lévy functionals derived in these papers use the
Malliavin type derivatives to derive explicit representations of stochastic processes for
applications in finance. The derivative operator D is, in all of these cases, defined by its
action on the chaos expansions themselves. In other words, the explicit chaos expansion
must in fact be known before D can be applied to find the explicit form of the predictable
or chaotic representation, thus yielding a circular specification. For example, [Léon et al.

(2002, Definition 1.7) defined the derivative of F' in the I-direction by:

pp = Z Z Z 1{ik:l}JT(Liji...,ik,...,in) (fuzn (o utyr) Loy (.)) ,

n=111,....in k=1

and [Lgkka (2004, Section 3) defined the derivative operator by:

Dt,zF = Zn]n—l (fn ('7t7 Z)) ’

n=1

where

I, (fn):/ In (tl,...,tn,zl,...,zn)d(u—7T)®n.
[0,7]" xR

Please refer to the corresponding papers for notation. Note that both of these definitions
require the knowledge of the functions {fi, _;.}’s or fn (t1,....tn, 21, ..., 2)’s, which are
the integrands of the chaos expansion of F.

Jamshidian (2005) extended the CRP in |Nualart & Schoutens| (2000) to a large class
of semimartingales and derived the explicit representation of the power of a Lévy process
with respect to the corresponding non-compensated power jump processes, which is dis-
cussed further in Remark Note that Lévy processes are included in the class of
semimartingales, see Kannan & Lakshmikantham (2001, Corollary 2.3.21, p.92). Our
formula for the CRP derived in Chapter [3]| gives the explicit representation with respect to
the orthogonalised compensated power jump processes as defined in [Nualart & Schoutens
(2000). Our result is therefore complementary to Jamshidian’s formula.

Corcuera et al. | (2005) suggested enlarging the market by a series of assets related
to the power jump processes of the underlying Lévy processes. Using the martingale
representation with respect to the compensated power jump processes, the market could
be completed. |Corcuera et al. | (2006) used this completeness to solve the portfolio

optimisation problem by the martingale method.
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Having discussed existing representations of Lévy processes and relationships between
the results, for a subset of functionals of Lévy processes, we simplify the CRP to an explicit

form.



Chapter 3

The chaotic representation with

respect to power jump processes

In this chapter we first derive the explicit formula for the CRP when the random variable,
F, in is the power of the increment of a pure jump Lévy process and extend it subse-
quently to a general Lévy process. In the following, we quote the chaotic representation
property (CRP) in terms of orthogonalised compensated power jump processes derived by
Nualart & Schoutens (2000). The CRP is important in that it implies the predictable rep-
resentation property (PRP), which provides the hedging portfolio for a contingent claim.
Based on the PRP of Lévy processes, (Corcuera et al. | (2005) completed the market by
introducing power jump assets. In Part II of this thesis, we further investigate the perfect
hedging strategies in a Lévy market. In the following, we firstly quote Proposition 2 in
Nualart & Schoutens (2000), which explains the importance of our result for the powers

of increments of a Lévy process.

Proposition 3.0.1 (Proposition 2 in Nualart & Schoutens (2000)) Let

P={X( Xy — X)Xy = Xy ) im >0, 0< 8y <tp <-- <y, ki, b > 1}

n—1

be a family of stochastic processes. Then P is a total family in L? (Q, Fr, P), that is,
the linear subspace spanned by P is dense in L? (Q, Fr, P), where Fr = 0 {X;,0 <t < T}
and we write F = Fr for simplicity. This means that each element in L* (Q, F, P) can

be represented as a linear combination of elements in P.

Although we only derive the explicit formula for the powers of increments of a Lévy
process, this proposition shows that every random variable adapted to the filtration can

be represented in terms of these powers of increments. We show in Section that we

47
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use our explicit formula and Taylor’s Theorem to obtain the chaos expansion for a general
Lévy functional. The famous CRP by Nualart & Schoutens (2000) is in terms of an

infinite sum of orthogonalised compensated power jump processes:

Theorem 3.0.2 (Chaotic Representation Property (CRP)) FEvery random variable
F in L? (Q, F, P) has a representation of the form

> o - ti-1= i i i
F=BR)+> ¥ /0/0 /0 Fonsnip) (t1, s t))AH A HIDaH ),

J=11i1,...,4;2>1
(3.1)

where the f(;; _;,y’s are functions in Lz(Ri) and H’s are defined in equation .
This result means that every random variable in L2 (2, F, P) can be expressed as its
expectation plus an infinite sum of zero mean stochastic integrals with respect to the
orthogonalised compensated power jump processes of the underlying Lévy process. Note
that this representation does not explicitly allow for calculation of the integrands. The
PRP is an immediate result of the CRP:

Theorem 3.0.3 (Predictable Representation Property (PRP)) The CRP implies

that every random variable F in L? (2, F, P) has a representation of the form
F=E[F+Y) / 6OAHD), (3.2)
i=1 70

where H'’s are defined in equation and ¢§i) ’s are predictable, that s, they are Fs_-

measurable.

3.1 Pure jump case

Let us first outline the form of the representation to introduce the reader to the flavour of
the results in this section. Suppose ¢ty > 0 and let G = {G;,t > 0} be a pure jump Lévy
process with no Brownian part (that is, 02 = 0 in the Lévy triplet), G®) = {ng),t > 0}
be its i-th power jump process and Gl = {@gi),t > 0} be its ¢-th compensated power
jump process. Calculation of (G, — Gto)k for k = 2,3,4 are given in Appendix

From the It6 formula,

(Xt+t0 - Xto)k

O'2 _ t _
- ?k (k—1) <(XmO — X;,)F % —/ s d(Xgpro — Xio)" 2) (3.3)
0
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k k t+to ) )

+ < ) / (Xae = Xp)* 7 a¥ ) (3.4)
j=1 J to
k—1 i _

i ( ‘)mj (t + t0> (Xt+t0 - Xto)k_J (3'5)
— \J
J
k=l t+to ,

- < >mj/ s d (X — X)) 7 + myt. (3.6)
j=1 J to

The detailed derivation is given in Appendix[A.I] Based on the structure of the expressions
for (Giye, — Gt0)3 and (Giyiy — Gt0)4, where detailed calculation is given in Appendices
IA.2.2{ and [A.2.3] we desire to derive a general formula for (Gyyq — Gi,)¥, k=1,2,3, ...,

as this forms a starting point for the representation of X. This derivation will be imple-

mented in a series of steps. Firstly, we notice that the numbers of stochastic integrals in
(Gigty — Gto)?’ and (Giye, — Gt0)4 are less than the possible full representation specified
in the simplified version of the CRP, where the stochastic integrals are with respect to

compensated power jump processes Y’s, derived by |[Nualart & Schoutens| (2000):

t+to  pli1— 1—
(Xt+to_Xto)k = f® (t,t0) +Z Z / / /J

.] 1 (7,17 "Lj)
e{1,.. 7]{;}]
f(n i) (t,to t1s s j)dYé’ij) : ..d}/’t(;?)dy't(il)’

1

where the f (k) _’s are deterministic functions in L? R%). For example, in the repre-
(i150-585) +

sentation of (Gyys, — Gp,)?, we have only three stochastic integrals

t+to ti— R t+to t+to
/ / dGMacty, / dG" and / aG?
to to to to

in the representation, which we shall represent via the list {(1,1),(1),(2)}. We can do
an equivalent representation of (G4, — Gt0)3 and (Giyt, — Gt0)4 to get the following two
lists:

{1, 1,1),(1,1),(1,2),(2,1),(1),(2),(3)}-
{(1,1,1,1),(1,1,1),(1,1,2),(1,2,1), (2, 1,1),

(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(1),(2),(3) , (4)}



Chapter 3. The chaotic representation with respect to power jump processes 50

In general, the list of the orders of the compensated power jump processes of the stochastic

integrals in (Giqsy — Gto)k depends on the collection of numbers

J
Tp = Q (i1,42,y45) | § € {12, k}, dp €{1,2,..,k} and > i <k . (3.7)
p=1

This construction is explained in the beginning of the proof of Theorem (Appendix
A.4) using induction. A typical element (31,42, ...,4;) in Z;, indexes a multiple stochastic
integral j-times repeated with respect to the power jump processes with powers i1, 42, ..., 7;
and indexed ¢;,t;_1,...,t1. That is, (i1,42,...,7;) indexes the integral
t+to  pt1— ti—1 . i i
. / dGI ... dGlag),
J 2 1
to to to

Next we consider the terms in the representation not involving any stochastic integrals.
That is, in (Grsy — Gio)? m3t> +mat is considered; in (Girgy — Gi)®, m3t® 4 3mymat? +

mgat is considered, and in (Gyyyy — Gt0)4,
m‘llt4 + 6m%m2t3 + (4m1m3 + 3m%) 2+ myt

is considered. We use (3.3))-(3.6) to derive the representation. This time the representation
can be simplified a great deal since we are not considering any stochastic integrals. Denote
the terms which do not contain any stochastic integral in (Gy 4 — Gyo)* by Ct(i)tofto =

Ct(k), and we refer this as the deterministic part of the representation.

Proposition 3.1.1 C(()T) =0 for all r, Ct(o) =1, Ct(l) = mqt, and for k =2,3,4, ...,

k—1 k ] k—1 A t )
=% <j>mjto§’f‘” = <j)mj /0 t1 A oy, (3.8)

i—1 j=1

<

Proof. The results for C’ér) and Ct(o) are trivial. For k =1, (G4, — Gty) = ft?tod@g) +
m1t and hence Ct(l) = mqt. For k > 2, the terms in |D are equal to zero since G; has
no Brownian part. The term in (3.4]) contains a stochastic integral and hence from (3.5))

and (3.6, we have

B = [k (k) <= [k tHto (k—9)
=3 <j>mj (t+to)Cp —Z<>m]/t t1 dCy ) + myt.

i=1 =1 N 0
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Putting u = t; — ¢y in the second term, we have

k—1 k ) k—1 k t '
Ct(k) = (]) m; (t+to) Ct(kij) — Z <]> m; / (u+ tp) dC’ff‘J) + myt
, 0

Note that Ct(k) is independent of tg. O

Thus, given Proposition C’t(k) can be expressed in terms of m;’s for any given k
and easily coded. We will show in the followings that in the calculation of (G4, — Gto)k,
all the Ct(j)’s, 7 =0,1,...,k are required. In fact the coefficients of the stochastic integrals
in the representation depend only on Ct(j)’s, j =0,1,...,k, as stated in Theorem
below.

(k)

The next proposition gives the representation for C;™ in a non-recursive form. Let

L= (i1, i) 1 €{1,2, 0k} ig € 1,2, k} iy >y > o >0, g =

(3.9)
The number of distinct values in a tuple ¢, = (igk),igk), ey zl(k)> in L}, is less than or equal

to I. When it is less than [, it means some of the value(s) in the tuple are repeated. Let
the number of times r € {1,2,3, .., k} appears in the tuple ¢, = ( (k) zgk), e il(k)> be pf’“.

Proposition 3.1.2

k L /) .(k .
Ct(): Z ﬁ(zg),zg),..., ()) (pgf’“,p2 Y ) qu t (3.10)
o= (i 0. Ve <y,
where z( ) ...,il(k) are the elements of ¢k, O s qre defined above and (zg ), zgk), ...,il(k)>! 18

(Zi= )

= )R, (k)
i1 By

0,601

the multinomial coefficient: ( 1y 5y ey 4

Proof. The proof is included in Appendix[A.3]

Proposition 3.1.3 Let HE ) i be the coefficient of
yeeesly

/t+to /tl— /tf 1_ 11) ngZ] 1)dG§Z])
to to to ’ 1
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m (Gttho — Gto)k. Then

J
™ = (41,142, ...,ij,n)!Ct(n) where n =k — Zip' (3.11)

(11,82,-,35),
p=1

Proof. The proof of Proposition is contained in the proof of Theorem O

For example, say we want to determine the coefficient of f;j_to tzl_d@g)d@g) in the

representation of (G, — Gy )*, that is, we want to find Hg;l)l) ;- To derive this coefficient,
we first note that n = 2 and so H&l?l),t = %52!(77&(2) =12 (mgt —I—m%tQ), which is true

according to the calculation of (Gyyy — Gi,)* given in Appendix Now we put the

above results together to get a general formula for (Gyi¢, — Gto)k .

Theorem 3.1.4 Let G = {Gy,t > 0} be a Lévy process with no Brownian part satisfying
condition . Then the power of its increment can be expressed by:

(Gt = Gra)" = > 15 S + CL, (3.12)
0k ELy

where Iy is defined in (E), Hg:)t 1s defined in Proposition |3.1.5, the Ct(k) are constants
defined in Proposition and S

i1 i,is ) thto 1S defined as the integral:

t+to t1— tj—1— ~(i1) ~N(i—1) 1 A)
Stvimty s — /t /t G . AGEaE,
0

0 to

Proof. The proof is included in Appendix [A4] O

To derive the explicit formula for the power of increment of a Lévy process with respect

to orthogonalised compensated power jump processes, we need the following proposition.

Proposition 3.1.5 The n-th compensated power jump processes, Yy = {Y;(n),t > 0},
of a general Lévy processes satisfying condition , can be expressed in terms of the
orthogonalised compensated power jump processes, H® = {Ht(i),t > 0} fori=1,2,...,n,
by
n—1
Y ="+ b,
k=1

where by, 1, denotes the sum of all the elements of the set MM which is defined by

i1 . . . .. .
MF = {(—1)] iy in Qigig *** iy_yi; 201 =N, 05 =k, ip > iq if p<q,ip €N for allp} ;
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and M™" ={1}.

Proof. The proof is included in Appendix O

Theorem 3.1.6 Let G = {Gy,t > 0} be a Lévy process with no Brownian part satisfying
condition . Then the power of its increment in terms of stochastic integrals with
respect to the orthogonalised compensated power jump processes, H @) g, s given by the
following equation:

k
(Gratg — Grp)' = D Hekt gkt)to +C, (3.13)
0L €Ly

where Ty, is defined in (E), H(gi)t is defined in Proposition|3.1.5 Ct(k) 1s defined in Propo-

sition |3.1.9 and S((f)zz i)t 1s defined as the integral:

ZJ 1 Z]

o Z > 2
S(il,iz7~~~,ij)7t,t0 Diy kg -+ b ij—1,K5— 1bla:ky

ki=1  kj_1=1k;=1

t+to pt1— 1—
/ / / T ag® . anlaE®),
b,k is defined in Proposition[3.1.5

Proof. From Proposition |3.1.5] we have

Pl = (17 ) A1) A
S(il,iz,...,ij),t,to = / / et / th]_l e th2J7 thIJ
to to to

t+to  rt1— ti—1— 3 (k)
— ) 1
= / / / d Z bll,kIHtj
to to to ki=1

ij_1
(kj—-1)
d Z bij—lakj—lth Z b%vk Htl
kj_1=1 k=1
’LJ 1 ’LJ

= Z Do D bk bi kb,

ki=1  kj_1=1k;=1

/t-f—to /tl_ /tﬂ = kl) dHt(kjfl)dHt(kj).
to to to 2 1

Hence, by using Theorem we complete the proof. O
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Corollary 3.1.7 By Theorem|3.1.
(Grrto — Gio)™ (Gratg — Gi)"

_ (m) o(H) (m) (n) o(H) (n)
= X WS s +C > g So i+ Ct
0mELm O0n€Zn

_ Y s g,

Ot Ot tsto
Ot €Lt
Hence, we can convert the product of two iterative stochastic integrals of orders m and
n as a weighted sum of iterative stochastic integrals of orders m +mn, m+n —1,...,2,1.
Note in Theorems and the integrands of the stochastic integrals do not in-
volve tg nor any of the integrating variables t1, 2, ...,%;. They are completely characterised
by Ct(p)’s, where p = 0,1,...,k. To find the chaotic representation of (G, — Gto)k,

o0

we only need to know the moments of Gy, my = E[Gy]/t and m, = [°. aPv(dz) for

p=2,....,k. This result is intuitive as (G4, — Gt,) is a stationary process.

3.2 General case

Next we want to derive the formula for the power of the increments of Lévy processes when
o # 0. Recall X = {X;,t>0} denotes a general Lévy process, X = {Xt(i),t > 0}
denotes its i-th power jump process and Yy = {K(i),t > 0} denotes its i-th com-
pensated power jump process as defined in . We define Ay (Xiy4,, Xty k) and
Ao (Xitty, Xig; k) such that (Xyyy, — Xto)k = A1 (Xigtg, Xto; k) + A2 (Xitto, Xio; k) , where
A1 (Xt4ty, Xt; k) comprises all the terms not containing o in (Xgis, — Xto)k . By express-
ing Ao (Xi149, X5 k) using (3.3)-(3.6)), it may directly be noted:

_ ko 00 _ 2, [T _ k—2
(Xt+t0 Xto) - 2k(k 1) (Xt+to Xto) 3 (3 t0>d<Xs Xto)

()

t+to .
/ A2 (XS*7Xt0;k _]) d}/;(])
1

k—1 k
+ (,)mj (t+to)A2 (Xt+t07Xto;k_j)

to

iz M
k-1 k t+to

— <>mj/ Sd[AQ(XSaXt()?k_j)]
j=1 J to

+A1 (Xt+t0; Xto; ]C) . (314)
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Calculation of (X4, — Xto)k for k = 3,4,5 are given in Appendix

Proposition 3.2.1 For any Lévy process X = {X;,t > 0} satisfying condition (1.7),

Lk/2]
K11, "
(Xt+to — Xto)k = A1 (Xt+t07 Xto; k) + Z:l mmﬁﬁ Al (Xt-l—toaXto; k— 2n) t.

Proof. The proof uses the same techniques as the proof of Theorem Note that
A1 (Xtvty, Xtg;p), where p=1,2, ..., k, are given by Theorem O

Proposition gives the formula of (X4, — Xto)k in terms of a summation of Ay,
where |k/2] + 1 calculations of A; are needed. The next theorem gives the formula in

an alternative form, which requires A; to be computed once only.

Definition 3.2.2 Let C't(f,) be the terms obtained by replacing ma with mo + o2 in C't(k)

(Proposition|3.1.4) and HEZ) i9,nsis) b be the terms obtained by replacing Ct(k) with C’t(f;) mn
(k)

)t (Proposition |3.1.3).

(1562 ,--i5),

We then note the following theorem.

Theorem 3.2.3 For any Lévy process X = {Xy,t > 0} with 0 # 0 and satisfying condi-

tion (1.7), the representation of (Xy41, — X¢)" s given by Theorem with my replaced
by (mg + 02) , that 1s,

(Xirty — Xi0)" = > Hg:),t,asén,mo + Ct(fr)’
0n€Tn

where L, is defined in (E), " and C’t(:;) are defined in Definition |3.2.4, and the

On,t,o
stochastic integral S/, is defined by:

(11,82,--15),t,to

/ T T ) gy ) gy @)
S(’il,’iz,...,ij),t,to = / / T / dxft] e d}/tzj dY;‘,l ! .
to to to

Proof. We define a new class of power jump processes by:

O x® o,

X9 = x9 forj=1andj=34,5,.. (3.15)
We also define a new class of compensators

mot = (m2—|—02) t,

mijt = m;t for j=1andj=3,4,5,...
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Hence, by 'deﬁnition, the compensated power jump processes, ﬁ(i) = Xt(i) — m;t = Xt(i) —
m;t = Y;(l) for all 4 > 1. Thus the representation of (Xgis, — Xto)k in terms of the
stochastic integrals with respect to Yt(z) is the same no matter we start from using Xt(z) or

)?t(i). To calculate the expression using )~(t(i), we use equation (2) in Nualart & Schoutens

(2000), namely:

t+to . )
/ (Xsm = X4p)" 7 dx )

to

o _ ¢ _
+ —k(k—1) <(Xt+t0 - Xto)k 2t _/ s d(Xsto — Xto)k 2)
0

2
k t+to » , 2 t _

= Z (j) /t (Xoe — X)) 7 ax) + %k (k — 1)/0 (X(51t0)— — Xto)k ®ds

j=1 0

t+to ) . 2 t+to

= Z (f) /t (Xo — Xto)kij dXS(J) + %k (k — 1)/t (Xy- — Xto)k*2 du

j=1 0 0

k t+to . , t+to

=> (2") /t (Xoo — X)) 7 dx ) + <’;> /t (Xs— — Xgo)" 2 d (075) .

j=1 0 0

By (3.15)), we have

=)

t+to ) o
/ (Xoo — Xy)F7ax 1),
j=1

to
Using exactly the same calculation as the one leading to (3.3)-(3.6)), we have

(Xptto — X"

k t+to i )
=>. <J> [ - X v
- to

7j=1
k=l t+to o
-> (J)m]/ s d (X — Xgo) 7 + gt
j=1 to

This is exactly the equation (3.4)-(3.6) we based on in the derivation of Theorem
except that m; is now replaced by m;. Hence we now have a simple formula for the

representation of (Xyis, — Xto)k in terms of the stochastic integrals with respect to Yt(i)

k—1 k ‘
( j)mj (t +10) (Xesg — Xig)*
=1

<
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by replacing m; with /m; in the formula given by Theorem In other words, we have

(Xipto — Xig)" = ) He toSémt to JrCt( "
0n€Ln

where Héz)t , and Ct(z.) are defined in Definition [3.2.2l Note that this representation does

not depend on the power jump processes directly since it is in terms of the compensated

power jump processes, Yt(j )5, So it does not matter if we change the definition of the
power jump processes, as long as we change the compensators accordingly, we will get the

same compensated power jump processes. O

Theorem 3.2.4 For any Lévy process X = {Xy,t > 0} with 0 # 0 and satisfying condi-
tion , the representation of (X1, — Xt,)" is given by Theorem with ma replaced
with (ma + 0?), that is,

(Xertg = Xeo)" = ) Hen,t aSe(n,t)to +C1,
0n€L,

where T, is defined in Héntg and Ct(:;) are defined in Definition |3.2.29 and the
1s defined by:

stochastic integral 8(117227 i)t

ZJ 1 ’LJ

/(H)
S(i17i27~--aij)7tat0 Z Z Z bllvkln ij—1:Kj— lbljvkj

ki=1 _1=1k;=1

t+to t1— tji—1—
/t /t /t] dH™ . dHS DA,

b,k is defined in Proposition[3.1.9

Proof. It follows directly from Theorems [3.1.6] and [3.2.3] a

Remark 3.2.1 As noted in Section Jamshidian, (2005) derived an explicit for-
mula for the chaotic representation of (Xt)k i terms of the non-compensated power jump
processes, XU ’s, when X is a semimartingale.  Our explicit formula gives the repre-
sentation in terms of orthogonalised compensated power jump processes, HY) ’s. In the
following, we show that our formula is an non-trivial extension of Jamshidian’s one in
the Lévy case, which is an important subclass of semimartingales. We note the notation
used by Jamshidian in Section . If X = {Xy,t >0} is a Lévy process, we can see

that [X¢], = [X]{ = 0%t (where the superscript ¢ stands for continuous part of the process)
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and hence [X]f) = 02t + Yo, (AX)?. With Jamshidian’s notation, the o is implicitly
included in the [X],@. B

Jamshidian| (2005) defined C = C* N C, where C* is the set of semimartingales of finite
moments with continuous compensators adapted to a Brownian filtration, and Cy is the set
of processes with exponentially decreasing law. Jamshidian generalised the CRP from Lévy
processes to the set C. In proposition 8.2 of |Jamshidian| (2005), an explicit formula for
the chaotic representation with respect to the non-compensated power jump processes for
the semimartingales in C when to = 0 was derived. |Jamshidian (2005) defined the power
Jump processes using the power brackets, see and . The multi-indices were
denoted by I = (i1,...,ip) € NP, where N is the set of natural numbers, and for integers
I<ps<mn,

Np ={I = (i1,.sip) ENP iy + - +ip=n}, pneN (3.16)

k n
Note that from ,I.=|J U NL. Proposition 8.2 of | Jamshidian| (2005) states that,
n=1p=1

for a semimartingale X = {Xy,t > 0} with Xo = 0, we have, for alln € N

"\ n! b tp-1” (i1) (ip—1) (ip)
Xi :Z Z il!"'ip!/o /0 /0 d[X]tpl "'d[X]tgp d[X]tlp : (3.17)

p=1JeN?,

Since |Jamshidian, (2005]) only considered non-compensated processes, we substitute all the
m; in (@) by zeros (since the compensators in the Lévy case are mjt), which makes
Ct(k) =0 for all k #0. So Hgfl)ﬂ.%”’ij)’t is non-zero only when 22:1 ip = k, as defined

mn , Hence in the Lévy case, Theorem m reduces to . In other words,
Jamshidian’s formula can be deduced from ours (in the Lévy case), but ours cannot be

deduced from Jamshidian’s by a non-trivial calculation.

k)

Nea

Corollary 3.2.5 The expectation of (Xitt, — Xto)k is given by C’t(
by replacing my with mo + 02 in C’t(k), given by equation .

, which can be obtained

Proof. As the expectations of all the stochastic integrals are zero, this follows directly
from Theorem [3.2.3] O

k k
Corollary 3.2.6 The expectation of (Ht(l)> = (f(f dHt(ll)) can be obtained by replacing
ma with my + 02 and my with 0 in C’t(k), given by Proposition .
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Proof. From Corollary E [Xf] can be obtained by replacing my with mg + 2 in
Ct(k). Since Ht(l) = X; —mqt and

t k
(X,)F = (/ dH§j>+m1t) : (3.18)
0

k
by putting m; = 0 in (3.18)), we can conclude that the expectation of (fg dHt(ll)) can be

obtained by replacing ma with mso + 02 and m; with 0 in C’t(k).

g

In the next chapter, we extend our results to chaos expansions in terms of the Poisson
random measure, with the use of the relationship between the two chaos expansions derived
by Benth et al. | (2003).



Chapter 4

Chaos expansion with respect to

Poisson random measures

[t0 (1956) proved a chaos expansion for general Lévy processes in terms of multiple inte-
grals with respect to the compensated Poisson random measure. One may convert the
representation to one involving iterated integrals by defining the symmetrisation of a real
function. Following Lekkal (2004)), let f be a real function on ([0,7] x R)". We define

its symmetrisation f, with respect to the variables (t1,21), ..., (tn, 5) , to be

1
f(tl,l'l,...,tn,l'n) = Ezuf(tﬂ'lvxﬂ'lv"'7t7Tn7$7Tn)> (41)
™

where the sum is taken over all permutations 7 of {1,...,n}. f is said to be symmetric if

f=7

4.1 Pure jump case

We first consider the representation of pure jump Lévy processes as in [Lokka, (2004). Let
Ly (A x v)™) be the space of all square integrable symmetric functions on ([0,7] x R)™.
In an iterative integral such as , the time variables t1, ..., t, are monotonic. For ease
of notation so that we do not have to explicitly note the time points and the process values,

we let:

Gn ={(t1,x1, .., tp,xp) : 0<ty3 <+ <t, <Tyz; €Ri=1,...,n}, (4.2)

60
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and let Lo (G,,) be the space of functions g such that

l9ll7, G :/ 9 (11,21, ooy by ) dbrv (daen) - dtgr (dg) < o0,

n

where v (dx) is the Lévy measure of the underlying Lévy process. For f € Ly (Gy), let

Jn(f):/OT/R---/0t2/Rf(tl,:vl,...,tn,xn)N(dtl,dxl)---N(dtn,dxn),

an iterative stochastic integral with respect to individual measures, where N is the com-
pensated Poisson random measure defined in Definition m For f € Ly((Axv)"),
let

L, (f) = / [t 21,005 tn, Tn) Nen (dt,dx) = nlJ, (f),
((0,T]xR)"™
an stochastic integral with respect to the product measure.

Theorem 4.1.1 (Chaos expansion for Lévy process by Ito| (1956)) Let F be a
square integrable random variable adapted to the underlying pure jump Lévy process, X.

There exists a unique sequence { fn}o2 o where f, € Ly ([0,T] x R)" such that

n=0
F:E(F)+Zln(fn) (4'3)
n=1

Benth et al. | (2003) derived relations between the expansion in terms of compensated
power jump processes and the expansion in terms of the Poisson random measure. [Benth
et al. | (2003)) showed that when the underlying Lévy process is a pure jump process, the
compensated power jump process defined in satisfies the equation

. t .~
v, :/ /xlN(ds,dx), 0<t<T, i=12,.. (4.4)
0 JR

This relationship is very important in the development of the chaotic representation of
Lévy processes. Since the introduction of the chaos expansion by [to (1956)), the devel-
opment of representations in the literature has been focused on expansions with respect
to the Poisson random measure. Unfortunately, we cannot trade in the Poisson random
measure. Note that trading in a finite set of power jump assets is theoretically possible
because the i-th power jump asset contains information of the i-th moment of the Lévy
process, given that ¢ is finite. Therefore, it is possible to construct a financial product
which contains information of the i-th moment of the underlying process. For example,

if we want to hedge the risk introduced by the variance of the underlying process, we
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can trade in the variance swaps or the second power jump assetﬂ However, the Poisson
random measure contains all the information of the moments up to infinity and hence it
is not clear how to construct such a financial product unless information of all the higher
moments are obtained. This limits the application of the CRP in terms of Poisson random
measures and also the application of Lévy processes in finance.

In the Black-Scholes world, due to the existence of PRP of Brownian motions, the
market is complete and every contingent claim can be replicated by a portfolio investing
only in a risk-free bank account and the underlying asset. |[Nualart & Schoutens| (2000)
introduced a new version of the CRP in terms of orthogonalised compensated power jump
processes. Corcuera et al. | (2005) suggested trading in some related power jump assets,
making perfect hedging possible. The equation therefore links the two important
expansions together and hence the results derived for expansions in terms of Poisson
random measures can be applied to expansions in terms of power jump processes. In
this thesis, we first derive the explicit formula for the latter expansion and then apply
equation to obtain the explicit formula for the former expansion. The CRP in terms
of compensated power jump processes can be converted into the CRP in terms of the

Poisson random measure as follows:

F = +Z > / /tl_ /tj B iy (b1, s ) (4.5)

j=1lid1,...,i;>1
ay, .y Pay

oS w7 s

j=111,...,5;>1
X fiy gy (b1 e )N (dtj, dg) -+ N (dbg, dag) N (dty, day) (4.6)

- oS [ //“/ // 1552

N(dtj,dxj) s 'N(dtg,dwg)N(dtl,de‘l)
= E(F)+> Jij(g) =EF)+> ;@) =EF) + Y I (),
j=1 j=1 Jj=1

'In Part II, we discuss the use of power jump assets and moment swaps in perfect hedging of options
and pointed out that power jump assets could not actually be traded in reality because they cannot be
observed. Nonetheless, moment swaps, which are the generalisations of variance swaps, have high potential
to be traded in the market.
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where g; is the symmetrisation (defined in (4.1))) of the function g; given by

gj (t1,$1, ...,tj,mj)

_ { Diviyz1 T2 i (B s 1), on G

, (4.7)
0 on ([0,7] x R)? — Gj.

Therefore, by uniqueness, { f,},~, in Theorem is given by f, = gn, wheren = 1,2, ....
This equation provides a simple relationship between the two expansions. From Theorem
3.2.3 we have
(Xeto — Xeo)" = > TG, S 4o + O (4.8)
On€ln

We can now use this relationship to derive a form for g, in terms of Z,,, H(E?:)t , and Ct(z).
Let K s = {(z’l, i)ty €{1,2,...,s} and Zz 14 = s} Since the length of a tuple must

not be greater than the sum of all the elements i 111 the tuple (because an element must be

at least 1), [ < s. By definition, we have Z,, = U U Kis. So we can write
s=11=1

(Xt-i-to Xto Z Z Z H(n)t o én o + Ct( 0-)7

I=1 s=1 6,,€K

where 6,, is the tuple (’Ll - z?") with [ elements which sum up to s. Therefore, we

deduce that for F' = (Xy 4, — X4)" in (4.3), fei,,..i)(t1, .., 1) is given by

ftin,in) (15 t) = Héz),t,g' (4.9)
By (4.7), we have then proved the following proposition.

Proposition 4.1.2 For any pure jump Lévy process X = {Xy,t > 0} satisfying condition

(-7,

(Xesty — Xpo)" ZIZ (™) + i,

where gl(”) is the symmetrisation of the function gl(n) defined by

gl(n) (tla L1y -eny tl7 Qfl)
n i) G
> s Zeneic,,s Ty -y Mg 1o 0N G
0 on ([0,7] x R)! — G,
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where Ct(z,) and Hé:)tg are defined in Definition |3.2.2

The following proposition gives a more straightforward representation.

Proposition 4.1.3 For any pure jump Lévy process X = {Xy,t > 0} satisfying condition

(7.
t+to t1— ti—1— n Zgn
oont = & [ [ A

0n€ln
X Hé 40 (dtl,dl‘l) (dtg,d.il?g) (dtl,dlj)

+C1, (4.10)
where C't{ ") and Hg )ta are defined in Definition |3.2.2
Proof. This follows directly by replacing f;, i (t1,...,) in (4.6) by (4.9). O

Note that both chaos expansions, that is, the expansion in terms of compensated power

(n)

jump processes and the expansion in terms of random measure, depend on Z,,, He o and

C’t(,g). From , we note the relationship between Y () and N (ds,dz). Because
of the simple form of this relationship, we can use Theorem to derive the explicit

representation of (4.10)).

4.2 (General case

We shall now discuss the general relationship between the two representations. [[td (1956)
proved the chaos expansion for general Lévy functionals. In this general case, the sto-
chastic integrals are in terms of both Brownian motion, W, and the compensated Poisson
measure, N (-,-). Hence, to unify notation, Benth et al. | (2003) defined the following

notation:

Uy =1[0,T] and U =1[0,T] xR
dQ; () =dW () and Q2()=N(,")

/Ulg<u(1)>Q1<dU(l)) = /tg()W(ds) and
/Ugg(“m) Q2 (du®) = / / s,2) N (ds, dz) .

The CRP in terms of Brownian motion and Poisson random measures is given by:
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Theorem 4.2.1 (Chaos expansion for general Lévy process by 1t6 (1956)) Let F
be a square integrable random wvariable adapted to the underlying Lévy process, X =
{X,t > 0}. We have

F=E[F]+ i Z T (g’gjl,nan)) , (4.11)

n=1j1,.,jn=12

for a unique sequence g,gjl""’j") (G1y -y Jn = 1,25 n=1,2,...) of deterministic functions in

the corresponding Lo-space, Lo (Gy,) , where
G = {(ugﬁ), uﬁﬁ) EM U, :0<t < <ty < T}
with w09 =t if j; = 1, and w9 = (t,z) if j; = 2, and

g, (le,...,jn))
= / gﬁzjl7...7jn) <u(1j1)a ceey usz]n)) 1Gn (ugj1)> ooy u7(7,]n)> le <dugj1)> T an <du7(1jn)> .
HTLLIUJ
Similar to the pure jump case, we can derive the explicit formula for the chaos expan-

sion with respect to the Poisson random measure of a general Lévy process, that is, o # 0.

In this case, we have

t t ~
Yt(l) = 0'/ dw (ds)—l—/ /xN (ds,dx)
0 0o Jr

v = //:L"N(ds,dx), 0<t<T,i=2,3,..
0 JR

To derive the relation between the two chaos expansions, we introduce the following no-
tation. Let

RW (ds,dz) = odW (ds)—l—/xN (ds,dx)
R

RO (ds,dz) — /xiz\?(ds,dx), i=2.3 .
R

Hence, similar to (4.5), the CRP with respect to the power jump processes can be written

as

St T = b1 i i i
F=EF)+> Y /0/0 /0 f(z-lwij)(tl,...,tj)d}ﬁgj)...dYt(;)d}Q(l1)

J=141,..,3;>1
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_ +Z 3 //tl_ / Firoiny(ts oo ty)

J=1in,.4;21

RO (dtj, da;) ...RE) (dty, dz) RO (dty, dz) .

From Theorem |3.2.3

(Xtttg — Xtg)" = Z H((;:)t Sh,, tt0+0(n)
t+to t1— ti—1—
77/
S
0n€Ly, to to to

RU™ (A, day) ... RU2") (dta, dz) RO (dty, da) + C2.
We have then proved the following proposition.

Proposition 4.2.2 For any Lévy process X = {X;,t > 0} satisfying condition (1.7),

t+to t1— ti—1— (n)
(Xttty — Xip)" = / / / Hy 1o
0n€Tn

RO (dty, day) ... RUZ") (dta, dx) RO (dty, da) + C2,

where C't{ ") and 113"

ot OTE defined in Definition |3.2.2




Chapter 5

Discussion and further

applications

5.1 The explicit chaos expansions for a common kind of

Lévy functionals

Note that we have only found the explicit representations for powers of increments of Lévy
processes. In this section, we explain how the explicit formulae for a common kind of
Lévy functionals might be obtained using multivariate Taylor expansions.

Assume that a real function g, possessing derivatives of all orders, is such that
F=g(Xy, Xt, — Xeyyoos X, — Xt,,_1) (5.1)

where the indices 0 < t; < ty < -+ < t,, are known and n is finite. By expressing F' in
terms of power of increments of X, we can use our explicit formula to obtain the CRP
of F'. This might seems like a very strong assumption but actually this requirement is
frequently met. For example, in financial applications, g might correspond to all pricing
functions of contingent claims which depend on the underlying asset at a finite number of
time points. Suppose {X;,0 <t < T} is the background driving Lévy process and time
is now t = t,,. Suppose the underlying asset, {S;,0 <t < T}, is given by the exponential-
Lévy model, see (Cont & Tankov| (2003, Chapter 8.4), Sy = Spexp (X;), where Sy is the
initial value of the underlying asset at time ¢ = 0. Then, for example, we can represent F’
as the pricing functions of a number of contingent claims listed in Table 1 (Appendix

B.1| gives a detailed description of some of the contingent claims).

67
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Name

Formula

Forward and future contracts
on a security providing no

income

Fy=Siexp(r(T —1t)) = Soexp ( Xy +7 (T —1t)),
where r is the risk-free interest rate and 1" is the

maturity of the contract.

Forward and future contracts
on a security providing a

known cash income

Fo=(St—1)exp(r(T —1))

= (Soexp (X¢) —I)exp (r (T —1t)),
where I is the present value of the perfectly predictable
income on S = {S;,t > 0}.

Forward and future contracts

on a foreign currency

Fy = Siexp((r —ry) (T — 1))
= Soexp (Xy+ (r —ry) (T'—t)), where ry is the

risk-free interest rate of the foreign currency.

Forward and future contracts

on commodity

Fo=(Si+U)exp(r (T —1t))
= (Soexp (X¢) + U)exp (r (T — 1)),

where U is the present value of all storage costs.

European call options

F (t, St) = exp (—7“ (T — t)) EQ [(ST — K)+ ‘.7:15] ,
where K is the strike, T is the maturity, () is the risk
neutral measure and Fy is the filtration of S = {Sy, ¢ > 0}.

‘up-and-out’ barrier call options

F(t,5) = exp (= (T = 1)) Eq [(Sr = K) " (ys gy |
where H is the barrier and
MP =sup{S,,0<u<t}, 0<t<T.

‘up-and-in’ barrier call options

F(t,8;) =exp(—r (T —1t)) Eg

(7 = K) " 1yysmy

‘down-and-out’ barrier call

options

F(t,S;) = exp (= (T = 1)) Eq |(Sr = K)" 1,5 1y |
where my = inf {S,,0 <u<t}, 0<t<T.

‘down-and-in’ barrier call options

F(t,8) =exp(—r (T —t)) Eq | (St — K)* 1{m§§H}

Lookback options with a
floating strike

F (t,8;) = exp (—r (T —t)) Eq [M7 — Sr].

Lookback options with a fixed

strike

F(t,8;) = exp (=7 (T — 1)) Eq | (M7 — K)+J .

Asian call options

F (t, St) _ exp(—v;L(T—t)) EQ

(ko1 St — nK) | 7

Table[5.1]1: The contingent claims and their pricing formulae to which Taylor expan-

sions can be applied at some values of S;.

For an European call option, the option price function before maturity with strike K,

maturity T is then given at time ¢ by:

F (t, St) = €Xp (77“ (T - t)) EQ [(ST - K)+ |‘7:t] )
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where @ is the risk-neutral measure and F ={F;,t > 0} is the natural filtration of S =
{S;,t > 0}.

In , let x1 = Xy, 20 = X4y, — X4y, ooy, = Xy, — Xy, ;. If g is not a linear
combination of powers of z;, we need to use the multivariate Taylor’s series, see [Jeffreys

& Jeffreys| (1988)), about the points z; = 0,7 = 1,...,n to obtain such a representation:

J
] (2, p,) . (5.2)

! __ ! —
x7=0,...,x;,=0

g(x1, .y xp) = Z i [

7=0

Note that this representation exists when ¢ is an analytic function. To show typical

elements in this representation, we note the special case of n = 2:

o0 i
g(z1,22) = Z{l[ 88, + 28(22] g(x/l,xé)}

=0 x]=0,25=0
0 0
= ¢(0,0)+ 179 +$27g
oz} oz’
1 12]=0,245=0 2 Iz =0,z5=0
1 5 0%g 2g , 0%
+ L 9g72 20 Ox! Ozl + T Ox!?
T 2 =0,24=0 1902 {21 —0,24,=0 2 la)=0,a,=0
_l’_ ..
0] _ 1 dlg .
Let T (0) = 1 50,07, | | o 0. As in |Corcuera et al. | (2005, Lemma 2),
1 =0,...,x},=

we assume that -
D ‘g]m y (0)’ R < oo, (5.3)
=2 ji,...5€{1,....n}
for all R > 0. The multivariate Taylor’s series in equation below expresses F' in
terms of sum of products of powers of increments of X = {X;,t > 0}. From Theorem
we can substitute z;, ¢ = 1,2, ...with the sum of iterated integrals with respect to
the orthogonalised compensated power jump processes.
For all F € L?(2, F) having the form , let F' =g (x1,...,2,) and then we have

o) n J
1

0
F = Z 0 Z(th_thfl)@ g (2, ..., x)
7=0 g k=1 y z7=0,...,z,, =0
1= Yo -
- 9(070 +Z Xt] th 1 +Z th th 1)29](2;( )

Jj=1 Jj=1
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n n @
+2 Z Z 1{j17éj2} (Xth B Xth*l) (Xth B Xt]é*l) 91,42 (0)

J1=1j2=1
- 3
3
+ Z (th - thfl) gj(,J),J (0)
j=1
+3 Z Z 1{j1?5j2} (Xth - Xth*l) (thz - thzfl) gj17j17j2 (0)
J1=1j2=1

+ Zn: zn: Zn: 1{j1¢j2¢j3} (thl - th1_1> (thg - th2—1>

J1=1j2=1j3=1
3
X (Xt - Xy, 1) g0 (5.4)

where (X, — X, ,)"’s are given by Theorem and we assume X;; = 0. The sums
converge for every w € Q because of (5.3)).

Since 0 < t1 < 9 < --- < tp, the product of two iterated integrals with non-overlapping
limits results in an iterated integral: if ¢ < j — 1, u,v € {1,2,3,...} and ¢, ¢; are the

predictable integrands,

" Wy [ ) b (a0
o AH x [ g, dH® = / bup; AHWAH(

ti—1 ti—1 ti—1 Jti—1

tj t;
- / / 1{51>ti—1}1{7"1>tj_1}d)i¢j dHé?)dHT(,f)
tj
— / / 1{tz>s1>t1 1}1{r1>t] 1}¢ gbj H(U dH£1)7

since 1 > t;_1 > t;, giving an iterated integral. Hence, we get a chaos expansion of
F' in terms of iterated integrals with respect to orthogonalised compensated power jump
processes.

Note that in some applications, it is only necessary to apply Taylor’s theorem directly
to F' to obtain a PRP representation. Part II of this thesis applied Taylor’s theorem
directly to obtain the PRP of European and exotic option prices for hedging and the use

of the explicit formulae is further discussed.

5.2 Simulations using the explicit formula

To verify the theoretical results given in this part, we simulate the underlying Lévy
processes and compare the values of (X4, — Xy,)" with the value given by its chaos
expansion. In simulations we apply the stochastic Euler scheme for the stochastic differ-

ential equations (SDEs) of general Lévy processes, which is given in Appendix The
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rate of convergence of this scheme for Lévy processes was discussed by |Protter & Talay
(1997). For an introduction to numerical solutions of SDEs, see for example [Higham &
Kloeden| (2002), Higham| (2001)), Kloeden| (2002)) and Kloeden & Platen| (1999).
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Figure 1: G% generated using ' . o .
CRP and directly from the Gamma Figure [5.2]2: The difference of the

process in log scale. two series in Figure [5.2]1.

For simplicity, we consider Gamma processes as well as a combination of Wiener and
Gamma processes. For illustration, we ran simulations for kK = 4 and k = 9 in the
pure jump case and k = 5 and k = 8 for the combined case. The plots produced are
shown in Figures [A.8]1, [A.8]3,[A.85,[A.8l7 in Appendix respectively. The log scale
version of Figure [A-81 is reproduced as Figure [5.2}1 for illustration. In the second and

fourth simulations, we set to = 0.0099 and ¢y = 0.0019 respectively. These simulations
substantiate our explicit formula of the CRP for t5 > 0. We see that processes generated
using the CRP and those generated directly from the Gamma process jump at the same
time points. To see more the two lines more clearly, Figure[5.2]1 is in log scale. Again the
two lines are still very close together except in the beginning, where the values are very
close to 0 and hence the log of the numbers are very negative. The differences between
the two lines are rather due to the numerical rounding errors. The differences between
the two lines are plotted in Figures[A.8]2, [A.8l4, [A.8]6, [A.88 accordingly. Figure [A.8]2
is reproduced as Figure [5.2]2 for illustration. Note that the axis of Figures [A.8]2, [A.8]4,
[A.816, [A.8|8 are in much smaller scales than those in Figures [A.81, [A.83, [A.8]5, [A.§]7.

In fact, the difference between the two series is so small that we can only see one line

in Figure 5.2]1. The difference is due to approximation errors of the stochastic Euler
scheme. The errors decrease with the step size A. In each of the Figures [A.8]1, [A-8]3,
[A:85,[A.8 7, independent realisations of the Gamma and Wiener processes are used. We

note that the line representing the error between the two jumps at the same time points
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as the Lévy process. Moreover, the jump sizes of the error are proportional to those
of the Lévy process. After each jump, the error tends to decrease gradually and then
increases again by jumping. It shows that the Euler scheme is more sensitive to jumps in

the original process and perform better for Brownian motion which is smooth.

5.3 Discussion on Proposition 8 of Lgkka (2004)

Lokka (2004, Proposition 8) derived an explicit expression for the chaos expansion of an
infinitely differentiable and square integrable functional of a pure jump Lévy process. For

every n € N and m < n, define the sets A}, by
A ={(a1,...,am) €{1,...;n}" 1a; < ajt1 Vi=1,...,m—1}.

Assume the underlying Lévy process has no Brownian part. Let g € C§° (Rk) be such
that g (Xs,, ..., Xs,) € L? (Fr, P). Then Lgkka (2004, Proposition 8) claimed that

g (Xsla "-7X8k) = G (07 O) + ZITL (fn) )
n=1

where G (z1, ...,x;) = E[g (1 + Xy, ..., o + X, )] is in CF° (]Rk), and
Jrn (1, e tny 215 ooy Z0)
1 - n—m
= ﬁ Z Z (_1) G(Zo—l]_[o’sl] (tal)—’—...—f—zo-ml[o’sﬂ (to-m),...,
m=1cc A",
zO'll[O,Sk] (to'l) +oeee zo’m]‘[o,sk} (to'm)) + (_1)" G (07 70)} :

Note that this approach requires the ability to evaluate

G(z1,....xx) = Elg(z1+Xs,..,xrp+ Xs,)]

— /ng(xl + Y1y T +yk) dFX517__.7XSkdy, (5.5)

where FXSI,..., X,, is the distribution function of X , ..., X,,. We cannot use Monte Carlo

Sk

since we need to express

G (Zal 1[0,51] (tal) + et del[(),sﬂ (tUm) IRRED) ZUll[O,Sk} (tUl) +oeee Zoml[O,sk] (tam)) (56)

in terms of z,,, Zoy, .-, Zo,,, Which are the integrating variables in I, (-). To use Monte

Carlo, the values of z5,, ..., 25, have to be known constants. Hence, it is not possible to
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calculate (5.6) using Monte Carlo. Analytic calculation of (5.5)) is therefore required.
Apart from these computational issues, we also want to clarify a result in the paper.
In the proof, Lgkka stated that ‘By Theorem 4, the random variable

exp ' i2€ (y, 1) (1 — ) (dz, dt) — ' [eizg(y’t)—l—izg(y,t)}y(dz)dt (5.7)
0 Ro 0 Ro

has a chaos expansion given by 14>~ I, ((1/71') (el# W) — 1)®n> ., where

E(y,t) = y1ljoey) () + -+ yrlio,s (1) -

Obviously, £ (y,t) is not continuous in ¢ since it comprises of indicator functions in ¢. We
can find the derivation of the above chaos expansion in the proof of Theorem 4 of the
paper. We notice that the result derived is for random variable defined in equation 6

(page 872) of the paper:
T
Yr = exp { [ [ p@r e - @zan
0 JRe

- /OT /RO (eh(t)'v(z) —1-h(t)y (z)) 7 (dz, dt)} , (5.8)

where h € C([0,T]) . That is, the function h(¢) must be continuous in ¢. However,
in , the corresponding function of ¢, & (y,t), is not continuous in ¢. Therefore,
the results derived for Yp cannot be applied to (5.7). Nonetheless, does have the
chaotic representation given by 1+ > 7, I, ((1/n') (el# W) — 1)®n) . It is because in
the derivation of the chaotic representation for (5.8), the condition h € C ([0,T7]) is not
needed. Lgkka stated on page 874 that solves

ay; = / Vi (07— 1) (= ) (dz, )
Ro

by the Ito formula. Here we discuss the derivation of this result in details. Let Z be a

process with stochastic integral

dZ, = | H(t,z) N (dt,dz),
Ro

where H (t,z) € L* (2, F, P). By the Ito formula for function of integrals with respect to

the compensated Poisson measure, see (Applebaum (2004, Theorem 4.4.7)), we have for



Chapter 5. Discussion and further applications 74

each f € C? (R) with probability 1 that,

F(Z)— f(Zo) = //R [f (Zee + H (s,2)) — f (2. )] N (dt, dx)

//RO/RO (Zs— + H (s,2)) — [ (Zs.)

CH(s) -3z )} (dz).

dZs_
Note that the notation used by Lgkka are equal to
(1w — ) (dz,dt) = N (dt,dz) and 7 (dz,dt) = v (dz).

Therefore, if we put Z =Y and f(Y) =log(Y), we have

f(Yso + H (s,x)) — f(Ys_)
)+log(1+e (=) _ 1) ~log (Y,)

log
log (Y- + Y, (") 1)) —log (v;)
(Ys
)7 (2)

= log
h(t

and

H (s,7) (Vo) = (eh@)v(z) - 1) .

dY,_

Therefore the result follows. In the derivation, we do not need any condition on h ()
apart from Y;_ (e"®7() —1) € L2(Q,F, P). Hence the condition h € C ([0,T]) for the
chaotic representation of ([5.8)) is not necessary.

5.4 Lévy measures of the orthogonalised processes H()’s

In this section, we calculate the Lévy measure of the i-th orthogonalised compensated

power jump process of a Lévy process, H®) = {Ht(i),t > O}, defined in (1.10). To

obtain the results for general Lévy processes, we first establish some results for pure jump
processes. Let G = {Gy,t > 0} be a pure jump Lévy process, Gl = {Ggl),t > 0} be

its i-th power jump process and GO = {@gi),t > O} be its i-th compensated power jump
process.

Nualart & Schoutens (2000) proved that the orthogonalisation in is related
with classical orthogonal polynomials with respect to the underlying Lévy process X;
by identifying the polynomials P (.),Q (.) such that [;* P (z)Q (z)2*v (dz) = 0, where

v (dz) is the Lévy measure of X. In the standard Gamma case, Nualart & Schoutens
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(2000) considered [;° P (z) Q (x) ze “dx since v (dz) of G (1,1) is 1(z50) 5 €dz. For gen-
bx

eral Gamma(a,b), the Lévy measure is vg (dz) = 2-—

= 1(m>0)dx To generalise the or-

thogonalising procedure, we consider [;° P (z) Q (z) 2% % a¢" 4z, which is equal to zero if
P (.),Q(.) are orthogonal with respect to Gamma (a, b). Put u = bx, and consider the
stochastic integral fooo (%) Q (%) ue~"du = 0. By Koekeok & Swarttouw] (1998)), an or-
thogonalisation of {1, 7, 3522, ... 0 gives the Laguerre polynomials Lq(ll) (z). Hence, we can
see that orthogonality of the compensated power jump processes in the Gamma (a, b) case
is given by Ly (bz) , which is independent of the first parameter of the distribution. The

coefficients used in the orthogonalisation of G = {G(l) t> 0} are independent of time

t. The Laguerre polynomial L% o) (x) can be expressed as

k

L n‘ k' Ela+k+1), 2"

The pochhammer symbols (a), are defined by
(a)g=1, (a);=a and (a),=a(a+1)(a+2)..(a+k—-1) fork=23, .. (5.9)
and by |Gradshteyn & Ryzhik| (1965, 8.971(6) ), we have the following recursive relation:
m+1) Ly (x)—2n+a+l—ax)Ly(x)+ (n+a)ly_(z)=0 forn=1,2,..

Apart from using the Laguerre polynomials, we can use the following formula to find the

coeflicients, a; j, in equation ((1.10)):

Lemma 5.4.1 Fori>j,1,5=1,2,3,...,

= (271

J—1)mjpa

a(i—1)!

when the underlying Lévy process is Gamma(a,b) and we have m; = ==;

Proof. The proof is given in Appendix[A.9] The proof does not rely on any properties of
the Laguerre polynomials, but it is instead derived from the properties of orthogonalised
compensated power jump processes and the Gamma Lévy measure. By using the property

of the Laguerre polynomials, see Weisstein (1999b)),

n

m n+k)! m
LY @) =3 (0" o n”(b)!?;ﬁ—zm)!m!x

)
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the result follows immediately. The proof in Appendix gives an insight to how the
a; ; of other Lévy processes can be calculated if the corresponding orthogonal polynomials

cannot be recognised as known sets of polynomials. O

The Lévy measure of GU) with Gamma(1,1) is given in Nualart & Schoutens| (2000,
p.119). Using the same method we generalise it and also find the Lévy measure of the
compensated power jump process GU) = {@Ej),t > 0} . The method makes use of the
exponential formula in Bertoin (1996): Let f be a complex-valued Borel function and

2|1 = /@ v (dz) < oo, we have for every ¢ > 0,

Elepd Y (X | =exp {t/oo (ef(x)—1>y(dx)}. (5.10)

0<s<t —o0

Proposition 5.4.2 If the condition in equation is satisfied, the Lévy triplet of GU)
s given by

a aexp (—bz%>

b .
bj/o exp (—2z) 227 1dz, 0, 1(z>0)dz

7z
Proof. The proof is given in Appendix O

GO = {@gﬂ ),t > O} is obtained by subtracting a positive drift from the pure jump
process GU) = {Gﬁj ),t > 0}. Since the drift is deterministic, it is clear that the compen-

~

sated power jump process GY) is also a Lévy process using the Lévy-Khintchine formula
given in 1’ The Lévy measure of GU) is the same as that of GU) and the additional
drift is given by —m;t, where m; = fj;o v (dz) fori > 2, mit = E [GEI)} and v¢g (dz)
is the Lévy measure of the original Gamma process. Using the Lévy-Khintchine formula,

we can easily show that the Lévy triplet of G is given by

b ) a exp (sz%)
a -1

—m;j + i /0 exp (—z) 2/~ "dz, 0, iz Lis0)dz
Recall the i-th orthogonalised compensated power jump process, H ) = {Ht(] ),t > 0},

has the form

HY =GP +a;; 0677V +a;; 0677 + 401G, (5.11)
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It is obvious that HY) is also a Lévy process since @(j), GU -, GO are Lévy processes.
The equation (5.11)) can be represented alternatively as,

HY = —lmj+aj; 1mj 1+ aj;amj o+ ..+ ajmlt

+ [Gij) + aj,j_ngj_l) + CLjJ'_Qng_z) + ...+ CLjJGgl) .
Hence HY can be considered as the weighted sum of the pure jump processes
G,Ej) + aj,j—ngjil) + CLj7j—2G§j72) +..+ aj,ngl) (5.12)

plus a drift — [mj +ajj—1mj_1+ajj_omj_o+..+ aj,lml] t. Note that the jumps in HG)

can be negative. Therefore,

E [exp (iGHt(j)ﬂ = exp(—if [m; + aj j—1mj_1 + aj j—amj_2 + ... + a;1mi]t)

xE {exp (19 {Gﬁj) +ajj1GY Y a6 L+ “J’JG?)} ) } '

We cannot substitute the Lévy measure of @(i),i =1, .., directly into the above formula
since we do not know the joint Lévy measure for the correlated processes. Instead, we
can try to calculate the characteristic function of H) using directly. Following
Nualart & Schoutens| (2000, p. 119), we put

f(J) (ZL‘) =16 {:L’j + ajJ,l:z:j_l + aj7j,2xj_2 =+ ...+ aj71x} R
and hence

B {exp (19 [ng) + aJ}jfngjil) + aj,j—2G£j72) +...+ aj71G§1)} )}

(o] —bx
_ fO) _q) € 1
exp {t/o (e ) . dz ¢ . (5.13)

Let h0) (z) = fU) () /i and put z = hU) (z), assuming that h) (z) = z has k < j number

of distinct real roots. There are k possible values of x in terms of z, that is, z = hgj ) (2)

or ¥ = hgj) (z) etc. Let p1 < p2 < ... < pg—1 be the turning points of the function
h\9) (z) — z = 0 such that hgj) (2) € (0,p1), h,(cj) (2) € (pr—1,00) and hl(j) (2) € (p1—1, ) for
1=2,3,...k—1. Note that the number of turning points of the function h{?) (x)—2=0
can be greater than k — 1 but we just consider k£ — 1 of them. For convenience, put pg =0
and pp = o00. Let a,8 € R and a # 5.
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Proposition 5.4.3 The Lévy measure of Ht(j) for §j > 2 is given by:

k o~ (2)

v (d2) = a [Zg (h9 i) A9 (p1); )

(4)
. dh, (z)] dz,
i=1 h‘z(]) (2)

where

laes ita<p
gla,fiz)=q le== .
_1{6<z<a} if a>p

The Lévy triplet of Ht(j) 18 given by
L) ()
(— [mj + aji—1mj—1+ ajj—amj_o+ ...+ ajimi] + /1 vy (dz),0,vy (dz)) .

Proof. Starting from (5.13)) and using the above argument, we can rearrange to arrive
at the form of the Lévy-Khintchine formula and get the results. The proof is given in

Appendix O

Example We verify this result for H?) = {Ht(g), t> O}. Using Proposition [5.4.3

we can show that the Lévy measure of H(?) is given by:

67[17\/1+zb2 b2 1

(2)
vy (dz) = a — 1
i (dz) [1_ ﬁJrsz] 2 1+ 202 (—&<=<0)
—[1+viFz02] g2
4+ 1 dz. (5.14)

— 1
1T ap] 2V (=sh<e<eo)

We show that yg) (dz) is a valid Lévy measure, that is, fj;o (1A 2%) yg) (dz) < o0, in
Appendix



Summary of Part I

Lévy processes were introduced in mathematical finance to improve the performance of
some of the financial models which are based on using Brownian motion as the underlying
process and to model stylised features observed in financial processes. The derivation of an
explicit formula for the CRP has been the focus of considerable study, for previous work,
see | Léon et al. | (2002)), Benth et al. | (2003), Lokkal (2004) and [Eddahbi et al. | (2005). The
immediate result of the CRP is the predictable representation property (PRP), which gives
the hedging formulae for contingent claims in the financial market. The CRP expresses
the functional of a Lévy process in terms of an infinite sum of stochastic integrals with
respect to orthogonalised compensated power jump processes. This provides a clear
representation of the structure of the Lévy functional. The chaos expansion explains how
the Lévy functional depends on the underlying Lévy process in terms of the power jump
processes, which are related to the moment structure of the underlying process. In this
part, we derived a computational explicit formula for the construction of the CRP of the
powers of increments of Lévy processes in terms of orthogonalised compensated power
jump processes and its CRP in terms of Poisson random measures. |Jamshidian| (2005)
extended the CRP in terms of power jump processes to a large class of semimartingales
and we showed that our formula is an non-trivial extension of the one given by |Jamshidian
(2005) in the Lévy case, which is an important subclass of semimartingales. Our explicit
formula shows that the integrands of the stochastic integrals in the CRP of the powers of
increments of Lévy processes do not depend on the integrating variables nor the starting
time. This makes the construction and simulation of the CRP much easier to implement.
The coefficients of the CRP depend on the m;’s which represent the moments of the process
with respect to its Lévy measure. In this part, we considered only Lévy processes and
their compensators are always of the form m;t. Using the same calculation, it is trivial to
extend the representation to semimartingales whose stochastic compensators have known
representations. The CRP of the pricing functions for some common financial derivatives
can be found by expressing the pricing functions in terms of powers of increments of the

underlying Lévy process using a Taylor expansion.
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Part 11

Hedging strategies and minimal
variance portfolios for European
and exotic options in a Lévy

market

In Part I of this thesis, we gave the two versions of the chaotic representation property
(CRP) in terms of orthogonalised compensated power jump processes and also in terms of
the Poisson random measure. The power jump processes are closely related to the power
jump assets, see Corcuera et al. | (2005), which will be used for perfect hedging in this part.
The CRP in terms of the Poisson random measure is used in the derivation of the minimal
variance portfolio. The CRP is important as it implies the predictable representation
property (PRP), which provides the hedging portfolio for a contingent claim.  After
Nualart & Schoutens| (2000]) proved the existence of the CRP and PRP for Lévy processes
in terms of orthogonalised compensated power jump processes, (Corcuera et al. | (2005)
suggested completing the market by trading in the related power jump assets with the use
of the PRP, which is derived from the It6 formula. The trading strategy was expressed
in terms of a sum of stochastic integrals with respect to some tradable assets. However,
the use of stochastic integrals implies that the hedging period, At, and the changes of
values of the tradable assets have to be very small in order for the stochastic integrals to
be implemented by discrete approximation. In reality this would not be practical and
especially if the assets are driven by Lévy processes, we expect the changes in values of the
assets to be non-trivial. We get around this problem by deriving hedging strategies for
European and exotic options in a Lévy market in terms of Taylor’s Theorem such that the
change of time and changes of values of the tradable assets can be acknowledged explicitly.
Moreover, by expressing the change of value of the contingent claim to be hedged in terms
of an expansion with respect to the powers of increments of the underlying stock, we
can explicitly consider the terms relating to different moments of the underlying stock
and consider hedging these terms separately. In this part, dynamic hedging portfolios

are constructed under different market assumptions, such as the existence of power jump
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assets or moment swaps. Static hedging is implemented in the case of European options
or baskets of European options. It is shown that perfect hedging can be achieved. Delta
and gamma hedging strategies are extended to higher moment hedging by investing in
other traded derivatives depending on the same underlying asset. This development is
of practical importance as such other derivatives might be readily available. Moment
swaps or power jump assets are not liquidly traded. It is shown how minimal variance
portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing
function, investing only in a risk-free bank account, the underlying asset and potentially
variance swaps. The numerical algorithms and performance of the hedging strategies
are presented, showing the practical utility of the derived results. We derive the hedging
portfolio directly from the Taylor expansion and investigate the performance of the hedging
strategies. In our simulation study, we use the Variance Gamma (VG) model, which is
convenient to use as it is analytically tractable and easy to simulate.

This part is arranged as follows: Chapter [6.1]introduces the hedging instruments used
in this part, namely the variance swaps, moment swaps and power jump assets. Chapter
[6.2] gives hedging strategies using the approximation formulae obtained from applying
Taylor’s theorem to the pricing formulae and investing in variance swaps, moment swaps or
power jump assets. We extend the delta and gamma hedging strategies to higher moment
hedging by investing in some traded derivatives depending on the same underlying asset.
Chapter [6.3| demonstrates how to use the minimal variance portfolios derived by Benth
et al. | (2003) to hedge the higher order terms in the Taylor expansion, investing only in a
risk-free bank account, the underlying asset and potentially variance swaps. Chapter
gives the approximation procedure of the hedging strategies and the performance of the
hedging strategies implemented on a set of different types of options as illustration of the
performance of the proposed method. Some concluding remarks are provided at the end
of this part. Proofs and tables are included in Appendix



Chapter 6
Perfect hedging strategies

An investment made to specifically reduce or cancel out risk in another investment is called
a hedge. The strategy designed to minimise the exposure to an unwanted risk in finance is
called a hedging strategy. Under the Black-Scholes model, the PRP of Brownian motions
allows perfect hedging of European options. Unfortunately, the derivation of hedging
strategies of options in an incomplete market is not as simple and has been the focus
of considerable study in the literature, see for example (Carr et al. | (2001), He et al.

(2005) and |Cont et al. | (2005). In this thesis, by extending the ideas of |Corcuera
et al. | (2005), Schoutens| (2005) and Benth et al. | (2003), we derive and implement some
hedging strategies for European and exotic options. Numerical procedures are provided
and performance of the hedging strategies is discussed.

The predictable representation property, given in , is useful in option hedging.
For option pricing functions which are infinitely differentiable in the stock price, we can
simply apply the It6 formula to obtain such a predictable representation. After Nualart
& Schoutens (2000) proved the existence of the CRP and PRP for Lévy processes in terms
of orthogonalised compensated power jump processes, |Corcuera et al. | (2005) suggested
completing the market by trading in the related power jump assets with the use of the
PRP, which is derived from the It6 formula. Assuming power jump assets are traded
in the market, |Corcuera et al. | (2005) derived a self-financing replicating portfolio for
a contingent claim whose payoff function only depends on the stock price at maturity.
Their hedging formula is derived from the Itd formula and given in terms of an infinite
sum of stochastic integrals. In this thesis, we use a different approach to determine a
self-financing replicating portfolio, which, in some cases, can be used in both static and
dynamic hedging with a flexible At, where At denotes the time change during the hedging
period. We will apply Taylor’s theorem directly to the option pricing formulae to obtain
hedging portfolios. Note that delta and gamma hedging commonly used by traders in
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the market, discussed in Section are based on Taylor’s theorem, see Hull| (2003)).
In the literature, the results on option hedging using CRP, given in , has previously
focused on the theoretical aspects of the problem, see, for example, |Corcuera et al. | (2005)
and Lgkka (2004). We aim to investigate the problem from a practical point of view
by providing methods to obtain the hedging portfolios explicitly using numerical methods
and shall discuss the difficulties encountered. When implementing stochastic processes
computationally, it is necessary to discretise the time variable. Hence, it is natural to
work directly from Taylor’s theorem, which can be considered as a discrete version of Itd
formula. As a matter of fact, Taylor’s theorem was used to derived the delta and gamma
hedges commonly used by traders in the market, given in Section Our approach
can also be applied to barrier options, whose pricing functions are given in Appendix
in the case of dynamic hedging.

In the followings, we shall derive hedging strategies using Taylor’s theorem. Firstly,
we specify the model of the underlying asset, S = {S;,t > 0}. Following Corcuera et al.

(2005, Theorem 3), we assume

45 _ e+ dX,, (6.1)
S,

where X = {X;,t> 0} is a general Lévy process. For example, in our simulation in

Section we assume X is a Variance Gamma (VG) process, which will be discussed in
more details in Section [6.4.3] Let the risk-free bank account be

By =exp(rt), (6.2)

where 7 is the continuously compounded risk-free interest rate. Let F' (¢, ) be the option
pricing function at time t < T" and stock price equal to x, where T is the maturity of the
option. Let DiF (t,x) be the i-th derivative of F (¢, z) with respect to the first variable
(time), and DLF (t,x) be the i-th derivative of F (¢, z) with respect to the second variable
(stock price). Suppose F'(t,z) is continuous and infinitely differentiable in the second
variable and satisfies sup, . x ;<z D neo D5 F (t,2)| R < oo for all K, R > 0,ty > 0.

Let At be the time change during the hedging period and AS; = Sy1a:—S;. Applying

Taylor’s theorem twice to the option pricing formula, F' (¢, S¢), we obtain

F (t + At, St + ASt) —F (t, St)
= [F (t + At, Sy + ASy) — F (t + At, S)] + [F (t + At, Sy) — F (t, Sy)]

B i DLF (t + At, Sy) > DiF (t,S;)
N i

p (AS) +Y

i=1 =1

(At)", (6.3)

which is true as long as the derivatives D3F (t + At, S;) and DiF (t,S;) exist for i =
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1,2,3,.... Hence, the change of value of F' during time ¢ to ¢ + At can be hedged by
investing in w units of (AS;)" and w units of (At)’ for i =1,2,.... Note
that it is not necessary to apply the multivariate Taylor’s theorem since the value of
At is known at time t. Let M9 (t,x) be the price of a financial derivative such that

M@ (0,8y) = F(0,Sp) and

0o i ‘
t —|— At, St> (Ast)z—l—z DlFi('t, St) (At)z ’

! DLF(
MWD (t + AL, Sy + AS)—M@ (£,8) = =2
i=1 =1
(6.4)

1!

where ¢ is a positive integer. Therefore, we have

lim M9 (T, Sp) = F (T, St),

q—00
that is, the value of the financial derivative M (9 is asymptotic to F as ¢ goes to infinity.
Our aim is to construct a self-financing hedging portfolio for M (9. Note that the hedging

error at time Af,

[F (t+ At, S+ ASy) — F (£, 5)] — | M (t + At, Sy + ASy) — M (¢, st)]

i": DLF (t + At, Sy)

i (AS,),
i=q+1 ’

can be approximated using standard techniques in calculating the remainder terms in a
Taylor expansion. Let 73,5(1) be the value of a basket of financial derivatives such as the
risk-free bank account, the underlying stock, variance swaps, moment swaps, power jump

assets or other financial derivatives depending on the same underlying stock such that
(ASy) = APti) = Pt(i)m - Pti) fori=2,3,....

Note that Pt(i) is a basket of assets that would not lead to arbitrage opportunities. We

will show later how to construct such a basket of tradable assets. Therefore, we have

o0

DiF ;
MY (t+ A, Sp + ASy) = MDD (£,5) = Y 1Z(,t5t) (At)' + DIF (t + At, S,) AS,
i=1 ’
.
DLF (t+ At Sy) «
D B AP, (6.5)
1=2

The self-financing portfolio to hedge M@ (t + At, S; + AS;) — M9 (¢, S;) is then
(i) Invest Y25°, DiF (¢, Sy) (At)" /il (exp (rAt) — 1) in a risk-less bank account such that
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at time ¢ + At, the deposit is worth > oo, D{F (¢, 5;) (At)iexp (rAt) /il (exp (rAt) — 1)
and the change of value of the investment is )7, M (At)";
(ii) Invest DIF (t + At,S;) in the underlying stock;
w in Pt() fori=2,3,...,q

In real life apphca‘mon, we have to find a reasonable value for g and we discuss methods
of choosing ¢ in Section Note that the approximation in only requires the
existence of D{F (t,5;) for i = 1,2,3,... and DF (t + At, S;) for i = 1,2,3,....,q. The

value of ¢ determines how many financial derivatives we need to invest in, in order to hedge

(iii) Invest

the option up to a pre-specified level of accuracy. If ¢ = 1, it is only necessary to hedge the

o M (At)" by investing in a risk-free bank account and the

deterministic term ) 2,
term DiF (t + At, Sy) ASt by 1nve5t1ng in the underlying stock, which is a simple extension
to the delta hedging discussed in Section If ¢ = 2, we can hedge by investing in a
risk-free bank account, the underlying stock and the variance swaps currently traded in
the market, which is discussed in Section If ¢ > 3, we can consider perfect hedging
in three cases: (a) trading in moment swaps, discussed in Section (b) trading in
power jump assets, discussed in Section and (c) trading in some financial derivatives
depending on the same underlying assets, discussed in Section Note that (a) and
(b) are not liquidly traded in the market while (c) might be more readily available. If
all of these financial derivatives are not available for trading, we can employ the minimal
variance portfolios derived in Section

The approximation in can be used in both static and dynamic hedging for Euro-
pean options by just changing At. The reason why static hedging may not be applicable
to exotic options is because if during the hedging period, At, the value of the Sy as, where
As < At is explicitly occurring in the formulae, then this must be used in the calculation
of the option price. In this case, we have to apply Taylor’s theorem with respect to both
AS; = (Sirat — Sy) and (Sgras — St).  In the case of dynamic hedging, we can assume
that the minimum time period for a change of value of S to take place is equal to At,
the hedging period. Although static hedging can only be applied to European options,
some exotic options can be decomposed into a basket of European options such that static
hedging can still be achieved, see for example |Derman et al. | (1995). In Section m
we show the approximation results for both static hedging (At equals to 3 months) and
dynamic hedging (At equals to 5 minutes) for European options and dynamic hedging for
barrier options. The advantage of static hedging over dynamic hedging is that in real life,
transaction costs and bid-ask spreads of option prices are not negligible. The replicating
portfolio is not truly self-financing since extra investment must be made to pay for these
additional costs. Hence, it is preferable to hedge statically rather than dynamically as the

costs involved will be less and constant rebalancing is not required. In the literature and
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in practice, it is common to assume that AS; is very small such that the approximation in
can be truncated without loss of accuracy; this is the main assumption behind the
delta and gamma hedges commonly used by traders in the market. However, in real life,
the price of every traded asset in the market moves by a tick size, such as 0.5 or 1. After
a very short period of time, the price of the traded asset either stays unchanged or moves
by a multiple of the tick size. Hence, the assumption of AS; being very small in hedging
is not sufficiently accurate. It would not in general be reasonable to assume that AS; is
small when modelling S as a process with jumps. Thus, we consider AS; > 1 for both

static and dynamic hedging in our simulation analysis in Section [6.4.4]

6.1 Hedging instruments

In this section, we consider the use of moment swaps (including variance swaps) and power
jump assets in our hedging strategies. Recall in the Black-Scholes world, the PRP is in
terms of a stochastic integral with respect to a Brownian motion. Therefore, a contingent
claim can be hedged by investing merely in a risk-free bank account and the underlying
asset. However, the PRP for Lévy processes involves stochastic integrals with respect
to power jump processes, which are related to the higher moments of the underlying
Lévy process. In equation , they are represented through w (ASt)i. To
hedge these terms, we need to invest in some financial derivatives related to these higher
moments. We show how moment swaps introduced by |Schoutens| (2005) and power jump

assets by |Corcuera et al. | (2005]) can be used to construct ’Pt(i) used in the hedging portfolio

given in (6.5)).

6.1.1 Variance swaps and moment swaps

Variance swaps, introduced by Demeterfi et al. | (1999), are commonly traded over-the-
counter (OTC) derivatives. |Schoutens (2005) generalised variance swaps to moment
swaps, which are not liquidly traded in the market. |Windcliff et al. | (2006)) gave a
detailed discussion on volatility swaps.

There are two common contractual definitions of returns of stock price. Let the
sampling points of the contract be {si, so, ..., s, }, where the s’s are equally spaced with
length As. The actual return is defined to be

Sy — S,
Ractual,i = % (66)
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and the log return is defined to be

Ss
Riogi = log( S’“). (6.7)

The annualised realised variance, o2 is defined by

realised?

2 2 :
Orealised = AS 'I”L - R

where R; is either the actual return or log return of the stock price. We can now give the

definition of a variance swap, introduced by |Demeterfi et al. | (1999).

Definition 6.1.1 A wvariance swap is a forward contract on annualised realised variance,

0.2

2 alised- 1ts payoff at expiration is equal to

2 2
(Urealised - Ustm'ke) N7

2
where Jrealzse

contract, o2

g s the realised stock variance (quoted in annual terms) over the life of the
Zvike 18 the pre-defined delivery price for variance, and N is the notional amount
of the swap. The holder of a variance swap at expiration receives N dollars for every point
The

annualised realised variance is calculated based on the pre-specified set of sampling points

by which the stock’s realised variance has exceeded the variance delivery price Ufmke.

over the period, {s1, 82, ..., 5n}-

In the case of log return, R; = Ry i, Schoutens (2005) generalised variance swaps to

moment swaps. The annualised realised k-th moment, M (k) is defined by

realised’

n—1

(k) 1 ks
M E
realised — As (77, _ 2 R

This definition can be easily extended to the case where R; = Ryciuali- We can now give

the definition of the k-th moment swap.

Definition 6.1.2 A k-th moment swap is a forward contract on annualised realised k-th

moment, M( )

realised- 1S payoff at expiration is equal to

(M8~ 218

where M;ea)lzsed is the realised k-th moment (quoted in annual terms) over the life of the

(k)
contract, Mstmke

1s the pre-defined delivery price for the k-th moment, and N is the notional
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amount of the swap. The holder of a k-th moment swap at expiration receives N dollars
for every point by which the stock’s realised k-th moment has exceeded the k-th moment

delivery price M)

srike-  The annualised realised k-th moment is calculated based on the

pre-specified set of sampling points over the period, {s1,S2, ..., Sn}-

6.1.2 Power jump assets

Corcuera et al. | (2005)) suggested enlarging the Lévy market with power jump assets,

where the i-th power jump asset is defined by
Tt(i) = exp (rt) Yt(i), i>2, (6.8)

and Yt(i) is the compensated power jump process defined in . The authors derived
the dynamic hedging portfolio trading in these assets using the It6 formula. |Corcuera
et al. | (2005) noted that the 2nd power jump process is related to the realised variance,
see [Barndorff-Nielsen & Shephard| (2002). However, the 2nd power jump asset is not the

same as a variance swap and we consider their usages separately in Section [6.2

6.2 Hedging strategies

In the last section, we introduce two different kinds of financial derivatives involving
higher moments, namely, the moment swaps and the power jump assets. In this section,
we explain how to use them to construct the basket of financial derivatives, Pt(i), in order
to hedge the terms in equation . We also discuss the delta and gamma hedges in
the literature and we extend them in order to obtain perfect hedging by trading in certain
financial derivatives depending on the same underlying asset, which may be available in
the market.

In constructing the hedging portfolio in , we already showed how to hedge the

e DiF(t,S
deterministic term )7, #

(At)". Here we give a more detailed discussion. Let x
be the deterministic change in value of the portfolio over a period of time, where x is some
known real number. To hedge x, we invest an amount P in a risk-free bank account with
continuous compound interest rate r such that the gain from this investment over time At
is equal to x:

x

P(exp(rAt)—1)=2 = P= (oxp (AD = 1) (6.9)

In other words, to hedge x, we invest ) amount of cash into a risk-free bank

(exp(rmAt) -1
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account paying a compound interest rate of r. For example, to hedge the term

i DiF (t,5) (A1)

1!
i=1

in equation (6.4), we need to invest

Zoo DiF(t,S) (At)z

=1 2!

(exp (rAt) — 1)

in a risk-free bank account. Note that the risk free interest rate, r, is almost always
non-zero in real life. If it were zero, dS; = S;_dX under the risk-neutral measure and
there would be no drift term. Since an option is a function of S, there would be no drift
term in the option pricing formula and hence there would not be any deterministic term
to hedge.

6.2.1 Hedging with variance swaps

To hedge the term (AS;)? in equation 1 , we construct P,f(2) which invest in a risk-free
bank account and variance swaps. If At is negligible compared to AS;, from (6.1)), we

have
(ASy)? = S (AXy)?. (6.10)

Note that we cannot use the variance swaps using log return, Rj,,; defined in (6.7)
to hedge. It is because [log (‘gtgift)r = [log (1 + AX,)]? since we assume At to be
negligible. From , we need (AX;)? rather than [log (1 + AX;)]? to hedge, therefore
the variance swaps using log returns are not useful in this case. Even if we use the
model Syiar = Siexp (AX;) such that log (Si+at/S:) = AXy, we then have (ASt)2 =
(Sirae — Si)? = S? [exp (AX;) — 1)?, which still can not be hedged by the variance swaps
using log returns. Therefore, in our case where we apply Taylor’s theorem with respect
to AS;, we should invest in the variance swaps using absolute returns, Rcuali, as defined
in .

Recall in Section that there is a set of sampling points, {si, s, ..., s}, for each
contract. We invest in the variance swap at time ¢ where the last two sampling points are

equal to t and t + At: s,—1 =t and s, =t + At and maturity equal to ¢t + At. Note that

2 _
realised

ASN\? 2/ Sh,, — S\
< St ) +;< St;

At does not have to be negligible here. At maturity, we receive the payoff o o

2
strike’

where

n—1
I S o Tl 1
realised ™ A (n, — 2) - St As(n—2)

1=
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n—2
and the value of Y (Sy., — S¢,)?/SE is known as time ¢. In the following, we give the
=1

1=
hedging strategy to hedge the term

_ D3F(t+ At S)

: (AS))? = Cy (AS,)? (6.11)

Q2

in equation 1) by constructing 7%(2).

Proposition 6.2.1 To hedge the term Q2 in equation we invest in Cy units of
Pt(2) at time t, consisting of As (n — 2) S? units of the variance swap with sampling points

{..,8n_1=1t,5, =t + At}, maturity t + At, strike o> and

strike

n—2 2
1 St — St
2 o i+1 i
O strike As (n _ 2) E < Sti >

i=1

SZAs (n —2)
[exp (rAt) — 1]

PyAs(n —2)S?
[exp (rAt) — 1]

units of cash in a risk-free bank account, where Py is the price of one unit of the variance

swap.

Proof. Let

n—2 2
Srae 1 S (SwmoS_ 1 g
Snp = As(n—2) ( St; ) - As(n—2) Sn.2- (6.12)

=1

The initial investment at time ¢ equals the price of the variance swap plus the deposit into

the risk-free bank account, which is equal to

[O—g‘crike - Sn,2] :

1 2As(n—2
CQAS (n — 2) S?PV [1 + :| C2St i (TL )

exp (rAt) — 1 [exp (rAt) — 1]

At maturity, the portfolio is worth

2 < rAt 2
2 [o-strike B Sn72] € 1 ASt Q 2
CQSt AS (n — 2) { eT’At — 1 AS (n — 2) St + STL,Q - O-strike
As(n —2) SZerAt
+C2PV erAt 1
Cy52As (n —2 =
— 02 (ASt)2 + 209¢ ( ) [eT‘At _ e?"At + 1] [Ugtrike _ Sn72i|

[erAt _ 1]

As (n —2) SperAt
erAt _ 1

+C2 Py

As (n — 2) SpemA

= C12 (Ast)z + CQSEAS (n - 2) [Js?trike - gﬂ@] / [(eTAt - 1)] + C2PV erAt _ q
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Hence, the change of value of the hedging portfolio is equal to

e'rAt 1

erAt_l_l_erAt_l

Cy (AS)? + CoAs (n—2) S2Py =y (AS))?,

as desired. O

6.2.2 Hedging with moment swaps

In the last section, we explained how to hedge the term @ in equation (6.11]) using variance

swaps. The idea can be extended easily to moment swaps to hedge the term

_ DLF (t+ At Sy)
N i

Q; (AS) = C; (AS,) (6.13)

for ¢ = 3,4,5, ..., which can be done by investing in the i-th moment swap at time ¢ with

sampling points s,_1 =t and s, = t + At and maturity equal to t + At. At maturity, we
receive the payoff MY ~ MY
ASN\' | =
< Stt> + Sn,i

realised strike?
and the value of §m is known at time t. In the following, we give the hedging strategy to

o .

AS\' St — S\

(&) = (s
(0

i=1
hedge the term @); by constructing P, .

where

1

(i) 1 _
As(n —2)

realised — As (n _ 2)

9

Proposition 6.2.2 To hedge the terms Q; defined in , we invest in C; units of Pt(i)
at time t, consisting of As (n —2)S{ units of the i-th moment swap with sampling points
{iesy8n—1 =t, 8, =t + At} , maturity t + At and strike MY and

strike’

SiAs (n —2) () 1 ~ } As (n —2)SiPy

[exp (rAt) — 1] | strike — Ag(n—2)"""| " [exp (rAt) — 1]

units of cash in a risk-free bank account where Py is the price of one unit of the moment

swap.

Proof. The initial investment at time ¢ equals the price of the moment swap and the

deposit into the risk-free bank account:

. 1 SEA -2 i 1 ~
CiAS(n—Q)SZPM[H-e 1] CiS{As (n )M()

rAt _ erAt _ 1 strike As (n — 2) Sn,i .
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At maturity, the portfolio is worth

(@) 1 [l rAt

: [Mstrike - msm} €
C;S{As (n — 2) AL ]

n 1 AS\" - Y0 Lop As (n —2) SierAt

As(n—2) Sy ot strike M erdt — 1
o i CiSIAs(n—2)  ar i (%) 1 g .
=GCi (Ast) + erAt _q [6 —¢ + 1] Mstrike - As (n _ 2) S”ﬂ
As (n —2) Sierat
+C’LPM |: eT‘At _ 1

= C; (AS)" + CiSiAs (n—2) / ("2 — 1)

G 1 3 .

As (n —2) Sierat
erAt _q :

Hence, the change of value of the hedging portfolio is equal to

erAt 1

rAtil_l_erAtil

Ci (AS))" + CiAs (n —2) SiPy L ] = C; (AS)",

as desired. ]

6.2.3 Hedging with power jump processes of higher orders

In the last two sections, we discuss how to hedge >°7 | Q; for ¢ > 2 using variance swaps
and moment swaps. If we allow trading in the power jump assets, discussed in Section
we can hedge using power jump assets instead. Since we assume the underlying
is driven by the formula , the famous Doléans-Dade exponential, see |Cont & Tankov
(2003, Proposition 8.21), has the solution

2

Sy = Spexp (Xt + <b - U2> t) H (1+AX;)exp(—AXy), (6.14)
0<s<t

where b is defined in and o2 is the Brownian variance parameter. In the following, we
consider the simplified case where there is at most one jump of X between ¢ and ¢+ At, and
the general case where there can be infinite number of jumps. Note that the latter case
might not be realistic because in reality, we only observe a discrete series of the underlying
stock S, while the power jump processes of the Lévy process with infinite activity are not
observable. Therefore, it appears to be more practical to consider trading in moment

swaps rather than power jump processes. We consider both assets for completeness and
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theoretical interest.

The simplified case

If At is negligible compared to AS;, from (6.1)) and assuming there is at most one jump
of X between ¢ and ¢ + At. From (6.1) and (6.8)), we have

(AS)" = SHAX)' =8| Y (AX)' - > (AX,)

0<s<t+At 0<s<t
S [0~ X9 — 8¢ [0 ¥ ]
= S [exp (—r(t+ At)) Tt(Jir)At —exp (—rt) Tt(i) + miAt] . (6.15)

Therefore, we can derive the hedging strategy to hedge the term @); by constructing 73,5(“:

Proposition 6.2.3 If At is negligible compared to ASy, to hedge Q;, we invest in C; units
of 73t(1)7 consisting of S exp (—r (t + At)) units of Tt(Z) and

< ; i (4)
Siexp (—r (t + At)) Tt(z) St |—exp (—rt) T, + mAt
exp (rAt) — 1 exp (rAt) — 1

units of cash in a risk-free bank account.
Proof. The proof is included in Appendix O

If At is not negligible compared to AS;, assuming ¢ = 0 and there is only one jump
of X between times ¢ and t + At as before, we have from (/6.14])

ASt = St-‘rAt - St
= St exp (Xt—l—At - Xt + bAt) (1 + AXt) exp (—AXt) - St
= S [exp (bAE) (1 + AX,) —1]. (6.16)

Note that if At — 0, exp (bAt) — 1, we have AS; = S; (AX}), as in the case above.

Squaring both sides, we have

(AS,)? S2 [exp (bAL) (1 + AXy) — 1]

— 57 {exp (260) (AX)? + 2exp (BAL) exp (bAL) — 1] AX; + exp (bAL) — 1%}
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Substituting AX; by [As—ft + 1} exp (—bAt) — 1 using (6.16]), we have

(A8 = 7 {exp (26A) (AX:)” + [exp (bAY) — 11}

+28% exp (bAt) [exp (bAL) — 1] { [Asft + 1] exp (—bAt) — 1}

= 25, [exp (bAL) — 1] AS, + 52 exp (2bAt) (AX,)? — S [exp (bAL) — 1]2.

Similarly to (6.15)) above,

(ASy)? = —5?[exp (bAt) — 1]* + 28, [exp (bAL) — 1] AS,
452 exp (2bAt) [exp (—r(t+ At)) Tt(i)At

— exp (—rt) Tt(z) + mgAt] . (6.17)

We can then derive the hedging strategy to hedge the term @2 in equation (6.4) by

constructing 7325(2) when At is not negligible compared to AS;.

Proposition 6.2.4 If At is not negligible compared to AS;, to hedge the term Qo, we
invest in Cy units of Pt(2), consisting of S? exp (2bAt) exp (—r (t + At)) units of Tt(z) and

v
[exp (rAt) — 1]

+ 28 [exp (bAt) — 1] AS; + S? exp (2bAt) [— exp (—rt) Tt(2) + mzAt} }

{Sf exp (20At) exp (—r (t + At)) Tt(Q) — 52 [exp (bAL) — 1]?

units of cash in a risk-free bank account.
Proof. The proof is included in Appendix [B.3| O
To hedge Q; for i > 2 if At is not negligible compared to AS;, we start from ,
(AS)" = S![exp (bAL) (1 +AXy) — 1]

1

= 5 {Z () (1) exp (jbA1)

= M k=2

1+ jAX; + zj: (i) (AXt)k] } .

Substituting AX; by [As—ft + 1} exp (—bAt) — 1 using (/6.16)), we have

J=0

(AS) = S! {Z (;) (—1)"7 exp (jbAL) [1 +3 <[%‘? + 1] exp (—bAt) — 1)
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i .
+ Z( ) (AXy)" }
k=2
(i i ) ) . AS;
= 5 j (—1)"7 exp (jbAt) § 1 + j (exp (—bAt) — 1) + jexp (—bAL) — S
i=0 !
j .
+Z< > (AX;) }
=2
Let
) = St<;> (—1)" 7 exp (jbAt) {1 + j (exp (—bAE) — 1)} (6.18)
A9 = s () e (G- Db (6.19)
i) _ Qi V) 1y ~ J _ :
C Sy i (—1)"7 exp (jbAL) L for k=2,3,...,75, (6.20)
we have ‘
3
(AS) =3 | As, +chﬂ> (AX)F + e
=0 k=2
Similar to (6.15) above,

(A8 = > [As+ )
=0
+ Z c,(;’]) [exp( r(t+ At))T, t(Jr)At exp (—rt) Tt(k) + mkAt]
k=2

Therefore, we can derive the hedging strategy to hedge the term ); by constructing Pt(i)

when At is not negligible compared to AS;.

Proposition 6.2.5 To hedge Q; for i > 2 if At is not negligible compared to ASy, we
invest in C; units of 77,5(1), consisting of Z;:k cg’]) exp (—r (t + At)) units of Tt(k) for k =
2,3,...1, and

1
[exp (rAt) — 1] Z {ch K exp (=r(t+ AT, "
] =0

+ cg ’])ASt + Z c,(~C ) [f exp (—rt) Tt(k) + mkAt} + c(()i’j)}
k=2
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units of cash in a risk-free bank account, where c(()i’j ), cgi’j ) and cl(:’j ) are defined in -
6.20)).

Proof. The initial investment at time ¢ is

(4.4) (k)
(i.9) Zk 2 Ck exp (—r (t+ A1) T,
g E ¢, exp (—r (t + At)) E
— exp (rAt) — 1
i [ (0.9) AS; + Zk 9 ck [ exp (—rt) Tt( ) + mkAt} + c(()i’j)}

+>
§=0

exp (rAt) — 1

Z {Z cp ") exp (—r (t + AL) TH + s C’(f Dexp (—r (t+ A T
=0

exp (rAt) — 1

{cgm)ASt + Zk ) ck [ exp (—7t) Tt(k) + mkAt} + c(()i’j)}

+ exp (rAt) —

At maturity, the portfolio is worth

i (i) (k)
i) ) Y pooCr exp (—r (t + At)) T,
C; Z {Z e, exp (= (t+ At)) Ty la, + oxp (A1) — 1 exp (rAt)

(m)AS + Zk 5 Cp (3.7) —exp (—rt) T( ) + mkAt] + c(w)

* exp (rAt) — 1

exp (rAt)
The change of value of the portfolio is

(4,9) 7*) _ (k) (4,9) (4,9
Ci Z Z exp (=7 (t + At)) Ty ln, — exp (=7t) T + myAt| + ¢ " AS; + ¢ ,

k=2

as desired. O

The general case

In the case where there are infinite number of jumps from ¢ to ¢+ At, we need the following
results on explicit formulae of CRP proved in Part 1.
If At is negligible compared to AS;, from (6.1)), and Theorem we have

(ASy)" = S (AXy)" = S (Xevar — X)" = S Z He Ata,San’At’t‘i’CXQO_ . (6.21)
On€ly,
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In order to hedge (AS;)", we can invest in the power jump integral process:
u(i17i27"'7ij)7At7t = 6xp (TAt) S(Iil,iz,...,ij),ALt'

Note that since Y()’s are martingales, {S t> 0}’5 are also martingales.

!/
(’i1,’i2,...,i]‘),At,t’
Therefore, the discounted versions of the U(;, ;, . i) A¢¢ are QQ-martingales:

i)
Eq |exp (—rAt) u(i17i27~-‘,ij),At,t|f5:| = Eq [Séil,ig,“.,i]’),At,t|f5:|
= S for t < s <t+ At.

(il,iz,...,ij),sft,ﬁ

Hence the market allowing trade in the bond, the stock and the power jump integral assets
remains arbitrage-free. From ([6.21]), we have

(AS)" = 87| 3 1 5, exp (—r A Uy, ars + O
0n€Ly

Proposition 6.2.6 If At is negligible compared to ASt, to hedge Q;, we invest in C; units
©)

. 7 SiC
of 73152), consisting of S;Hg?AtUexp(—rAt) units of Up, ars for 0; € I; and (e)(pt(?“%

units of cash in a risk-free bank account.

Remark 6.2.1 In this general case, we can only derive simple hedging strategy when At
is megligible. ~ Note that both power jump assets introduced by Corcuera et al. | (2005)
and power jump integral assets introduced here are imaginary assets. In reality, we only
observe a discrete series of stock price, S, while there are an infinite number of jumps
between any finite time interval if the underlying Lévy process has infinite activity. In
other words, the values of these assets cannot be observed in the market and hence cannot
be traded. The moment swaps introduced by Schoutens (2005) depend on the increment
of the underlying stock, AS, and can hence be observed and traded in reality. We include
the discussion on power jump assets for theoretical interest.
Alternatively, note that in S(ihi%wij)’m’t, the integrand fttl_ e fttj’l_ dY;E,il) . -dYt(;j*l)

is a predictable function. Since we assume At to be very small, we can hedge (AS;)" by

investing in the power jump assets. Let gbg.qs) be the predictable function such that

N pt+At ) ;
(AS)" = 87| D7 105", oSh a0+ Chie | =D / O YY)+ SPCR) . (6.22)
enel—n j:1

where d)é.ns)’s can be calculated by rearranging the terms in Z(,n T, ng) At USén At S We
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then have
n_ttAt '
@syr = Y [ dafe i) 4 spc),
j=1
nottAt . A ,
- Z / o) |—re T ds + a1 + 5pCk),
t
t+AL 1 ) ) - N
- / > O+ 50l + Y [ derary,
j=1
hed AS )" ; n e~ 2rAt (4) 4 (n) S"C(Azo : isk-1 bank
Hence, to hedge (AS;)", we invest > 7, T’ (;5] t— T spran_1 0 a risk-less ban

account and invest qﬁﬁle”m units of Tt( D for 1=12..n

6.2.4 Delta and gamma hedges in the literature

So far we have discussed the hedging strategies using moment swaps and power jump
assets. In this section, we give a brief introduction to delta and gamma hedging strategies
and extend it to obtain perfect hedging in a Lévy market in the next section. Let II be
the value of the portfolio under consideration. The delta and gamma dynamic hedging
strategies are constructed using a Taylor expansion:

Ol oIl 19711 O*11

16°11
6T = Sogs+ Sogt+ 29 58 + 20 a2+ O st 2
5595 G0+ 3 g5’ 5 g+ GggpeS - (6.23)

where JII and 65 are the changes in IT and S in a small time interval §¢. |Hull (2003,
Chapter 14) gave detailed descriptions of the strategies in finance. The delta of a portfolio
is defined as the rate of change of the portfolio with respect to the price of the underlying
asset, that is, g—g. Delta hedging eliminates the first term on the right-hand side of |)

The second term is deterministic. Suppose we write a option with price function II. In

delta hedging, we assume %%552 + %%271;5752 + 8S(‘3t555t +...=o0(1), that is,
oIl oIl
oIl = —5 —675
35 S+ 5 +o(1).

Hence, if we sell one unit of II, we should buy g—rsl unit of the underlying, so that the

change of value of the portfolio is

oIl 8

which is deterministic plus a negligible term. A portfolio with zero delta is said to be

delta-neutral.
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The gamma of a portfolio is defined as the rate of change of the portfolio’s delta with
respect to the price of the underlying. It is the second partial derivative of the portfolio
with respect to asset price, that is, g’%. Since a position in the underlying asset itself or
a forward contract on the underlying asset both have zero gamma, they cannot be used
to change the gamma of a portfolio. To hedge the gamma risk of an option, we need to
trade in an instrument, such as another option, which is not linearly dependent on the
underlying asset. Let I'y be the gamma of a delta-neutral portfolio and I's be the gamma
of a traded option. If we add w number of traded options to the portfolio, the gamma of
the portfolio becomes

wl'y + T'q.

Therefore, to make the portfolio gamma neutral, we need w = —I'1/I's.  Note that
including the traded options may change the delta of the portfolio. Hence, the position

in the underlying asset has to be changed to maintain delta neutrality.

6.2.5 Extension of delta and gamma hedges

In this section, we extend the gamma hedge in order to obtain a perfect hedging strategy
in a Lévy market. Note that equation is a multivariate Taylor expansion and
it is assumed that all the cross derivative terms are negligible. In equation , we
applied Taylor expansions twice to avoid the cross derivative terms, since the value of At

is deterministic and known at time t. Hence, for fixed n, the approximation by:

. D'F(t,S . = DLF (t+ At, S
F(t+ AL+ A8) — F (8.5 = 30 DS gy 5o DAEUE 265
i=1 ’ i=1 ’

(AS,)

(6.24)

is more accurate than

n

o .

F(t+ALS +AS) —F(t,5) =Y DlFZ(fSt) (A +Y DQFZ('tSt) (AS) .
i=1 i=1

Moreover, in the literature, At and AS; are assumed to be very small (such that the cross

terms and higher terms are negligible). We provide the flexibility of specifying the values

of At and AS; such that static hedging is possible in some cases.

It is natural to extend the delta and gamma hedging strategies in the last section
to the n-th derivative of the portf